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Abstract
Additive noise in Partial Differential equations, in particular those of fluid mechan-
ics, has relatively natural motivations. The aim of this work is showing that suitable
multiscale arguments lead rigorously, from a model of fluid with additive noise, to
transport type noise. The arguments apply both to small-scale random perturbations
of the fluid acting on a large-scale passive scalar and to the action of the former on
the large scales of the fluid itself. Our approach consists in studying the (stochastic)
characteristics associated to small-scale random perturbations of the fluid, here mod-
elled by stochastic 2D Euler equations with additive noise, and their convergence in
the infinite scale separation limit.

1 Introduction

Let T > 0 be fixed. In this work we are concerned with convergence of characteristics
associated with stochastic Euler equations in vorticity form on the two-dimensional
torus T2: = R

2/(2πZ2):

dξε
t + (vε

t + uε
t ) · ∇ξε

t dt = −ε−1ξε
t dt + ε−1

∑

k∈N
ςkdW k

t , t ∈ [0, T ], (1.1)

where ξε is the zero-mean unknownvorticity field, uε is the velocity field reconstructed
from ξε via the Biot–Savart kernel: uε

t = −∇⊥(−�)−1ξε
t , vε is a divergence-free

external field with suitable regularity, ςk : T
2 → R with zero average for every

B Franco Flandoli
franco.flandoli@sns.it

Umberto Pappalettera
umberto.pappalettera@sns.it

1 Scuola Normale Superiore, Piazza dei Cavalieri, 7, 56126 Pisa, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40072-022-00249-7&domain=pdf
http://orcid.org/0000-0003-2837-3784


Stoch PDE: Anal Comp (2022) 10:964–1004 965

k ∈ N, (W k)k∈N is a family of i.i.d. Wiener processes defined on a filtered probability
space (�,Ft ,P), and ε � 1 is a scaling parameter.

Equation (1.1) above aim to represent the small-scale component of a two-
dimensional incompressible fluid [1], with the additive noise and damping on the
right-hand-side modelling the influence on the fluid of a possibly irregular boundary
or topography. The choice of the parameter ε−1 in front of both noise and damping is
appropriate when looking at the system with respect to the point of view of a large-
scale observer, see [21] and Sect. 1.2 for details. In view of this, it makes sense to
couple (1.1) with a large-scale scalar dynamics:

d�ε
t + (vε

t + uε
t ) · ∇�ε

t dt = ν��ε
t dt + qε

t dt, t ∈ [0, T ], (1.2)

either passive (inwhich case the external field vε should be interpreted as given a priori)
or active (in which case the external field vε could depend on the large-scale dynamics
itself, as for instance in the vorticity formulation of 2DNavier-Stokes equations, where
vε

t = −∇⊥(−�)−1�ε
t ).

In (1.2) above, ν ≥ 0 is a fixed parameter that represents molecular diffusivity
(passive dynamics) or viscosity (active dynamics), and qε is a given source term with
suitable integrability.

Let (�̃, F̃t , P̃) be an auxiliary probability space and let w be a standard R2-valued
Wiener process defined on (�̃, F̃t , P̃). The (stochastic) characteristics φε associated
with problem (1.1)–(1.2) are given by the family of maps φε

t : T2 → T
2 satisfying

φε
t (x) = x +

∫ t

0
vε

s (φε
s (x))ds +

∫ t

0
uε

s (φ
ε
s (x))ds + √

2νwt , (1.3)

where t ∈ [0, T ], x ∈ T
2. Since vε and uε are divergence-free and have sufficient

regularity, the characteristics φε defined above constitute a stochastic flow of measure-
preserving homeomorphisms, in the sense of Definition 2.3 below. The interest in
studying the solution of (1.3) is motivated by the following representation formula for
the solution of (1.2):

�ε
t = Ẽ

[
�0 ◦ (φε

t )−1 +
∫ t

0
qε

s ◦ φε
s ◦ (φε

t )−1ds

]
, (1.4)

where Ẽ is the expectation on �̃ with respect to P̃ and we have tacitly assumed that
the initial condition �ε |t=0 = �0 is independent of ε. See Definition 2.8 for more
details on the notion of solution adopted in the present paper.

The main purpose of this work—cfr. Theorem 2.12—is to investigate conditions
allowing to prove convergence in a suitable sense, as ε → 0, of φε towards the solution
of:

φt (x) = x +
∫ t

0
vs(φs(x))ds +

∑

k∈N

∫ t

0
σk(φs(x)) ◦ dW k

s + √
2νwt , (1.5)
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where σk = −∇⊥(−�)−1ςk and vε → v in a certain sense.
The notion of convergence φε → φ contained in Theorem 2.12 permits to prove a

notion of weak convergence of the large-scale osservable �ε given by (1.4) towards

�t = Ẽ

[
�0 ◦ (φt )

−1 +
∫ t

0
qs ◦ φs ◦ (φt )

−1ds

]
, (1.6)

that solves the large-scale dynamics with transport noise:

d�t + vt · ∇�t dt +
∑

k∈N
σk · ∇�t ◦ dW k

t = ν��t dt + qt dt, (1.7)

where v is independent of � for passive dynamics, while it could depend of � itself
for active dynamics, and qε → q in a sense to be specified later. The precise meaning
of weak convergence is made rigorous in Theorem 2.13 below.

We think that these results could contribute to a proper interpretation of transport
noise in SPDEs, at least for the two classes considered here. Several papers consid-
ered transport noise so far, either in passive scalars ([11, 15, 23, 24, 32, 33, 40]),
passive vector fields ([18, 19, 31, 44]) and fluid mechanics equations themselves ([3,
4, 6, 7, 9, 10, 12–14, 16, 20, 22, 30, 36, 37, 43]). In terms of consequences of trans-
port noise, among the aforementioned works are proved several results concerning
well-posedness, enhanced dissipation and mixing properties of fluid dynamics equa-
tions perturbed by transport noise, thus being a good starting point towards a rigorous
understanding of turbulence in fluids. However, unlike the case of additive noise, that
is widely accepted as a source of randomness, transport noise needs a more careful
justification. There have been previous attempts by others to derive transport noise by,
effectively, perturbing deterministic balance laws [36] and variational principles [30].
In the present paper, we add to the picture an argument based onWong-Zakai approxi-
mation results, largely investigated both in and outside the realm of fluid dynamics ([2,
25, 26, 28, 29, 41, 42]). More specifically, we show that the presence of additive noise
at small scales, modelling the influence on the fluid of a possibly irregular boundary
or topography, produces transport noise at large scales in a suitable scaling limit. The
limit noise is meant in the Stratonovich sense, as usually is the case in Wong–Zakai
approximation results.

We point out that, at the moment, we are not able to properly justify our modelling
assumptions, but heuristic arguments supporting them are presented in Sect. 1.2; still,
would the modelling assumptions be confirmed in successive studies or experiments,
this partial picture could be a first step in the understanding of turbulence in fluids.

Let us explain what is added to these works by the present paper. Concerning the
passive dynamics, several Wong–Zakai type results of convergence to the white noise
transport in Stratonovich form have been proved before (see also [38] for a dissipation
enhancement result due to the presence of a Stratonovich-to-Itō corrector), but this
seems to be the first work where the velocity field approximating the white noise one is
the solution of a nonlinear fluid mechanics equation. Concerning the active dynamics,
the results contained in this paper extend and make more precise our previous work
[21]: (i) some details in the proof of [21, Proposition 4.1], which after publication
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appeared not precise, are fixed here in Theorem 2.12; (ii) more importantly, the term
uε

t · ∇ξε
t was absent in [21], which therefore should be interpreted more along the

research lines of model reduction, inspired by Majda et al. [34], instead of multiscale
analysis of the full problem.

1.1 Examples

Throughout the paper we keep ourselves in a setting as general as possible, in order to
comprehend, in our abstract results, the greatest number of particular cases. However,
our work has been motivated by two main examples:

• Advection-diffusion equation Consider the following system, describing the evo-
lution of the concentration ρε of a passive scalar advected by the Euler flow and
subject to the influence of an external source qε :

⎧
⎪⎨

⎪⎩

dρε
t + (vt + uε

t ) · ∇ρε
t dt = ν�ρε

t dt + qε
t dt,

dξε
t + (vt + uε

t ) · ∇ξε
t dt = −ε−1ξε

t dt + ε−1∑
k∈N ςkdW k

t ,

uε
t = −∇⊥(−�)−1ξε

t .

We have taken ν ≥ 0 and vε = v, independent of ε, since the passive scalar does
not affect the external field. In this setting, ρε converges towards the solution of
the limiting advection-diffusion equation with transport noise:

dρt + vt · ∇ρt dt +
∑

k∈N
σk · ∇ρt ◦ dW k

t = ν�ρt dt + qt dt .

• Navier–Stokes and Euler equations Consider the following system, describing the
coupling between large-scale Navier–Stokes (ν > 0) or Euler (ν = 0) equations
and small-scale stochastic Euler equations:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d�ε
t + (vε

t + uε
t ) · ∇�ε

t dt = ν��ε
t dt + qε

t dt,

dξε
t + (vε

t + uε
t ) · ∇ξε

t dt = −ε−1ξε
t dt + ε−1∑

k∈N ςkdW k
t ,

vε
t = −∇⊥(−�)−1�ε

t ,

uε
t = −∇⊥(−�)−1ξε

t .

We take qε and �0 with zero spatial average, so that �ε is zero mean, too. Notice
that in this case the field vε is generated by �ε itself through the Biot–Savart law
vε

t = −∇⊥(−�)−1�ε
t , in particular vε is random. On the other hand, the external

source qε can be thought as given a priori and deterministic. In this setting, �ε

converges towards the solution of the limiting Navier–Stokes or Euler equations
with transport noise:

{
d�t + vt · ∇�t dt +∑

k∈N σk · ∇�t ◦ dW k
t = ν��t dt + qt dt,

vt = −∇⊥(−�)−1�t .

123



968 Stoch PDE: Anal Comp (2022) 10:964–1004

It is worth of mention that, also in the limit, the velocity field v is still generated
by � through the Biot–Savart law vt = −∇⊥(−�)−1�t .

1.2 Motivations

As already mentioned in the Introduction, (1.1) aims to represent the small-scale com-
ponent of a two-dimensional incompressible fluid, looked at by a large-scale observer.
At large scales the fluid shows a turbulent behaviour, and its statistical properties are
well-described by solutions of stochastic equations, although the underlying contin-
uum mechanics equations that govern the evolution of the fluid are deterministic.

We refer to Flandoli and Pappalettera [21, Chapter 2] and reference therein for
a complete discussion about the equations under investigation in this paper and the
interest for their asymptotical behaviour as ε → 0.

1.2.1 On the additive noise and damping

Additive noise in SPDEs is so common that apparently we do not need a justification
for introducing it, as we have done in Eq. (1.1) above. However, a short discussion
may help to convince ourselves that it is very natural, and moreover to understand that
also the damping term is needed.

Our opinion is that an additive noise is a good compromise to keep into account the
vortices produced by obstacles and irregularities at the boundary or internal obstacles,
which are not explicitly described in the mathematical formulation, often based on the
torus geometry or a domain with smooth boundary. Such obstacles introduce vortices,
eddies, that could be idealized and described as a jump Markov process WN (t) in the
Hilbert space H of L2(T2) vorticity fields on the torus; the fluid equation perturbed
by the creation of these new vortices takes a priori the form

∂tξt + (vt + ut ) · ∇ξt = ∂t WN (t)

where ∂t WN (t) is a sum of delta Dirac in time, with the effect that ξt jumps at those
times, namely (if ti denotes one of such times) ξt+i

is equal to ξt−i
plus the created

vortex. We have indexed WN (t) by N to anticipate that we consider a regime with
frequent creation of vortices of small amplitude.

Scaling the parameters of WN (t) in the right way, under suitable assumptions of
zero average of WN (t) and integrability, WN (t) converges in law to a Brownianmotion
W (t) in H with a suitable covariance. This is our motivation for the equation with
additive noise

dξt + (vt + ut ) · ∇ξt dt = dW (t).

However, as it is easily seen by Itô formula, such additive noise introduces system-
atically energy, fact that is not acceptable from the physical viewpoint: the vortices
created by obstacles do not increase the energy (at most, some energy is lost in ther-
mal dissipation at the boundary). Therefore some sort of compensation is needed. The
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simplest is to think that the forces which are responsible for the creation of vortices
by the obstacles are somewhat similar to a friction. Thus we introduce a friction term
to maintain equilibrium:

dξt + (vt + ut ) · ∇ξt dt = −λξt dt + dW (t).

This is the origin of the fluid model. The particular scaling attributed above to the
terms −λξt dt and dW (t) is related to a different argument, which is explained in the
next paragraph.

1.2.2 On the parameter�−1

An important feature of (1.1) is the presence of the scaling parameter ε−1 in front of
both noise and damping, in contrast to the widely-studied diffusive scaling given by
coefficients ε−1 in front of the damping and ε−1/2 in front of the noise. Let us recall
briefly where this scaling comes from, referring to Flandoli and Pappalettera [21] for
further details.

We suppose to have a small time scale TS, at which we observe the vorticity field
ξ . At this scale, the small scales evolve according to deterministic equations, and the
typical intensity and turnover time of ξ are of order one.

Let us now take an intermediate point of view on the system, say human-scale,
TM: = ε−1TS. At this scale, fluctuations of ξ = ξε look random and could be well
modeled by stochastic equations (1.1), with the crucial difference of a coefficient ε−1/2

in front of the noise rather than ε−1.
Only when we look at the system with respect to a large time scale TL: = ε−1TM

the scaling of (1.1) appears. As a result of the theory here developed, under this point
of view the small scale fluctuations behave as a white noise of multiplicative type.

We remark that, in our arguments, spatial scaling is less important then temporal
scaling. As it emerges from computations performed in [21, Subsection 2.3], the
spatial scaling only affects the spatial covariance of the noise in (1.1). For the sake of
concreteness, suppose that WM(t̃, x̃) is the noise perturbing ξε at intermediate scales
and WL(t, x) is the noise perturbing ξε at large scales, with mesoscopic variables t̃, x̃
related to macroscopic variables t, x by the formulas t̃ = ε−1t , x̃ = ε−1

X x . Then it
holds the equality in law

WM(t̃, x̃) = ε1/2WL

(
t, ε−1

X x
)

.

Moreover, assuming that the elements producing the noise (topography, boundaries et
cetera) are actually large-scale, we can suppose that the covariance of WM is slowly-
varying with respects to x̃ , or equivalently

WL

(
t, ε−1

X x
)

=
∑

k∈N
ςk(x)W k

t ,

with ςk and W k as in (1.1).
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1.3 Structure of the paper

In Sect. 2 we introduce some notation and recall classical results that will be frequently
used in the remainder of the paper. This section contains, amongothers:main properties
of the Biot–Savart kernel on the torus −∇⊥(−�)−1; a useful Gronwall-type lemma
for ODEs with log-Lipschitz drift; notions of solution and well-posedness results for
stochastic Euler equations (1.1), equations of characteristics (1.3) and (1.5), and large-
scale dynamics (1.2) and (1.7). Also, here we introduce ourmainworking assumptions
(A1)–(A7), and in the last part of this section we state our twomain results, concerning
convergence of characteristics (Theorem 2.12) and subsequent convergence of large-
scale dynamics (Theorem 2.13).

In the first part of Sect. 3, we define a linearized version of (1.1), where we neglect
the nonlinear term. This approach is similar to that of [21], and the key idea is that,
although the solution θε of linearized equation is not close ot the actual solution ξε of
(1.1), the characteristics generated by θε are close to the characteristics generated by
ξε , in particular they have the same limit as ε → 0.

In the same section we present two main technical results, needed in the proof of
Theorem 2.12. The first of those results is Proposition 3.1, which ensures that the
linear part θε of the small-scale dynamics behaves as a Stratonovich white-in-time
noise as ε → 0, at least in a distributional sense. The second result Proposition 3.2,
instead, aims to rigorously prove the closeness of the characteristics generated by θε

and ξε , and it is one of the main novelties of this paper with respect to [21].
The proof of Theorem 2.12 is contained in Sect. 4, and it is based on a Gronwall-

type lemma and Itō Formula applied to a smooth approximation gδ(x) of the absolute
value |x |, x ∈ R

2. The proof of Theorem 2.13 can be found in Sect. 5, and it relies on
representation formulas (1.4) and (1.6) and a measure-theoretic argument.

Finally, in Sect. 6 we discuss how ourmainmotivational examples—cfr. Sect. 1.1—
fit our abstract setting. In particular, the non-trivial one is the coupled system given by
deterministic Navier–Stokes equations at large scales plus stochastic Euler equations
at small scales; we identify an additional but very natural condition (A8) on the limit
external source q that allows to verify assumptions (A1)–(A7) for the system under
consideration.

2 Notations, preliminaries andmain results

In this section we collect definitions, notations and classical results needed in the
paper. Also, we introduce our main working assumptions (A1)–(A7), and state our
main results.

2.1 Properties of the Biot–Savart kernel

Here we briefly recall some useful properties of the Biot–Savart kernel K . We refer
to Marchioro and Pulvirenti [35] and Brzeźniak et al. [6] for details and proofs.
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First of all, the Biot–Savart kernel K is defined as K = −∇⊥G = (∂2G,−∂1G),
where G is the Green function of the Laplace operator on the torusT2 with zero mean.

For p ∈ (1,∞) and ξ ∈ L p(T2)with zero-mean, the convolutionwith K represents
the Biot–Savart operator:

K ∗ ξ = −∇⊥(−�)−1ξ,

that to every zero-mean ξ ∈ L p(T2) associates the unique zero-mean, divergence-
free velocity vector field u ∈ W 1,p(T2,R2) such that curl u = ξ . Moreover, for every
p ∈ (1,∞) there exist constants c, C such that for every zero-mean ξ ∈ L p(T2)

c‖ξ‖L p(T2) ≤ ‖K ∗ ξ‖W 1,p(T2,R2) ≤ C‖ξ‖L p(T2).

Also, recall that since K ∈ L1(T2,R2) the convolution K ∗ ξ is well-defined for
every ξ ∈ L p(T2), p ∈ [1,∞] and the following estimate holds:

‖K ∗ ξ‖L p(T2,R2) ≤ ‖K‖L1(T2,R2)‖ξ‖L p(T2). (2.1)

Let r ≥ 0. Denote γ : [0,∞) → R the concave function:

γ (r) = r(1 − log r)1{0<r<1/e} + (r + 1/e)1{r≥1/e}.

The following two lemmas are proved in [35, Lemma 3.1] and [6, Section 2].

Lemma 2.1 There exists a constant C such that:

∫

T2

∣∣K (x − y) − K (x ′ − y)
∣∣ dy ≤ Cγ (|x − x ′|)

for every x, x ′ ∈ T
2.

Lemma 2.2 Let T > 0, λ > 0, a0 ∈ [0, exp(1−2eλT )] be constants. Let a : [0, T ] →
R be such that for every t ∈ [0, T ]:

at ≤ a0 + λ

∫ t

0
γ (as)ds.

Then for every t ∈ [0, T ] the following estimate holds:

at ≤ eaexp(−λt)
0 .

2.2 Stochastic flows of measure-preserving homeomorphisms

As a convention, in the following we say that N ⊂ � (respectively Ñ ⊂ �̃) is
negligible if it is measurable and P(N ) = 0 (respectively P̃(Ñ ) = 0), without explicit
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mention of the reference probability measure. Unless otherwise specified, we will
always denote with N negligible sets in �, and with Ñ negligible sets in �̃.

Let us begin this paragraph with the following fundamental definition.

Definition 2.3 Ameasurable map φ : �× �̃×[0, T ]×T
2 → T

2 is a stochastic flow
of measure-preserving homeomorphisms provided there exist negligible sets N ⊂ �

and Ñ ⊂ �̃ such that:

• for every ω ∈ N c, ω̃ ∈ Ñ c and t ∈ [0, T ], the map φ(ω, ω̃, t, ·) : T2 → T
2 is a

homeomorphism of the torus and

∫

T2
f (x)dx =

∫

T2
f (φ(ω, ω̃, t, y))dy

for every f ∈ L1(T2);
• for every ω̃ ∈ Ñ c and x ∈ T

2, the stochastic process φ(·, ω̃, ·, x) : � × [0, T ] →
T
2 is progressively measurable with respect to the filtration (Ft )t∈[0,T ].

In some circumstances it can be useful to have the following:

Definition 2.4 A stochastic flow of measure-preserving homeomorphisms φ is called
inviscid if there exist negligible sets N ⊂ � and Ñ ⊂ �̃, and a measurable map
ψ : � × [0, T ] × T

2 → T
2 such that for every ω ∈ N c, ω̃ ∈ Ñ c, t ∈ [0, T ] and

x ∈ T
2

φ(ω, ω̃, t, x) = ψ(ω, t, x).

With a little abuse of notation, hereafter we identify an inviscid stochastic flow of
measure-preserving homeomorphisms φ with its ω̃-independent representative ψ .

Let us now clarify the meaning of (1.3), (1.5).
A measurable map φε : � × �̃ × [0, T ] × T

2 → T
2 is a solution of (1.3) if there

exist negligible sets N ⊂ � and Ñ ⊂ �̃ such that for every ω ∈ N c, ω̃ ∈ Ñ c,
t ∈ [0, T ] and x ∈ T

2:

φε(ω, ω̃, t, x) = x +
∫ t

0
vε(ω, s, φε(ω, ω̃, s, x))ds

+
∫ t

0
uε(ω, s, φε(ω, ω̃, s, x))ds + √

2νw(ω̃, t),

where the previous identity can be interpreted as an equation on T
2 since one can

check φε(ω, ω̃, t, x + 2πe) = φε(ω, ω̃, t, x) + 2πe for e = (1, 0) and e = (0, 1).
Similarly, a measurable map φ : �× �̃×[0, T ]×T

2 → T
2 is a solution of (1.5) if

there exist negligible setsN ⊂ � and Ñ ⊂ �̃ such that for every ω̃ ∈ Ñ c and x ∈ T
2,

the stochastic process φ(·, ω̃, ·, x) : � × [0, T ] → T
2 is progressively measurable

with respect to the filtration (Ft )t∈[0,T ], and for every ω ∈ N c, ω̃ ∈ Ñ c, t ∈ [0, T ]
and x ∈ T

2:
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φ(ω, ω̃, t, x) = x +
∫ t

0
v(ω, s, φ(ω, ω̃, s, x))ds

+
∑

k∈N

(∫ t

0
σk(φ(·, ω̃, s, x))) ◦ dW k

s

)
(ω) + √

2νw(ω̃, t).

Notice that progressive measurability of the process φ(·, ω̃, ·, x) : � × [0, T ] → T
2

is necessary to make sense of the Stratonovich stochastic integral appearing in the
equation above.

2.3 Notions of solution and somewell-posedness results

The aim of the present subsection is twofold. On the one hand, we provide a suitable
notion of solution for (1.1)–(1.2), in some sense highlighting theminimal requirements
on the solutions to prove our results. On the other hand, we show the existence of
solutions in the general case, as well as uniqueness in the case of the large-scale
process being a passive scalar.

In the following, we say that a field vε is compatible with the large-scale process
�ε if: either �ε is a passive scalar, or: �ε is an active scalar and vε is reconstructed
from the latter by the Biot–Savart law. We adopt a similar terminology for the limiting
quantities v,�. In this subsection we make assumptions directly on the fields vε , v;
we shall see in Sect. 6 that, even for active scalars, fields compatible with large-scale
processes satisfy our assumptions.

2.3.1 Well-posedness of small-scale dynamics and characteristics

First we make the following assumptions on the external fields:

(A1) vε, v : � × [0, T ] × T
2 → R

2 and for every t ∈ [0, T ] the maps vε, v|�×[0,t] :
� × [0, t] × T

2 → R
2 are Ft ⊗ B[0,t] ⊗ BT2 measurable, where B denotes the

Borel sigma-field;
(A2) there exist a constant C and a negligible setN ⊂ � such that, for everyω ∈ N c,

ε > 0 and t ∈ [0, T ]: div vε(ω, t, ·) = div v(ω, t, ·) = 0, and

|vε(ω, t, x)| ≤ C, |vε(ω, t, x) − vε(ω, t, y)| ≤ Cγ (|x − y|),
|v(ω, t, x)| ≤ C, |v(ω, t, x) − v(ω, t, y)| ≤ Cγ (|x − y|),

for every x, y ∈ T
2.

Also, we make the following assumption on the coefficients (ςk)k∈N:

(A3) there exists � ≥ 1 such that ςk ∈ W �,∞(T2) with zero-mean for every k ∈ N,
and moreover

∑

k∈N
‖ςk‖W �,∞(T2) < ∞.
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Similarly to what has been done in the Introduction, given a stochastic flow of
measure-preserving homeomorphisms φ we will use φt (x) as a notational shortcut for
φ(ω, ω̃, t, x), thus making implicit the dependence of the randomness variables ω, ω̃.
The same convenction may be used for the fields v, u, et cetera.

The next result can be proved repeating the arguments contained in [6, 21].

Proposition 2.5 Assume (A1)–(A3). Then:

• for every ε > 0 there exist a unique Lagrangian solution ξε of (1.1), namely there
exists a unique stochastic process ξε : �×[0, T ] → L∞(T2) weakly progressively
measurable with respect to (Ft )t∈[0,T ] such that the equation

ψε
t (x) = x +

∫ t

0
vε

s (ψ
ε
s (x))ds +

∫ t

0
uε

s (ψ
ε
s (x))ds,

with uε = K ∗ ξε , admits a unique inviscid stochastic flow of measure-preserving
homeomorphisms ψε as a solution, and moreover

ξε
t (ψε

t (x)) = ε−1
∑

k∈N

∫ t

0
e−ε−1(t−s)ςk(ψ

ε
s (x))dW k

s ; (2.2)

• for every ε > 0 there exists a unique stochastic flow of measure-preserving home-
omorphisms φε solution of (1.3), with uε = K ∗ ξε;

• there exists a unique stochastic flow of measure-preserving homeomorphisms φ

solution of (1.5).

Remark 2.6 If ν = 0, then both φε and φ are inviscid stochastic flows of measure-
preserving homeomorphisms, and actuallyφε = ψε . The terminology is thus justified,
since ν = 0 corresponds to null diffusivity/viscosity in the equations for the large-scale
dynamics (1.2) and (1.7).

Remark 2.7 Formula (2.2) above corresponds to the solution of (1.1) with initial con-
dition ξε

0 = 0, that we assume throughout this paper for the sake of simplicity. More
general initial conditions, as those considered in [21], can be taken into account by
simply modifying (2.2) into

ξε
t (ψε

t (x)) = e−ε−1tξε
0 (x) + ε−1

∑

k∈N

∫ t

0
e−ε−1(t−s)ςk(ψ

ε
s (x))dW k

s .

2.3.2 Notion of solution to the large-scale dynamics

By previous Proposition 2.5, under assumption (A1)-(A3) we can use the Euler flow
to represent the solutions of (1.2) and (1.7). To be more precise, our notion of solution
is given exactly by those processes �ε , � for which (1.4) and (1.6) hold true, and it is
inspired by the notion of generalized solution in [5, Definition 2.2].

Definition 2.8 Assume (A1)–(A3), qε, q ∈ L1([0, T ], L∞(T2)) for every ε > 0 and
�0 ∈ L∞(T2). Then:
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• for every ε > 0, ameasurablemap�ε : �×[0, T ]×T
2 → R is called generalized

solution to (1.2) if it is compatible with vε and for every t ∈ [0, T ] it holds

�ε
t = Ẽ

[
�0 ◦ (φε

t )−1 +
∫ t

0
qε

s ◦ φε
s ◦ (φε

t )−1ds

]
,

as an equality in L∞(�×T
2), where φε is the unique stochastic flow of measure-

preserving homeomorphisms solution of (1.3);
• a measurable map � : � × [0, T ] × T

2 → R is called generalized solution to
(1.7) if it is compatible with v and for every t ∈ [0, T ] it holds

�t = Ẽ

[
�0 ◦ (φt )

−1 +
∫ t

0
qs ◦ φs ◦ (φt )

−1ds

]
,

as an equality in L∞(� × T
2), where φ is the unique stochastic flow of measure-

preserving homeomorphisms solution of (1.5).

Notice that this notion of solution immediately implies existence and uniqueness
in the case of passive large-scale dynamics: we can state that in the following.

Proposition 2.9 Under the same assumptions as above, suppose �ε (resp. �) are
passive scalars. Then the exists a unique generalized solution to (1.2) (resp. (1.7)).

Proof Indeed, for passive scalars the compatibility condition is void, and �ε (resp.
�) depends only on the initial datum �0, the external sources qε (resp. q), and the
characteristics φε (resp. φ), the latter existing and being unique by Proposition 2.5. ��

For active dynamics the previous picture is not correct, since the compatibility
condition between the external field and the large-scale variable is not encoded in
the representation formula itself. However, we will not investigate in this paper well-
posedness for this notion of solution in full generality. For active scalars, we limit
ourselves to show existence of generalized solutions, see Proposition 2.11 below.

Also, it is worth of mention that every sufficiently smooth generalized solution
of (1.2) or (1.7) is also a classical solution, as can be proved following the lines of
[8, Theorem 2.2 and Proposition 2.7]. On the other hand, our notion of generalized
solution is weaker than the notion of L∞-weak solution contained in [6], that we recall
now:

Definition 2.10 Assume (A1)–(A3), qε, q ∈ L1([0, T ], L∞(T2)) for every ε > 0 and
�0 ∈ L∞(T2). For f , g : T2 → R, denote 〈 f , g〉: = ∫

T2 f (x)g(x)dx . Then:

• for every ε > 0, a stochastic process �ε : � × [0, T ] → L∞(T2) is called a
L∞-weak solution of (1.2) if it is weakly progressively measurable with respect
to (Ft )t∈[0,T ], it is compatible with vε and for every smooth test function f ∈
C∞(T2) it holds P-a.s. for every t ∈ [0, T ]:

123



976 Stoch PDE: Anal Comp (2022) 10:964–1004

〈�ε
t , f 〉 − 〈�ε

0, f 〉 =
∫ t

0
〈�ε

s , (v
ε
s + uε

s ) · ∇ f 〉ds

+
∫ t

0
〈�ε

s , ν� f 〉ds +
∫ t

0
〈qε

s , f 〉ds;

• a stochastic process � : � × [0, T ] → L∞(T2) is called a L∞-weak solution
of (1.7) if it is weakly progressively measurable with respect to (Ft )t∈[0,T ], it is
compatible with v and for every smooth test function f ∈ C∞(T2) it holds P-a.s.
for every t ∈ [0, T ]:

〈�t , f 〉 − 〈�0, f 〉 =
∫ t

0
〈�s, vs · ∇ f 〉ds +

∑

k∈N

∫ t

0
〈�s, σk · ∇ f 〉 ◦ dW k

s

+
∫ t

0
〈�s, ν� f 〉ds +

∫ t

0
〈qs, f 〉ds.

In [6] well-posedness of L∞-weak solution to stochastic Euler Equations is shown.
With minor modifications in the argument one can prove existence of L∞-weak solu-
tions to (1.2) and (1.7) in the general case. For active scalars, those provide generalized
solutions in the sense of Definition 2.8, that is the content of the following:

Proposition 2.11 Assume (A1)–(A3), qε, q ∈ L1([0, T ], L∞(T2)) for every ε > 0
and �0 ∈ L∞(T2). Then every L∞-weak solution to (1.2) is also a generalized
solution to (1.2), and every L∞-weak solution to (1.7) is also a generalized solution
to (1.7).

Proof The strategy of the proof is similar to Brzeźniak et al. [6, Proposition 5.3] and
[17, Theorem 20], and consists in taking the convolution of a L∞-weak solution with
a smooth mollifier ϑδ = δ−2ϑ(δ·), δ > 0, and then taking the limit for δ → 0.

Let �ε be a L∞-weak solution of (1.2) and � be a L∞-weak solution of (1.7), in
the sense of the previous definition. Using f = ϑδ(y − ·) as a test function, y ∈ T

2,
and denoting �ε

δ : = ϑδ ∗ �ε , �δ: = ϑδ ∗ � we get (omitting the parameter ω)

�ε
δ(t, y) − �ε

δ(0, y) =
∫ t

0

∫

T2
�ε(s, x)(vε(s, x) + uε(s, x)) · ∇xϑδ(y − x)dxds

+ ν

∫ t

0

∫

T2
�ε(s, x)�xϑδ(y − x)dxds

+
∫ t

0

∫

T2
qε(s, x)ϑδ(y − x)dxds,
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and

�δ(t, y) − �δ(0, y) =
∫ t

0

∫

T2
�(s, x)v(s, x) · ∇xϑδ(y − x)dxds

+
∑

k∈N

∫ t

0

∫

T2
�(s, x)σk(x) · ∇xϑδ(y − x)dx ◦ dW k

s

+ ν

∫ t

0

∫

T2
�(s, x)�xϑδ(y − x)dxds

+
∫ t

0

∫

T2
q(s, x)ϑδ(y − x)dxds.

Since �ε
δ , �δ are smooth functions in the variable y, we can write the equivalent

expressions in differential notation

d�ε
δ(t, y) + ∇�ε

δ(t, y) · (vε(t, y) + uε(t, y))dt

=
∫

T2
�ε(t, x)(vε(t, x) + uε(t, x)) · ∇xϑδ(y − x)dxdt

+ ν

∫

T2
�ε(t, x)�xϑδ(y − x)dxdt +

∫

T2
qε(t, x)ϑδ(y − x)dxdt

+ ∇�ε
δ(t, y) · (vε(t, y) + uε(t, y))dt,

and

d�δ(t, y) + ∇�δ(t, y) · v(t, y)dt +
∑

k∈N
∇�δ(t, y) · σk(y) ◦ dW k

t

=
∫

T2
�(t, x)v(t, x) · ∇xϑδ(y − x)dxdt

+
∑

k∈N

∫

T2
�(t, x)σk(x) · ∇xϑδ(y − x)dx ◦ dW k

t

+ ν

∫

T2
�(t, x)�xϑδ(y − x)dxdt +

∫

T2
q(t, x)ϑδ(y − x)dxdt

+ ∇�δ(t, y) · v(t, y)dt +
∑

k∈N
∇�δ(t, y) · σk(y) ◦ dW k

t .

Notice that the following formulas for the gradient of the convolution hold true:
∇�ε

δ(t, y) = − ∫
T2 �ε(t, x)∇xϑδ(y − x), and ∇�δ(t, y) = − ∫

T2 �(t, x)∇xϑδ(y −
x); also, �xϑδ(y − x) = �yϑδ(y − x). Substituting into the previous expressions, we
get
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d�ε
δ(t, y) + ∇�ε

δ(t, y) · (vε(t, y) + uε(t, y))dt

= [−ϑδ ∗ (∇�ε
t · (vε

t + uε
t

))+ (
vε

t + uε
t

) · (ϑδ ∗ ∇�ε
t

)]
(y)dt

+ ν��ε
δ(t, y)dt + qε

δ (t, y)dt

= Rδ

[
vε

t + uε
t , �

ε
t

]
(y)dt + ν��ε

δ(t, y)dt + qε
δ (t, y)dt,

and

d�δ(t, y) + ∇�δ(t, y) · v(t, y)dt +
∑

k∈N
∇�δ(t, y) · σk(y) ◦ dW k

t

= [−ϑδ ∗ (∇�t · vt ) + vt · (ϑδ ∗ ∇�t )] (y)dt

+
∑

k∈N
[−ϑδ ∗ (∇�t · σk) + σk · (ϑδ ∗ ∇�t )] (y) ◦ dW k

t

+ ν��δ(t, y)dt + qδ(t, y)dt

= Rδ [vt , �t ] (y)dt +
∑

k∈N
Rδ [σk, �t ] (y) ◦ dW k

t

+ ν��δ(t, y)dt + qδ(t, y)dt,

where we have defined qε
δ : = ϑδ ∗ qε , qδ: = ϑδ ∗ q and the commutator

Rδ [v,�] : = −ϑδ ∗ (∇� · v) + v · (ϑδ ∗ ∇�) .

We have obtained differential equations for the spatially smooth processes �ε
δ and

�δ . Applying the backwards Itō Formula to the processes s �→ �ε
δ(s, φ

ε
s ((φε

t )−1(y)))

and s �→ �δ(s, φs((φt )
−1(y))), for fixed t ∈ [0, T ], and taking the expectation with

respect to P̃, we obtain that the process �ε
δ is given by

�ε
δ(t, y) = Ẽ

[
�ε

δ(0, (φ
ε
t )−1(y)) +

∫ t

0
qε
δ (s, φε

s ((φε
t )−1(y)))ds

]

+ Ẽ

[∫ t

0
Rδ

[
vε

s + uε
s , �

ε
s

]
(φε

s ((φε
t )−1(y)))ds

]
, (2.3)

whereas the process �δ is given by

�δ(t, y) = Ẽ

[
�δ(0, (φt )

−1(y)) +
∫ t

0
qδ(s, φs((φt )

−1(y)))ds

]

+ Ẽ

[∫ t

0
Rδ [vs, �s] (φs((φt )

−1(y)))ds

]

+
∑

k∈N
Ẽ

[∫ t

0
Rδ [σk, �s] (φs((φt )

−1(y))) ◦ dW k
s

]
(2.4)

Let us focus on (2.3). Bywell-known properties of mollifiers, for every fixedω ∈ �

and t ∈ [0, T ], the right-hand side �ε
δ(ω, t, ·) → �ε(ω, t, ·) in L1(T2) as δ → 0.
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Concerning the left-hand side, a commutator lemma [17, Lemma 17] yields for every
fixed ε > 0

lim
δ→0

∫

T2

∣∣∣∣Ẽ
[∫ t

0
Rδ

[
vε

s + uε
s , �

ε
s

]
(φε

s ((φε
t )−1(y)))ds

]∣∣∣∣ dy = 0,

and by well-known properties of mollifiers and Lebesgue dominated convergence
Theorem we can prove the convergence

Ẽ

[
�ε

δ(0, (φ
ε
t )−1) +

∫ t

0
qε
δ (s, φε

s ((φε
t )−1))ds

]

+ Ẽ

[∫ t

0
Rδ

[
vε

s + uε
s , �

ε
s

]
(φε

s ((φε
t )−1))ds

]

→ Ẽ

[
�ε(0, (φε

t )−1) +
∫ t

0
qε(s, φε

s ((φε
t )−1))ds

]

in L1(T2) as δ → 0, for almost every ω ∈ � and t ∈ [0, T ]. Therefore, by (2.4) we
have and the uniqueness of the L1(T2) limit, for almost every ω ∈ �, t ∈ [0, T ] and
y ∈ T

2:

�ε(t, y) = Ẽ

[
�ε(0, (φε

t )−1(y)) +
∫ t

0
qε(s, φε

s ((φε
t )−1(y)))ds

]
,

that is exactly the desired representation formula (1.4). The argument for (2.4) is
similar, with only a little complication due to the stochastic integral, and we leave it
to the reader. ��

As a final remark, since we have seen that the notion of generalized solution is
weaker than the notion of L∞-weak solution, our results are indeed very general: they
can be applied at least to every L∞-weak solution.

2.4 Statement of main results

We remind the reader that, for externally given vε and v satisfying (A1)–(A3), there
exist unique solutions of the characteristic equations and the large-scale dynamics,
assuming the latter is passive (cfr. Proposition 2.9). Strictly speaking, the results in
this section are formulated for passive scalars; however, we shall see in Sect. 6 that, a
posteriori, even in the active case, fields generated by large-scale processes satisfy all
the needed assumptions. Therefore the following theorems hold true in the more gen-
eral case, simply looking at an active large-scale process as a passive scalar compatible
with the external fields it generates.

2.4.1 Convergence of characteristics

Denote |x − y| the geodesic distance on the flat two dimensional torus between points
x, y ∈ T

2. To keep the notation simple, we define the following quantity associated
with a measurable map φ : T2 → T

2:
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‖φ‖L1(T2,T2): =
∫

T2
|φ(x)|dx .

Notice that ‖·‖L1(T2,T2) is not a normon the space ofmeasurablemapsφ : T2 → T
2, in

particular it is not positively homogeneous. However, ‖ · ‖L1(T2,T2) induces a distance
on the space C(T2,T2) of continuous maps φ : T

2 → T
2. Similarly, we define

‖ · ‖L∞(T2,T2) as

‖φ‖L∞(T2,T2): = ess sup
x∈T2

|φ(x)|.

In order to prove convergence of characteristics φε → φ, it is clear that one needs
some sort of control for the difference vε − v. Therefore, we assume:

(A4) there exist a constant C and a negligible setN ⊂ � such that for every ω ∈ N c,
ε > 0 and t ∈ [0, T ]:

‖vε(ω, t, ·) − v(ω, t, ·)‖L1(T2,R2) ≤ Cγ
(
Ẽ
[‖φε

t − φt‖L1(T2,T2)

])

+ C
∫ t

0
γ
(
Ẽ
[‖φε

s − φs‖L1(T2,T2)

])
ds + cε,

where cε ∈ R is infinitesimal as ε → 0, φε
t = φε(ω, ω̃, t, ·) is the unique

solution of (1.3), and φt = φ(ω, ω̃, t, ·) is the unique solution of (1.5).

A little less clear, at this point, is our next assumption on the coefficients (ςk)k∈N:

(A5) for every x ∈ T
2 it holds

∑

k∈N
((K ∗ ςk) · ∇ςk)(x) = 0.

The motivations for assuming (A5) will become evident during the proof of Proposi-
tion 3.2 in Sect. 3.

We are ready to state our first main result:

Theorem 2.12 Assume (A1)–(A5). Let Ê [·] : = E

[
Ẽ [·]

]
denote the expectation on

�̂: = � × �̃ with respect to the probability measure P̂: = P ⊗ P̃. Then

sup
t∈[0,T ]

Ê
[‖φε

t − φt‖L1(T2,T2)

] → 0 as ε → 0.

2.4.2 Convergence of large-scale dynamics

Let qε, q : [0, T ] × T
2 → R be such that:
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(A6) there exists a constant C such that for every ε > 0 it holds qε, q ∈
L1([0, T ], L∞(T2)) and

∫ T

0
‖qε

s ‖L∞(T2)ds ≤ C,

∫ T

0
‖qs‖L∞(T2)ds ≤ C;

(A7) qε − q converges to zero in L1([0, T ], L∞(T2)).

Our second main result is the following.

Theorem 2.13 Assume (A1)–(A7) and �0 ∈ L∞(T2). Then the solution �ε of (1.2)
converges towards the solution � of (1.7) in the following sense: for every f ∈ L1(T2)

E

[∣∣∣∣
∫

T2
�ε

t (x) f (x)dx −
∫

T2
�t (x) f (x)dx

∣∣∣∣

]
→ 0 as ε → 0,

for every fixed t ∈ [0, T ] and in L p([0, T ]) for every finite p. Moreover, if q ∈
L1([0, T ], Lip(T2)) then the previous convergence holds uniformly in t ∈ [0, T ] and
f ∈ Lip(T2) with Lipschitz constant [ f ]Lip(T2) ≤ 1 and ‖ f ‖L∞(T2) ≤ 1.

3 Technical results

In this section and after in the paper, the symbol � will indicate inequality up to a
unimportant multiplicative constant C not depending of ε.

3.1 Linearized dynamics

For ε > 0, denote θε the solution of the linear problem

dθε
t = −ε−1θε

t dt + ε−1
∑

k∈N
ςkdW k

t ,

with initial condition θε |t=0 = 0. The process θε is explicitly given by the formula
θε

t = ∑
k∈N ςkη

ε,k
t , where

η
ε,k
t : = ε−1

∫ t

0
e−ε−1(t−s)dW k

s , k ∈ N,

is the so called Ornstein–Uhlenbeck process with null initial condition. By Jia and
Zhao [27, Theorem 2.2], for every fixed p ≥ 1 it holds uniformly in k ∈ N

E

[
sup

t∈[0,T ]
|ηε,k

t |p

]
� ε−p/2 logp/2(1 + ε−1), (3.1)
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and therefore by assumption (A3)

E

[
sup

t∈[0,T ]
‖θε

t ‖p
W 1,∞(T2)

]
� ε−p/2 logp/2(1 + ε−1). (3.2)

The difference ζ ε : = ξε − θε between the small-scale vorticity ξε and θε solves
the equation

dζ ε
t + (vε

t + uε
t ) · ∇ζ ε

t dt = −ε−1ζ ε
t dt − (vε

t + uε
t ) · ∇θε

t dt

with initial condition ζ ε
0 = 0, whose solution satisfies

ζ ε
t (ψε

t (x)) = −
∫ t

0
e−ε−1(t−s)((vε

s + uε
s ) · ∇θε

s )(ψε
s (x))ds. (3.3)

In the following, for t ∈ [0, T ] and x ∈ T
2 we denote zε

t (x) = (K ∗ ζ ε
t )(x).

3.2 Main technical results

Weare going to prove twomain technical results, needed for the proof ofTheorem2.12.
Since our strategy consists in replicating the proof of Flandoli and Pappalettera [21,
Proposition 4.1], the first result we need is the following:

Proposition 3.1 Assume (A1)–(A3). Then the following inequality holds:

Ê

⎡

⎣ sup
t∈[0,T ]

∥∥∥∥∥
∑

k∈N

∫ t

0
σk(φ

ε
s (·))ηε,k

s ds −
∑

k∈N

∫ t

0
σk(φ

ε
s (·)) ◦ dW k

s

∥∥∥∥∥
L1(T2,R2)

⎤

⎦

� ε1/42 log47/42(1 + ε).

In [21, Section 4] a similar estimate was proven along the way, using a considerable
amount of auxiliary lemmas and computations. In view of this, here we refrain from
going again into full detail, and the proof of Proposition 3.1 will only be sketched.

On the other hand, the nonlinear term in (1.1) produces a new term in the equation
of characteristcs, that was absent in [21]. Although the final results is not affected by
this new term, it is not trivial to actually prove so. We need the following.

Proposition 3.2 Assume (A1)–(A5). Then:

Ê

[
sup

t∈[0,T ]

∥∥∥∥
∫ t

0
zε

s (φ
ε
s (·))ds

∥∥∥∥
L∞(T2,R2)

]
� ε1/12 log11/12(1 + ε−1).

This constitutes the main novelty with respect to Flandoli and Pappalettera [21]. The
proof of Proposition 3.2 relies strongly on assumption (A5) and the following Itō
Formulas, yielding for every fixed t ∈ [0, T ] and k, h ∈ N:
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η
ε,k
t η

ε,h
t = −ε−1

∫ t

0
e−ε−1(t−s)ηε,k

s ηε,h
s ds

+ ε−1
∫ t

0
e−ε−1(t−s)ηε,k

s dW h
s + ε−1

∫ t

0
e−ε−1(t−s)ηε,h

s dW k
s

+ δk,h
ε−2

2

∫ t

0
e−ε−1(t−s)ds,

η
ε,k
t η

ε,h
t = −2ε−1

∫ t

0
ηε,k

s ηε,h
s ds

+ ε−1
∫ t

0
ηε,k

s dW h
s + ε−1

∫ t

0
ηε,h

s dW k
s + δk,h

ε−2t

2
,

with δk,h being the Kronecker delta function, allowing to control the time integral of
quadratics η

ε,k
s η

ε,h
s . In the formula above we have used η

ε,k
0 = η

ε,h
0 = 0, although the

computations could be performed also for more general initial conditions.

3.3 Proof of Proposition 3.1

In this paragraph we recall the argument contained in [21]. Roughly speaking, Propo-
sition 3.1 is a sort of Wong–Zakai result for the Ornstein–Uhlenbeck process ηε,k

converging to a white-in-time noise, that is the formal time derivative of the Wiener
process W k . We need to exploit a discretization of (1.3) to show the closeness, in a
certain sense to be specified, between the Stratonovich-to-Itō corrector c : T2 → R

2,
given by:

c(x) = 1

2

∑

k∈N
∇σk(x) · σk(x), x ∈ T

2,

coming from the stochastic integral, and the iterated time integral of the Ornstein–
Uhlenbeck process.

In order to discretize the problem, for every ε > 0 take a mesh δ > 0 such that T /δ

is an integer. For any n = 0, . . . , T /δ − 1 and fixed x ∈ T
2, consider the following

decomposition:

∑

k∈N

∫ (n+1)δ

nδ

σk(φ
ε
s (x))ηε,k

s ds =
∑

k∈N

∫ (n+1)δ

nδ

(∫ s

nδ

∇σk(φ
ε
r (x)) · vε

r (φε
r (x))dr

)
ηε,k

s ds

+
∑

k∈N

∫ (n+1)δ

nδ

(∫ s

nδ

∇σk(φ
ε
r (x)) · zε

r (φ
ε
r (x))dr

)
ηε,k

s ds

+
∑

k,h∈N

∫ (n+1)δ

nδ

(∫ s

nδ

∇σk(φ
ε
r (x)) · σh(φε

r (x))ηε,h
r dr

)
ηε,k

s ds

+
∑

k∈N

∫ (n+1)δ

nδ

(∫ s

nδ

∇σk(φ
ε
r (x)) · √

2νdwr

)
ηε,k

s ds
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+
∑

k∈N

∫ (n+1)δ

nδ

σk(φ
ε
nδ(x))dW k

s

−
∑

k∈N

∫ (n+1)δ

nδ

σk(φ
ε
nδ(x))εdηε,k

s

= : I ε
1 (n) + I ε

2 (n) + I ε
3 (n) + I ε

4 (n) + I ε
5 (n) + I ε

6 (n),

where the terms I ε
2 (n) and I ε

3 (n) come from the identity uε
r (φ

ε
r (x)) = zε

r (φ
ε
r (x)) +∑

h∈N σh(φε
r (x))η

ε,h
r , which can be obtained applying the Biot–Savart law to the

identity ζ ε = ξε −θε defining ζ ε . Regarding the Stratonovich integral, we can rewrite:

∑

k∈N

∫ (n+1)δ

nδ

σk(φ
ε
s (x)) ◦ dW k

s =
∑

k∈N

∫ (n+1)δ

nδ

(
σk(φ

ε
s (x)) − σk(φ

ε
nδ(x))

)
dW k

s

+
∑

k∈N

∫ (n+1)δ

nδ

σk(φ
ε
nδ(x))dW k

s

+
∫ (n+1)δ

nδ

(
c(φε

s (x)) − c(φε
nδ(x))

)
ds

+
∫ (n+1)δ

nδ

c(φε
nδ(x))ds

= : J ε
1 (n) + J ε

2 (n) + J ε
3 (n) + J ε

4 (n).

The ingredients for the proof of Proposition 3.1 are:

• a good estimate on Ê
[
supt∈[0,T ] |zε

t (φ
ε
t (x))|] (cfr. Lemma 3.3), needed to control

I ε
2 (n);

• a good estimate on Ê
[
supτ≤δ |φε

τ+nδ(x) − φε
nδ(x)|] (cfr. Lemma 3.4), needed to

approximate I ε
3 (n) with

∑

k,h∈N
∇σk(φnδ(x)) · σh(φnδ(x))

∫ (n+1)δ

nδ

(∫ s

nδ

ηε,h
r dr

)
ηε,k

s ds; (3.4)

• a better estimate on Ê
[
|φε

(n+1)δ(x) − φε
nδ(x)|

]
(cfr. Lemma 3.5), needed to control

I ε
6 (n) with a discrete integration by parts.

Notice that I ε
5 (n) = J ε

2 (n). Also, the expression in (3.4) (which approximates
I ε
3 (n)) must be compensated by subtracting J ε

4 (n).

Lemma 3.3 Assume (A1)–(A3). Then for every fixed p ≥ 1 it holds

E

[
sup

t∈[0,T ]
‖ζ ε

t ‖p
L∞(T2)

]
� logp(1 + ε−1).
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In particular, since zε
t = K ∗ ζ ε

t we alse have

E

[
sup

t∈[0,T ]
‖zε

t ‖p
L∞(T2)

]
� logp(1 + ε−1).

Proof We prove in the first place the weaker estimate:

E

[
sup

t∈[0,T ]
‖ζ ε

t ‖p
L∞(T2)

]
� ε−p. (3.5)

Since θε satisfies the bound above by (3.2), it suffices to prove it for ξε . Denote
Mε

t (x) = ∑
k∈N

∫ t
0 ςk(ψ

ε
s (x))dW k

s . Since for every s, t ∈ [0, T ]

E

[
‖Mε

t − Mε
s ‖4L∞(T2)

]
�
(
∑

k∈N
‖ςk‖2L∞(T2)

)2

(t − s)2,

by (A3) andKolmogorov continuity Theorem the process Mε : �×[0, T ] → L∞(T2)

has a modification M̃ε that is α-Hölder continuous for every α < 1/4, with α-Hölder
constant Kε,α bounded in L p(�) for every p < ∞ uniformly in ε. Since Mε has
continuous trajectories, Mε

t = M̃ε
t a.s. as random variables in L∞(T2) and

ξε
t (ψε

t (x)) = ε−1
∫ t

0
e−ε−1(t−s)d Mε

s (x)

= ε−1
∫ t

0
e−ε−1(t−s)d(Mε

s (x) − Mε
t (x))

= ε−1
[
e−ε−1(t−s)(Mε

s (x) − Mε
t (x))

]s=t

s=0

− ε−2
∫ t

0
e−ε−1(t−s)(Mε

s (x) − Mε
t (x))ds.

Clearly ‖ξε
t ‖L∞(T2) = ‖ξε

t ◦ ψε
t ‖L∞(T2), and therefore

‖ξε
t ‖L∞(T2) ≤ ε−1e−ε−1t‖Mε

t ‖L∞(T2) + ε−1Kε,α,

and (3.5) follows.
Recalling (3.3), the following inequality holds

‖ζ ε
t ‖L∞(T2) ≤

∫ t

0
e−ε−1(t−s)‖(vε

s + uε
s ) · ∇θε

s ‖L∞(T2)ds. (3.6)

Using assumption (A2) and uε
s = K ∗ ζ ε

s + K ∗ θε
s we get

‖(vε
s + uε

s ) · ∇θε
s ‖L∞(T2) �

(
1 + ‖ζ ε

s ‖L∞(T2) + ‖θε
s ‖L∞(T2)

) ‖∇θε
s ‖L∞(T2),
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that can be plugged back into (3.6) to produce the recursive estimate

‖ζ ε
t ‖L∞(T2) �

∫ t

0
e−ε−1(t−s) (1 + ‖θε

s ‖L∞(T2)

) ‖∇θε
s ‖L∞(T2)ds

+
∫ t

0
e−ε−1(t−s)‖ζ ε

s ‖L∞(T2)‖∇θε
s ‖L∞(T2)ds

� ε

(
sup

s∈[0,T ]
‖θε

s ‖L∞(T2) + sup
s∈[0,T ]

‖ζ ε
s ‖L∞(T2)

)
sup

s∈[0,T ]
‖∇θε

s ‖L∞(T2).

By Hölder inequality and (3.5) we deduce from the previous inequality

E

[
sup

t∈[0,T ]
‖ζ ε

t ‖p
L∞(T2)

]
� logp(1 + ε−1) + ε−p/2 logp/2(1 + ε−1),

improving the bound (3.5) itself. Iterating the same argument one more time we obtain
the desired estimate. ��

Lemma 3.4 Assume (A1)–(A3). Then for every fixed p ≥ 1 and α ∈ (0, 1/2)

Ê

⎡

⎢⎣ sup
t+τ≤T

τ≤δ

‖φε
t+τ − φε

t ‖p
L∞(T2,T2)

⎤

⎥⎦ � δ pε−p/2 logp/2(1 + ε−1) + δ pα.

Proof The increment φε
t+τ (x) − φε

t (x) can be written as

φε
t+τ (x) − φε

t (x) =
∫ t+τ

t
vε

s (φ
ε
s (x))ds +

∑

k∈N

∫ t+τ

t
σk(φ

ε
s (x))ηε,k

s ds

+
∫ t+τ

t
zs(φ

ε
s (x))ds + √

2ν(wt+τ − wt ),

therefore, by assumption (A2) we have

sup
t+τ≤T

‖φε
t+τ − φε

t ‖L∞(T2,T2) � τ + τ
∑

k∈N
‖σk‖L∞(T2) sup

s∈[0,T ]
|ηε,k

s |

+ τ sup
s∈[0,T ]

‖ζ ε
s ‖L∞(T2) + Kατα,

where Kα denotes the α-Hölder constant ofw. The thesis follows easily by (A3), (3.1)
and Lemma 3.3. ��
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Lemma 3.5 Assume (A1)–(A3). Then for every fixed p ≥ 1 we have, uniformly in
n = 0, . . . , T /δ − 1:

Ê

[
‖φε

(n+1)δ − φε
nδ‖p

L∞(T2,T2)

]
� δ2pε−p logp(1 + ε−1)

+ δ p(1+α)ε−p/2 logp/2(1 + ε−1)

+ δ p/2 + ε p/2 logp/2(1 + ε−1).

Proof The increment φε
(n+1)δ(x) − φε

nδ(x) can be written as

φε
(n+1)δ(x) − φε

nδ(x) =
∫ (n+1)δ

nδ

vε
s (φ

ε
s (x))ds

+
∑

k∈N

∫ (n+1)δ

nδ

(
σk(φ

ε
s (x)) − σk(φ

ε
nδ(x))

)
ηε,k

s ds

+
∑

k∈N

∫ (n+1)δ

nδ

σk(φ
ε
nδ(x))ηε,k

s ds

+
∫ (n+1)δ

nδ

zε
s (φ

ε
s (x))ds + √

2ν(w(n+1)δ − wnδ).

The first, fourth and fifth term are easy. The second one is bounded in L∞(T2,T2)

uniformly in n by

∫ δ

0

∑

k∈N
‖∇σk‖L∞(T2,R4) sup

t+s≤T
‖φε

t+s − φε
t ‖L∞(T2,T2) sup

s∈[0,T ]
|ηε,k

s |ds,

and by (A3) and Hölder inequality with exponent q > 1

Ê

[(∫ δ

0

∑

k∈N
‖∇σk‖L∞(T2,R4) sup

t+s≤T
‖φε

t+s − φε
t ‖L∞(T2,T2) sup

s∈[0,T ]
|ηε,k

s |ds

)p]

≤ δ p−1

(
∑

k∈N
‖∇σk‖L∞(T2,R4)

)p−1 ∫ δ

0

∑

k∈N
‖∇σk‖L∞(T2,R4)

× Ê

[
sup

t+s≤T
‖φε

t+s − φε
t ‖pq

L∞(T2,T2)

]1/q

Ê

[
sup

s∈[0,T ]
|ηε,k

s |pq ′
]1/q ′

ds

� δ p−1
∫ δ

0

(
s pε−p logp(1 + ε−1)ds + s pαε−p/2 logp/2(1 + ε−1)

)
ds

� δ2pε−p logp(1 + ε−1) + δ p(1+α)ε−p/2 logp/2(1 + ε−1).
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The third term is bounded in L∞(T2,R2) by

∑

k∈N
‖σk‖L∞(T2,R2)

∣∣∣∣∣

∫ (n+1)δ

nδ

ηε,k
s ds

∣∣∣∣∣ =
∑

k∈N
‖σk‖L∞(T2,R2)

∣∣∣W k
(n+1)δ − W k

nδ

∣∣∣

+
∑

k∈N
‖σk‖L∞(T2,R2)ε

∣∣∣ηε,k
(n+1)δ − η

ε,k
nδ

∣∣∣ ,

from which we deduce as usual

Ê

[(
∑

k∈N
‖σk‖L∞(T2,R2)

∣∣∣∣∣

∫ (n+1)δ

nδ

ηε,k
s ds

∣∣∣∣∣

)p]
� δ p/2 + ε p/2 logp/2(1 + ε−1).

Putting all together, the thesis follows. ��
Proof of Proposition 3.1 For any given t ∈ [0, T ], let �t� = :mδ be the largest multiple
of δ strictly smaller than t . We can therefore decompose

∑

k∈N

∫ t

0
σk(φ

ε
s (x))ηε,k

s ds =
∑

k∈N

∫ mδ

0
σk(φ

ε
s (x))ηε,k

s ds +
∑

k∈N

∫ t

mδ

σk(φ
ε
s (x))ηε,k

s ds

=
6∑

j=1

m−1∑

n=0

I ε
j (n) +

∑

k∈N

∫ t

mδ

σk(φ
ε
s (x))ηε,k

s ds,

and in a similar fashion

∑

k∈N

∫ t

0
σk(φ

ε
s (x)) ◦ dW k

s =
∑

k∈N

∫ mδ

0
σk(φ

ε
s (x)) ◦ dW k

s +
∑

k∈N

∫ t

mδ

σk(φ
ε
s (x)) ◦ dW k

s

=
4∑

j=1

m−1∑

n=0

J ε
j (n) +

∑

k∈N

∫ t

mδ

σk(φ
ε
s (x)) ◦ dW k

s .

By (3.1), the following estimate holds true

Ê

⎡

⎢⎣ sup
m=0,...,T /δ−1

t≤δ

∥∥∥∥∥
∑

k∈N

∫ t

mδ

σk(φ
ε
s (·))ηε,k

s ds

∥∥∥∥∥
L1(T2,R2)

⎤

⎥⎦ � δε−1/2 log1/2(1 + ε−1).

Also, by (A3) and Kolmogorov continuity Theorem, for every fixed α ∈ (0, 1/2)
we have

Ê

⎡

⎢⎣ sup
m=0,...,T /δ−1

t≤δ

∥∥∥∥∥
∑

k∈N

∫ t

mδ

σk(φ
ε
s (·)) ◦ dW k

s

∥∥∥∥∥
L1(T2,R2)

⎤

⎥⎦ � δα.
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Finally, by calculations similar to those performed in Lemma 4.6 and Lemma 4.7
of [21], for every fixed α ∈ (0, 1/2)

Ê

⎡

⎣ sup
m=0,...,T /δ−1

∥∥∥∥∥∥

6∑

j=1

m−1∑

n=0

I ε
j (n) −

4∑

j=1

m−1∑

n=0

J ε
j (n)

∥∥∥∥∥∥
L1(T2,R2)

⎤

⎦

� δε−1/2 log3/2(1 + ε−1) + δα−1ε1/2 log(1 + ε−1)

δ2ε−3/2 log3/2(1 + ε−1) + δ1+αε−1 log(1 + ε−1) + δα.

We conclude the proof fixing α close to 1/2 so that (1 + α)−1 < 3/4 < (2 − 2α)−1,
for instance α = 3/8, and optimizing over δ: for δ = ε16/21 log−4/21(1 + ε−1), it
follows the desired inequality

Ê

⎡

⎣ sup
t∈[0,T ]

∥∥∥∥∥
∑

k∈N

∫ t

0
σk(φ

ε
s (·))ηε,k

s ds −
∑

k∈N

∫ t

0
σk(φ

ε
s (·)) ◦ dW k

s

∥∥∥∥∥
L1(T2,R2)

⎤

⎦

� ε1/42 log47/42(1 + ε−1).

��

3.4 Proof of Proposition 3.2

Recall the content of Proposition 3.2: we need to prove, under assumptions (A1)–(A5)

Ê

[
sup

t∈[0,T ]

∥∥∥∥
∫ t

0
zε

s (φ
ε
s (·))ds

∥∥∥∥
L∞(T2,R2)

]
� ε1/12 log11/12(1 + ε−1).

Comparing the desired inequalitywithLemma3.3, one realizes that time integration
of the process zε

s (φ
ε
s (x)) allows a better control due to cancellation of opposite-sign

oscillations, even if the latter may become of large magnitude for ε going to zero.
Concerning the strategy of the proof, in the first place we prove the following:

Lemma 3.6 For every fixed t ∈ [0, T ] it holds

Ê

[∥∥∥∥
∫ t

0
zε

s (φ
ε
s (·))ds

∥∥∥∥
L∞(T2,R2)

]
� ε1/6 log5/6(1 + ε−1).
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Having at hands the previous result, the proof of Proposition 3.2 goes as follows:
for some parameter δ = T /m > 0, m ∈ N to be chosen, write

sup
t∈[0,T ]

∥∥∥∥
∫ t

0
zε

s (φ
ε
s (·))ds

∥∥∥∥
L∞(T2,R2)

≤ sup
n=0,...,m−1

∥∥∥∥
∫ nδ

0
zε

s (φ
ε
s (·))ds

∥∥∥∥
L∞(T2,R2)

+ sup
n=0,...,m−1

t≤δ

∥∥∥∥
∫ nδ+t

nδ

zε
s (φ

ε
s (·))ds

∥∥∥∥
L∞(T2,R2)

≤
m−1∑

n=0

∥∥∥∥
∫ nδ

0
zε

s (φ
ε
s (·))ds

∥∥∥∥
L∞(T2,R2)

+ δ sup
s∈[0,T ]

‖zε
s (φ

ε
s (·))‖L∞(T2,R2).

Hence, by Lemmas 3.3 and 3.6

Ê

[
sup

t∈[0,T ]

∥∥∥∥
∫ t

0
zε

s (φ
ε
s (·))ds

∥∥∥∥
L∞(T2,R2)

]
≤

m−1∑

n=0

Ê

[∥∥∥∥
∫ nδ

0
zε

s (φ
ε
s (·))ds

∥∥∥∥
L∞(T2,R2)

]

+ δÊ

[
sup

s∈[0,T ]
‖zε

s (φ
ε
s (·))‖L∞(T2,R2)

]

� δ−1ε1/6 log5/6(1 + ε−1) + δ log(1 + ε−1),

and the thesis follows by optimizing the choice of δ.

Proof of Lemma 3.6 We will work with fixed x ∈ T
2. The reader can easily check that

all the inequalities present in the proof hold uniformly in x . Recall zε
t = K ∗ ζ ε

t , and
for ψε

t,s(x): = ψε
s ((ψε

t )−1(x)) the formula

ζ ε
t (x) = −

∫ t

0
e−ε−1(t−s)((vε

s + K ∗ ζ ε
s ) · ∇θε

s )(ψε
t,s(x))ds

−
∫ t

0
e−ε−1(t−s)((K ∗ θε

s ) · ∇θε
s )(ψε

t,s(x))ds.

For notational simplicity let �ε
s : = (K ∗ θε

s ) · ∇θε
s , and rewrite

ζ ε
t (x) = −

∫ t

0
e−ε−1(t−s)((vε

s + K ∗ ζ ε
s ) · ∇θε

s )(ψε
t,s(x))ds

−
∫ t

0
e−ε−1(t−s) (�ε

s (ψ
ε
t,s(x)) − �ε

s (x)
)

ds

−
∫ t

0
e−ε−1(t−s)�ε

s (x)ds

= :ζ ε,1
t (x) + ζ

ε,2
t (x) + ζ

ε,3
t (x).
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Let us focus on the terms ζ ε, j , j = 1, 2, 3 separately. Concerning ζ ε,1,

‖ζ ε,1
t ‖L∞(T2) �

∫ t

0
e−ε−1(t−s)ds

(
1 + sup

s∈[0,T ]
‖ζ ε

s ‖L∞(T2)

)

× sup
s∈[0,T ]

‖∇θε
s ‖L∞(T2,R2),

and thus the following holds by assumption (A2) and Lemma 3.3

sup
t∈[0,T ]

Ê

[
‖ζ ε,1

t ‖L∞(T2)

]
� ε1/2 log3/2(1 + ε−1). (3.7)

Moving to ζ ε,2, notice that |ψε
t,s(x) − x | = |ψε

t,s(x) − ψε
t,t (x)|, and letting y =

(ψε
t )−1(x) we have

|ψε
t,s(x) − ψε

t,t (x)| = |ψε
s (y) − ψε

t (y)|
≤
∫ t

s
|vε

r (ψε
r (y))|dr +

∫ t

s
|uε

r (ψ
ε
r (y))|dr

� |t − s|
(
1 + sup

r∈[0,T ]
‖ζ ε

r ‖L∞(T2) + sup
r∈[0,T ]

‖θε
r ‖L∞(T2)

)
,

therefore

‖ζ ε,2
t ‖L∞(T2) �

∫ t

0
e−ε−1(t−s)|t − s|ds sup

s∈[0,T ]
‖∇�ε

s‖L∞(T2,R2)

×
(
1 + sup

r∈[0,T ]
‖ζ ε

r ‖L∞(T2) + sup
r∈[0,T ]

‖θε
r ‖L∞(T2)

)
,

that implies

sup
t∈[0,T ]

Ê

[
‖ζ ε,2

t ‖L∞(T2)

]
� ε1/2 log3/2(1 + ε−1). (3.8)

Finally, let us consider the term ζ ε,3, which requires a preliminary manipulation.
Since θε

s (x) = ∑
k∈N σk(x)η

ε,k
s , we can rewrite for every x ∈ T

2

�ε
s (x) =

∑

k,h∈N
(σk · ∇ςh)(x)ηε,k

s ηε,h
s = :

∑

k,h∈N
�k,h(x)ηε,k

s ηε,h
s ,
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where we have used σk = K ∗ ςk and �k,h : = σk · ∇ςh . Also, rewrite:

ζ
ε,3
t (x) = −

∫ t

0
e−ε−1(t−s)�ε

s (x)ds

= −
∑

k,h∈N
�k,h(x)

∫ t

0
e−ε−1(t−s)ηε,k

s ηε,h
s ds.

By Itō Formula, for every fixed t and k, h ∈ N it holds

η
ε,k
t η

ε,h
t = −ε−1

∫ t

0
e−ε−1(t−s)ηε,k

s ηε,h
s ds

+ ε−1
∫ t

0
e−ε−1(t−s)ηε,k

s dW h
s + ε−1

∫ t

0
e−ε−1(t−s)ηε,h

s dW k
s

+ ε−2

2
δk,h

∫ t

0
e−ε−1(t−s)ds,

with δk,h being the Kronecker delta function: δk,h = 1 if k = h and δk,h = 0 if k �= h.
Otherwise said:

∫ t

0
e−ε−1(t−s)ηε,k

s ηε,h
s ds = −εη

ε,k
t η

ε,h
t (3.9)

∫ t

0
e−ε−1(t−s)ηε,k

s dW h
s +

∫ t

0
e−ε−1(t−s)ηε,h

s dW k
s

+ 1 − eε−1t

2
δk,h .

By (3.9) and assumption (A5), for every x ∈ T
2 we have

ζ
ε,3
t (x) =

∑

k,h∈N
�ε

k,h(x)εη
ε,k
t η

ε,h
t

−
∑

k,h∈N
�ε

k,h(x)

(∫ t

0
e−ε−1(t−s)ηε,k

s dW h
s +

∫ t

0
e−ε−1(t−s)ηε,h

s dW k
s

)
,

and therefore we can rewrite

∫ t

0
(K ∗ ζ ε,3

s )(φε
s (x))ds =

∑

k,h∈N

∫ t

0
(K ∗ �ε

k,h)(φε
s (x))εηε,k

s ηε,h
s ds

−
∑

k,h∈N

∫ t

0
(K ∗ �k,h)(φε

s (x))

(∫ s

0
e−ε−1(s−r)ηε,k

r dW h
r

+
∫ s

0
e−ε−1(s−r)ηε,h

r dW k
r

)
ds.
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Ê

[∣∣∣∣
∫ t

0
(K ∗ �ε

k,h)(φε
s (x))

∫ s

0
e−ε−1(s−r)ηε,k

r dW h
r ds

∣∣∣∣

]

= Ê

[∣∣∣∣
∫ t

0

(∫ t

r
(K ∗ �ε

k,h)(φε
s (x))e−ε−1(s−r)ds

)
ηε,k

r dW h
r

∣∣∣∣

]

� Ê

[∣∣∣∣
∫ t

0

(∫ t

r
(K ∗ �ε

k,h)(φε
s (x))e−ε−1(s−r)ds

)
ηε,k

r dW h
r

∣∣∣∣
2
]1/2

� Ê

[∫ t

0

(∫ t

r
(K ∗ �ε

k,h)(φε
s (x))e−ε−1(s−r)ds

)2

|ηε,k
r |2dr

]1/2

� ε1/2 log1/2(1 + ε−1).

The last non-trivial term is manipulated as follows. Let δ = t/m > 0, m ∈ N to be
suitably chosen. We have

∑

k,h∈N

∫ t

0
(K ∗ �k,h)(φε

s (x))εηε,k
s ηε,h

s ds (3.10)

=
∑

k,h∈N

m−1∑

n=0

∫ (n+1)δ

nδ

(
(K ∗ �k,h)(φε

s (x)) − (K ∗ �k,h)(φε
nδ(x))

)
εηε,k

s ηε,h
s ds

+
∑

k,h∈N

m−1∑

n=0

(K ∗ �k,h)(φε
nδ(x))

∫ (n+1)δ

nδ

εηε,k
s ηε,h

s ds.

Recalling (1.3), for every α ∈ (0, 1/2) it holds

|φε
t (x) − φε

s (x)| ≤
∫ t

s
|vε

r (φε
r (x))|dr +

∫ t

s
|uε

r (φ
ε
r (x))|dr + √

2ν(wt − ws)

� |t − s|
(
1 + sup

r∈[0,T ]
‖ζ ε

r ‖L∞(T2) + sup
r∈[0,T ]

‖θε
r ‖L∞(T2)

)
+ |t − s|α,

which implies

Ê

⎡

⎣

∣∣∣∣∣∣

∑

k,h∈N

m−1∑

n=0

∫ (n+1)δ

nδ

(
(K ∗ �k,h)(φε

s (x)) − (K ∗ �k,h)(φε
nδ(x))

)
εηε,k

s ηε,h
s ds

∣∣∣∣∣∣

⎤

⎦

(3.11)

� δε−1/2 log3/2(1 + ε−1) + δα log(1 + ε−1).
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Also, we can apply Itō Formula again to find an alternative representation for the
time integral of the quadratics η

ε,k
s η

ε,h
s , similar to (3.9). Indeed,

η
ε,k
(n+1)δη

ε,h
(n+1)δ − η

ε,k
nδ η

ε,h
nδ = −2ε−1

∫ (n+1)δ

nδ

η
ε,k
t η

ε,h
t dt

+ ε−1
∫ (n+1)δ

nδ

η
ε,k
t dW h

t + ε−1
∫ (n+1)δ

nδ

η
ε,h
t dW k

t

+ ε−2δ

2
δk,h,

and rearranging the terms we obtain

∫ (n+1)δ

nδ

εη
ε,k
t η

ε,h
t dt = ε2

2

(
η

ε,k
nδ η

ε,h
nδ − η

ε,k
(n+1)δη

ε,h
(n+1)δ

)
(3.12)

+ ε

2

∫ (n+1)δ

nδ

η
ε,k
t dW h

t + ε

2

∫ (n+1)δ

nδ

η
ε,h
t dW k

t + δ

4
δk,h .

Finally, making use of (3.12) above and assumption (A5) we can rewrite

∑

k,h∈N

m−1∑

n=0

(K ∗ �k,h)(φε
nδ(x))

∫ (n+1)δ

nδ
εη

ε,k
s η

ε,h
s ds

=
∑

k,h∈N

m−1∑

n=0

(K ∗ �k,h)(φε
nδ(x))

ε2

2

(
η
ε,k
nδ η

ε,h
nδ − η

ε,k
(n+1)δη

ε,h
(n+1)δ

)

+
∑

k,h∈N

m−1∑

n=0

(K ∗ �k,h)(φε
nδ(x))

(
ε

2

∫ (n+1)δ

nδ
η
ε,k
t dW h

t + ε

2

∫ (n+1)δ

nδ
η
ε,h
t dW k

t

)
.

We have

Ê

⎡

⎣

∣∣∣∣∣∣

∑

k,h∈N

m−1∑

n=0

(K ∗ �k,h)(φε
nδ(x))

ε2

2

(
η

ε,k
nδ η

ε,h
nδ − η

ε,k
(n+1)δη

ε,h
(n+1)δ

)
∣∣∣∣∣∣

⎤

⎦

� δ−1ε log(1 + ε−1), (3.13)

and

Ê

⎡

⎣

∣∣∣∣∣∣

∑

k,h∈N

m−1∑

n=0

(K ∗ �k,h)(φε
nδ(x))

ε

2

∫ (n+1)δ

nδ

η
ε,k
t dW h

t

∣∣∣∣∣∣

⎤

⎦ (3.14)

�
m−1∑

n=0

εÊ

⎡

⎣
∣∣∣∣∣

∫ (n+1)δ

nδ

η
ε,k
t dW h

t

∣∣∣∣∣

2
⎤

⎦
1/2

� δ−1/2ε1/2 log1/2(1 + ε−1).
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It only remains to choose δ in a suitable way, so that all the terms (3.11) and (3.13)
are infinitesimal in the limit ε → 0. Taking for instance α = 1/3 and optimizing over
δ gives

Ê

[∣∣∣∣
∫ t

0
(K ∗ ζ ε,3

s )(φε
s (x))ds

∣∣∣∣

]
� ε1/6 log5/6(1 + ε−1). (3.15)

Considering (3.7), (3.8) and (3.15), we finally get the desired estimate: the proof is
complete. ��

4 Convergence of characteristics

In this section we prove our first major result Theorem 2.12.
We take the opportunity to point out a mistake in [21, Lemma 3.8], where BDG

inequality was applied incorrectly. The present proof also corrects this previous mis-
take, and it is based on Itō Formula for a smooth approximation gδ(x) of the absolute
value |x |.
Proof of Theorem 2.12 The strategy of the proof is very similar to that of [21, Proposi-
tion 4.1]. Indeed, the difference φε − φ solves P̂-a.s. for every t ∈ [0, T ] and x ∈ T

2:

φε
t (x) − φt (x) =

∫ t

0
vε

s (φ
ε
s (x))ds −

∫ t

0
vs(φ

ε
s (x))ds

+
∫ t

0
vs(φ

ε
s (x))ds −

∫ t

0
vs(φs(x))ds

+
∑

k∈N

∫ t

0
σk(φ

ε
s (x))ηε,k

s ds −
∑

k∈N

∫ t

0
σk(φ

ε
s (x)) ◦ dW k

s

+
∑

k∈N

∫ t

0
σk(φ

ε
s (x)) ◦ dW k

s −
∑

k∈N

∫ t

0
σk(φs(x)) ◦ dW k

s

+
∫ t

0
zε

s (φ
ε
s (x))ds.

For δ > 0, introduce the smooth function gδ : R2 → R defined by gδ(x): = (|x |2+
δ)1/2. It holds ∂x j gδ(x) = x j gδ(x)−1 and ∂x j ∂xi gδ(x) = gδ(x)−1(δi, j −xi x j gδ(x)−2)

for every x ∈ R
2 and j = 1, 2, and moreover |x | ≤ gδ(x) ≤ |x | + δ1/2.

Denote

Rε
t (x): =

∫ t

0
zε

s (φ
ε
s (x))ds +

∑

k∈N

∫ t

0
σk(φ

ε
s (x))ηε,k

s ds −
∑

k∈N

∫ t

0
σk(φ

ε
s (x)) ◦ dW k

s ,

and

Z ε
t (x): = φε

t (x) − φt (x) − Rε
t (x),
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both seen as functions on the whole plane R
2. Applying Itō Formula to gδ(Z ε

t (x))
yields:

dgδ(Zε
t (x)) = Zε

t (x)gδ(Zε
t (x))−1 · (vε

t (φε
t (x)) − vt (φ

ε
t (x))

)
dt

+ Zε
t (x)gδ(Zε

t (x))−1 · (vt (φ
ε
t (x)) − vt (φt (x))

)
dt

+
∑

k∈N
Zε

t (x)gδ(Zε
t (x))−1 · (σk (φε

t (x)) − σk (φt (x))
)

dW k
t

+ Zε
t (x)gδ(Zε

t (x))−1 · (c(φε
t (x)) − c(φt (x))

)
dt

+
∑

k∈N

2∑

i, j=1

gδ(Zε
t (x))−1(δi, j − (Zε

t (x))i (Zε
t (x)) j gδ(Zε

t (x))−2)

× (
σk (φε

t (x)) − σk (φt (x))
)i (

σk (φε
t (x)) − σk (φt (x))

) j dt,

and therefore

Ê
[∣∣φε

t (x) − φε
t (x)

∣∣] ≤ Ê
[|Z ε

t (x)|]+ Ê
[∣∣Rε

t (x)
∣∣] ≤ Ê

[
gδ(Z ε

t (x))
]+ Ê

[∣∣Rε
t (x)

∣∣]

� δ1/2 + Ê
[∣∣Rε

t (x)
∣∣]+ Ê

[∫ t

0

∣∣vε
s (φε

s (x)) − vs(φ
ε
s (x))

∣∣ ds

]

+ Ê

[∫ t

0

∣∣vs(φ
ε
s (x)) − vs(φs(x))

∣∣ ds

]

+ Ê

[∫ t

0

∣∣φε
s (x) − φs(x)

∣∣ ds

]
+ δ−1/2

Ê

[
sup

t∈[0,T ]
∣∣Rε

t (x)
∣∣
]

,

where in the last line we have used gδ(Z ε
s (x))−1 ≤ δ−1/2 and

∣∣φε
s (x) − φs(x)

∣∣ �
|Z ε

s (x)| + ∣∣Rε
s (x)

∣∣.
Taking the integral over x ∈ T

2 and using assumptions (A2), (A4), concavity of
the function γ , Jensen inequality, Propositions 3.1 and 3.2 we get

Ê
[‖φε

t − φt‖L1(T2,T2)

]
� δ1/2 + δ−1/2ε1/42 log47/42(1 + ε−1) + cε

+
∫ t

0
γ
(
Ê
[‖φε

s − φs‖L1(T2,T2)

])
ds

uniformly in t ∈ [0, T ] and δ > 0. Taking δ = ε1/42 log47/42(1+ ε−1) we deduce the
desired result by Lemma 2.2. ��

5 Convergence of large-scale dynamics

Recall the representation formulas for the solutions of (1.2) and (1.7)

�ε
t = Ẽ

[
�0 ◦ (φε

t )−1 +
∫ t

0
qε

s ◦ φε
s ◦ (φε

t )−1ds

]
,

�t = Ẽ

[
�0 ◦ (φt )

−1 +
∫ t

0
qs ◦ φs ◦ (φt )

−1ds

]
,

with φε and φ solving respectively (1.3) and (1.5).
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As made clear by the following proof, these representation formulas are the key
ingredient needed to show Theorem 2.13, thus justifying our Definition 2.8 in terms
of these identities.

Proof of Theorem 2.13 Let f ∈ L1(T2) and t ∈ [0, T ]. We have

∣∣∣∣
∫

T2
�ε

t (x) f (x)dx −
∫

T2
�t (x) f (x)dx

∣∣∣∣

≤
∣∣∣∣
∫

T2
Ẽ
[
�0((φ

ε
t )−1(x))

]
f (x)dx −

∫

T2
Ẽ
[
�0((φt )

−1(x))
]

f (x)dx

∣∣∣∣

+
∣∣∣∣
∫

T2
Ẽ

[∫ t

0
qε

s (φε
s ((φε

t )−1(x)))ds

]
f (x)dx −

∫

T2
Ẽ

[∫ t

0
qs(φs((φt )

−1(x)))ds

]
f (x)dx

∣∣∣∣

=
∣∣∣∣Ẽ
[∫

T2
�0((φ

ε
t )−1(x)) f (x)dx −

∫

T2
�0((φt )

−1(x)) f (x)dx

]∣∣∣∣

+
∣∣∣∣Ẽ
[∫

T2

∫ t

0
qε

s (φε
s ((φε

t )−1(x)))ds f (x)dx −
∫

T2

∫ t

0
qs(φs((φt )

−1(x)))ds f (x)dx

]∣∣∣∣

=
∣∣∣∣Ẽ
[∫

T2
�0(y) f (φε

t (y))dy −
∫

T2
�0(y) f (φt (y))dy

]∣∣∣∣

+
∣∣∣∣Ẽ
[∫ t

0

∫

T2
qε

s (φε
s (y)) f (φε

t (y))dyds −
∫ t

0

∫

T2
qs(φs(y)) f (φt (y)dyds

]∣∣∣∣ .

Taking expectation with respect to P, the first summand is bounded by

E

[∣∣∣∣Ẽ
[∫

T2
�0(y) f (φε

t (y))dy −
∫

T2
�0(y) f (φt (y))dy

]∣∣∣∣

]

≤ ‖�0‖L∞(T2)Ê

[∫

T2

∣∣ f (φε
t (y)) − f (φt (y))

∣∣ dy

]
. (5.1)

As for the second term, we can rewrite

∫ t

0

∫

T2
qε

s (φε
s (y)) f (φε

t (y))dyds −
∫ t

0

∫

T2
qs(φs(y)) f (φt (y))dyds

=
∫ t

0

∫

T2
qε

s (φε
s (y)) f (φε

t (y))dyds −
∫ t

0

∫

T2
qε

s (φε
s (y)) f (φt (y))dyds

+
∫ t

0

∫

T2
qε

s (φε
s (y)) f (φt (y))dyds −

∫ t

0

∫

T2
qs(φ

ε
s (y)) f (φt (y))dyds

+
∫ t

0

∫

T2
qs(φ

ε
s (y)) f (φt (y))dyds −

∫ t

0

∫

T2
qs(φs(y)) f (φt (y))dyds,
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with estimates

Ê

[∣∣∣∣
∫ t

0

∫

T2
qε

s (φε
s (y)) f (φε

t (y))dyds −
∫ t

0

∫

T2
qε

s (φε
s (y)) f (φt (y))dyds

∣∣∣∣

]

≤
∫ t

0
‖qε

s ‖L∞(T2)dsÊ

[∫

T2
| f (φε

t (y)) − f (φt (y))|dy

]
; (5.2)

Ê

[∣∣∣∣
∫ t

0

∫

T2
qε

s (φε
s (y)) f (φt (y))dyds −

∫ t

0

∫

T2
qs(φ

ε
s (y)) f (φt (y))dyds

∣∣∣∣

]

≤
∫ t

0
‖qε

s − qs‖L∞(T2)ds‖ f ‖L1(T2); (5.3)

and

Ê

[∣∣∣∣
∫ t

0

∫

T2
qs(φ

ε
s (y)) f (φt (y))dyds −

∫ t

0

∫

T2
qs(φs(y)) f (φt (y))dyds

∣∣∣∣

]

≤ Ê

[∫ t

0

∫

T2
|qs(φ

ε
s (y)) − qs(φs(y))|| f (φt (y))|dyds

]

= :Ê
[∫ t

0

∫

T2
|qs(φ

ε
s (y)) − qs(φs(y))|dμ(y)ds

]
, (5.4)

where dμ(y): = | f (φt (y))|dy is a random Radon measure on T2.
By assumptions (A6) and (A7), the terms (5.1), (5.2) and (5.3) go to zero as ε → 0,

using the same reasoning of Flandoli and Pappalettera [21, Theorem 5.1]. Therefore,
here we restrict ourselves to only consider the remaining term (5.4).

Let us argue per absurdum. Suppose by contradiction that there exists a subsequence
εk → 0 such that

Ê

[∫ t

0

∫

T2
|qs(φ

εk
s (y)) − qs(φs(y))|dμ(y)ds

]
≥ C (5.5)

for some C > 0 and for every εk .
LetN andN be negligible sets such thatφt is measure preserving for everyω ∈ N c

and ω̃ ∈ Ñ c.
Take δ > 0. By Lusin Theorem [39, Theorem 2.23] there exists a measurable set

Cδ ⊂ [0, t] × T
2 withL[0,t] ⊗ LT2([0, t] × T

2 \ Cδ) < δ and a continuous function
Qδ ∈ C([0, t] × T

2) that coincides with q on Cδ . Therefore

∫ t

0

∫

T2
|qs(φ

εk
s (y)) − qs(φs(y))|dμ(y)ds =

∫

Cδ

|qs(φ
εk
s (y)) − qs(φs(y))|dμ(y)ds

+
∫

[0,t]×T2\Cδ

|qs(φ
εk
s (y)) − qs(φs(y))|dμ(y)ds

≤
∫

[0,t]×T2
|Qδ(s, φ

εk
s (y)) − Qδ(s, φs(y))|dμ(y)ds

+ 2
∫

[0,t]×T2\Cδ

‖qs‖L∞(T2)dμ(y)ds.
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Let us consider the second term first. Recalling dμ(y) = | f (φt (y))|dy, we have

∫

[0,t]×T2\Cδ

‖qs‖L∞(T2)dμ(y)ds =
∫

[0,t]×T2\Cδ

‖qs‖L∞(T2)| f (φt (y))|dyds

=
∫

φ−1
t (Cc

δ )

‖qs‖L∞(T2)| f (y)|dyds,

with φ−1
t (Cc

δ ): = {(s, y) : (s, φt (y)) ∈ Cc
δ }. Since φt is measure preserving for every

ω ∈ N c and ω̃ ∈ Ñ c, it is easy to check

L[0,t] ⊗ LT2(φ−1
t (Cc

δ )) = L[0,t] ⊗ LT2(Cc
δ ) < δ

P̂-almost surely, and since ‖q‖L∞(T2)| f | ∈ L1([0, t] × T
2), absolute continuity of

Lebesgue integral gives the existence of δ > 0 such that for every ω ∈ N c and
ω̃ ∈ Ñ c

∫

[0,t]×T2\Cδ

‖qs‖L∞(T2)dμ(y)ds < C/3.

We fix such a δ hereafter. For the first term we argue as follows: since we have
proved

sup
t∈[0,T ]

Ê
[‖φεk

t − φt‖L1(T2,T2)

] → 0

as εk → 0, then for every fixed s ∈ [0, T ] there exists a subsequence (that we still
denote εk) such that the maps

�εk
s : �̂ × T

2 → [0, T ] × T
2,

�εk
s (ω̂, y) = (s, φε(ω̂, s, y))

converge P̂ ⊗ LT2 -almost everywhere to �s given by �s(ω̂, y) = (s, φ(ω̂, s, y)).
By almost sure continuity in time of �

εk
s and �s , it is possible to extract a common

subsequence εk → 0 such that �
εk
s converges P̂ ⊗ LT2 -almost everywhere to �s

simultaneously for all s ∈ [0, T ].
Therefore, since Qδ is continuous on [0, t] × T

2, also Qδ(�
εk ) converges

P̂ ⊗ L[0,t] ⊗ LT2 -almost everywhere to Qδ(�), and since μ is absolutely con-
tinuous with respect to LT2 for almost every ω̂ ∈ �̂, the convergence is actually
P̂⊗L[0,t] ⊗μω̂-almost everywhere; moreover, Qδ(�

εk ) is dominated by the constant
sups∈[0,t],y∈T2 |Qδ(s, y)|, and Lebesgue dominated convergence yields convergence

in L1(�̂ × [0, T ] × T
2, P̂ ⊗ L[0,t] ⊗ μω̂), that is

Ê

[∫

[0,t]×T2
|Qδ(s, φ

εk
s (y)) − Qδ(s, φs(y))|dμ(y)ds

]
→ 0,
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as εk → 0. This contradicts (5.5), and therefore we have proved: for every f ∈ L1(T2)

E

[∣∣∣∣
∫

T2
�ε

t (x) f (x)dx −
∫

T2
�t (x) f (x)dx

∣∣∣∣

]
→ 0 as ε → 0,

for every fixed t ∈ [0, T ]. Since ‖�ε
t ‖L∞(T2) is bounded uniformly in ε > 0 and

t ∈ [0, T ], pointwise converges implies convergence in L p([0, T ]) for every finite p
by Lebesgue dominated convergence Theorem.

Finally, if q ∈ L1([0, T ], Lip(T2)) and f ∈ Lip(T2) with [ f ]Lip(T2) ≤ 1, we
have

Ê

[∫

T2

∣∣ f (φε
t (y)) − f (φt (y))

∣∣ dy

]
≤ Ê

[∫

T2

∣∣φε
t (y) − φt (y)

∣∣ dy

]

≤ sup
t∈[0,T ]

Ê
[‖φε

t − φt‖L1(T2,T2)

]
,

controlling (5.1) and (5.2) uniformly in f ; also, since ‖ f ‖L∞(T2) ≤ 1 it holds

Ê

[∫ t

0

∫

T2
|qs(φ

ε
s (y)) − qs(φs(y))|| f (φt (y))|dyds

]

≤ Ê

[∫ t

0

∫

T2
‖qs‖Lip(T2)|φε

s (y) − φs(y)|dyds

]

≤
∫ t

0
‖qs‖Lip(T2)ds sup

s∈[0,T ]
Ê
[‖φε

s − φs‖L1(T2,T2)

]
,

allowing to bound (5.4) in a simpler way. Putting all together, we have proved the
desired convergence uniformly in t ∈ [0, T ] and f ∈ Lip(T2) with [ f ]Lip(T2) ≤ 1,
‖ f ‖L∞(T2) ≤ 1. The proof is complete. ��

6 Examples

In this final section, we discuss how assumptions (A1)-(A7) are fullfilled by our
main motivational examples, namely advection-diffusion or Navier–Stokes equations
at large scales coupled with stochastic Euler equations at small scales - cfr. subsec-
tion 1.1 for details.

First of all, notice that in the case of passive scalars, like in the advection-diffusion
equations, there is nothing to actually prove since all the subjects of assumptions (A1)-
(A7) are given a priori. On the other hand, in the Navier–Stokes system the fields vε ,
v are given by vε = K ∗ �ε , v = K ∗ �, and therefore (A1), (A2) and (A4) need to
be checked. The verification of (A4) needs an additional requirement on the external
source q: assume
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(A8) there exists a constant C such that for almost every t ∈ [0, T ] and almost every
x, y ∈ T

2

|q(t, x) − q(t, y)| ≤ Cγ (|x − y|).

Proposition 6.1 Let ν ≥ 0, �0 ∈ L∞(T2) with zero spatial average and consider the
Navier–Stokes (ν > 0) or Euler (ν = 0) system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d�ε
t + (vε

t + uε
t ) · ∇�ε

t dt = ν��ε
t dt + qε

t dt,

dξε
t + (vε

t + uε
t ) · ∇ξε

t dt = −ε−1ξε
t dt + ε−1∑

k∈N ςkdW k
t ,

vε
t = −∇⊥(−�)−1�ε

t ,

uε
t = −∇⊥(−�)−1ξε

t ,

and the limiting large-scale dynamics

{
d�t + vt · ∇�t dt +∑

k∈N σk · ∇�t ◦ dW k
t = ν��t dt + qt dt,

vt = −∇⊥(−�)−1�t .

Assume (A3), (A5)–(A8) and take qε
t , qt with zero spatial average for almost every

t ∈ [0, T ]. Then the velocity fields vε , v satisfy (A1), (A2) and (A4).

Proof Concerning (A1), measurability can be deduced by vε = K ∗ �ε , v = K ∗ �,
representation formulas (1.4) and (1.6), and the fact that φε , φ are stochastic flows of
measure-preserving homeomorphisms. Assumption (A2) is given by vε = K ∗ �ε ,
v = K ∗ �, (2.1) and Lemma 2.1.

Finally, let us then verify (A4). Recall

vε
t (x) =

∫

T2
K (x − y)�ε

t (y)dy

=
∫

T2
K (x − y)Ẽ

[
�0((φ

ε
t )−1(y)) +

∫ t

0
qε

s (φε
s ((φε

t )−1(y)))ds

]
dy

= Ẽ

[∫

T2
K (x − φε

t (y))�0(y)dy

]
+ Ẽ

[∫

T2
K (x − φε

t (y))

∫ t

0
qε

s (φε
s (y))dsdy

]
,

and

vt (x) =
∫

T2
K (x − y)�t (y)dy

=
∫

T2
K (x − y)Ẽ

[
�0((φt )

−1(y)) +
∫ t

0
qs(φs((φt )

−1(y)))ds

]
dy

= Ẽ

[∫

T2
K (x − φt (y))�0(y)dy

]
+ Ẽ

[∫

T2
K (x − φt (y))

∫ t

0
qs(φs(y))dsdy

]
.
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We have
∫

T2
|vε

t (x) − vt (x)|dx ≤ Ẽ

[∫

T2

∫

T2

∣∣K (x − φε
t (y)) − K (x − φt (y))

∣∣ |�0(y)|dydx

]

+ Ẽ

[∫

T2

∣∣∣∣
∫

T2
K (x − φε

t (y))

∫ t

0
qε

s (φε
s (y))dsdy

−
∫

T2
K (x − φt (y))

∫ t

0
qs (φs (y))dsdy

∣∣∣∣ dx

]

≤ Ẽ

[∫

T2

∫

T2

∣∣K (x − φε
t (y)) − K (x − φt (y))

∣∣ |�0(y)|dydx

]

+ Ẽ

[∫

T2

∫

T2

∣∣K (x − φε
t (y)) − K (x − φt (y))

∣∣
∣∣∣∣
∫ t

0
qε

s (φε
s (y))ds

∣∣∣∣ dydx

]

+ Ẽ

[∫

T2

∫

T2
|K (x − φt (y))|

∫ t

0

∣∣qε
s (φε

s (y)) − qs (φ
ε
s (y))ds

∣∣ dydx

]

+ Ẽ

[∫

T2

∫

T2
|K (x − φt (y))|

∫ t

0

∣∣qs (φ
ε
s (y)) − qs (φs (y))ds

∣∣ dydx

]

� γ
(
Ẽ

[
‖φε

t − φt ‖L1(T2,T2)

])
+
∫ t

0
‖qε

s − qs‖L∞(T2)ds

+
∫ t

0
γ
(
Ẽ

[
‖φε

s − φs‖L1(T2,T2)

])
ds,

that is the desired estimate, since
∫ t
0 ‖qε

s −qs‖L∞(T2)ds → 0 as ε → 0 by assumption
(A7). ��
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