
Stoch PDE: Anal Comp (2022) 10:516–581
https://doi.org/10.1007/s40072-021-00204-y

Maximal inequalities for stochastic convolutions and
pathwise uniform convergence of time discretisation
schemes

Jan van Neerven1 ·Mark Veraar1

Received: 13 July 2020 / Revised: 8 June 2021 / Accepted: 25 June 2021 / Published online: 10 July 2021
© The Author(s) 2021

Abstract
We prove a new Burkholder–Rosenthal type inequality for discrete-time processes
taking values in a 2-smooth Banach space. As a first application we prove that if
(S(t, s))0≤s≤t≤T is aC0-evolution family of contractions on a 2-smooth Banach space
X and (Wt )t∈[0,T ] is a cylindrical Brownian motion on a probability space (�, P)

adapted to some given filtration, then for every 0 < p < ∞ there exists a constant
Cp,X such that for all progressively measurable processes g : [0, T ] × � → X the
process (

∫ t
0 S(t, s)gs dWs)t∈[0,T ] has a continuous modification and

E sup
t∈[0,T ]

∥
∥
∥

∫ t

0
S(t, s)gs dWs

∥
∥
∥
p ≤ C p

p,XE

(∫ T

0
‖gt‖2γ (H ,X) dt

)p/2
.

Moreover, for 2 ≤ p < ∞ one may take Cp,X = 10D
√
p, where D is the constant

in the definition of 2-smoothness for X . The order O(
√
p) coincides with that of

Burkholder’s inequality and is therefore optimal as p → ∞. Our result improves
and unifies several existing maximal estimates and is even new in case X is a Hilbert
space. Similar results are obtained if the drivingmartingale gt dWt is replaced bymore
general X -valuedmartingales dMt .Moreover, ourmethods allow for randomevolution
systems, a setting which appears to be completely new as far as maximal inequalities
are concerned. As a second application, for a large class of time discretisation schemes
(including splitting, implicit Euler, Crank-Nicholson, and other rational schemes) we
obtain stability and pathwise uniform convergence of time discretisation schemes for
solutions of linear SPDEs
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dut = A(t)ut dt + gt dWt , u0 = 0,

where the family (A(t))t∈[0,T ] is assumed to generate a C0-evolution family
(S(t, s))0≤s≤t≤T of contractions on a 2-smooth Banach spaces X . Under spatial
smoothness assumptions on the inhomogeneity g, contractivity is not needed and
explicit decay rates are obtained. In the parabolic setting this sharpens several know
estimates in the literature; beyond the parabolic setting this seems to provide the first
systematic approach to pathwise uniform convergence to time discretisation schemes.

Keywords Maximal inequalities · Stochastic convolutions · 2-smooth Banach
spaces · Evolution families · Time discretisation schemes

Mathematics Subject Classification Primary: 60H05 · Secondary: 47D06 · 49J50 ·
60H15 · 65J08 · 65M12

1 Introduction

In this paper we study maximal inequalities for the mild solutions of time-dependent
stochastic evolution equations of the form

{
dut = A(t)ut + gt dWt , t ∈ [0, T ],
u0 = 0.

(1.1)

Here, (A(t))t∈[0,T ] is a family of closed operators acting in a Banach space X gen-
erating a C0-evolution family (S(t, s))0≤s≤t≤T , (Wt )t∈[0,T ] is a Brownian motion
defined on a probability space (�,F , P), adapted to some give filtration (Ft )t∈[0,T ],
and (gt )t∈[0,T ] is a progressively measurable stochastic process with values in X .
Under these assumptions the mild solution is given, at least formally, by the X -valued
stochastic convolution-type integral

ut :=
∫ t

0
S(t, s)gs dWs, t ∈ [0, T ]. (1.2)

An important special case of (1.1) is the time-independent case where A(t) ≡ A
generates a C0-semigroup (S(t))t≥0 on X and S(t, s) = S(t − s). More generally
we will consider stochastic convolutions driven by cylindrical Brownian motions and
assume that g is operator-valued; this extension is mostly routine and for the ease of
presentation will not be considered in this introduction.

In order to give a rigorous meaning to the stochastic integral in (1.2) one needs
to impose suitable measurability and integrability assumptions on g and geometrical
properties on X , such as 2-smoothness [2,7,8,22,23,73,75,76] or the UMD property
[96,97]. The UMD theory is in some sense the definitive theory, in that it features a
two-sided Burkholder inequality and completely natural extensions of the martingale
representation theorem [96,97] and the Clark–Ocone theorem [67]; from the point
of view of applications to SPDE it provides stochastic maximal L p-regularity for
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parabolic problems [84,98–100] which in turn can be used to study quasi- and semi-
linear PDEs [1]. The 2-smooth theory only allows for limited versions of these results,
but it is easier in its basic constructions and adequate for many other purposes, and
will provide the setting for this paper.

Instrumental in proving pathwise continuity of mild solutions to (1.1) is the avail-
ability of suitable estimates for the maximal function u� : � → [0,∞),

u� := sup
t∈[0,T ]

‖ut‖,

where (ut )t∈[0,T ] is the process defined by (1.2); norms are taken in X pointwise on
�. The first such estimate was obtained by Kotelenez [56,57] who showed that if
(A(t))t∈[0,T ] generates a contractive evolution family (S(t, s))0≤s≤t≤T on a Hilbert
space X , then the process (ut )t∈[0,T ] defined by (1.2) has a continuous modification
which satisfies the maximal inequality

E sup
t∈[0,T ]

‖ut‖2 ≤ C2
E

∫ T

0
‖gt‖2 dt, (1.3)

where C is some absolute constant. The extension of (1.3) to 2-smooth Banach
spaces and general exponents 0 < p < ∞ has been investigated by many authors
[10,43,44,52,92,94] who all limited themselves to the special case of contraction semi-
groups. This development is surveyed in [95], where also some extensions to evolution
families are discussed. The more general case of stochastic convolutions driven by
Lévy processes has been studied in the 2-smooth setting in [110,111].

For Brownian motion as the driving process, the best result available to date is
due to Zhu and the first author in [94], where it was shown that if (S(t))t≥0 is a
C0-semigroup of contractions on a 2-smooth Banach space X and (gt )t∈[0,T ] is a
progressivelymeasurable processwith values in X , then the process (ut )t∈[0,T ] defined
by the stochastic convolution

ut :=
∫ t

0
S(t − s)gs dWs, t ∈ [0, T ],

has a continuous modification which satisfies, for every 0 < p < ∞,

E sup
t∈[0,T ]

‖ut‖p ≤ C p
p,XE

(∫ T

0
‖gt‖2 dt

)p/2
, (1.4)

where Cp,X is a constant depending only on p and X . In certain applications it is
important to have explicit information on the constant in the asymptotic regime p →
∞. In the special case S(t) ≡ I the estimate (1.4) reduces to the Burkholder inequality
for 2-smooth Banach spaces, for which the asymptotic dependence of Cp,X is known
to be of order O(

√
p) as p → ∞ [90]. For Hilbert spaces X and C0-semigroup of

contractions, (1.4) is known to hold to order O(
√
p) as p → ∞ [43,44]. In that

setting the Sz.-Nagy dilation theorem can be used to reduce matters to the Burkholder
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inequality. The order O(
√
p) can be used to derive exponential estimates which in

turn can be used to study large deviations (see [13] and [79]). Inspecting the proof of
(1.4) in [94] in the 2-smooth case, it is seen that the asymptotic p-dependence of the
constant in that paper is non-optimal.

The aim of the present paper is to simultaneously improve the results cited above
in two directions:

• To extend (1.4) to arbitrary C0-evolution families of contractions on 2-smooth
Banach spaces X (not even assuming the existence of a generating family
(A(t))t∈[0,T ]);

• To show that the constant Cp,X in the resulting maximal inequality is of order
O(

√
p) as p → ∞.

The precise statement of our main result, which corresponds to the special case of
Theorem 4.1 for Brownian motion, is as follows.

Theorem 1.1 Let (S(t, s))0≤s≤t≤T be a C0-evolution family of contractions on a
2-smooth Banach space X. Let (Wt )t∈[0,T ] be an adapted Brownian motion on a
probability space (�, P), and let (gt )t∈[0,T ] be a progressively measurable process
with values in X. Then the X-valued process (ut )t∈[0,T ] defined by

ut :=
∫ t

0
S(t, s)gs dWs, t ∈ [0, T ],

has a continuous modification which satisfies

E sup
t∈[0,T ]

‖ut‖p ≤ C p
p,XE

(∫ T

0
‖gt‖2 dt

)p/2
,

where the constant Cp,X only depends on p and the constant D in the definition of
2-smoothness for X. For 2 ≤ p < ∞ the inequality holds with

Cp,X = 10D
√
p.

Theorem 4.1 considers the more general situation of a cylindrical Brownian motion
with covariance given by the inner product of a Hilbert space H and progressively
measurable processes g with values in the space γ (H , X) of γ -radonifying operators
from H to X (the definition of this space is recalled in Sect. 2).

For evolution families, Theorem 1.1 is new even for Hilbert spaces X . In the 2-
smooth case it completely settles the asymptotic optimality problem; this is new even
in the semigroup case. The proof of the theorem is very different from [43,44] and
[94] and combines ideas of Kotelenez [56] and Seidler [90]. Seidler’s proof of the
O(

√
p) bound for the constant in Burkholder inequality in 2-smooth Banach spaces is

based on a clever modification of the Burkholder–Rosenthal inequality due to Pinelis
[81]. We further extend Pinelis’s inequality by accommodating additional predictable
contraction operators in it which enable us to merge the inequality with a splitting
technique already used by Kotelenez.
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Theorems 1.1 and 4.1 are also applicable in the setting where the evolution family
S itself is not contractive, but admits a dilation to a contractive evolution family on a
2-smooth Banach space. In the semigroup case, the boundedness of the H∞-calculus
of the generator A of angle < 1

2π implies that the semigroup has a dilation to an
isometric C0-group (see [33,50,90,95,101]). In this case, however, there is no need to
use Theorem 1.1 since one can apply the simpler method of [43,44].

Our method can be used quite naturally to prove the stability (uniformly in time)
of certain numerical schemes associated with (1.1). This is pursued in Sect. 5, where
we prove that if (S(t))t≥0 is a C0-semigroup of contractions on a (2, D)-smooth
Banach space X with generator A, and u is a continuous modification of the process
(
∫ t
0 S(t − s)gs dWs)t∈[0,T ], then for any contractive approximation scheme R which

approximates (S(t))t≥0 to some order α ∈ (0, 1] on the domain D(A) one has

E sup
j=0,...,n

‖u
t (n)
j

− u(n)
j ‖p → 0 as n → ∞, (1.5)

where

⎧
⎪⎨

⎪⎩

u(n)
0 := 0,

u(n)
j := R(T /n)

(
u(n)
j−1 +

∫ t (n)
j

t (n)
j−1

gs dWs

)
, j = 1, . . . , n.

(1.6)

The crucial observation underlying (1.5) is that the sequence (u(n)
j )nj=0 defined by

(1.6) is precisely of the right format to apply our extension of Pinelis’s inequal-
ity. For C0-semigroups which are not necessarily contractive and functions g ∈
L p(�; L2(0, T ;D(A)), we show that convergence holds with the following explicit
rate:

(
E sup

j=0,...,n
‖u

t (n)
j

− u(n)
j ‖p

)1/p ≤ C

√
log(n + 1)

nα
‖g‖L p(�;L2(0,T ;D(A))), (1.7)

where C is a constant independent of n and g. This estimate is somewhat simpler,
in that it directly uses Seidler’s version of the Burkholder inequality of Proposition
2.6 in combination with a simple trick, in Proposition 2.7, involving switching back
and forth from �∞

n (X) to �
q(n)
n (X) for a clever choice of q(n). This can be done at

the expense of a constant n1/q(n), exploiting the fact proven in Proposition 2.2 that
�q(n)(X) is 2-smooth for 2 ≤ q < ∞ with constant of order

√
q(n). This appears to

be a new technique whose potential deserves further investigation.
Examples of numerical schemes towhich our abstract results can be applied include

the splitting method (with R(t) = S(t) with α = 1), the implicit Euler method (with
R(t) = (I − t A)−1 and α = 1/2), and the Crank–Nicholson method (with R(t A) =
(2+ t A)(2− t A)−1 and α = 2/3). Moreover, if g takes values in suitable intermediate
spaces between X and D(Am) with m ≥ 1, appropriate rates of convergence can be
obtained for each of these methods.
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We expect that the new results in the simple linear setting will provide new insights
for approximation of nonlinear SPDEs also by adapted time schemes and plan to
address this in future work.

To illustrate the main result we consider the stochastic heat equation with the
implicit Euler scheme (cf. Example 5.15). For simplicity, here we state the result in
terms of Sobolev spaces. In Example 5.15, the use of Bessel potential spaces allows
us to take the smoothness exponent m fractional and also negative. Further examples
can be found in Sect. 5.3.

Example 1.2 (Heat equation, implicit Euler scheme) Consider the inhomogeneous
stochastic heat equation on R

d :

{
dut = �ut + ∑

k≥1 g
k
t dW

k
t , t ∈ [0, T ].

u0 = 0.
(1.8)

Here, W = (Wk)k≥1 is a sequence of independent standard Brownian motions. We
further assume that each gk : � × [0, T ] × R

d → R is progressively measurable and
that p ∈ (0,∞), q ∈ [2,∞), and m ∈ N = {0, 1, . . .} are such that

‖g‖p
Wm,q,p :=

d∑

i=1

m∑

j=0

E

{ ∫ T

0

( ∫

Rd

( ∑

k≥1

|∂ j
i gk(t, x)|2

)q/2
dx

)2/q
dt

}p/2

is finite. For n = 1, 2, . . . set t (n)
j := jT /n and consider the partition π(n) := {t (n)

j :
j = 0, . . . , n}. Let (S(t))t≥0 denote the heat semigroup on Lq(Rd) and set

ut :=
∫ t

0
S(t − s)gs dWs, t ∈ [0, T ].

This stochastic integral is well defined as an Lq(Rd)-valued Itô integral by Proposition
2.6 and (2.8).

Define the discrete approximation by u(n)
0 := 0, and

u(n)
j := (1 − T

n �)−1
(
u(n)
j−1 +

∫ t (n)
j

t (n)
j−1

gs dWs

)
, j = 1, . . . , n,

Let W j,q(Rd) be the Sobolev space of smoothness j and integrability q. Then the
following results hold:

E sup
j=0,...,n

‖u
t (n)
j

− u(n)
j ‖p

Wm−2,q (Rd )
≤

(

Cp,q,d,m

√
log(n + 1)

n

)p

‖g‖p
Wm,q,p , m ≥ 2,

E sup
j=0,...,n

‖u
t (n)
j

− u(n)
j ‖p

Wm−1,q (Rd )
≤

(

Cp,q,d,m

√
log(n + 1)

n1/2

)p

‖g‖p
Wm,q,p , m ≥ 1,
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lim
n→∞ E sup

j=0,...,n
‖u

t (n)
j

− u(n)
j ‖p

Wm,q (Rd )
→ 0 m ≥ 0.

This follows from Theorems 5.13 and 5.14.

In the final Sect. 6 we extend some of results to stochastic convolutions involving
random evolution families, which arise naturally if the operator family (A(t))t∈[0,T ] in
(1.1) depends on a random parameter in an adapted way. That this is possible at all in
the abstract setting of evolution equations in infinite dimensions is quite remarkable.
It requires replacing the Itô integral with the forward integral of [88] in order to avoid
adaptedness problems. Stochastic convolution in the forward sense is known to still
give the weak solution to (1.1) (see [62, Proposition 5.3], [85, Theorem 4.9] and
Theorem 6.6 below). In the parabolic setting, space-time regularity results have been
derived by Pronk and the second-named author in [85] using so-called pathwise mild
solutions (see Proposition 6.2) and a simple integration by parts trick. Pathwise mild
solutions have been recently used to study quasilinear PDEs in [30,59,70] and random
attractors in [60]. The newmaximal estimates proved in our current paper are expected
to have implications for these results as well.

For adapted families (A(t))t∈[0,T ],maximal inequalities can be alternatively derived
via Itô’s formula (see [95] and references therein). In contrast to the results obtained
here, however, this does not lead to constants of order O(

√
p) as p → ∞. In the setting

of monotone (possible nonlinear) operators and p = 2, the Itô formula argument is
applicable in a wider setting (see [63]). Some extensions to p > 2 have been obtained
recently in [72].

2 Preliminaries

Throughout this paper we work over the real scalar field. Unless otherwise stated,
randomvariables and stochastic processes are definedon aprobability space (�,F , P)

which we consider to be fixed throughout. On this probability space we fix a filtration
(Ft )t∈[0,T ] once and for all. Standard notions from the theory of stochastic processes
always refer to this filtration.Wheneverwe consider stochastic integralswith respect to
a (cylindrical) Brownian motion or a more general type of driving process, it is always
assumed that it is adapted with respect to this filtration. The conditional expectation of
a random variable ξ with respect to a sub-σ -algebraG ⊆ F will be denoted byEG (ξ).
The progressive σ -algebra associated with (Ft )t∈[0,T ], i.e., the σ -algebra generated
by sets of the form B× A with B ∈ B([0, t]) and A ∈ Ft , where t ranges over [0, T ],
is denoted by P . We will use the subscript P to denote the closed subspace of all
progressively measurable process in a given space of processes.

When X is a Banach space, under an X -valued random variable we understand a
stronglymeasurable function (i.e., a functionwhich is the pointwise limit of a sequence
of simple functions) from � into X ; for details the reader is referred to [48,49]. For
the purposes of this article, an X -valued process is a family of X -valued random
variables indexed by [0, T ]. Two processes (gt )t∈[0,T ] and (ht )t∈[0,T ] are said to be
modifications of each other if for al t ∈ [0, T ] we have gt = ht almost surely (with
exceptional set that may depend on t). A process (gt )t∈[0,T ] with values in X is said to
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be progressively measurable if g is strongly measurable as an X -valued function on
the measurable space ([0, T ] × �,P). It is a deep result in the theory of stochastic
processes that every adapted and strongly measurable X -valued stochastic process
admits a progressively measurable modification; an elementary proof is offered in
[77].

2.1 2-Smooth Banach spaces

A Banach space X is said to have martingale type p ∈ [1, 2] if there exists a constant
C ≥ 1 such that

E‖ fN‖p ≤ C p
(
E‖ f0‖p +

N∑

n=1

‖ fn − fn−1‖p
)

for all X -valued L p-martingales ( fn)Nn=0. A Banach space X is called (p, D)-smooth,
where p ∈ [1, 2] and D ≥ 1, if for all x, y ∈ X we have

‖x + y‖p + ‖x − y‖p ≤ 2‖x‖p + 2Dp‖y‖p.

A Banach space is called p-smooth if it is (p, D)-smooth for some D ≥ 1.
By a fundamental result due to Pisier [82] every p-smooth Banach space has mar-

tingale type p, and conversely every Banach space with martingale type p admits an
equivalent p-smooth norm. Moreover, if X has martingale type p with constant C ,
an equivalent (p,C)-smooth norm can be found; if X is (p, D)-smooth, then X has
martingale type p with constant at most 2C (and the constant 2 can be omitted for
p = 2, see Remark 2.5). Detailed proofs of these facts can be found in [83,104,106].

The class of 2-smooth Banach space is of particular interest from the point of view
of stochastic analysis. It includes all Hilbert spaces (with D = 1, by the parallelogram
identity) and the spaces L p(μ) with 2 ≤ p < ∞ (with D = √

p − 1, see [81,
Proposition 2.1] and Proposition 2.2 below). The reason for being interested in 2-
smooth spaces rather than spaces with martingale type 2 is as follows. Martingale
type 2 is preserved under passing to equivalent norms, but this is not the case for 2-
smoothness. In the results to follow, semigroups and evolution families of contractions
(i.e., operators of norm ≤ 1) play a distinguished role. Since contractivity need not
be preserved under passing to equivalent norms, such a distinguished role cannot be
expected in the setting of martingale type 2 spaces. In this connection the following
interesting question seems to be an open: if X has martingale type 2 and supports a
C0-semigroup (or C0-evolution family), does there exist an equivalent (2, D)-smooth
norm with respect to which the semigroup (or evolution family) is contractive?

In what follows we recall some useful properties of 2-smooth Banach spaces that
will be needed in this paper.

If X is (2, D)-smooth, then by [94, Lemma 2.1] and its proof the function

ρ(x) := ‖x‖2
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is Fréchet differentiable on X and its derivative is Lipschitz continuous. Conversely, if
ρ is twice Fréchet differentiable and ρ′′(x)(y, y) ≤ 2D2‖y‖2 at every x ∈ X , then X
is (2, D)-smooth (see [81] for a more general version of this converse). Unlike in finite
dimensions, Lipschitz continuity does not imply almost everywhere differentiability
(the latter even being meaningless in the absence of a reference measure). One way to
get around this is to consider the functions

ρx,y(t) := ρ(x + t y) = ‖x + t y‖2.

The following lemma is implicit in [81]. For the reader’s convenience we include a
proof.

Proposition 2.1 For any Banach space X and constant D ≥ 1 the following assertions
are equivalent:

(1) X is (2, D)-smooth;
(2) For all x, y ∈ X the function ρx,y(t) := ρ(x + t y) = ‖x + t y‖2 is differentiable

on R, its derivative is Lipschitz continuous, and satisfies

ρ′
x,y(t) − ρ′

x,y(s) ≤ 2D2(t − s)‖y‖2, s, t ∈ R, t ≥ s.

Proof (1)⇒(2): Fix x, y ∈ X . The differentiability of ρx,y(t) = ‖x + t y‖2 follows
from the Fréchet differentiability of ρ, and by the chain rule we have ρ′

x,y(t) =
〈y, ρ′(x+t y)〉. Lipschitz continuity of ρ′ follows from [24, LemmaV.3.5] and implies
the Lipschitz continuity of ρ′

x,y . It follows that the second derivative ρ′′
x,y(t) exists for

almost every t ∈ R, and in the points where it exists it is given by

ρ′′
x,y(t) = lim

h→0

1

h2
((ρx,y(t + h) + ρx,y(t − h) − 2ρx,y(t))

= lim
h→0

1

h2
(‖(x + t y) + hy‖2 + ‖(x + t y) − hy‖2 − 2‖x + t y‖2).

Therefore, by 2-smoothness, ρ′′
x,y(t) ≤ 2D2‖y‖2 in these points. This implies that

ρ′
x,y(t) − ρ′

x,y(s) ≤ 2D2(t − s)‖y‖2 for all t ≥ s.
(2)⇒(1): For all x, y ∈ X we have

‖x + y‖2 + ‖x − y‖2 − 2‖x‖2 =
∫ 1

0
ρ′
x,y(t) dt −

∫ 0

−1
ρ′
x,y(t) dt

=
∫ 1

0
ρ′
x,y(t) − ρ′

x,y(t − 1) dt ≤ 2D2‖y‖2.

��
As an applicationweprove the following vector-valued analogue of [81, Proposition

2.1]. It will be needed in the proof of Proposition 2.7, which in turn is applied in Sect.
5.
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Proposition 2.2 Let (S,A , μ) be a measure space and X be a (2, D)-smooth Banach
space. Then for all 2 ≤ p < ∞ the space L p(S; X) is (2,

√
p − 2 + D2)-smooth.

Notice that D ≥ 1 implies p − 2 + D2 ≤ D2(p − 1), so in particular L p(S; X) is
(2, D

√
p − 1)-smooth.

Proof The proof is based on the equivalence in Proposition 2.1. For Banach spaces X
with the property that ‖ · ‖2 is twice continuously Fréchet differentiable the proof can
be somewhat simplified.

Throughout the proof we use ‖·‖ and ‖·‖p to denote the norms of X and L p(S; X),
respectively. Thus if f ∈ L p(S; X), then ‖ f ‖ is the function s �→ ‖ f (s)‖ in L p(S).

As in [24, Theorem V.1.1] one checks that the functions

ψp(x) := ‖x‖p, �p(g) := ‖g‖p
p,

are Fréchet differentiable and

〈 f , � ′
p(g)〉 =

∫

S
〈 f , ψ ′

p(g)〉 dμ, f , g ∈ L p(S; X), (2.1)

where the duality 〈·, ·〉 between X and X∗ is applied pointwise on S. For q ∈ R let

wq;x,y(t) := ‖x + t y‖q , x, y ∈ X;
Wq; f ,g(t) := ‖ f + tg‖qp, f , g ∈ L p(S; X).

The Fréchet differentiability of ψp and �p implies the differentiability of wq;x,y and
Wq; f ,g (except possibly at t = 0 when x = 0 and y �= 0, respectively f = 0 and
g �= 0). Denoting derivatives with respect to t by ∂t , for q �= 0 the chain rule gives

∂twq;x,y(t) = q

2
‖x + t y‖q−2∂tw2;x,y(t) = q‖x + t y‖q−2〈y, ψ ′

2(x + t y)〉
∂tWq; f ,g(t) = q

2
‖ f + tg‖q−2

p ∂tW2; f ,g(t) = q‖ f + tg‖q−2
p 〈g, � ′

2( f + tg)〉,

where �2(g) := ‖g‖2p. Also,

ψ ′
p(x) = p

2
‖x‖p−2ψ ′

2(x), � ′
p( f ) = p

2
‖ f ‖p−2

p � ′
2( f ).
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Combining these identities with (2.1), we obtain

1

2
∂tW2; f ,g(t) = 〈g, � ′

2( f + tg)〉

= 2

p
‖ f + tg‖2−p

p 〈g, � ′
p( f + tg)〉

= 2

p
‖ f + tg‖2−p

p

∫

S
〈g, ψ ′

p( f + tg)〉 dμ

= ‖ f + tg‖2−p
p

∫

S
‖ f + tg‖p−2〈g, ψ ′

2( f + tg)〉 dμ

= 1

p
‖ f + tg‖2−p

p

∫

S
∂twp; f ,g(t) dμ.

(2.2)

Since X is 2-smooth and Lipschitz functions are almost everywhere differentiable,
for all x, y ∈ X the function w2;x,y is twice differentiable almost everywhere by
Proposition 2.1. The exceptional set may depend on the pair (x, y), however, so in
order to be able to differentiate the right-hand side of (2.2) under the integral we
will consider simple functions f , g ∈ L p(S; X) from this point onward. Then the
right-hand side of (2.2) is differentiable for almost all t ∈ R and

∂2t W2; f ,g(t)

= 2

p
∂t (‖ f + tg‖2−p

p )

∫

S
∂twp; f ,g(t) dμ + 2

p
‖ f + tg‖2−p

p ∂t

∫

S
∂twp; f ,g(t) dμ

= 2

p
∂t ((W2; f ,g(t))1−

p
2 )

∫

S
∂twp; f ,g(t) dμ + 2

p
‖ f + tg‖2−p

p

∫

S
∂2t wp; f ,g(t) dμ

=
( 2

p
− 1

)
‖ f + tg‖−p

p ∂tW2; f ,g(t)
∫

S
∂twp; f ,g(t) dμ

+ 2

p
‖ f + tg‖2−p

p

∫

S
∂2t wp; f ,g(t) dμ

(∗)= 2

p

( 1

p
− 1

2

)
‖ f + tg‖2−2p

p

(∫

S
∂twp; f ,g(t) dμ

)2

+ 2

p
‖ f + tg‖2−p

p

∫

S
∂2t wp; f ,g(t) dμ

(∗∗)≤ 2

p
‖ f + tg‖2−p

p

∫

S
∂2t wp; f ,g(t) dμ,

where (∗) follows from (2.2) and (∗∗) from the assumption 2 ≤ p < ∞. Now

∂2t wp;x,y(t) = p∂t [‖x + t y‖p−2〈y, ψ ′
2(x + t y)〉]

= p∂t (‖x + t y‖p−2)〈y, ψ ′
2(x + t y)〉 + p‖x + t y‖p−2∂t 〈y, ψ ′

2(x + t y)〉
= 2p

( p

2
− 1

)
‖x + t y‖p−4〈y, x + t y〉2 + p

2
‖x + t y‖p−2∂2t w2;x,y(t)

≤ 2p
( p

2
− 1

)
‖x + t y‖p−2‖y‖2 + pD2‖x + t y‖p−2‖y‖2.
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Applying this with x = f (·) and y = g(·) we obtain

∂2t W2; f ,g(t) ≤ 2(p − 2 + D2)‖ f + tg‖2−p
p

∫

S
‖ f + tg‖p−2‖g‖2 dμ.

By Hölder’s inequality with r = p/(p − 2) and r ′ = p/2 we obtain that W2; f ,g is
twice differentiable almost everywhere and

∂2t W2; f ,g(t) ≤ 2(p − 2 + D2)‖g‖2p. (2.3)

Since f and g are simple, the 2-smoothness of X and Proposition 2.1 imply that t �→
∂tW2; f ,g is Lipschitz continuous. Therefore it follows from (2.3) that t �→ ∂tW2; f ,g
is Lipschitz continuous with Lipschitz constant 2(D2 + p− 2)‖g‖2p. The proof of the
implication (2)⇒(1) of Proposition 2.1 then gives the inequality

‖ f + g‖2 + ‖ f − g‖2 ≤ 2‖ f ‖p + 2(D2 + p − 2)‖g‖2

for simple f , g ∈ L p(S; X). The inequality for general f , g ∈ L p(S; X) follows by
approximation. ��
Remark 2.3 By Pisier’s characterisation of 2-smoothness in terms of the modulus of
uniform smoothness [82], the fact that 2-smoothness of X implies the 2-smoothness
of L p(μ; X) for all 2 ≤ p < ∞ follows from [31]. A quantitative version is proved
in [71, Corollary 2.3] where it is shown that if the modulus of uniform smoothness
of a Banach space satisfies �X (τ ) ≤ sτ 2 for all τ > 0, then the modulus of uniform
smoothness of L p(μ; X) satisfies

�L p(μ,X)(τ ) ≤ (4s + 4p)τ 2, τ > 0. (2.4)

By Pisier’s result, this implies that L p(μ; X) is (2, E)-smooth for some E ≥ 1,
but the bound for E obtained this way is worse than ours. We will show this by
demonstrating that our Proposition 2.2 gives a slight improvement of the constant
(2.4). Indeed, by [106, Proposition 3.1.2], the bound �X (τ ) ≤ sτ 2 for τ > 0 implies
that X is (2,

√
1 + 4s)-smooth. Consequently Proposition 2.2 implies that L p(μ; X) is

(2,
√
p − 1 + 4s)-smooth. Another application of [106, Proposition 3.1.2] then gives

that

�L p(μ;X)(τ ) ≤ (4s + p − 1)τ 2, τ > 0.

Following [81]wewill use Proposition 2.1 to derive some further useful inequalities
for the function

w(t) := wx,y(t) := (ρ(x + t y))1/2 = ‖x + t y‖,

where x and y are fixed elements in a (2, D)-smooth Banach space. Evidently w is
Lipschitz continuous with |w(t) − w(s)| ≤ |t − s|‖y‖, so w is almost everywhere
differentiable with
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|w′(t)| ≤ ‖y‖. (2.5)

We start from the elementary observation that sinh a ≤ a cosh a for a ≥ 0. Hence
when w′′w ≥ 0, Proposition 2.1 implies the almost everywhere inequalities

(coshw)′′ = (w′)2 coshw + w′′ sinhw

≤ ((w′)2 + w′′w) coshw = 1
2 (w

2)′′ coshw ≤ D2‖y‖2 coshw,

whereas if w′′w < 0, then (2.5) implies

(coshw)′′ = (w′)2 coshw + w′′ sinhw ≤ (w′)2 coshw ≤ ‖y‖2 coshw.

Combining these inequalities we obtain the almost everywhere inequality

(coshw)′′ ≤ D2‖y‖2 coshw. (2.6)

The next lemma was obtained in [81, Proposition 2.5 and the proof of Theorem
3.2]. We present a more direct argument which avoids the smoothing procedure and
reduction to the finite dimensional setting used in [81, Lemma 2.2, Lemma 2.3, and
Remark 2.4].

Lemma 2.4 Let X be a (2, D)-smooth Banach space and let ξ, η ∈ L2(�; X). Let
G ⊆ F be a sub-σ -algebra. If ξ is strongly G -measurable and EG η = 0, then

EG (‖ξ + η‖2) ≤ ‖ξ‖2 + D2
EG (‖η‖2).

If, moreover, ξ, η ∈ L∞(�; X), then

EG (cosh(‖ξ + η‖)) ≤ (
1 + D2

EG (e‖η‖ − 1 − ‖η‖)) cosh(‖ξ‖).

Proof Fix x, y ∈ X . As before we let ρx,y(t) := (wx,y(t))2 = ‖x + t y‖2 = ρ(x + t y)
for t ∈ R. Then ρx,y is continuously differentiable and ρ′

x,y is Lipschitz continuous
with constant 2D2‖y‖2 by Proposition 2.1. Taylor’s formula then gives

‖x + t y‖2 = ρx,y(t) = ρx,y(0) + tρ′
x,y(0) +

∫ t

0
ρ′
x,y(s) − ρ′

x,y(0) ds

≤ ‖x‖2 + t〈ρ′(x), y〉 + t D2‖y‖2.

Setting x = ξ(ω), y = η(ω), t = 1, and taking conditional expectations, we obtain

EG (‖ξ + η‖2) ≤ ‖ξ‖2 + EG (〈ρ′(ξ), η〉) + D2
EG (‖η‖2).

It remains to note that EG 〈ρ′(ξ), η〉 = 〈ρ′(ξ), EG η〉 = 0.
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For the second assertion note that the function ζ : C → C defined by ζ(z) :=
cosh(z1/2), is entire. Let u(t) := cosh(‖x + t y‖) = cosh(w(t)) = ζ(ρx,y(t)). By
(2.6),

u(t) = u(0) + tu′(0) +
∫ t

0
(t − s)u′′(s) ds

≤ cosh(‖x‖) + tρ′
x,y(0)ζ

′(‖x‖2)〈ρ′(x), y〉
+ D2‖y‖2

∫ t

0
(t − s) cosh(‖x + sy‖) ds.

Since cosh(‖x + sy‖) ≤ cosh(‖x‖ + s‖y‖) ≤ es‖y‖ cosh(‖x‖) for s ≥ 0, the integral
on the right-hand side satisfies

‖y‖2
∫ t

0
(t − s) cosh(‖x + sy‖) ds ≤ cosh(‖x‖)‖y‖2

∫ t

0
(t − s)es‖y‖ ds

= cosh(‖x‖)(et‖y‖ − 1 − t‖y‖).

Combining the estimates with x = ξ(ω), y = η(ω), t = 1, and taking conditional
expectations, we obtain

EG (cosh(‖ξ + η‖))
≤ cosh(‖ξ‖) + ρ′

x,y(0)ζ
′(‖ξ‖2)EG (〈ρ′(ξ), η〉)

+ D2
EG (e‖η‖ − 1 − ‖η‖) cosh(‖ξ‖).

The result follows from this by using once more that EG (〈ρ′(ξ), η〉) = 0. ��
Remark 2.5 Applying the first part of this lemma iteratively to Rademacher sums,
we obtain the folklore result that (2, D)-smoothness implies martingale type 2 with
constant D.

2.2 Stochastic integration in 2-smooth Banach spaces

Let H a Hilbert space. An H -isonormal process on � is a mapping W : H →
L2(�) with the following two properties:

(i) For all h ∈ H the random variable W h is Gaussian;
(ii) For all h1, h2 ∈ H we have E(W h1 · W h2) = (h1|h2).
It is easy to see that every H -isonormal process is linear and that for all

h1, . . . , hN ∈ H the R
N -valued random variable (W h1, . . . ,W hN ) is jointly Gaus-

sian. For more details the reader is referred to [51,74].
If H is another Hilbert space, an H -cylindrical Brownian motion indexed by [0, T ]

is an isonormal process W : L2(0, T ; H) → L2(�). Following common practice we
write

Wth := W (1(0,t) ⊗ h), t ∈ [0, T ], h ∈ H .
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For each h ∈ H , the scalar-valued process Wh = (Wth)t∈[0,T ] is then a Brownian
motion, which is standard if and only if h has norm one. Two such Brownian motions
Wh1 and Wh2 are independent if and only if h1 and h2 are orthogonal in H . We say
that W is adapted to the filtration (Ft )t∈[0,T ] on � if W ( f ⊗ h) ∈ L2(�,Ft ) for all
f ∈ L2(0, T ) supported in (0, t) and all h ∈ H . In what follows we always assume
that H -cylindrical Brownian motions are adapted to (Ft )t∈[0,T ].

The space of finite rank operators from a Hilbert space H into a Banach space X is
denoted by H ⊗ X . Every finite rank operator T ∈ H ⊗ X can be represented in the
form T = ∑N

n=1 hn ⊗ xn with (hn)Nn=1 orthonormal in H and (xn)Nn=1 a sequence in
X . We then define

‖T ‖2γ (H ,X) = E

∥
∥
∥

N∑

n=1

γnxn
∥
∥
∥
2
, (2.7)

where (γn)
N
n=1 is a sequence of independent standard Gaussian random variables.

It is an easy consequence of the preservation of joint Gaussianity under orthogonal
transformations that the norm ‖·‖γ (H ,X) is well defined. The completion of H⊗X with
respect to this norm is denoted by γ (H , X). The natural inclusionmapping from H⊗X
into L (H , X) extends to a contractive inclusion mapping γ (H , X) ⊆ L (H , X). A
linear operator T ∈ L (H , X) is said to be γ -radonifying if it belongs to γ (H , X). For
1 ≤ p < ∞ the Kahane–Khintchine inequalities guarantee that replacing L2-norms
by L p-norms in (2.7) gives an equivalent norm on γ (H , X). The space γ (H , X),
when endowed with this equivalent norm, will be denoted by γp(H , X).

For Hilbert spaces K we have

γ (H , K ) = L2(H , K )

isometrically, whereL2(H , K ) is the space of Hilbert–Schmidt operators from H to
K . For 1 ≤ p < ∞ and any Banach space X the identity mapping on H ⊗ L p(μ)

extends to an isometric isomorphism of Banach spaces

γp(H , L p(μ)) � L p(μ; H). (2.8)

For H = L2(ν) this identifies γ (L2(ν), L p(μ)) with the space L p(μ; L2(ν)) of
‘square functions’ using terminology from harmonic analysis. For more details the
reader is referred to [49, Chapter 9].

A stochastic process � : [0, T ] × � → L (H , X) is called an adapted finite
rank step process if there exist 0 = s0 < s1 < . . . < sn = T , random variables
ξi j ∈ L∞(�,Fs j−1) ⊗ X (the subspace of L∞(�; X) of strongly Fs j−1 -measurable
randomvariables taking values in a finite-dimensional subspace of X ) for i = 1, . . . ,m
and j = 1, . . . , n, and an orthonormal system h1, . . . , hm in H such that

� =
n∑

j=1

1(s j−1,s j ]
m∑

i=1

hi ⊗ ξi j . (2.9)
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For such processes the stochastic integral with respect to the H -cylindrical Brownian
motion W is defined by

∫ t

0
�s dWs :=

n∑

j=1

m∑

i=1

(Wsj∧t − Wsj−1∧t )hi ⊗ ξi j , t ∈ [0, T ].

Since t �→ Wth, being a Brownian motion, has a continuous modification, it follows
that t �→ ∫ t

0 �s dWs has a continuous modification. Such modifications will always
be used in the sequel. It was shown by Neidhardt in his PhD thesis [73] (see also [22],
[100]) that if � is an adapted finite rank step process, then

E

∥
∥
∥

∫ T

0
�t dWt

∥
∥
∥
2 ≤ D2‖�‖2L2(�;L2(0,T ;γ (H ,X)))

. (2.10)

By (2.10), standard localisation arguments, and Doob’s inequality, the stochastic inte-
gral can be extended to arbitrary progressivelymeasurable processes� : [0, T ]×� →
γ (H , X) for which the L2(0, T ; γ (H , X))-norm is finite almost surely and the result-
ing stochastic integral process (

∫ t
0 �s dWs)t∈[0,T ] has a continuous modification. At

this juncture it is useful to observe that a process � : [0, T ] × � → γ (H , X) is
progressively measurable (as a process with values in the Banach space γ (H , X)) if
and only if �h : [0, T ] × � → X is progressively measurable (as a process with
values in X ) for all h ∈ H ; this follows from [49, Example 9.1.16].

The following version of the classical Burkholder inequality is the result of contri-
butions of many authors [2,8,9,22,23,75].

Proposition 2.6 Let X be a (2, D)-smooth Banach space, let W be an adapted H-
cylindrical Brownian motion on �, and let 0 < p < ∞. For all adapted finite rank
step process � : [0, T ] × � → γ (H , X) we have

E sup
t∈[0,T ]

∥
∥
∥

∫ t

0
�s dWs

∥
∥
∥
p ≤ C p

p,D‖�‖p
L p(�;L2(0,T ;γ (H ,X)))

,

where Cp,D is a constant depending only on p and D.

By using Pinelis’s version of the Burkholder–Rosenthal inequalities [81], Seidler [90]
has shown that the constant Cp,D has the same asymptotic behaviour for p → ∞ as
in the scalar-valued setting, i.e.,

Cp,D = CDO(
√
p) as p → ∞.

As a special case of our main result we will recover Seidler’s result, with Cp,D =
10D

√
p if 2 ≤ p < ∞, by setting S(t, s) ≡ I in Theorem 4.1.

As a consequence of Proposition 2.6 we obtain the following result, which will be
useful in the error analysis of numerical schemes for SPDEs in Sect. 5.
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Proposition 2.7 Let X be a (2, D)-smooth Banach space and let 0 < p < ∞. Let
� := (�(k))nk=1 be a finite sequence in L p

P (�; L2(0, T ; γ (H , X))) and set

I�
n :=

(
E sup

t∈[0,T ],k∈{1,...,n}

∥
∥
∥

∫ t

0
�(k)

s dWs

∥
∥
∥
p)1/p

.

Then

I�
n ≤ Cp,D

√
log n‖�‖L p(�;L2(0,T ;γ (H ,�∞

n (X))))if n ≥ 3, (2.11)

I�
n ≤ Kp,D log n‖�‖L p(�;L2(0,T ;�∞

n (γ (H ,X))))if n ≥ 8. (2.12)

If 2 ≤ p < ∞, these estimates holds with Cp,D = 10D
√
2ep and Kp,D = 10De

√
p.

The bound (2.12) is simpler to use, but (2.11)will give a better result in the applications
later on.

Proof The method of proof is inspired by [28]. The idea is to view the sequence
� = (�(k))nk=1 as an �

q
n(X)-valued process for a clever choice of q = q(n) ∈ [2,∞).

We begin with the proof of (2.11). Since �
q
n(X) is (2, D

√
q)-smooth by Proposition

2.2, by Proposition 2.6 we have

I�
n ≤

(
E sup

t∈[0,T ]

∥
∥
∥

∫ t

0
�s dWs

∥
∥
∥
p

�
q
n (X)

)1/p ≤ Cp,q,D‖�‖L p(�;L2(0,T ;γ (H ,�
q
n (X))))

≤ Cp,q,Dn
1/q‖�‖L p(�;L2(0,T ;γ (H ,�∞

n (X)))),

and if 2 ≤ p < ∞ we may take Cp,q,D = 10D
√
pq . The estimate (2.11) follows

from this by taking q = 2 log n, which belongs to the interval [2,∞) if n ≥ 3.
To prove (2.12) we argue in the same way, but this time we use that for a sequence

� := (�k)
n
k=1 with �k ∈ γ (H , X),

‖�‖γ (H ,�
q
n (X)) ≤ ‖�‖γq (H ,�

q
n (X))

= ‖�‖�
q
n (γq (H ,X)) ≤ n1/q‖�‖�∞

n (γq (H ,X)) ≤ n1/q
√
q‖�‖�∞

n (γ (H ,X)),

applying the Kahane–Khintchine inequalities (see [49, Theorem 6.2.6]) in the last
step. Now (2.12) follows by taking q = log n. ��
Remark 2.8 The samemethod of proof can be used to show that if X is (2, D)-smooth,
then �∞

n (X) has martingale type 2 with constant
√
D2 − 2 + 2 log n if n ≥ 3.

3 Extending Pinelis’s Burkholder–Rosenthal inequality

On the probability space (�,F , P)we consider a finite filtration (F j )
k
j=0 and denote

by E j := EF j the conditional expectation with respect to F j . When ( f j )kj=0 is an
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X -valued martingale with respect to (F j )
k
j=0, we denote by (d f j )kj=1 its difference

sequence, i.e., d f j := f j − f j−1. We further define the non-negative random variables
f �
j (for 0 ≤ j ≤ k) and d f �

j and s j ( f ) (for 1 ≤ j ≤ k) by

f �
j := max

0≤i≤ j
‖ fi‖, d f �

j := max
1≤i≤ j

‖d fi‖, s j ( f ) :=
( j∑

i=1

Ei−1‖d fi‖2
)1/2

,

and we set f � := f �
k , d f

� := d f �
k , and s( f ) := sk( f ).

If G is a sub-σ -algebra of F , we call the X -valued random variables ξ and η

conditionally equi-distributed given G if for all Borel sets B ⊆ X we have

EG 1{ξ∈B} = EG 1{η∈B}.

As in [48, Lemma 4.4.5] one sees that this is equivalent to the requirement that

E( f (ξ)|G ) = E( f (η)|G ) (3.1)

for all measurable functions f : X → X such that f (ξ), f (η) ∈ L1(�; X).
An adapted X -valued sequence (ξ j )

k
j=1 is called conditionally symmetric given

(F j )
k
j=0 if for all Borel sets B ⊆ X and 1 ≤ j ≤ k the random variables ξ j and

−ξ j are conditionally equi-distributed givenF j−1. Taking f (x) = 1{‖x‖≤r}x in (3.1),
it follows that for conditionally symmetric sequences we have E j−1(1{‖ξ j‖≤r}ξ j ) =
−E j−1(1{‖ξ j‖≤r}ξ j ), i.e.,

E j−1(1{‖ξ j‖≤r}ξ j ) = 0. (3.2)

A random operator on X is a mapping V : � → L (X) such that ω �→ V (ω)x
is strongly measurable for all x ∈ X , and a random contraction on X is a random
operator on X whose range consists of contractions.

The main result of this section is the following extension of Pinelis’s version of the
Rosenthal–Burkholder inequality [81]. Recently, other extensions of some of Pinelis’s
estimates for p-smooth Banach spaces have been obtained in [66].

Theorem 3.1 Let X be a (2, D)-smooth Banach space. Suppose that ( f j )kj=0 is an

adapted sequence of X-valued random variables, (g j )
k
j=0 is an X-valued martingale,

(Vj )
k
j=1 is a sequence of random contractions on X which is strongly predictable

(i.e., each Vj x is stronglyF j−1 measurable for all x ∈ X), and assume that we have
f0 = g0 = 0 and

f j = Vj f j−1 + dg j , j = 1, . . . , k.

Then for all 2 ≤ p < ∞ we have

‖ f �‖p ≤ 30p‖dg�‖p + 40D
√
p‖s(g)‖p.
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If, moreover, (g j )
k
j=0 has conditionally symmetric increments, then

‖ f �‖p ≤ 5p‖dg�‖p + 10D
√
p‖s(g)‖p.

Here and in the rest of the paper, ‖ · ‖p is the norm of L p(�). The proof of
Theorem 3.1 closely follows that of [81, Theorem 4.1] (which, up to the value of the
constants, corresponds to taking Vj = I and g j = f j ). We point out that even in the
case p = 2, Theorem 3.1 is not obvious because the additional predictable sequence
(Vj )

k
j=1 destroys the martingale structure of f .

The proof in [81] is written up rather concisely and therefore we shall present the
proof of Theorem 3.1 in full detail. At the same time this provides the opportunity to
give more precise information on the constants.

We need some auxiliary results, the first of which is a classical ‘good λ’ inequality
(see [11, Lemma 7.1]).

Lemma 3.2 Suppose that g and h are non-negative random variables and suppose
that β > 1, δ > 0, and ε > 0 are such that for all λ > 0 we have

P(g > βλ, h < δλ) < εP(g > λ).

If 1 ≤ p < ∞ and β pε < 1, then

Egp ≤ (β/δ)p

1 − β pε
Eh p.

The next lemma is a minor extension of [81, Theorem 3.4].

Lemma 3.3 Suppose that (g j )
k
j=0 is a martingale with values in a (2, D)-smooth

Banach space X with g0 = 0 and let (h j )
k−1
j=0 be an adapted sequence of random

variables with values in X. Set

f0 := 0, f j := h j−1 + dg j , 1 ≤ j ≤ k,

and assume that ‖h j‖ ≤ ‖ f j‖ almost surely for all 0 ≤ j ≤ k − 1. Suppose further
that ‖dg�‖∞ ≤ a and ‖s(g)‖∞ ≤ b/D for some a > 0 and b > 0. Then for all r > 0
we have

P( f � ≥ r) ≤ 2
(eb2

ra

)r/a
.

Proof We begin by noting that the almost sure conditions f0 = 0, ‖h j−1‖ ≤ ‖ f j−1‖,
f j := dg j + h j−1, and dg j ≤ a imply that the random variables h j−1 and f j ,
j = 1, . . . , k, are essentially bounded and h0 = 0 almost surely.
Fix λ > 0 and 1 ≤ j ≤ k. By Lemma 2.4,

E j−1 cosh(λ‖ f j‖) = E j−1 cosh(λ‖h j−1 + dg j‖)
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≤
(
1 + D2

E j−1(e
λ‖dg j‖ − 1 − λ‖dg j‖)

)
cosh(λ‖h j−1‖)

≤
(
1 + D2

E j−1(e
λ‖dg j‖ − 1 − λ‖dg j‖)

)
cosh(λ‖ f j−1‖)

=: (1 + e j ) cosh(λ‖ f j−1‖).

Note that the random variables e j are non-negative. This means that the sequence
(G j )

k
j=0 defined by

G0 = 1, G j :=
( j∏

i=1

(1 + ei )
)−1

cosh(λ‖ f j‖), j = 1, . . . , k,

is a positive supermartingale. Fix r > 0 and set τ := min{1 ≤ j ≤ k : ‖ f j‖ ≥ r}
on the set { f � ≥ r} = {max1≤ j≤k ‖ f j‖ ≥ r} and τ := ∞ on its complement. By
the optional sampling theorem, the sequence (Gτ∧ j )

k
j=0 is a positive supermartingale.

It follows that E1{τ≤k}Gτ ≤ EGτ∧k ≤ EG0 = 1. Therefore, by the inequality
cosh u > 1

2e
u and Chebyshev’s inequality,

P( f � ≥ r) = P(τ ≤ k) = P

(
τ ≤ k, Gτ ≥

∥
∥
∥

k∏

j=1

(1 + e j )
∥
∥
∥

−1

∞ cosh(λr)
)

≤ P

(
τ ≤ k, Gτ ≥ 1

2

∥
∥
∥

k∏

j=1

(1 + e j )
∥
∥
∥

−1

∞ eλr
)

≤ 2 exp(−λr)
∥
∥
∥

k∏

j=1

(1 + e j )
∥
∥
∥∞E1{τ≤k}Gτ

≤ 2 exp(−λr)
∥
∥
∥

k∏

j=1

(1 + e j )
∥
∥
∥∞ ≤ 2 exp

(
−λr +

∥
∥
∥

k∑

j=1

e j
∥
∥
∥∞

)
,

the last inequality being elementary.
The function defined by ψ(0) := 1

2 and ψ(u) := (eu − 1 − u)/u2 for u �= 0 is
increasing, and therefore for all λ > 0 we have

E j−1(e
λ‖dg j‖ − 1 − λ‖dg j‖) ≤ 1

a2
(eλa − 1 − λa)E j−1‖dg j‖2.

Combining this with the definition of the random variables e j and the assumption
‖s(g)‖∞ ≤ b/D, we obtain the pointwise inequalities

k∑

i=1

ei = D2
k∑

i=1

E j−1(e
λ‖dg j‖ − 1 − λ‖dg j‖)
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≤ D2

a2
(eλa − 1 − λa)

k∑

i=1

E j−1‖dg j‖2 ≤ b2

a2
(eλa − 1 − λa).

Taking the supremum norm and substituting the result into above tail estimate for f �

we arrive at

P( f � ≥ r) ≤ 2 exp
(
−λr + b2

a2
(eλa − 1 − λa)

)
.

Up to this point the choice of λ > 0 was arbitrary. Optimising the choice of λ > 0
leads to the estimate

P( f � ≥ r) ≤ 2 exp
( r

a
−

( r

a
+ b2

a2

)
ln

(
1 + ra

b2

))

which, by elementary estimates, implies the inequality in the statement of the lemma.
��

The next lemma gives a sufficient condition in order that Lemma 3.2 can be applied
and extends [81, Lemma 4.2]. Terminology is as in Theorem 3.1.

Lemma 3.4 Let X be a (2, D)-smooth Banach space X. Suppose that (g j )
k
j=0 is a

martingale with values in X with g0 = 0 such that each dg j is F j−1-conditionally
symmetric, the sequence of random operators (Vj )

k
j=1 on X is strongly predictable

and contractive. Let ( f j )kj=0 be the sequence of random variables defined by

f0 := 0, f j := Vj f j−1 + dg j , j = 1, . . . , k.

Then for all λ, δ1, δ2 > 0 and β > 1 + δ2 we have

P( f � > βλ, w ≤ λ) ≤ εP( f � > λ),

where

w = (δ−1
2 dg�) ∨ (δ−1

1 Ds(g)), ε = 2

(
eδ21
Nδ22

)N

, N = β − 1 − δ2

δ2
.

Proof Fix λ, δ1, δ2 > 0 and β > 1 + δ2. Setting g0 := 0 and

g j :=
j∑

i=1

1{‖dgi‖≤δ2λ}dgi , j = 1, . . . , k,

by (3.2) we have E j−1dg j = 0. Set f0 := f0 = 0, h0 := 0, and

f j := Vj f j−1 + dg j , h j := Vjh j−1 + 1{μ< j≤τ∧ν}dg j , j = 1, . . . , k,
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where the stopping times μ, ν, and τ are defined by

μ := inf{0 ≤ j ≤ k : ‖ f j‖ > λ},
ν := inf{0 ≤ j ≤ k : ‖ f j‖ > βλ},
τ := inf{0 ≤ j ≤ k − 1 : s j+1(g) > δ1D

−1λ};

we set μ := ∞, ν := ∞, and τ := ∞ if the respective sets over which the infima are
taken are empty. Note that the sequence (h j )

k
j=0 is adapted. Notice that h j = 0 on the

set { j ≤ μ}; in particular hμ = 0.
On the set {w ≤ λ}we have dg� ≤ δ2λ and in particular ‖dgi‖ ≤ δ2λ and therefore

dgi = dgi for all i = 0, . . . , k, so f j = f j for all j = 0 . . . k. It follows that

P( f � > βλ, w ≤ λ) = P( f
�

> βλ, w ≤ λ).

It also follows that s(g) ≤ δ1D−1λ, so τ = ∞.
On the set { f �

> βλ} we have μ ≤ ν ≤ k, ‖ f μ−1‖ ≤ λ, and ‖ f ν‖ > βλ.

Consequently, for any contraction S on X , on the set { f �
> βλ, w ≤ λ} we have

‖ f ν − S f μ‖ ≥ ‖ f ν‖ − ‖ f μ‖ ≥ ‖ f ν‖ − ‖ f μ−1‖ − ‖dgμ‖ > βλ − λ − δ2λ.

On this set we also have

hν = 0 if μ = ν,

hν = f ν − Vν,μ f μ if μ < ν, where Vν,μ = Vν ◦ . . . ◦ Vμ+1.
(3.3)

The first identity in (3.3) follows from hμ = Vμhμ−1 = · · · = Vμ ◦ · · · ◦ V1h0 =
0, recalling that h0 = 0. The second identity follows from hμ = 0 and induction
pointwise on �, noting that if μ ≤ n < n + 1 ≤ ν, then

hn+1 = Vn+1hn + dgn+1 = Vn+1( f n − Vn,μ f μ) + dgn+1 = f n+1 − Vn+1,μ f μ,

where we used the definitions of h and f , the linearity of Vn+1, and the induction
hypothesis. Therefore, on the set { f �

> βλ, w ≤ λ}, we obtain

h� ≥ ‖hν‖ = ‖ f ν − Vν,μ f μ‖ > (β − 1 − δ2)λ.

We have shown that

P( f
�

> βλ, w ≤ λ) = P( f
�

> βλ, w ≤ λ) ≤ P(h� > (β − 1 − δ2)λ).

Let 0 ≤ n ≤ k be such that P(�n) > 0, with �n := {μ = n}. We claim that
(a) the random variables 1{μ< j≤τ∧ν}dg j form a martingale difference sequence on
the probability space (�n,F |�n , Pn), where F |�n := {F ∩ �n : F ∈ F } and
Pn := P/P(�n), and (b) for this martingale difference sequence the conditions of
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Lemma 3.3 are satisfied on the probability space �n , with f j , g j , and h j replaced by
the restrictions to �n of h j , γ j := 1{μ< j≤τ∧ν}dg j , and Vj+1h j respectively, and with
a = δ2λ, and b = δ1λ.

Indeed, fix 1 ≤ j ≤ k. If j ≤ n, then j ≤ μ on �n and therefore γ j =
1{μ< j≤τ∧ν}dg j = 0 on �n . If j > n, then {μ < j ≤ τ ∧ν}∩�n = { j ≤ τ ∧ν}∩�n

isF j−1-measurable as a subset of � andF j−1|�n -measurable as a subset of �n and
consequently for all F ∈ F j−1|�n ⊆ F j−1 we obtain

∫

F
γ j dPn = 1

P(�n)

∫

F∩{ j≤τ∧ν}
dg j dP = 0

since E j−1dg j = 0. This proves part (a) of the claim.
Turning to part (b) of the claim, the condition dγ � ≤ δ2λ ofLemma3.3 is immediate

from the definition, and the adaptedness of Vj+1 f j aswell as the pointwise inequalities
‖Vj+1 f j‖ ≤ ‖ f j‖ are also clear. The pointwise inequality s(γ ) ≤ δ1D−1λ on �n =
{μ = n} follows from

s(γ ) =
( k∑

j=1

E
n
j−1(1{μ< j≤τ∧ν}‖dg j‖2)

)1/2

=
( k∑

j=n+1

E
n
j−1(1{ j≤τ∧ν}‖dg j‖2)

)1/2

(∗)=
( k∑

j=n+1

E j−1(1{ j≤τ∧ν}‖dg j‖2)
)1/2

=
( τ∧ν∧k∑

j=n+1

E j−1(‖dg j‖2)
)1/2 ≤ sτ∧k(g) ≤ δ1D

−1λ,

where (∗) follows from the F j−1|�n -measurability of { j ≤ τ ∧ ν} ∩ �n for j > n
and the last step uses the definition of τ .

Putting together the various inequalities and applying Lemma 3.3 on the space �n

as indicated above, taking r = (β − 1− δ2)λ, and using that h� = 0 on {μ = ∞}, by
definition of ε we arrive at

P( f � > βλ, w ≤ λ) ≤ P(h� > (β − 1 − δ2)λ)

=
∑

n≥0

P(μ = n)Pn(h
� > (β − 1 − δ2)λ)

≤
∑

n≥0

P(μ = n) · 2
( e(δ1λ)2

(β − 1 − δ2)λ(δ2λ)

)(β−1−δ2)/δ2

=
∑

n≥0

P(μ = n) · 2
( eδ21
Nδ22

)N = εP(μ < ∞) = εP( f � > λ).

��
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Proof of Theorem 3.1 Step 1. We first consider the conditional symmetric case. Com-
bining Lemmas 3.2 (with g = f � and h = w) and 3.4 (with the choice of ε, N and w

made there) we arrive at the estimate

‖ f �‖p ≤ β

(1 − β pε)1/p
‖(δ−1

2 dg�) ∨ (δ−1
1 Ds(g))‖p,

valid for all choices of λ > 0, δ1, δ2 > 0, β > 1 + δ2 satisfying β pε < 1.
With the choices

δ1 := 1

4
√
p
, δ2 := 1

2p
, β := 2 + δ2 = 2 + 1

2p

we have N = β−1−δ2
δ2

= 2p ≥ 4, β p/N = (2 + 1
2p )1/2 ≤ ( 94 )

1/2 = 3
2 and ε =

2(e/8)N , so

(β pε)1/N = β p/N · 21/N e

8
≤ 3

2
· 21/4 · e

8
=: θ ≈ 0.60611 . . . < 1,

so Lemma 3.2 can be applied with these choices. This gives 1 − β pε ≥ 1 − θN ≥
1 − θ4 ≈ 0.8650 . . . , so β/(1 − β pε)1/p ≤ 9

4 · (1 − θ4)1/2 ≈ 2.0926 . . . and
consequently

‖ f �‖p ≤ β

(1 − β pε)1/p

(
2p‖dg�‖p + 4

√
pD‖s(g)‖p

)

≤ 5p‖dg�‖p + 10D
√
p‖s(g)‖p.

This completes the proof in the conditional symmetric case.
Step 2 The general case will be reduced to the conditional symmetric case. This

is a variation of a standard symmetrisation argument (cf. the proof of [47, Theorem
4.1]). In view of the rather intricate setting and in order to obtain explicit constants,
we present some details.

Using the terminology of [21, Chapter 6], let (dg̃ j )
k
j=0 be the decoupled tangent

sequence of (dg j )
k
j=0 on a possibly enlarged probability space. There exists a σ -

algebra G such that the sequence (dg̃ j )
k
j=0 is G -conditionally independent and such

that

P(dg̃ j ∈ ·|G ) = P(dg̃ j ∈ ·|F j−1) = P(dg j ∈ ·|F j−1).

Moreover we may assume that G = Fk , trivially extending the latter σ -algebra to the
larger probability space (see [21, p. 294]). Let f̃0 := f0 = 0 and f̃ j := Vj f̃ j−1+dg̃ j .
Setting Fj := f j − f̃ j and G j := g j − g̃ j , we have F0 = 0 and Fj = Vj Fj−1 +dG j .
The differences dG j are conditionally symmetric. Therefore, by the symmetric case
of Theorem 3.1,

‖ f �‖p ≤ ‖F�‖p + ‖ f̃ �‖p ≤ 5p‖dG�‖p + 10D
√
p‖s(G)‖p + ‖ f̃ �‖p.
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We estimate each of the three terms on the right-hand side.
As in [46, Lemma 1 and p. 227],

‖dG�‖p ≤ ‖dg�‖p + ‖dg̃�‖p ≤ 3‖dg�‖p.

To estimate s(G) we note that s(G) ≤ s(g) + s(g̃) = 2s(g), where we used that
E j−1‖dg̃ j‖2 = E j−1‖dg j‖2 (see [48, Lemma 4.4.5]). Thus

5p‖dG�‖p + 10D
√
p‖s(G)‖p ≤ 15p‖dg�‖p + 20D

√
p‖s(g)‖p (3.4)

To estimate ‖ f̃ �‖p, let (dg j )
k
j=1 be yet another decoupled tangent sequence of

(dg j )
k
j=1 on a further enlarged probability space. This sequence can be chosen in

such a way that (dg j )
k
j=1 and (dg̃ j )

k
j=1 are G -conditionally independent with G as

before. Let f 0 := f0 = 0 and f j := Vj f j−1 + dg j . Then also ( f j )
k
j=0 and ( f̃ j )kj=0

are G -conditionally independent. Therefore, by Jensen’s inequality and the fact that
EG f j = 0 (which follows by induction using EG dg j = 0),

EG ‖ f̃ �‖p = EG ‖( f̃ j )kj=0‖p
�∞
k (X)

≤ EG ‖( f̃ j )kj=0 − ( f j )
k
j=0‖p

�∞
k (X)

= EG |F�|p,

where F j = f̃ j − f j and G j = g̃ j − g j . Then F0 = 0 and F j = Vj F j−1 + dG j .
As before, (G j )

n
j=1 is conditionally symmetric and therefore, by the symmetric case

of Theorem 3.1,

‖ f̃ �‖p ≤ ‖F�‖p ≤ 5p‖dG�‖p + 10D
√
p‖s(G)‖p

≤ 15p‖dg�‖p + 20D
√
p‖s(g)‖p,

where the last step is the same as (3.4).
The desired inequality is obtained by combining all estimates. ��

Remark 3.5 choices of the parameters β, δ1 and δ2 lead to related inequalities, with
a different behaviour of the constants in p. In particular, as in [81, Theorem 4.1] one
can prove that there exists a constant C such that for all p ∈ [2,∞)

‖ f �‖p ≤ Cp

log p
(‖dg�‖p + D‖s(g)‖p),

and the latter growth is known to be optimal in the scalar case (see [47]).

The next result extrapolates Theorem 3.1 to exponents 0 < p < 2. By using a
variation of the method in [11, pp. 38-39], an estimate is obtained without the term
‖dg∗‖p.

Corollary 3.6 Let X be a (2, D)-smooth Banach space. Suppose that ( f j )kj=0 is an

adapted sequence of X-valued random variables, (g j )
k
j=0 is an X-valued martingale,

(Vj )
k
j=1 is a sequence of random contractions on X which is strongly predictable

123



Stoch PDE: Anal Comp (2022) 10:516–581 541

(i.e., each Vj x is stronglyF j−1 measurable for all x ∈ X), and assume that we have
f0 = g0 = 0 and

f j = Vj f j−1 + dg j , j = 1, . . . , k.

Then for all 0 < p < 2 we have

‖ f �‖p ≤ (300D)2/p‖s(g)‖p.

If, moreover, (g j )
k
j=0 has conditionally symmetric increments, then

‖ f �‖p ≤ (100D)2/p‖s(g)‖p.

Proof By Doob’s maximal inequality and the fact that X has martingale type 2 with
constant D (by Remark 2.5)

‖dg�‖2 ≤ 2‖g�‖2 ≤ 4‖g‖2 ≤ 4D‖s(g)‖2.

Therefore, Theorem 3.1 implies

‖ f �‖2 ≤ (4A + B)D‖s(g)‖2, (3.5)

where (A, B) = (10, 10
√
2) if g has conditionally symmetric increments and

(A, B) = (60, 40
√
2) in the general case.

For non-negative randomvariables Z and exponents 0 < q < 1we have the identity

E|Z |q = q(1 − q)

∫ ∞

0
E(Z ∧ λ)λq−2 dλ. (3.6)

Setting K = (4A + B)D + 1, we claim that

E(| f �|2 ∧ λ) ≤ K 2
E(s(g)2 ∧ λ), λ > 0.

Once this has been verified, upon taking q = p/2, Z = | f �|2, and then Z = s(g) in
(3.6), we obtain

E| f �|p = q(1 − q)

∫ ∞

0
E(| f �|2 ∧ λ)λq−2 dλ

≤ K 2q(1 − q)

∫ ∞

0
E(|s(g)|2 ∧ λ)λq−2 dλ = K 2

E|s(g)|p

and the result follows.
To prove the claim, set τ := inf{0 ≤ n ≤ k − 1 : ∑n+1

j=1 E j−1‖dg j‖2 ≥ λ}, with
the convention that τ := k if the set is empty. Let the adapted sequence of random
variables (Fj )

k
j=0 be defined by F0 := 0 and
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Fj := Wj Fj−1 + dG j , j = 1, . . . , k,

where Wj := Vj if 0 ≤ j ≤ τ , Wj := I if j > τ , and dG j := 1{0≤ j≤τ }dg j . One
checks that f j∧τ = Fj for all j = 0, . . . , k. Applying (3.5) to F gives

E sup
0≤ j≤k

‖ f j∧τ‖2 = E|F�|2 ≤ (4A + B)2D2
Es(G)2

= (4A + B)2D2
E

∑

0≤ j≤k

1{0≤ j≤τ }E j−1‖dg j‖2

≤ (4A + B)2D2
E(s(g)2 ∧ λ).

Since | f �|2 ∧ λ ≤ sup0≤ j≤k ‖ f j∧τ‖2 + λ1{τ<k}, we obtain

E(| f �|2 ∧ λ) ≤ E sup
0≤ j≤k

‖ f j∧τ‖2 + E(1{τ<k}λ) ≤ K 2
E(s(g)2 ∧ λ),

which gives the claim. ��

4 Maximal inequalities for stochastic convolutions

A family (S(t, s))0≤s≤t≤T of bounded operators on a Banach space X is called a
C0-evolution family if:

(1) S(t, t) = I for all t ∈ [0, T ];
(2) S(t, r) = S(t, s)S(s, r) for all 0 ≤ r ≤ s ≤ t ≤ T ;
(3) The mapping (t, s) → S(t, s) is strongly continuous on the set {0 ≤ s ≤ t ≤ T }.
C0-Evolution family typically arise as the solution operators for the linear time-

dependent problem u′(t) = A(t)u(t) in much the same way as C0-semigroups solve
the time-independent problem u′(t) = Au(t). The reader is referred to [29,78,91] for
systematic treatments. If (S(t))t≥0 is a C0-semigroup on X , then S(t, s) := S(t − s)
defines a C0-evolution family (S(t, s))0≤s≤t≤T for every 0 < T < ∞.

4.1 Themain result

The following theorem is the main result of this paper.

Theorem 4.1 Let (S(t, s))0≤s≤t≤T be a C0-evolution family of contractions on a
(2, D)-smooth Banach space X and let W be an adapted H-cylindrical Brown-
ian motion on �. Then for every g ∈ L0

P (�; L2(0, T ; γ (H , X))) the process

(
∫ t
0 S(t, s)gs dWs)t∈[0,T ] has a continuous modification which satisfies, for all 0 <

p < ∞,

E sup
t∈[0,T ]

∥
∥
∥

∫ t

0
S(t, s)gs dWs

∥
∥
∥
p ≤ C p

p,D‖g‖p
L p(�;L2(0,T ;γ (H ,X)))

,
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with a constant Cp,D depending only on p and D. For 2 ≤ p < ∞ the inequality
holds with Cp,D = 10D

√
p.

The stochastic integral is well defined by (2.10). By rescaling, more generally it
may be assumed that there exists a λ ≥ 0 such that that

‖S(t, s)‖ ≤ eλ(t−s), 0 ≤ s ≤ t ≤ T .

The estimate of the theorem then holds with constant Cp,D replaced with eλTCp,D .

Proof The proof is split into four steps. In the first two steps we prove the theorem for
2 ≤ p < ∞, in the third step we consider the case 0 < p < 2, and in the fifth the
pathwise continuity assertion for p = 0.

Step 1. Fix a partitionπ := {r0, . . . , rN }, where 0 = r0 < r1 < . . . < rN = T , and
let (K (t, s))0≤s≤t≤T be a family of contractions on X with the following properties:

(i) K (t, ·) is constant on [r j−1, r j ) for all t ∈ [0, T ] and j = 1, . . . , N ;
(ii) K (·, s) is strongly continuous for all s ∈ [0, T ];
(iii) S(t, r)K (r , s) = K (t, s) for all 0 ≤ s ≤ r ≤ t ≤ T .

Let g ∈ L p
P (�; L2(0, T ; γ (H , X))) and define the process (vt )t∈[0,T ] by

vt :=
∫ t

0
K (t, s)gs dWs, t ∈ [0, T ].

Properties (i) and (ii) imply that the process (vt )t∈[0,T ] is well defined and has a
modification with continuous paths. Indeed, for t ∈ [r j−1, r j ]

∫ t

0
K (t, s)gs dWs =

j−1∑

k=1

K (t, rk−1)

∫ rk

rk−1

gs dWs + K (t, r j−1)

∫ t

r j−1

gs dWs,

which can be seen to have a continuous modification. Working with such a modifica-
tion, we will first prove that for all 2 ≤ p < ∞ we have

∥
∥
∥ sup
t∈[0,T ]

‖vt‖
∥
∥
∥
p

≤ 10D
√
p‖g‖L p(�;L2(0,T ;γ (H ,X))). (4.1)

By a limiting argument it suffices to consider p > 2.
For the proof of (4.1), by density we may assume that g is as in (2.9), i.e.,

g =
k∑

j=1

1(s j−1,s j ]
�∑

i=1

hi ⊗ ξi j ,

where 0 = s0 < s1 < . . . < sk = T and hi and ξi j are as in (2.9). Refining π if
necessary, we may assume that s j ∈ π for all j = 0, . . . , k. We prove (4.1) in two
steps.
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Step 1a. Let π ′ = {t0, t1, . . . , tm} ⊆ [0, T ] be another partition. It suffices to prove
the bound

∥
∥
∥ sup
t∈π ′

‖vt‖
∥
∥
∥
p

≤ aπ ′ + 10D
√
p‖g‖L p(�;L2(0,T ;γ (H ,X))) (4.2)

with aπ ′ = o(mesh(π ′)) as mesh(π ′) → 0. Refining π ′ if necessary, we may assume
that π ⊆ π ′.

For fixed j = 1, . . . ,m we have, by property (iii),

f j := vt j = S(t j , t j−1)vt j−1 +
∫ t j

t j−1

K (t j , s)gs dWs

=: Vj f j−1 + dG j ,

wherewe set Vj := S(t j , t j−1) and dG j := ∫ t j
t j−1

K (t j , s)gs dWs .We further set f0 :=
0 and G0 := 0. By using the symmetry of normally distributed random variables as in
[48, Proposition 4.4.6] it is seen that the difference sequence (dG j )

m
j=1 is conditionally

symmetric. Therefore, by Theorem 3.1,

‖ f �‖p ≤ 5p‖dG�‖p + 10D
√
p‖s(G)‖p, (4.3)

where f = ( f j )mj=0 and G = (G j )
m
j=0.

Step 1b. For all q ∈ [2,∞) and all 1 ≤ j ≤ m, the independence of Wtj − Wtj−1

and Ft j−1 implies (see [105, 9.10])

E j−1‖dG j‖q = E j−1

∥
∥
∥

�∑

i=1

(Wtj − Wtj−1)hi K (t j , t j−1)gt j−1hi
∥
∥
∥
q

≤ E j−1

∥
∥
∥

�∑

i=1

(Wtj − Wtj−1)hi gt j−1hi
∥
∥
∥
q

= Ẽ

∥
∥
∥

�∑

i=1

(t j − t j−1)
1/2γ̃i j gt j−1hi

∥
∥
∥
q

= (t j − t j−1)
q/2‖gt j−1‖qγq (H ,X),

where (γ̃i j )i≥1, j≥1 is a doubly indexed Gaussian sequence on an independent prob-
ability space (�̃, F̃ , P̃) and γq(H , X) denotes the space γ (H , X) endowed with the
equivalent Lq -norm as discussed in Sect. 2.2. We used that K (t j , s) = K (t j , t j−1)

and gs = gt j−1 for s ∈ [t j−1, t j ). Consequently,

m∑

j=1

E j−1‖dG j‖q =
m∑

j=1

(t j − t j−1)
q/2‖gt j−1‖qγq (H ,X)

≤ (mesh(π))
q
2 −1‖g‖q

L2(0,T ;γq (H ,X))
.

(4.4)
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Applying (4.4) with q = p and taking expectations, we obtain

‖dG�‖p
p ≤

∥
∥
∥
( m∑

j=1

‖dG j‖p
)1/p∥∥

∥
p

p

= E

m∑

j=1

‖dG j‖p ≤ (mesh(π))
p
2 −1

E‖g‖p
L p(0,T ;γp(H ,X))

.

Applying (4.4) with q = 2, we obtain

‖s(G)‖p ≤ ‖g‖L p(�;L2(0,T ;γ (H ,X))).

Substituting these bounds into (4.3), we obtain

∥
∥
∥ sup
t∈π ′

‖vt‖
∥
∥
∥
p

= ‖ f �‖p ≤ 5p‖dG�‖p + 10D
√
p‖s(G)‖p

≤ 5p (mesh(π ′))
1
2− 1

p ‖g‖L p(�;L p(0,T ;γp(H ,X)))

+ 10D
√
p‖g‖L p(�;L2(0,T ;γ (H ,X))).

Since p > 2, this proves (4.2) for finite rank adapted step processes g.
Step 2 Fix g ∈ L p

P (�; L2(0, T ; γ (H , X))) and n ∈ N. Set σn(s) := j2−nT for
s ∈ [ j2−nT , ( j + 1)2−nT ) and define Sn(t, s) := S(t, σn(s)) and

v
(n)
t :=

∫ t

0
Sn(t, s)gs dWs .

The assumptions (i)–(iii) in Steps 1 and 2 apply to K (t, s) = Sn(t, s), N = 2n , and
r j = j2−nT . By what has been shown in these steps, the process v(n) has a continuous
modification. Moreover, noting that for n ≥ m we have

v
(n)
t − v

(m)
t =

∫ t

0
Sn(t, s)(I − S(σn(s), σm(s)))gs dWs,

from Step 1 we obtain

∥
∥
∥ sup
t∈[0,T ]

‖v(n) − v(m)‖
∥
∥
∥
p

≤ 10D
√
p
∥
∥(I − S(σn(·), σm(·)))g∥∥L p(�;L2(0,T ;γ (H ,X)))

.

Since the right-hand side tends to zero by the dominated convergence theorem,
(v(n))n≥1 is a Cauchy sequence in L p(�;C([0, T ]; X)) and hence converges to some
ṽ in L p(�;C([0, T ]; X)). On the other hand, for all t ∈ [0, T ] we have

v
(n)
t →

∫ t

0
S(t, s)gs dWs =: ut
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with convergence in L2(�; X). Therefore, ṽ is the required continuous modification
of u. Applying Step 1 again we obtain

∥
∥
∥ sup
t∈[0,T ]

‖ut‖
∥
∥
∥
p

= lim
n→∞

∥
∥
∥ sup
t∈[0,T ]

‖v(n)
t ‖

∥
∥
∥
p

≤ 10D
√
p‖g‖L p(�;L2(0,T ;γ (H ,X))).

Step 3 In the case 0 < p < 2 one can argue in the same way as in the previous
steps, using Corollary 3.6 instead of Theorem 3.1. The estimate (4.3) simplifies as
the term ‖dG∗‖p does not appear anymore. Alternatively, one could use a standard
extrapolation argument involving Lenglart’s inequality [87, Proposition IV.4.7].

Step 4 The continuity assertion for p = 0 follows by a standard localisation
argument. ��

As a consequence of Theorem 4.1, a simple optimisation argument in the exponent
p gives the following exponential tail estimate (see [95, Corollary 4.4] for details).

Corollary 4.2 (Exponential tail estimate) If, in addition to the conditions of Theorem
4.1, we have g ∈ L∞(�; L2(0, T ; γ (H , X))), then

P

(

sup
t∈[0,T ]

∥
∥
∥

∫ t

0
S(t, s)gs dWs

∥
∥
∥ ≥ r

)

≤ 2 exp

(

− r2

2σ 2

)

, r > 0,

where σ 2 = 100eD2‖g‖2
L∞(�;L2(0,T ;γ (H ,X)))

.

This method to derive exponential tail estimates only uses that the constant Cp,X

in the maximal estimate has order O(
√
p) for p → ∞. By the same method, similar

exponential tail estimates can therefore be deduced from all other results in this paper
where the constant is of asymptotic order O(

√
p) .

Remark 4.3 Under additional assumptions on the evolution family (which are satisfied
in the case of C0-semigroups of contractions), a variant of Itô’s formula can be used
to give an alternative proof of the estimate of Corollary 4.2 with sharper variance
σ 2 = 2D2‖g‖2

L∞(�;L2(0,T ;γ (H ,X)))
(see [95, Theorem 5.6]).

4.2 The non-contractive case

We briefly discuss two sets of sufficient conditions for the existence of continuous
versions and the validity ofmaximal estimates for general (i.e., not necessarily contrac-
tive) C0-evolution families (S(t, s))0≤s≤t≤T . The first of these replaces the condition
‘g ∈ L0

P (�; L2(0, T ; γ (H , X)))’ by ‘g ∈ L0
P (�; Lq(0, T ; γ (H , X))) for some

q > 2’. Under this stronger assumption, a maximal inequality for general C0 semi-
groups on Hilbert spaces was obtained by Da Prato, Kwapień, and Zabczyk [20] by the
so-called factorization method. It was extended toC0-evolution families on Hilbert by
Seidler [89]. His proof extends mutatis mutandis to give the following result, which
is taken from [95] where a further discussion is to be found.
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Proposition 4.4 (Additional time regularity) Let (S(t, s))0≤s≤t≤T be a C0-evolution
family on a (2, D)-smooth Banach space X and let 2 < q < ∞. For all g ∈
L0
P (�; Lq(0, T ; γ (H , X))) the process (

∫ t
0 S(t, s)gs dWs)t∈[0,T ] has a continuous

modification which satisfies, for all 0 < p ≤ q,

E sup
t∈[0,T ]

∥
∥
∥

∫ t

0
S(t, s)gs dWs

∥
∥
∥
p ≤ C p

p,q,D,TC
p
S,T ‖g‖p

L p(�;Lq (0,T ;γ (H ,X)))
,

where CS,T := sup0≤s≤t≤T ‖S(t, s)‖.
In the second result we assume that g has additional space regularity. Although

this may not seem surprising, we have not been able to find a reference for this in the
literature, and for this reason we provide a detailed proof. The result will play a role
in Theorem 5.13, where convergence rates for time discretisation schemes are studied
under space regularity assumptions on g.

When A is generator of a C0-semigroup on the Banach space X , for ν ∈ (0, 1) we
denote by Xν,∞ =: (X ,D(A))ν,∞ the real interpolation space between X (see [65]
for more details).

Proposition 4.5 (Additional space regularity) Let A be the generator of a C0-
semigroup S = (S(t))t≥0 on a (2, D)-smooth Banach space X and let 0 < ν < 1. For
all g ∈ L0

P (�; L2(0, T ; γ (H , Xν,∞))) the process (
∫ t
0 S(t − s)gs dWs)t∈[0,T ], as an

X-valued process, has a continuous modification which satisfies, for all 0 < p < ∞,

E sup
t∈[0,T ]

∥
∥
∥

∫ t

0
S(t − s)gs dWs

∥
∥
∥
p ≤ C p

p,D,T ,νC
p
S,T ‖g‖p

L p(�;L2(0,T ;γ (H ,Xν,∞)))
,

where CS,T = sup0≤t≤T ‖S(t)‖.
Proof By localisation and Lenglart’s inequality, it suffices to prove the continuity and
maximal estimate for p > 1

2ν .
We have

∫ t

0
S(t − r)gr dWr =

∫ t

0
(S(t − r) − I )gr dWr +

∫ t

0
gr dWr =: ut + vt .

By Proposition 2.6, v has a continuous version satisfying the required maximal
estimate, so it remains to prove the same for u. For this we will use the Kolmogorov–
Chentsov continuity criterion [87, Theorem I.2.1].

For 0 ≤ s ≤ t ≤ T we have

‖S(t) − S(s)‖L (X ,X) ≤ 2CS,T , ‖S(t) − S(s)‖L (D(A),X) ≤ CS,T |t − s|.

Therefore, by interpolation,

‖S(t) − S(s)‖L (Xν,∞,X) ≤ ‖S(t) − S(s)‖L (Xν,∞,X)

≤ 2CS,T |t − s|ν . (4.5)
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Next, for 0 ≤ s ≤ t ≤ T we have

ut − us =
∫ s

0
(S(t − r) − S(s − r))gr dWr +

∫ t

s
(S(t − r) − I )gr dWr .

Taking L p(�; X)-norms, from Proposition 2.6 we obtain

E

∥
∥
∥

∫ s

0
(S(t − r) − S(s − r))gr dWr

∥
∥
∥
p

≤ C p
p,DE‖(S(t − ·) − S(s − ·))g‖p

L2(0,s;γ (H ,X))

≤ (K |t − s|ν)pE‖g‖p
L2(0,T ;γ (H ,Xν,∞))

,

where K = 2CS,TCp,D . Similarly,

E

∥
∥
∥

∫ t

s
(S(t − r) − I )gr dWr

∥
∥
∥
p ≤ C p

p,DE‖(S(t − ·) − I )g‖p
L2(s,t;γ (H ,X))

≤ (K |t − s|ν)pE‖g‖p
L2(0,T ;γ (H ,Xν,∞))

.

It follows that

E‖ut − us‖p ≤ K p|t − s|ν pE‖g‖p
L2(0,T ;γ (H ,Xν,∞))

.

Now we will use the assumption p > 1
2ν , which allows us to apply the Kolmogorov–

Chentsov continuity criterion. It implies that for 0 < δ < 2ν − 1
p the process u has a

(δ-Hölder) continuous version which satisfies

E‖u‖p
Cδ([0,T ];X)

≤ K pC p
p,T ,δ,νE‖g‖p

L2(0,T ;γ (H ,Xν,∞))
.

Together with the bound supt∈[0,T ] ‖u(t)‖ ≤ T δ‖u‖Cδ([0,T ];X) and the estimate for v,
this implies the maximal inequality in the statement of of the proposition. ��
Remark 4.6 The same result holds if we replace Xν,∞ by any Banach space which
continuously embeds into Xν,∞. In particular this implies to complex interpolation
spaces and fractional domain spaces.

4.3 Martingales as integrators: Hilbert spaces

In the remainder of this section we consider stochastic convolutions driven by an
L2-martingale (Mt )t∈[0,T ] with values in a separable Hilbert space H . For details on
stochastic integration in this setting we refer to [68,69] and the summary in [44]. We
will use a couple of notions from the theory of stochastic processes that have not been
introduced in Sect. 2 but are otherwise completely standard; see for instance [55,87].

In the present subsection we also let X be a Hilbert space; the case where X is a
2-smooth Banach space is discussed in the next subsection. By a standard argument
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involving the essential separability of the ranges of strongly measurable functions,
there is no loss of generality in assuming X to be separable. This is relevant as we cite
some results from the literature which are stated for separable spaces.

For details on the concepts we introduce below we refer to [68, Chapter 4], where
proofs of the various claims made below can be found. We denote by 〈Mt 〉t∈[0,T ]
the predictable quadratic variation of M , and by 〈〈Mt 〉〉t∈[0,T ] the predictable tensor
quadratic variation ofM taking values in the space of trace class operatorsL1(H). The
covariance process (QM,t )t∈[0,T ] is defined as the Radon–Nikodým derivative QM =
d〈〈M〉〉
d〈M〉 (note that L1(H) has the Radon–Nikodým property: this space is separable
and is canonically isometric to the dual of the space of compact operators on H ; see
[48, Theorems 1.3.21, D.2.6]). Then QM is positive and trace class with tr(QM ) = 1
almost everywhere on [0, T ] × �. For processes g : [0, T ] × � → L (H , X) which
are predictable in the strong operator topology, one has

E

∥
∥
∥

∫ T

0
gt dMt

∥
∥
∥
2 = E

∫ T

0
‖gt Q1/2

M,t‖2L2(H ,X) d〈M〉t , (4.6)

whenever the right-hand side of (4.6) is finite. Moreover, the predictable quadratic
variation is given by

〈 ∫ ·

0
gs dMs

〉

t
=

∫ t

0
‖gsQ1/2

M,s‖2L2(H ,X) d〈M〉s . (4.7)

In these identities, L2(H , X) denotes the space of Hilbert–Schmidt operators from
H to X .

The following theorem shows that the main result of [56] also holds with a strong
type estimate instead of a weak estimate. A similar result was obtained in [57] under
additional assumptions on the evolution family (S(t, s))0≤s≤t≤T . The result also covers
the Poisson case; this can be seen in the same way as in [44, Sect. 3].

Theorem 4.7 Let (S(t, s))0≤s≤t≤T be a C0-evolution family of contractions on a
Hilbert space X and let M be a continuous (respectively, càdlàg) local L2-martingale
with values in H. Let g : [0, T ] × � → L (H , X) be a process such that g(h) is
predictable for all h ∈ H and

∫ T

0
‖gt Q1/2

M,t‖2L2(H ,X) d〈M〉t < ∞ almost surely.

Then the process (
∫ t
0 S(t, s)gs dMs)t∈[0,T ] has a continuous (respectively, càdlàg)

modification. Moreover, if 0 < p ≤ 2, then

E sup
t∈[0,T ]

∥
∥
∥

∫ t

0
S(t, s)gs dMs

∥
∥
∥
p ≤ C p

pE

( ∫ T

0
‖gt Q1/2

M,t‖2L2(H ,X) d〈M〉t
)p/2

,

where Cp is a constant depending only on p. For p = 2 the inequality holds with
C = 300.
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This result can be extended to a larger class of processes g by a density argument,
but the description of the space is quite technical. The interested reader is referred to
[44,68].

Proof By Lenglart’s theorem and a localisation argument as in Theorem 4.1 it suffices
to consider p = 2. Moreover, by localisation we may assume that M is a continu-
ous (respectively, càdlàg) L2-martingale. By approximation it furthermore suffices to
consider adapted step processes g. We will focus on the continuous case, the càdlàg
case being similar. Only the required changes in the proof of Theorem 4.1 will be
indicated.

First of all, ‖g‖L2(0,T ;γ (H ,X)) must be replaced by
∫ T
0 ‖gt Q1/2

M,t‖2L2(H ,X)
d〈M〉t

throughout. With this adjustment, up to (4.3) the proof is verbatim the same. By
Theorem 3.1 with p = 2 we find that

‖ f �‖2 ≤ 60‖dG�‖2 + 40
√
2‖s(G)‖2.

Noting that ‖dG�‖2 ≤ 2‖G�‖2 ≤ 4‖G‖2 = 4‖s(G)‖2 by Doob’s maximal inequality
and combining the above with (4.6) and the bound ‖K (t j , s)‖ ≤ 1, we obtain

‖ f �‖22 ≤ C2‖s(G)‖22 = C2
m∑

j=1

E‖dG j‖2

= C2
m∑

j=1

E

∫ t j

t j−1

‖K (t j , s)g(s)Q
1/2
M ‖2L2(H ,X) d〈M〉s

≤ C2
E

∫ T

0
‖g(s)Q1/2

M ‖2L2(H ,X) d〈M〉s,

where C = 240 + 40
√
2 < 300. ��

Remark 4.8 Let us explain how to extend Theorem 4.7 to arbitrary 2 ≤ p < ∞ in the
case of continuous local martingales. In particular this extends [44, (1.13)] to the case
of evolution families.

If M is a continuous local martingale with values in H , then Theorem 4.7 extends
to exponents 2 ≤ p < ∞withCp = 40

√
p. As an immediate consequence, Corollary

4.2 holds with W replaced by M and with

σ 2 = 1600e‖gQ1/2
M ‖2L∞(�;L2(0,T ;L2(H ,X)))

The proof is similar to those of Theorems 4.1 and 4.7, but some modifications are
required which we sketch below.

By a stopping time argument we may assume that ‖M‖ and 〈M〉 are uniformly
bounded on [0, T ]×�. By approximation it can be assumed that g is an adapted finite
rank step process. Then up to (4.3) the proof is the same. Theorem 3.1 gives that

‖ f �‖p ≤ 30p‖dG�‖p + 40
√
p‖s(G)‖p.
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Moreover the following extension of (4.6) holds:

E sup
t∈[0,T ]

∥
∥
∥

∫ t

0
gt dMt

∥
∥
∥
p

�p E

( ∫ T

0
‖gt Q1/2

M,t‖2L2(H ,X) d〈M〉t
)p/2

.

Since g is uniformly bounded it follows that

‖dG�‖p
p ≤

m∑

j=1

E‖dG j‖p

≤ C p
g

m∑

j=1

E|〈M〉t j − 〈M〉t j−1 |p/2 ≤ C p
g E(sup

j
|〈M〉t j − 〈M〉t j−1 |

p−2
2 )|〈MT 〉|.

By dominated convergence the right-hand side tends to zero as the mesh size tends to
0. The result follows once we have shown that

s(G)2 →
∫ T

0

∫ T

0
‖gt Q1/2

M,t‖2L2(H ,X) d〈M〉t

with convergence in L p/2(�). If we replace s(G)2 by s̃(G)2 := ∑m
j=1 ‖dG j‖2 this

follows from (4.7) (as explained in [12, Sect. 4], the scalar case considered in [27]
extends to the Hilbert space). The proof will be completed by showing that

E|̃s(G)2 − s(G)2|q → 0

for any q ∈ [1,∞). Without loss of generality we may take q ≥ 2 and since g is
an adapted finite rank step process. To prove the convergence in Lq(�) we note that
by the scalar case of Theorem 3.1, applied with Vj = I and martingale differences
dL j = ‖dG j‖2 − E j−1(‖dG j‖2), for all 2 ≤ q < ∞ we have

‖̃s(G)2 − s(G)2‖q ≤ 30q‖dL�‖q + 40
√
q‖s(L)‖q

≤ 60q‖dG�‖22q + 80
√
q
∥
∥
∥
( m∑

j=1

E j−1‖dG j‖4
)1/2∥∥

∥
q
.

We have already seen that the first term tends to 0 as the mesh size tends to zero. For
the second term we use [48, Proposition 3.2.8] and Hölder’s inequality to find that

∥
∥
∥
( m∑

j=1

E j−1‖dG j‖4
)1/2∥∥

∥
q

≤ q2

4

∥
∥
∥
( m∑

j=1

‖dG j‖4
)1/2∥∥

∥
q
≤ q2

4
‖dG�‖2q‖s(G)‖2q→0

as mesh(π) → 0.
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4.4 Martingales as integrators: 2-smooth UMD Banach spaces

As before we let H be a separable Hilbert space and turn to the case where X is a
(2, D)-smooth Banach space with the UMDproperty. Discussions of UMD spaces can
be found in [48,83]. Rather than introducing this property here,we content ourselves by
mentioning that examples of Banach spaces with this property include Hilbert spaces,
L p-spaces with 1 < p < ∞ and most classical function spaces constructed from
these. We will prove an extension of the maximal estimate of the preceding subsection
to this setting by using some results from [107]. To avoid technicalities with non-
predictable quadratic variations we only consider continuous local martingales with
values in H . In that case the quadratic variation considered in [107] coincides with
the one of Sect. 4.3 (see [68, Theorem 20.5]).

Let g : [0, T ] × � → L (H , X) be a process such that g(h) is predictable for all
h ∈ H and

‖gt Q1/2
M,t‖2γ (L2(0,T ;H),d〈M〉t ;X)

< ∞ almost surely.

By [102, Theorem 4.1] (see also [107, Corollary 7.4 and Remark 7.6]) these assump-
tions enable one to construct a stochastic integral

∫ t
0 gs dMs which, for all 0 < p < ∞,

satisfies the two-sided estimate

E sup
t∈[0,T ]

∥
∥
∥

∫ t

0
gs dMs

∥
∥
∥
p

�p,X E

(
‖gt Q1/2

M,t‖2γ (L2(0,T ;H),d〈M〉t ;X)

)p/2
(4.8)

whenever the expression on the right-hand side is finite. If in addition X has type 2
(which holds if X is 2-smooth), then by [93, Theorem 6.1]

‖gt Q1/2
M,t‖2γ (L2(0,T ;H),d〈M〉t ;X)

≤ τ 22,X

∫ T

0
‖gt Q1/2

M,t‖2γ (H ,X) d〈M〉t , (4.9)

where τ2,X is the type 2 constant of X . We will consider processes for which the
right-hand side is finite almost surely.

Theorem 4.9 Let X be a (2, D)-smoothUMDBanach space. Let (S(t, s))0≤s≤t≤T be a
C0-evolution family of contractions on X and let M be a continuous local martingale
with values in H. Let g : [0, T ] × � → L (H , X) be a process such that g(h) :
[0, T ] × � → X is predictable for all h ∈ H and

∫ T

0
‖gt Q1/2

M,t‖2γ (H ,X) d〈M〉t < ∞ almost surely.

Then the process (
∫ t
0 S(t, s)gs dMs)t∈[0,T ] has a continuous modification which sat-

isfies, for all 0 < p < ∞,

E sup
t∈[0,T ]

∥
∥
∥

∫ t

0
S(t, s)gs dMs

∥
∥
∥
p ≤ C p

p,XE

( ∫ T

0
‖gt Q1/2

M,t‖2γ (H ,X) d〈M〉t
)p/2

,
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where Cp,X is a constant depending only on p and X.

Proof We argue as in Theorem 4.7 and Remark 4.8. Since we may assume that g
takes values in a finite dimensional subspace of X , as in Remark 4.8 it follows that
‖dG�‖p → 0 as the mesh(π) → 0. It remains to estimate s(G). By a standard
argument (4.8) and (4.9) imply

E j−1‖dG j‖2 ≤ C2
XE j−1

( ∫ t j

t j−1

‖gt Q1/2
M,t‖2γ (H ,X) d〈M〉t

)
=: C2

XE j−1(ξ j ),

where CX is a constant only depending on X . Therefore, by [48, Proposition 3.2.8],

‖s(G)‖p
p ≤ C p

XE

( m∑

j=1

E j−1(ξ j )
)p/2

≤ (p/2)p/2C p
XE

( m∑

j=1

ξ j

)p/2

= (p/2)p/2C p
XE

( ∫ T

0
‖gt Q1/2

M,t‖2γ (H ,X) d〈M〉t
)p/2

.

The proof can now be completed as before.
Observe that this method gives the result with Cp,X = 40√

2
pCX for p ≥ 2, which

is linear in p as p → ∞; this contrasts with the O(
√
p) growth obtained in all other

places in the paper. ��
The infinite dimensional version of the Dambis–Dubins–Schwarz theorem of [102,

Theorem 4.9] suggests that the correct order of the constant in Theorem 4.9 is O(
√
p).

We expect that a large portion of Theorem 4.9 extends to the setting of (non neces-
sarily continuous) local martingales if one replaces the predictable quadratic variation
〈M〉 by the process [M] as defined in [68, Theorem 20.5]. However, usually it is
preferred to work with a predictable quadratic variation. An alternative substitute for
predictability has been recently developed in [25] in the Poisson case and in [26,108]
for general local martingales, but the norms are much more complicated to work with.
It would be interesting to see if one can combine our techniques with the estimates in
[25,26] for X = Lq with 2 ≤ q < ∞, or in [108] for more general Banach spaces X .

5 Applications to time discretisation

In this section we will apply our abstract results to prove stability of certain numerical
approximations of stochastic evolution equations with additive noise of the form

{
dut = A(t)ut dt + gt dWt , t ∈ [0, T ],
u0 = 0.

(5.1)
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This setting covers to both parabolic and hyperbolic time-dependent SPDEs; the latter
class includes the stochastic wave equation and the Schrödinger equation. To solve
(5.1) numerically one typically uses discretisation in time and space [54,64]. Here
we will only consider time discretisation, leaving space-time discretisation and the
extension to semi-linear equations with multiplicative noise for a future publication.
In that respect the results presented here serve as a proof-of-principle only. We mainly
focus on the splitting scheme and the implicit Euler scheme, although the method is
robust and can be applied to other schemes as well.

In what follows, for n = 1, 2, . . . we set t (n)
j := jT /n and consider the partition

π(n) := {t (n)
j : j = 0, . . . , n}

as a discretisionof the interval [0, T ].Wefixaprocess g ∈ L0
P (�; L2(0, T ; γ (H , X)))

and consider the continuous martingale

Mt :=
∫ t

0
gs dWs, t ∈ [0, T ].

For j = 0, . . . , n we set

d(n)
j M := M

t (n)
j

− M
t (n)
j−1

=
∫ t (n)

j

t (n)
j−1

gs dWs . (5.2)

In the presence of a C0-evolution family (S(t, s))0≤s≤t≤T we set

ut :=
∫ t

0
S(t, s)gs dWs, t ∈ [0, T ].

This covers the special case of C0-semigroups by letting S(t, s) = S(t − s).

5.1 The splittingmethod

Our first result gives stability of a time discretisation scheme for the stochastic con-
volution process involving a C0-evolution family of contractions called the splitting
method (also called the exponential Euler method). This scheme has already been
employed in the proof of Theorem 4.1. An extension to random evolution families is
discussed in Remark 6.8.

Theorem 5.1 (Uniform convergence of the splitting method) Let (S(t, s))0≤s≤t≤T be
a C0-evolution family of contractions on a (2, D)-smooth Banach space X. Let g ∈
L p
P (�; L2(0, T ; γ (H , X))) with 0 < p < ∞. Define, for n ≥ 1,

{
u(n)
0 := 0,

u(n)
j := S(t (n)

j , t (n)
j−1)(u

(n)
j−1 + d(n)

j M), j = 1, . . . , n,
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where d(n)
j M is given by (5.2). Then for all n ≥ 1 we have

E sup
j=0,...,n

‖u
t (n)
j

− u(n)
j ‖p ≤ C p

p,DE‖s �→ (S(s, σn(s)) − I )gs‖p
L2(0,T ;γ (H ,X))

,

(5.3)

where σn(s) = t (n)
j−1 for s ∈ [t (n)

j−1, t
(n)
j ). In particular,

lim
n→∞ E sup

j=0,...,n
‖u

t (n)
j

− u(n)
j ‖p = 0. (5.4)

For 2 ≤ p < ∞ the estimate (5.3) holds with Cp,D = 10D
√
p.

The process u has a continuous modification by Theorem 4.1. We will not need
this modification in the proof, because the suprema in (5.3) and (5.4) are taken with
respect to finite index sets. This remark applies to all results in this subsection and
the next (in Theorem 5.13 the existence of the continuous modification follows from
Proposition 4.5).

Proof To simplify notation we fix n ≥ 1 and write t j := t (n)
j , v j := u(n)

j , and

d j M := d(n)
j M . By induction one checks that v0 = 0 and

vk =
k∑

j=1

S(tk, t j−1)d j M, k = 1, . . . , n.

Therefore,

utk − vk =
k∑

j=1

∫ t j

t j−1

(S(tk, s) − S(tk, t j−1))gs dWs

=
k∑

j=1

∫ t j

t j−1

S(tk, s)(I − S(s, t j−1))gs dWs

=
k∑

j=1

∫ t j

t j−1

S(tk, s)(I − S(s, σn(s))gs dWs

=
∫ tk

0
S(tk, s)(I − S(s, σn(s))gs dWs

and hence, by Theorem 4.1,

E sup
j=0,...,n

‖ut j − v j‖p ≤ E sup
t∈[0,T ]

∥
∥
∥

∫ t

0
S(t, s)(I − S(s, σn(s))gs dWs

∥
∥
∥
p

≤ C p
p,DE‖s �→ (I − S(·, σn(·))gs‖p

L2(0,T ;γ (H ,X))
.
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The assertion En → 0 as n → ∞ follows by dominated convergence in combination
with the convergence criterion [49, Theorem 9.1.14]. ��

In the next corollary we obtain explicit convergence rates for processes g taking
values in intermediate spaces. In order to make the statement easy to formulate we
only consider the case of semigroup generators.

Corollary 5.2 (Uniform convergence of the splitting method with decay rate) Let
(S(t))t≥0 be a C0-contraction semigroup on a (2, D)-smooth Banach space X. As
in the preceding theorem, for n ≥ 1 let

{
u(n)
0 := 0,

u(n)
j := S(t (n)

j − t (n)
j−1)(u

(n)
j−1 + d(n)

j M), j = 1, . . . , n,

where d(n)
j M is given by (5.2). Let Xν := (X ,D(A))ν,∞ for ν ∈ (0, 1) and X1 :=

D(A), where A is the generator of the semigroup. If g ∈ L p
P (�; L2(0, T ; γ (H , Xν)))

with 0 < p < ∞, then for all n ≥ 1 we have

E sup
j=0,...,n

‖u
t (n)
j

− u(n)
j ‖p ≤

(
2Cp,D

(T

n

)ν
)p‖g‖p

L p(�;L2(0,T ;γ (H ,Xν )))
.

For 2 ≤ p < ∞ the inequality holds with Cp,D = 10D
√
p.

A version of the above result for C0-semigroups which are not necessarily contrac-
tive and a general class of discretisation schemes will proved in Theorem 5.13.

Proof Since ‖(I − S(t))x‖ ≤ 2‖x‖ and

‖(I − S(t))x‖ ≤
∫ t

0
‖S(s)Ax‖ ds ≤ t‖Ax‖,

for 0 < ν < 1 by interpolation we obtain

‖(I − S(t))x‖ ≤ 2tν‖x‖Xν .

For ν = 1 we have

‖(I − S(t))x‖ ≤ t‖x‖D(A) = t‖x‖X1 .

The result now follows from Theorem 5.1 and the ideal property (see [49, Theorem
9.1.10]). ��
Remark 5.3 (Pathwise convergence) If we assume pν > 1 in Corollary 5.2, then for
all β ∈ (0, ν − 1

p ) there exists a random variable ξ ∈ L p(�) such that, almost surely,

sup
j=0,...,n

‖u
t (n)
j

− u(n)
j ‖ ≤ n−βξ.
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Indeed, setting ξ := (
∑

n≥1 n
β p sup j=0,...,n ‖u

t (n)
j

− u(n)
j ‖p)1/p, by Corollary 5.2 we

have

E|ξ |p ≤
(

2Cp,D
(T

n

)ν
)p ∑

n≥1

nβ pn−ν p,

the sum on the right-hand side being convergent since (ν − β)p > 1.

5.2 General time discretisationmethods

We now investigate whether analogues of Theorem 5.1 hold for general time discreti-
sation methods. Before returning to convergence questions, we consider a stability
result for abstract numerical schemes featuring random operators Vj,n satisfying an
Ft j−1 -measurability condition. In particular, the operators are allowed to depend on
u and g up to time t j−1. This makes this result applicable to nonlinear problems.

Proposition 5.4 (Stability) Let X be a (2, D)-smooth Banach space and assume that
g ∈ L p

P (�; L2(0, T ; γ (H , X))) with 2 ≤ p < ∞. For n = 1, 2, . . . and j =
1, . . . , n assume that the random contraction Vj,n : � → L (X) is such that Vj,nx is
strongly F

t (n)
j−1

-measurable for all x ∈ X, and define

{
u(n)
0 := 0,

u(n)
j := Vj,n(u

(n)
j−1 + d(n)

j M), j = 1, . . . , n,

where d(n)
j M is given by (5.2). Then

E sup
j=0,...,n

‖u(n)
j ‖p ≤ K p

p,D‖g‖p
L p(�;L2(0,T ;γ (H ,X)))

,

where K p,D = 100Dp5/2

p−1 + 10√
2
D2 p.

Proof We fix n ≥ 1 and write t j := t (n)
j , d j M := d(n)

j M , and d j M̃ := Vj,nd
(n)
j M .

Theorem 3.1 and the contractivity of Vj,n , and Doob’s maximal inequality imply that

∥
∥
∥ sup

j=0,...,n
‖u(n)

j ‖
∥
∥
∥
p

≤ 5p‖d M̃�‖p + 10D
√
p‖s(M̃)‖p

≤ 5p‖dM�‖p + 10D
√
p‖s(M)‖p

≤ 10p‖M�‖p + 10D
√
p‖s(M)‖p

≤ 10p2

p − 1
‖MT ‖p + 10D

√
p‖s(M)‖p.

We will estimate the terms on the right-hand side separately. By Proposition 2.6,

‖MT ‖p ≤ 10D
√
p‖g‖L p(�;L2(0,T ;γ (H ,X))).
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To estimate s(M), by (2.10) we have

E j−1‖d j M‖2 ≤ D2
E j−1‖g‖2L2(t j−1,t j ;γ (H ,X))

=: D2
E j−1(ξ j ).

By the dual of Doob’s maximal inequality (see [48, Proposition 3.2.8]) and using
p/2 ≥ 1

‖s(M)‖p
p ≤ Dp

E

( n∑

j=1

E j−1(ξ j )
)p/2

≤ (p/2)p/2Dp
E

( n∑

j=1

ξ j

)p/2 = (p/2)p/2Dp
E‖g‖p

L2(0,T ;γ (H ,X))
.

The required estimate follows by combining the estimates. ��
Remark 5.5 For p = 2 the inequality holds with K2,D = 40D + 10

√
2D2. This is

because in the case p = 2 we can use (2.10) instead of Proposition 2.6.

Remark 5.6 In the setting of monotone operators on Hilbert spaces, a related stability
result for p = 2 for the implicit Euler method can be found in [38, Theorem 2.6].

Returning to the problem of convergence, the convergent numerical schemes which
we will consider are given in the following definition.

Definition 5.7 Let X be a Banach space. An L (X)-valued scheme is a function R :
[0,∞) → L (Y , X). If A generates a C0-semigroup S on X and Y us a Banach
space continuously and densely embedded in X , an L (X)-valued scheme R is said
to approximate S to order α > 0 on Y if for all T > 0 there exists a constant K ≥ 0
such that for all integers n ≥ 1 and t ∈ [0, T ] we have

‖R(t/n)n − S(t)‖L (Y ,X) ≤ K (t/n)α. (5.5)

A scheme R is said to be contractive if ‖R(t)‖ ≤ 1 for all n ≥ 1 and t ≥ 0.

If R approximates S to order α on Y and there exists a constant C ≥ 0 such that

‖R(t/n)n‖ ≤ C and ‖S(t)‖ ≤ C for all n ≥ 1, t ∈ [0, T ],

then by real interpolation it approximates S to order θα on the real interpolation spaces
(X ,Y )θ,∞ for θ ∈ (0, 1) with estimate

‖R(t/n)n − S(t)‖L ((X ,Y )θ,∞,X) ≤ (2C)1−θK θ (t/n)θα, t ≥ 0.

An interesting special case arises when Y = D(Am). If an L (X)-valued scheme
R approximates S to order α on D(Am), then R approximates S to order θα on
(X ,D(Am))θ,∞.
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Proposition 5.8 Let T > 0 and suppose that there exists a constant C ≥ 0 such that
for all t ∈ (0, T ] and integers n ≥ 1, ‖R(t/n)n‖ ≤ C and ‖S(t)‖ ≤ C. Suppose that
the L (X)-valued scheme R approximates S to order α on D(Am) for some integer
m ≥ 1, and let 0 < θ < 1. Then R approximates S to order θα on (X ,D(Am))θ,∞.

Since the continuous embedding D((−A)θm) ↪→ (X ,D(Am))θ,∞ holds, we obtain
the following: If ‖S(t)‖ ≤ Meμt for all t ≥ 0, with M ≥ 1 and μ ∈ R, then R
approximates S to order θα on the fractional domain D((μ − A)θm).

We will now review some examples of numerical schemes satisfying the condi-
tions of the above definition. Classical references include [6,45] and, for analytic
semigroups, [19]. A new and unified approach to approximation of semigroups which
sharpens several classical estimates has been recently developed in [34,35].

Part (1) of the next theorem follows from [6, Theorem 4]; see also [45]. More
elaborate versions on interpolation spaces can be found in [58]. Part (2) follows from
[61, Theorem 4.2] by interpolating the stability result [19, Theorem 5] using Propo-
sition 5.8 (see [42, Theorem 9.2.3] for a direct approach, which also does not rely on
0 ∈ �(A)).

Theorem 5.9 (Time discretisation) Let r : C → C be a rational function such that
|r(z)| ≤ 1 for all �z ≤ 0, and assume that there exists an integer � ≥ 1 such that

|r(z) − ez | = O(z�+1) as z → 0.

Let A be the generator of a bounded C0-semigroup on (S(t))t≥0 a Banach space X
and set

R(t) := r(t A), t ≥ 0.

(1) R approximates S to order η(�, k) on D(Ak) for all integers k ∈ {1, . . . , � + 1} \
{ �+1

2 }, where

η(�, k) =
{
k − 1

2 , if k < �+1
2 ;

k�
�+1 , if �+1

2 < k ≤ � + 1.

If the semigroup is analytic and bounded on a sector, then:

(2) R approximates S to order ν on D((−A)ν) for all ν ∈ (0, �].
Example 5.10 (Time discretisation for C0-semigroups) Let A be the generator of a
bounded C0-semigroup (S(t))t≥0 on a Banach space X . For each of the functions r
below we set

R(t) := r(t A), t ≥ 0.

Then R approximates S in each of the following cases:

(1) Splitting: r(z) = ez , to any order on X .
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(2) Implicit Euler: r(z) = (1− z)−1, to order α on D((−A)2α) for all α ∈ (0, 1] (see
[35, Theorem 1.3] or [58, Corollary 4.4]).

(3) Crank–Nicholson: r(z) = (2 + z)(2 − z)−1, to order ν on D((−A)k) for points
(k, ν) on the graph of the piecewise linear function connecting the points ( 12 , 0),
(1, 1

2 ), (2,
4
3 ), and (3, 2) (see [58, Theorem 1.1 and 4.1]). If moreover R is stable

(see Proposition 5.12 for sufficient conditions), then the order is ν onD((−A)3ν/2)

for any ν ∈ (0, 2] (see [58, Corollary 4.4]).

Example 5.11 (Time discretisation for analyticC0-semigroups) Let A be the generator
of a bounded analyticC0-semigroup (S(t))t≥0 on X . For each of the functions r below
we set

R(t) := r(t A), t ≥ 0.

Then R approximates S in each of the following cases:

(1) splitting: r(z) = ez , to any order on X .
(2) implicit Euler: r(z) = (1 − z)−1, to order ν on D((−A)ν) for any ν ∈ (0, 1].
(3) Crank–Nicholson: r(z) = (1 + 1

2 z)(1 − 1
2 z)

−1, to order 2ν on D(A2ν) for any
ν ∈ (0, 1].

If A generates a contractive C0-semigroup (S(t))t≥0 the splitting method and
implicit Euler methods lead to contractive approximants Sn(t). In the following propo-
sition we discuss another class of examples where this holds. It applies to all numerical
schemes of the form R(t) = r(t A) considered inTheorem5.9 and includes all schemes
considered in [6,45]. We use the notation

�σ = {z ∈ C \ {0} : | arg(z)| < σ },

where the argument is taken from (−π, π ].
Proposition 5.12 Let A be the generator of a C0-semigroup of contractions on a
Hilbert space. Suppose that r : �σ → C is holomorphic for some 1

2π < σ < π and
satisfies |r(z)| ≤ 1 for all �z ≥ 0. Then ‖r(−t A)‖ ≤ 1 for all t > 0, where r(−t A)

is defined through the H∞-calculus of −A.

The proof is immediate from [49, Theorem10.2.24]. The proposition is false beyond
theHilbert space setting. Indeed, for the operator A = d/dx on X = L p(R)with p �= 2
or X = C0(R), in [5] it was shown that contractivity of R(t) fails for a general class
of schemes (see also [19] for the Crank–Nicholson scheme).

In what follows we restrict ourselves to the semigroup setting, but expect the results
to extend to evolution families under suitable additional conditions. In the next theorem
we obtain convergence rates for a rather general class of discretisation schemes, which
in case of the splitting method turn out to be equal to the ones of Corollary 5.2 up to a
logarithmic term. Modulo this term, the theorem extends Corollary 5.2 in two ways:

• Contractivity of S is not needed;
• The result holds for arbitrary approximation schemes.
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The proof directly uses Seidler’s version of the Burkholder inequality of Proposi-
tion 2.6 in combination Proposition 2.7 and works for C0-semigroup and numerical
schemes that are not necessarily contractive. The results of Sects. 3 and 4 are not used.
One should carefully note, however, that inhomogeneities g taking values in γ (H , Xν)

are considered, where Xν is a suitable intermediate space between X and D(Am). The
case of inhomogeneities g taking values in γ (H , X) will be considered in Theorem
5.14 and does require contractivity.

Theorem 5.13 (Convergence rates without contractivity) Let A be the generator of a
C0-semigroup S = (S(t))t≥0 on a (2, D)-smooth Banach space X and let R be an
L (X)-valued scheme approximating S to order α on a Banach space Y continuously
embedded in Xα for some α ∈ (0, 1], where Xα := (X ,D(A))α,∞ if α ∈ (0, 1)
and X1 := D(A). Let g ∈ L p

P (�; L2(0, T ; γ (H ,Y ))) with 0 < p < ∞, and let

ut := ∫ t
0 S(t − s)gs dWs for t ∈ [0, T ]. Define, for n ≥ 1,

{
u(n)
0 := 0,

u(n)
j := R(T /n)(u(n)

j−1 + d(n)
j M), j = 1, . . . , n,

(5.6)

where d(n)
j M is given by (5.2). Then for all n ≥ 3,

E sup
j=0,...,n

‖u
t (n)
j

− u(n)
j ‖p ≤

(
LCp,D

√
log(n + 1)

nα

)p‖g‖p
L p(�;L2(0,T ;γ (H ,Y )))

, (5.7)

where L := (2Kα,YCS,T + K )T α , with Kα,Y the norm of the embedding Y ↪→ Xα ,
CS,T := supt∈[0,T ] ‖S(t)‖, and K the constant in (5.5).

If 2 ≤ p < ∞, the estimate holds with Cp,D = 10D
√
2ep.

Examples of numerical schemes satisfying the conditions of the theorem can be
obtained fromExamples 5.10 and 5.11. Note that the embedding conditionY ↪→ Xα is
satisfied for the real interpolation spaces (X ,D(A))α,r with 1 ≤ r ≤ ∞, the complex
interpolation spaces [X ,D(A)]α and the fractional domain spaces D((μ − A)α) for
suitable μ ∈ �(A) for all α ∈ (0, 1).

As in Remark 5.3, (5.7) implies almost sure pathwise convergence of order n−β ,
provided that α p > 1 and β ∈ (0, α − 1

p ).

Proof Let Sn : [0, T ] → L (X) be given by

Sn(t) := R(T /n) j , t ∈ [t (n)
j−1, t

(n)
j ), j = 1, . . . , n.

With this notation,

u(n)
k =

k∑

j=1

R(T /n)k− j+1d(n)
j M
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=
k∑

j=1

∫ t (n)
j

t (n)
j−1

Sn(t
(n)
k − s)gs dWs =

∫ t (n)
k

0
Sn(t

(n)
k − s)gs dWs .

Therefore,

u(t (n)
k ) − u(n)

k =
∫ T

0
1[0,t (n)

k ](s)(S(t (n)
k − s) − Sn(t

(n)
k − s))gs dWs .

By the bound (2.11) in Proposition 2.7, for n ≥ 3 we have

(
E sup

j=0,...,n
‖u(t (n)

k ) − u(n)
k ‖p

)1/p

≤ Cp,D
√
log(n + 1)‖(s, k) �→ 1[0,t (n)

k ](s)(S(t (n)
k − s)

− Sn(t
(n)
k − s))gs‖L p(�;L2(0,T ;γ (H ,�∞

n (X))))

≤ Cp,D
√
log(n + 1) sup

s∈[0,T ]
‖S(s) − Sn(s)‖L (Y ,X)‖g‖L p(�;L2(0,T ;γ (H ,Y ))),

where we may take Cp,D = 10D
√
2ep if 2 ≤ p < ∞.

By (4.5), for 0 ≤ s ≤ t ≤ T we have

‖S(t) − S(s)‖L (Y ,X) ≤ Kα,Y ‖S(t) − S(s)‖L (Xα,X) ≤ 2Kα,YCS,T |t − s|α.

Hence from the assumption on the numerical scheme we conclude that for all s ∈
[t (n)
j−1, t

(n)
j ),

‖S(s) − Sn(s)‖L (Y ,X) = ‖S(s) − S(t (n)
j ) + S(t (n)

j ) − R(T /n) j‖L (Y ,X)

≤ ‖S(s) − S(t (n)
j )‖L (Y ,X) + ‖S(t (n)

j ) − R(T /n) j‖L (Y ,X)

≤ 2Kα,YCS,T (T /n)α + K (t (n)
j / j)α

≤ (2Kα,YCS,T + K )T αn−α.

��

ForC0-semigroups of contractions and contractive discretisation schemes, the next
theorem provides uniform convergence in time for inhomogeneities g taking values
in γ (H , X).

Theorem 5.14 (Convergence for contractive schemes) Let A be the generator of a C0-
contraction semigroup S = (S(t))t≥0 ona (2, D)-smoothBanach space X. Let R be an
L (X)-valued contractive scheme approximating S to some order α ∈ (0, 1] on D(A).
Let g ∈ L p

P (�; L2(0, T ; γ (H , X))) with 2 ≤ p < ∞ and let ut := ∫ t
0 S(t, s)gs dWs
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for t ∈ [0, T ]. Defining (u(n)
j )nj=0 as in the preceding theorem, we have

lim
n→∞ E sup

j=0,...,n
‖u

t (n)
j

− u(n)
j ‖p = 0.

Proof Let �∞
n+1(X) := ⊕n

j=0 X with norm ‖(x0, . . . , xn)‖ := max j=0,...,n ‖x j‖ and

Z (n)
p := L p(�; �∞

n+1(X)). Let J , J (n) : L p
P (�; L2(0, T ; γ (H , X))) → Z (n)

p be the
linear operators given by

(Jg) j = u(n)
t j , and (J (n)g) j := u(n)

j , j = 0, . . . , n.

ByTheorem 4.1 and Proposition 5.4, the operators J and J (n) are (uniformly) bounded
with ‖J‖ ≤ Cp,D and ‖Jn‖ ≤ Kp,D respectively, the latter constant being defined as
in Proposition 2.7.

To prove convergence in Z (n)
p , fix ε > 0 and let f ∈ L p(�; L2(0, T ; γ (H ,D(A))))

be such that ‖g − f ‖L p(�;L2(0,T ;γ (H ,X))) < ε. By the boundedness and linearity of J
and J (n),

‖J (g) − J (n)(g)‖
Z (n)
p

≤ ‖J (g) − J ( f )‖
Z (n)
p

+ ‖J ( f ) − J (n)( f )‖
Z (n)
p

+ ‖J (n)( f ) − J (n)(g)‖
Z (n)
p

≤ (Cp,D + Kp,D)ε + ‖J ( f ) − J (n)( f )‖
Z (n)
p

,

and the last term tends to zero as n → ∞ by Theorem 5.13. Since ε > 0 was arbitrary
the result follows. ��

5.3 Applications to SPDE

Wewill now apply the results to some simple examples of stochastic PDE and compare
the results with results available in the literature. It goes without saying that with
additional work more sophisticated problems can be treated. While this will be taken
up in forthcoming work, the objective here is to treat some model problems in order
to see where our methods can be expected to improve the presently available rates.

We begin with the stochastic heat equation. The results of the next example can
be extended to more general uniformly elliptic operators with space-dependent coef-
ficients. As will follow from Sect. 6, if one is only interested in the splitting method
the coefficients can even be taken progressively measurable in (t, ω).

Example 5.15 (Stochastic heat equation) Consider the inhomogeneous stochastic heat
equation on R

d :

{
dut = �ut + ∑

k≥1 g
k
t dW

k
t , t ∈ [0, T ].

u0 = 0.
(5.8)

123



564 Stoch PDE: Anal Comp (2022) 10:516–581

Table 1 Approximation errors
for the stochastic heat equation

Scheme β q Error En,β

Splitting (0, 1] [2, ∞) n−β

Implicit Euler (0, 1] [2, ∞) n−β(log(n + 1))1/2

Crank–Nicholson (0, 1] [2, ∞) n−β(log(n + 1))1/2

We assume that g = (gk)k≥1 belongs to L p
P (�; L2(0, T ; Hλ,q(Rd ; �2))) with 0 <

p < ∞, andW = (Wk)k≥1 is a sequence of independent standard Brownian motions.
We can viewW as an �2-cylindrical Brownian motion in a natural way by putting, for
h = (kk)k≥1 ∈ �2, Wth := W (1(0,t)⊗h) := ∑

k≥1 hkWk , noting that the sum on the
right-hand side converges in L2(�). As is well known, the operator � generates an
analytic C0-semigroup of contractions on the Bessel potential spaces Hλ,q(Rd) and
D(�) = Hλ+2,q(Rd) for all λ ∈ R and 1 < q < ∞.

Let us now assume that 2 ≤ q < ∞. By Theorem 4.1, the mild solution u to the
problem (5.8) has a continuous modification with values in Hλ,q(Rd) which satisfies

E sup
t∈[0,T ]

‖ut‖p
Hλ,q (Rd )

≤ C p
p,qE‖g‖p

L2(0,T ;Hλ,q (Rd ;�2)),

where we may takeCp,q = 10
√
p(q−1) if 2 ≤ p < ∞. Here we used that Hλ,q(Rd)

is (2,
√
q − 1)-smooth by Proposition 2.2 and that

‖gt‖γ (�2,Hλ,q (Rd )) ≤ ‖gt‖γq (�2,Hλ,q (Rd )) = ‖γ ‖q‖gt‖Hλ,q (Rd ;�2)

by Hölder’s inequality and [49, Proposition 9.3.2]), where γ is a standard Gaussian
random variable (whose moments satisfy ‖γ ‖q ≤ √

q − 1).
We consider the approximation scheme (5.6) for the splitting (S), implicit Euler

(IE), and Crank–Nicholson (CN) schemes discussed in Example 5.11. Each of them
leads to a sequence of approximate solutions (u(n)

j )nj=0, n ≥ 1, for which we define
the approximation errors

En,β :=
(
E sup

j=0,...,n
‖u

t (n)
j

− u(n)
j ‖p

Hλ−2β,q (Rd )

)1/p
.

These numbers also depend on p, q, λ and d, but the rates in the estimates below will
be independent of these parameters. By Theorem 5.14, En,0 → 0 for (S) and (IE).
For q = 2, (CN) is contractive by Proposition 5.12 and again we obtain En,0 → 0.
Moreover, we can give rates of convergence for each of thesemethods. These are given
in Table 1 for the errors En,β with β ∈ (0, 1] (up to constants depending on p, q). The
assertions follow fromExample 5.11, andCorollary 5.2 andTheorem5.13 appliedwith
X = Hλ−2β,q(Rd), D(�) = Hλ−2β+2,q(Rd) and Y = Hλ,q(Rd) = [X ,D(�)]β .

Up to a logarithmic term the convergence rates are the same for the three schemes,
independently of p ∈ (0,∞). Although (S) and (CN) have better orders of conver-
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gence, the convergence rate of the approximation errors En,β cannot exceed β due to
limitations in Corollary 5.2 and Theorem 5.13.

We next consider a simple non-parabolic equation. Here, higher order schemes give
better rates of convergence. Other non-parabolic examples, including wave equation
on R

d (for q = 2), can be treated similarly.

Example 5.16 (Stochastic transport equation) Consider the following transport equa-
tion on R:

{
dut = ∂xut + ∑

k≥1 g
k
t dW

k
t , t ∈ [0, T ],

u0 = 0.
(5.9)

Here g ∈ L p
P (�; L2(0, T ; Hλ,q(Rd ; �2))) with 0 < p < ∞. It is well known that

∂x generates a C0-contraction semigroup on Hλ,q(R) for all λ ∈ R and 1 ≤ q < ∞.
Let us now assume that 2 ≤ q < ∞. As before, by Theorem 4.1, the mild solution

u to the problem (5.9) has a continuous modification with values in Hλ(R) which
satisfies

E sup
t∈[0,T ]

‖ut |pHλ,q (R)
≤ C p

p,qE‖g‖p
L2(0,T ;Hλ,q (R;�2)),

where may take Cp,q = 10
√
p(q − 1) if 2 ≤ p,∞. As before, for β ≥ 0 let

En,β :=
(
E sup

j=0,...,n
‖u

t (n)
j

− u(n)
j ‖p

Hλ−β,q (R)

)1/p
.

By Theorem 5.14 we have En,0 → 0 for (S) and (IE), and if q = 2 the same holds for
(CN) by Proposition 5.12.

Table 2 gives the estimates for the errors En,β for suitable intervals for β (up
to constants depending on p, q). The assertions follow from Example 5.10 (using
Proposition 5.12 for (CN) if q = 2), Corollary 5.2, and Theorem 5.13 applied with
X = Hλ−β,q(R), D(Am) = Hλ−β+m,q(R) and Y = Hλ,q(R) = [X ,D(Am)]β/m for
m = 1 for (S), m = 2 for (IE), and m = 3 for (CN). Note that φ(8/5) = 1; since the
convergence rate cannot exceed 1, there is no point in considering values β > 8

5 .

Our final example concerns the Schrödinger equation.

Example 5.17 (Stochastic Schrödinger equation) Consider the following heat equation
on R

d :

{
dut = i�ut + ∑

k≥1 g
k
t dW

k
t , t ∈ [0, T ].

u0 = 0.

We assume that g ∈ L p
P (�; L2(0, T ; Hλ(Rd ; �2))) for some 0 < p < ∞, where

Hλ(Rd) = Hλ,2(Rd). It is well known that i� generates a unitary C0-group on
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Table 2 Approximation errors for the stochastic transport equation, where φ is the piecewise linear function

connecting the points
(
1
2 , 0

)
,
(
1, 1

2

)
, and

(
2, 4

3

)

Scheme β q Error En,β

Splitting (0, 1] [2, ∞) n−β

Implicit Euler (0, 2] [2, ∞) n−β/2(log(n + 1))1/2

Crank–Nicholson
(
0, 3

2

]
q = 2 n−2β/3(log(n + 1))1/2

Crank–Nicholson
(
1
2 , 8

5

]
q ∈ (2, ∞) n−φ(β)(log(n + 1))1/2

Table 3 Approximation errors
for the stochastic Schrödinger
equation

Scheme β Error En,β

Splitting (0, 1] n−β

Implicit Euler (0, 2] n−β/2(log(n + 1))1/2

Crank–Nicholson
(
0, 3

2

]
n−2β/3(log(n + 1))1/2

Hλ(Rd) for all λ ∈ R. As before, by Theorem 4.1, the mild solution u to the problem
(5.9) has a continuous modification with values in Hλ(Rd) which satisfies

E sup
t∈[0,T ]

‖ut‖p
Hλ(Rd )

≤ C p
pE‖g‖p

L2(0,T ;Hλ(Rd ;�2)),

where we may take Cp = 10
√
p if 2 ≤ p < ∞.

As before let

En,β :=
(
E sup

j=0,...,n
‖u

t (n)
j

− u(n)
j ‖p

Hλ−2β(Rd )

)1/p
.

By Theorem 5.14, En,0 → 0 for (S), (IE), and (CN) (using Proposition 5.12 for the
latter).

Table 3 gives the estimates for the errors En,β (up to constants depending on p) for
suitable intervals for β. The assertions follow from Example 5.10, Corollary 5.2, and
Theorem 5.13 applied with X = Hλ−2β(Rd) and Y = Hλ,q(Rd) = [X ,D(Am)]β/m

for m = 1 for (S), m = 2 for (IE), and m = 3 for (CN).

We are aware of only few papers dealing with convergence uniformly in time in
infinite dimensions. In [37] the splittingmethod is considered for (possibly degenerate)
parabolic problems with gradient noise. The inhomogeneities have to be uniformly
bounded in time. The same methods are considered in [18] for semi-linear stochastic
parabolic problems. No contractivity of the semigroups needs to be assumed and
convergence in Hölder norms is obtained under L p-integrability conditions in time
with p > 2. See Table 4 for a comparison of the convergence rates.

In [18] (in the setting ofUMDspaces) and [38] (in the setting ofmonotone operators
on Gelfand triples V ↪→ X ↪→ V ∗), the implicit Euler scheme was considered with
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Table 4 Comparison of rates in the parabolic setting

Paper Scheme β g ∈ Lr in time Error En

Present Splitting (0, 1] r = 2 n−β

[37] Splitting 2 r = ∞ n−1

[18] Splitting
(
− 1

2 , 1
2

)
r > 2 n− 1

2−β+ 1
r +ε

uniform convergence in time, but these results seem not to be comparable to ours
due to the fact that an additional discretisation of the noise term is allowed. In the
latter reference, convergence rates of order n−ν are obtained under the assumption
that the solution u belong to Cν([0, T ]; L2(�; V )) ∩ L2(�; L∞(0, T ; V )). Results
on uniform convergence in time (and sometimes even convergence in Hölder norms
in time) for schemes involving space and time discretisation can be found in many
papers, including [14–16,36,39,53,80,109]. Results concerning uniform convergence
in case of white noise and discretisation in time only can be found in [3,4,40,41]. Some
results are with explicit rates and some are not, but the schemes considered in these
papers are different.

In the parabolic setting, results on convergence of the form

sup
j=0,...,n

E‖u(t (n)
j ) − u(n)

j ‖p → 0 (5.10)

(notice the reversed order of supremum and expectation) with explicit rates, which
can even be faster than 1/n, can be found in [17,54,64] and references therein.

For non-parabolic problems no systematic results seem to be available on uni-
form convergence in time. In [103] uniform convergence with explicit rates has been
obtained for a nonlinear wave equation with the splitting scheme. The fact that the
underlying semigroup is a group allows us to write

∫ t

0
S(t − s)gsdWs = S(t)

∫ t

0
S(−s)gsdWs

and uniform convergence can be obtained from standard maximal estimates for mar-
tingales. In [32] the authors obtain uniform convergence results in case the semigroup
admits a dilation to a group. Our results do not rely on the above identity and therefore
are applicable in the case of arbitrary contractiveC0-semigroups, and the convergence
holds with the same rate. Even more is true: for arbitrary C0-semigroups and general
numerical schemes the same convergence rates can be obtained up to a logarithmic
factor.
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6 Maximal inequalities for random stochastic convolutions

In this section we consider the time-dependent problem
{
dut = A(t)ut dt + gt dWt , t ∈ [0, T ],
u0 = 0.,

(6.1)

with random operators A(t). More precisely we assume that (A(t, ω))(t,ω)∈[0,T ]×� is
an adapted family of closed operators acting in X which satisfy suitable conditions,
to be made precise below, guaranteeing the generation of an adapted evolution family.
We will assume throughout that W is an adapted H -cylindrical Brownian motion on
�. and that g : [0, T ] × � → γ (H , X) is progressively measurable; recall that this is
equivalent to the requirement that g(h) : [0, T ]×� → X is progressively measurable
for all h ∈ H . Many of the results of this section are expected to extend tomore general
martingales.

6.1 The forward stochastic integral

In analogy with the non-random case one expects that (6.1) admits a mild solution
given as before by the stochastic convolution process

∫ t
0 S(t, s)gs dWs . This stochastic

integral, however, cannot be defined as an Itô stochastic integral because the random
variables S(t, s)x are only assumed to be Ft -measurable rather than Fs-measurable
and consequently the integrand will not be progressively measurable in general.

To overcome this problem we use the forward stochastic integral, introduced and
studied by Russo and Vallois [88] in the scalar-valued setting. Following [62,85,86]
we define its vector-valued analogue as follows. Fix an orthonormal basis (hk)k≥1 of
H . For processes � ∈ L0(�; L2(0, T ; γ (H , X))) and n = 1, 2, . . . define

I−(�, n) := n
n∑

k=1

∫ T

0
�shk(W(s+1)/n − Ws)hk ds.

The process � is forward stochastically integrable if the sequence (I−(�, n))n≥1
converges in probability. If this is the case, the limit is independent of the choice of
orthonormal basis and is called the forward stochastic integral of �. We write

∫ T

0
�s dW

−
s := I−(�) := lim

n→∞ I−(�, n).

Notice that � is not assumed to be progressively measurable. It is easy to see that if �

is a finite rank step process, then � is forward integrable. In case � is progressively
measurable and integrable in the Itô sense, then the forward stochastic integral exists
and coincides with the Itô integral (see [86, Proposition 3.2]).

In order to apply the forward integral to our problemwemake followingHypothesis:
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Hypothesis 6.1 The family (S(t, s, ω))0≤s≤t≤T , ω∈� is an adaptedC0-evolution family
of contractions on X, i.e.,

(i) (S(t, s, ω)0≤s≤t≤T is a C0-evolution family of contractions for every ω ∈ �;
(ii) S(t, s, ·)x is stronglyFt -measurable for all 0 ≤ s ≤ t ≤ T and x ∈ X.

Furthermore we assume:

(iii) Y is a Banach space, continuously embedded in X, and for almost all ω ∈ � we
have S(t, ·, ω)y ∈ W 1,1(0, t; X) for all t ∈ (0, T ] and y ∈ Y and

‖(S(t, ·, ω)y)‖W 1,1(0,t;X) ≤ C(ω)‖y‖Y
for some function C : � → [0,∞) independent of y ∈ Y and 0 ≤ s ≤ t ≤ T .

We have the following sufficient condition for forward integrability (see [86, Corol-
lary 5.3], which extends to the current setting).

Proposition 6.2 Suppose that Hypothesis 6.1 holds, with X a 2-smooth Banach space,
and let g : [0, T ]×� → γ (H ,Y ) be a finite rank adapted step process. Then process
(S(t, s)gs)s∈[0,t] is forward integrable on [0, t] and almost surely we have

∫ t

0
S(t, s)gs dW

−
s = S(t, 0)

∫ t

0
gs dWs +

∫ t

0
∂s S(t, s)

∫ t

s
gr dWr ds. (6.2)

Moreover, the process (
∫ t
0 S(t, s)gs dW−

s )t∈[0,T ] has a continuous modification.

The right-hand side of (6.2) is well defined by the hypothesis and the assumption that
g takes values in Y . By the almost sure pathwise continuity of

∫ ·
0 gs dWs , the forward

integral in (6.2) admits a continuous modification.

Remark 6.3 In the setting where S is generated by an adapted family (A(t))t∈[0,T ]
satisfying suitable parabolicity assumptions, the right-hand side of (6.2) is called
the pathwise mild solution of (6.1). Pathwise mild solutions were introduced and
extensively studied in [85]. In the parabolic case, ∂s S(t, s) typically extends to a
bounded operator on X and ‖∂s S(t, s)‖ ≤ C(t − s)−1, where C depends on ω ∈
�. Since

∫ ·
0 gr dWr is almost surely Hölder continuous under L p(0, T )-integrability

assumptions on g with p > 2, the right-hand side of (6.2) exists pathwise as a Bochner
integral.

It is quite difficult to prove estimates for the forward integral directly. A major
advantage of using the right-hand side of (6.2) is that one can obtain estimates using
only Itô and Bochner integrals.

6.2 Themaximal inequality

Wewill nowextend themaximal estimate ofTheorem4.1 to randomevolution families,
replacing the Itô stochastic integral of that theorem by the forward stochastic integral.
The precise sense in which the forward integral constitutes a solution of the problem
(6.1) will be addressed subsequently in Theorem 6.6. Even without the supremum on
the left-hand side, the estimate in Theorem 6.4 is new.
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Theorem 6.4 Suppose that Hypothesis 6.1 holds,with X a 2-smooth Banach space,
and let g : [0, T ] × � → γ (H ,Y ) be a finite rank adapted step process. Then for all
0 < p < ∞ we have

E sup
t∈[0,T ]

∥
∥
∥

∫ t

0
S(t, s)gs dW

−
s

∥
∥
∥
p ≤ C p

p,D‖g‖p
L p(�;L2(0,T ;γ (H ,X)))

,

where the constant Cp,D only depends on p and D. For 2 ≤ p < ∞ the inequality
holds with Cp,D = 10D

√
p.

Proof The proof is similar to that of Theorem 4.1, but with some extra technicalities
which justify a detailed presentation.

Step 1 Let g : [0, T ] × � → γ (H , X) be an adapted finite rank step process, say

g =
k∑

j=1

1(s j−1,s j ]
�∑

i=1

hi ⊗ ξi j

as in (2.9). For the moment there is no need to insist that g be Y -valued; this will only
be needed in the last step of the proof.

Fix 0 < δ < T and set Sδ(t, s) := S((t − δ)+, (s − δ)+) for 0 ≤ s ≤ t ≤ T .
Fix a partition π := {r0, . . . , rN }, where 0 = r0 < r1 < . . . < rN = T , and
let (K (t, s, ω))0≤s≤t≤T , ω∈� be a family of contractions on X with the following
properties:

(i) K (t, ·, ω) is constant on [r j−1, r j ) for all t ∈ [0, T ], ω ∈ �, and j = 1, . . . , N ;
(ii) K (·, s, ω) is strongly continuous for all s ∈ [0, T ] and ω ∈ �;
(iii) Sδ(t, r , ω)K (r , s, ω) = K (t, s, ω) for all 0 ≤ r ≤ s ≤ t ≤ T and ω ∈ �;
(iv) K (t, s, ·)x is strongly F(t−δ)+-measurable for all 0 ≤ s ≤ t ≤ T .

By refining π we may assume that |r j − r j−1| ≤ δ for j = 1, . . . , N and that s j ∈ π

for all j = 0, . . . , k.
Define the process (vt )t∈[0,T ] by

vt :=
∫ t

0
K (t, s)gs dW

−
s , (6.3)

this forward integral being well defined since the integrand is a finite rank step process.
For t ∈ [0, r1] the above integral coincides with the Itô integral since K (t, s, ·) is
stronglyF0-measurable. By (iii), for r j−1 ≤ s ≤ t < r j we have

vt = Sδ(t, s)vs +
∫ t

s
K (t, r)gr dWr , (6.4)

where the stochastic integral is again an Itô integral since the randomvariable K (t, r , ·)
does not depend on r ∈ [s, t] ⊆ [r j−1, r j ) by (i) and is stronglyFr j−1 -measurable by
(iv) and the inclusion F(t−δ)+ ⊆ Fr j−1 (using that (t − δ)+ ≤ r j−1). Properties (i)
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and (ii) imply that v has a modification with continuous paths. Working with such a
modification, we will first prove that for all 2 ≤ p < ∞ one has

∥
∥
∥ sup
t∈[0,T ]

‖vt‖
∥
∥
∥
p

≤ 10D
√
p‖g‖L p(�;L2(0,T ;γ (H ,X))).

By a limiting argument it suffices to consider exponents 2 < p < ∞.
Let π ′ = {t0, t1, . . . , tm} ⊆ [0, T ] be another partition. It suffices to prove

∥
∥
∥ sup
t∈π ′

‖vt‖
∥
∥
∥ ≤ aπ + 10D

√
p‖g‖L p(�;L2(0,T ;γ (H ,X))) (6.5)

with aπ = o(mesh(π)) as mesh(π) → 0. Refining π ′ if necessary, we may assume
that π ′ ⊆ π and that mesh(π ′) < δ.

For fixed j = 1, . . . ,m we have, by (6.4),

f j := vt j = Sδ(t j , t j−1)vt j−1 +
∫ t j

t j−1

K (t j , s)gs dWs

=: Vj f j−1 + dG j ,

where we set Vj := Sδ(t j , t j−1) and dG j := ∫ t j
t j−1

K (t j , s)gs dWs . We further set

f0 := 0 and G0 := 0. As in the proof of Theorem 4.1 the sequence (dG j )
m
j=1 is

conditionally symmetric and an application of Theorem 3.1 gives

‖ f �‖p ≤ 5p‖dG�‖p + 10D
√
p‖s(G)‖p.

Proceeding as in Step 1b of the proof of Theorem 4.1 we obtain (6.5).
Step 2 Fix n ∈ N and set σn(s) := j2−nT for s ∈ [ j2−nT , ( j + 1)2−nT ). Set

Sδ
n(t, s) := S((t − δ)+, σn((s − δ)+)) and define v

(n)
t as in (6.3) with K (t, s) =

Sδ
n(t, s). The assumptions (i)–(iv) in Step 1 apply to K (t, s) = Sδ

n(t, s), N = 2n , and
r j = j2−nT . By what has been shown in this step, the process vt has a continuous
modification. Moreover, for n ≥ m the process

v
(n)
t − v

(m)
t = Sδ(t, s)(v(n)

s − v(m)
s ) +

∫ t

s
K (t, r)(I − S(σn(r), σm(r)))gr dWr

is strongly progressively measurable. Moreover,

∥
∥
∥ sup
t∈[0,T ]

‖v(n) − v(m)‖
∥
∥
∥
p

≤ 10D
√
p
∥
∥(I − S(σn((· − δ)+), σm((· − δ)+)))g

∥
∥
L p(�;L2(0,T ;γ (H ,X)))

.

Since the right-hand side tends to 0 by dominated convergence, (v(n))n≥1 is a Cauchy
sequence with respect to the norm of L p(�;C([0, T ]; X)) and hence converges to
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some ṽδ ∈ L p(�;C([0, T ]; X)). By Step 1,

∥
∥
∥ sup
t∈[0,T ]

‖̃vδ
t ‖

∥
∥
∥
p

= lim
n→∞

∥
∥
∥ sup
t∈[0,T ]

‖v(n)
t ‖

∥
∥
∥
p

≤ 10D
√
p‖g‖L p(�;L2(0,T ;γ (H ,X))).

(6.6)

We will show next that ṽδ
t = ∫ t

0 Sδ(t, s)gs dW−
s almost surely for each t ∈ [0, T ].

To this end let π ′′ = {t0, . . . , tM } with 0 = t0 < . . . < tM = T with mesh(π ′′) < δ.
We define an X -valued process (vδ

t )t∈[0,T ] by setting vδ
0 := 0 and, recursively,

vδ
t = Sδ(t, t j−1)vt j−1 +

∫ t

t j−1

Sδ(t, s)gs dWs, t ∈ (t j−1, t j ].

The stochastic integral is well defined since for all t j−1 ≤ s ≤ t ≤ t j the random
variable Sδ(t, s) = S((t − δ)+, (s − δ)+) is strongly Ft j−1 -measurable. Using the
elementary properties of forward integrals we can rewrite this definition as the forward
integral

vδ(t) =
∫ t

0
Sδ(t, s)gs dW

−
s , t ∈ [0, T ]. (6.7)

We claim that for each t ∈ [0, T ] we have vδ(t) = ṽδ(t) almost surely. Indeed, by
(2.10),

∥
∥
∥

∫ t

t j−1

Sδ
n(t, s)gs dWs −

∫ t

t j−1

Sδ(t, s)gs dWs

∥
∥
∥
L2(�;X)

≤ D‖(Sδ
n(t, s) − Sδ(t, s))gs‖L2(�;L2(0,t;γ (H ,X))) → 0

as n → ∞ by dominated convergence. Therefore, the terms in the recursive identities
(6.7) converge to the correct limit and the claim is proved.

Step 3 We will next show that

lim
δ↓0

∫ t

0
Sδ(t, s)gs dW

−
s =

∫ t

0
S(t, s)gs dW

−
s

in L0(�;C([0, T ]; X)). This will be done by providing an alternative formula for∫ t
0 Sδ(t, s)gs dW−

s in which we can let δ ↓ 0. Here it will be important that g takes
values in Y .

Fix t ∈ (0, T ]. Since ‖∂s(S(t, s)y)‖X ≤ C‖y‖Y with a constant C independent of
0 < s < t ≤ T , it follows fromProposition 6.2 that the forward stochastic convolution
integral ut := ∫ t

0 S(t, s)gs dW−
s exists and is almost surely equal to

S(t, 0)
∫ t

0
gr dWr +

∫ t

0
∂s S(t, s)

∫ t

s
gr dWr ds.
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Similarly,

vδ(t) = S((t − δ)+, 0)
∫ t

0
gr dWr +

∫ t

0
∂s S((t − δ)+, (s − δ)+)

∫ t

s
gr dWr ds

= S((t − δ)+, 0)
∫ t

0
gr dWr +

∫ (t−δ)+

0
∂s S((t − δ)+, s)

∫ t

s+δ

gr dWr ds.

Letting δ ↓ 0, by the piecewise strong continuity of t �→ ∂s S(t, s) on Y and dominated
convergence we obtain that vδ(t) → u(t) almost surely.

By dominated convergence one also obtains that u has a continuous modification.
To prove the maximal estimate for this modification it suffices to show that for any
finite set π ∈ [0, T ],

∥
∥
∥ sup
t∈π

‖ut‖
∥
∥
∥ ≤ 10D

√
p‖g‖L p(�;L2(0,T ;γ (H ,X))).

Using that (6.6) and vδ(t) = ṽδ(t) for t ∈ π , this follows from Fatou’s lemma:

∥
∥
∥ sup
t∈π

‖ut‖
∥
∥
∥
p

≤ lim inf
δ↓0

∥
∥
∥ sup
t∈π

‖vδ
t ‖

∥
∥
∥ ≤ 10D

√
p‖g‖L p(�;L2(0,T ;γ (H ,X))).

Step 4 The case 0 < p < 2 follows again by using Corollary 3.6 instead of
Theorem 3.1, or by an extrapolation argument involving Lenglart’s inequality. ��

If the embeddingY ↪→ X is densewe can use themaximal inequality of the theorem
to see that for all 0 < p < ∞ the mapping

g �→
∫ t

0
S(t, s)gs dW

−
s

has a unique extension to a continuous linear operator

Jp : L p
P (�; L2(0, T ; γ (H , X))) → L p(�;C([0, T ]; X)).

Moreover, by a standard localisation argument, J has a unique extension to a contin-
uous linear operator

J : L0
P (�; L2(0, T ; γ (H , X))) → L0(�;C([0, T ]; X)).

It is not guaranteed, however, that for general g ∈ L0
P (�; L2(0, T ; γ (H , X))) the

process Jg is given by a forward stochastic convolution again, nor is this clear if we
replace L0 and J by L p and Jp. The same problem occurs if we use the right-hand
side in the identity in Proposition 6.2.

Since Jp satisfies the same estimate as in Theorem 6.4, we immediately obtain an
extension of the exponential tail estimate of Corollary 4.2 in the current setting. As
in Remark 4.3 under more restrictive conditions on the random evolution family, but
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with better bound on the variance σ 2 a similar result was obtained in [95, Remark
5.8].

The next theorem addresses the question in what sense Jpg and Jg “solve” the
problem (6.1). Some additional assumptions are needed to establish the precise relation
between the random evolution family S and the random operator A.

Hypothesis 6.5 Hypothesis 6.1 is satisfied. Furthermore, the random operator family
A : [0, T ] × � → L (Y , X) has the property that Ay is strongly progressively
measurable for all y ∈ Y . Furthermore the following conditions hold:

(i) For almost all ω ∈ � we have S(t, ·, ω)y ∈ W 1,1(0, t; X) for all t ∈ [0, T ] and
y ∈ Y , and for almost all s ∈ [0, t] we have ∂s S(t, s)y = −S(t, s)A(s)y and

‖S(t, s)A(s)y‖X ≤ C‖y‖Y ,

where C : � → [0,∞) is independent of y ∈ Y and 0 ≤ s < t ≤ T .
(ii) For almost all ω ∈ � we have S(·, s, ω)y ∈ W 1,1(s, T ; X) for all s ∈ [0, T ]

and y ∈ Y , and for almost all t ∈ [s, T ] we have ∂t S(t, s)y = A(t)S(t, s)y and

‖A(t)S(t, s)y‖X ≤ C‖y‖Y ,

where C : � → [0,∞) is independent of y ∈ Y and 0 ≤ s < t ≤ T .
(iii) There exists a dense subspace F ⊆ X∗ such that F ⊆ D(A(t, ω)∗) for all

(t, ω) ∈ [0, T ] × �, and almost surely the mapping (t, ω) �→ 〈x, A(t, ω)∗x∗〉
belongs to L∞(0, T ) for all x ∈ X and x∗ ∈ F.

In the proof belowwewill combine (iii) with the observation that if f : (0, T ) → X
is integrable and g : (0, T ) → X∗ has the property that 〈x, g〉 ∈ L∞(0, T ) for all
x ∈ X , then the function t �→ 〈 f (t), g(t)〉 is integrable and

∫ T

0
|〈 f (t), g(t)〉| ≤ ‖ f ‖1 sup

‖x∗‖≤1
‖〈x, g〉‖∞,

the supremum on the right-hand side being finite by a closed graph argument. Indeed,
this estimate is clear for simple functions f and the general case follows by approxi-
mation.

Under the above hypothesis a process u ∈ L0
P (�; L1(0, T ; X)) is called a weak

solution of (6.1) if for all x∗ ∈ F , a.s. for all t ∈ [0, T ],

〈ut , x∗〉 =
∫ t

0
〈us, A(s)∗x∗〉 ds +

∫ t

0
g∗
s x

∗ dWs .

In many situations weak solutions are known to be unique. However, we will not
address this issue here.

Theorem 6.6 Suppose that Hypothesis 6.5 holds, with X a 2-smooth Banach space,
and assume in addition that the embedding Y ↪→ X is dense. Then for every g ∈
L0
P (�; L2(0, T ; γ (H , X))) the process Jg is a weak solution to (6.1).
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Proof We proceed in three steps.
Step 1 First let g : [0, T ]×� → L (H ,Y ) be an adapted finite rank step processes

and write v
g
t = ∫ t

0 g dW . From Proposition 6.2, Theorem 6.4 and Hypothesis 6.5(i) it
is immediate that

E sup
t∈[0,T ]

‖ugt ‖p ≤ C p
p,D‖g‖p

L p(�;L2(0,T ;γ (H ,X)))
, (6.8)

and

ugt = S(t, 0)vgt −
∫ t

0
S(t, s)A(s)(vgt − v

g
s ) ds.

We check next that ug is a weak solution. For this we use a variation of the argument
in [85, Theorem 4.9]. For all x ∈ Y ,

∫ t

0
S(t, s)A(s)x ds = −x + S(t, 0)x and

∫ t

r
A(s)S(s, r)x dr = S(t, r)x − x

(6.9)

Therefore, applying the first part of (6.9) with x = v
g
t , we obtain

ugt = v
g
t +

∫ t

0
S(t, s)A(s)vgs ds. (6.10)

To claim that ug is a weak solution it remains to check that
〈∫ t

0
S(t, s)A(s)vgs ds, x

∗
〉

=
∫ t

0
〈ugs , A(s)∗x∗〉 ds.

Note that the integral on the right-hand side is well defined as a Lebesgue integral
almost surely. To prove the claim we note that by (6.10), Fubini’s theorem and
the second part of (6.9) (or rather, its weak version

∫ t
r 〈S(s, r)x, A∗(s)x∗〉 dr =

〈S(t, r)x, x∗〉 − 〈x, x∗〉, the point being that in the argument below the vector
x = A(t)vgr need not belong to Y ),

∫ t

0
〈ugs , A(s)∗x∗〉 ds

=
∫ t

0
〈vgs , A(s)∗x∗〉 ds +

∫ t

0

∫ s

0
〈S(s, r)A(r)vgr , A(s)∗x∗〉 dr ds

=
∫ t

0
〈vgs , A(s)∗x∗〉 ds +

∫ t

0

∫ t

r
〈S(s, r)A(r)vgr , A(s)∗x∗〉 ds dr

=
∫ t

0
〈vgs , A(s)∗x∗〉 ds +

∫ t

0
〈S(t, r)A(r)vgr , x∗〉 dr −

∫ t

0
〈A(r)vgr , x∗〉 dr

=
∫ t

0
〈S(t, r)A(r)vgr , x∗〉 dr ,
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which gives the required identity.
Step 2 Let g ∈ L p

P (�; L2(0, T ; γ (H , X))) with 0 < p < ∞ and choose
a sequence of Y -valued adapted finite rank step processes (g(n))n≥1 such that
g(n) → g in L p(�; L2(0, T ; γ (H , X))). Then from (6.8) applied to g(n) − gm we
obtain that (ug

(n)
)n≥1 is a Cauchy sequence and therefore converges to some u in

L p(�;C([0, T ]; X)). By Step 1, ug
(n)

is a weak solution and thus

〈ug(n)

t , x∗〉 =
∫ t

0
〈ug(n)

s , A(s)∗x∗〉 ds +
∫ t

0
(g(n)

s )∗x∗ dWs .

Letting n → ∞ in this identity we conclude that ug is a weak solution. The maximal
inequality is obtained by applying (6.8) with gn and letting n → ∞. ��
Remark 6.7 In [62, Proposition 5.3], restrictive conditions in terms of Malliavin
differentiability of S are given under which the forward stochastic integral ut =∫ t
0 S(t, s)gs dW−

s exists, has a continuousmodification, and is aweak solution. Inspec-

tion of the proof shows that that if one sets u(n)
t := I−(1[0,t]S(t, ·)g(n)), one needs that

supt∈[0,T ] ‖ut − u(n)
t ‖L1(�;X) → 0. Although this is likely to hold in many situations,

such considerations can be avoided by using the right-hand side of (6.2).

Remark 6.8 Theorem 5.1 extend mutatis mutandis to random evolution families. The
only required change is to use the forward integral in the proof and to apply Theorem
6.4 instead of Theorem 4.1. To obtain explicit decay rates under the assumption that g
has spatial smoothness, i.e., g takes values in aBanach spaceY continuously embedded
in X , one requires estimates for ‖S(s, σn(s)) − I‖L (Y ,X). In some applications (e.g.
[78, Sect. 5.2]) such estimates are available.
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7. Brzeźniak, Z.: Stochastic partial differential equations in M-type 2 Banach spaces. Potential Anal.
4(1), 1–45 (1995)
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