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Abstract
In this two-paper series, we prove the invariance of the Gibbs measure for a three-
dimensional wave equation with a Hartree nonlinearity. The main novelty is the
singularity of the Gibbs measure with respect to the Gaussian free field. The sin-
gularity has several consequences in both measure-theoretic and dynamical aspects of
our argument. In this paper, we construct and study the Gibbs measure. Our approach
is based on earlier work of Barashkov and Gubinelli for the �4

3-model. Most impor-
tantly, our truncated Gibbs measures are tailored towards the dynamical aspects in
the second part of the series. In addition, we develop new tools dealing with the non-
locality of the Hartree interaction. We also determine the exact threshold between
singularity and absolute continuity of the Gibbs measure depending on the regularity
of the interaction potential.

Introduction to the series

In this two-paper series, we study the renormalized wave equation with a Hartree
nonlinearity and random initial data given by

{
−∂2t t u − u + �u = :(V ∗ u2)u : (t, x) ∈ R × T

3,

u|t=0 = φ0, ∂t u|t=0 = φ1.
(a)

Here,T
def= R/2πZ is the torus and the interaction potential V : T

3 → R is of the form
V (x) = cβ |x |−(3−β) for all small x ∈ T

3, where 0 < β < 3, satisfies V (x) � 1 for
all x ∈ T

3, is even, and is smooth away from the origin. The nonlinearity :(V ∗ u2)u :
is a renormalization of (V ∗ u2)u (see Definition 2.6 below).
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The nonlinear wave equation (a) is a prototypical example of a Hamiltonian partial
differential equation. The formal Hamiltonian is given by

H [u, ∂t u](t) = 1

2

(
‖u(t)‖2L2

x
+ ‖∇u(t)‖2L2

x
+ ‖∂t u(t)‖2L2

x

)
+ 1

4

∫
T3

:(V ∗ u2)(t, x)u(t, x)2 : dx,

where L2
x = L2

x (T
3). Based on the Hamiltonian structure, we expect the formal Gibbs

measure μ⊗ given by

dμ⊗(φ0, φ1) = Z−1 exp(−H(φ0, φ1)) dφ0dφ1 (b)

to be invariant under the flow of (a), where Z is a normalization constant.
The first part of this series focuses on the rigorous construction and properties of

μ⊗. With a primary focus on the related �4
d -models, similar constructions have been

studied in constructive quantum field theory. Recently, this area of research has been
revitalized through advances in singular stochastic partial differential equations. The
main difficulties come from the quartic interaction :(V ∗ u2)u2 : in the Hamiltonian.
In fact, without the interactions, one obtains the Gaussian free field

dg⊗(φ0, φ1) = Z−1
0 exp

(
− 1

2
‖φ0‖2L2

x
− 1

2
‖∇φ0‖2L2

x

)
dφ0

⊗ Z−1
1 exp

(
− 1

2
‖φ1‖2L2

x

)
dφ1,

which can be constructed through elementary arguments. Using our representation
of the Gibbs measure μ⊗, we also prove that μ⊗ and g⊗ are mutually singular for
0 < β < 1/2.

In the second part of this series, we study the dynamics of (a) with random initial
data drawn from the Gibbs measure μ⊗. Due to the low spatial regularity, the local
theory requires a mix of techniques from dispersive equations, harmonic analysis,
and probability theory. More specifically, we rely on ideas from the para-controlled
calculus of Gubinelli, Imkeller, and Perkowski [20]. The heart of this series, however,
lies in the global theory. Our main contribution is a new form of Bourgain’s global-
ization argument [7], which addresses the singularity of the Gibbs measure and its
consequences.

Wenowstate anqualitative versionourmain theorem,which combines ourmeasure-
theoretic and dynamical results. For the quantitative version, we refer the reader to
Theorem 1.1 below and Theorem 1.3 in the second part of this series. We recall that
the parameter 0 < β < 3 determines the regularity of the interaction potential V .

Main Theorem (Global well-posedness and invariance, qualitative version). The for-
mal Gibbs measure μ⊗ exists and, for 0 < β < 1/2, is singular with respect to the
Gaussian free field g⊗. The renormalized wave equation with Hartree nonlinearity
(a) is globally well-posed on the support of μ⊗ and the dynamics leave μ⊗ invariant.
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This is the first example of an invariant Gibbs measure for a dispersive equation
which is singular with respect to the Gaussian free field g⊗.

1 Introduction

In the first paper of this series, we rigorously construct and study the formal Gibbs
measure μ⊗ from (b) above. Since the Hamiltonian H [φ0, φ1] splits into a sum of
functions in φ0 and φ1, we can rewrite (b) as

dμ⊗(φ0, φ1)

= Z−1
0 exp

(
− 1

4

∫
T3

:(V ∗ φ2
0)φ

2
0 : dx − 1

2
‖φ0‖2L2

− 1

2
‖∇φ0‖2L2

)
dφ0 ⊗ Z−1

1 exp
(
− 1

2
‖φ1‖2L2

)
dφ1.

The construction and properties of the second factor are elementary (as will be
explained below), and we now focus on the first factor. As a result, we are interested
in the rigorous construction of a measure μ which is formally given by

dμ(φ) = Z−1 exp
(
− 1

4

∫
T3

:(V ∗ φ2)φ2 : dx − 1

2
‖φ‖2L2(T3)

− 1

2
‖∇φ‖2L2(T3)

)
dφ.

(1.1)

Our Gibbs measure μ is closely related to the �4
d -models, which replace the three-

dimensional torus T
3 by the more general d-dimensional torus T

d and replace the
integrand :(V ∗ φ2)φ2 : by the renormalized quartic power :φ4 :. Thus, the �4

d -model
is formally given by

d�4
d(φ) = Z−1 exp

(
− 1

4

∫
Td

:φ4 : dx − 1

2
‖φ‖2L2(Td )

− 1

2
‖∇φ‖2L2(Td )

)
dφ.

(1.2)

Aside from their connection to Hamiltonian PDEs, such as nonlinear wave and
Schrödinger equations, the �4

d -models are of independent interest in quantum field
theory (cf. [18]). In most rigorous constructions of measures suchμ or the�4

d -models,
the first step consists of a regularization. For instance, one may insert a frequency-
truncation in the nonlinearity or replace the continuous spatial domain by a discrete
lattice. In a second step, one then proves the convergence of the regularized measures
as the regularization is removed, either by direct estimates or compactness arguments.

With a particular focus on �4
d -models, the question of convergence of the regu-

larized measures has been extensively studied over several decades. The first proof
of convergence was a major success of the constructive field theory program, which
thrived during the 1970s and 1980s. We refer the reader to the excellent introduction
of [19] for a detailed overview and the original works [2,4,17,21,28,37,39,42].
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In the 1990s, Bourgain [7–9] revisited the �4
d -model in dimension d = 1, 2 using

tools from harmonic analysis and introduced these problems into the dispersive PDE
community. Bourgain’s works [7–9] also contain important dynamical insights, which
will be utilized in the second part of this series.

Based on the method of stochastic quantization, which was introduced by Nelson
[31,32] and Parisi-Wu [38], the construction and properties of the �4

d -models have
also been studied over the last twenty years in the stochastic PDE community. The
main idea behind stochastic quantization is that the �4

d -measure is formally invariant
under the stochastic nonlinear heat equation

∂t u + u − �u = − :u3 : +√
2ξ (t, x) ∈ R × T

d , (1.3)

where ξ is space-timewhite noise. After prescribing simple initial data, such as u(0) =
0, one hopes to obtain the �4

d -measure as the limit of the law of u(t) as t → ∞.
In spatial dimensions d = 1, 2, this approach was carried out by Iwata [27] and
Da Prato-Debussche [15], respectively. In spatial dimension d = 3, however, (1.3)
is highly singular and the local well-posedness theory of (1.3) is beyond classical
methods in stochastic partial differential equations. In groundbreaking work [25],
Hairer introduced regularity structures, which provide a detailed description of the
local dynamics of (1.3). Alternatively, the local well-posedness of (1.3) was also
obtained byCatellier andChouk in [12], which is based on the para-controlled calculus
of Gubinelli, Imkeller, and Perkowski [20]. In order to construct the �4

3-model using
(1.3), however, local control over the solution is not sufficient, and one needs a global
well-posedness theory. The global theory has been addressed very recently in [1,19,26,
29], which combine regularity structures or para-controlled calculus with further PDE
arguments, such as the energy method. Using similar tools, Barashkov and Gubinelli
[5,6] recently developed a variational approach to the �4

3-model, which does not
directly rely on the stochastic heat equation (1.3). Their work forms the basis of this
paper and will be discussed in more detail below.

After this broad overview of the relevant literature, we now begin a more detailed
discussion of the previous methods. Throughout this discussion we encourage the
reader to think of the nonlinear wave equation as a Hamiltonian system of ordinary
differential equations in Fourier space. We begin with the elementary construction of
the Gaussian free field. Then, we discuss the construction of the �4

1 and �4
2-models

using harmonic analysis, similar as in Bourgain’s works [7,8], and the construction of
the �4

3-model using the variational approach of Barashkov and Gubinelli [5].
Given a function φ : T

d → R, its Fourier expansion is given by

φ(x) =
∑
n∈Zd

φ̂(n)ei〈n,x〉. (1.4)

Due to the real-valuedness of φ, the sequence (φ̂(n))n∈Zd satisfies the symmetry

condition φ̂(n) = φ̂(−n). In order to respect this symmetry, we let 	 ⊆ Z
d be such

that Z
d = {0} ⊎

	
⊎

(−	), where
⊎

denotes the disjoint union. For n ∈ 	, we
denote by dφ̂(n) the Lebesgue measure on C, and for n = 0, we denote by dφ̂(0) the
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Lebesgue measure on R. We can then formally identify the d-dimensional Gaussian
free field

dgd(φ) = Z−1 exp
(

− 1

2
‖φ‖2L2(Td )

− 1

2
‖∇φ‖2L2(Td )

)
dφ (1.5)

as the push-forward under the Fourier transform of

Z−1 exp
(

− 1

2

∑
n∈Zd

(1 + |n|2)|φ̂(n)|2
) ⊗
n∈{0}∪	

dφ̂(n)

= 1

2π
exp

(
− 1

2
|φ̂(0)|2

)
dφ̂(0) ⊗

( ⊗
n∈	

1

π〈n〉2 exp
(

− 〈n〉2|φ̂(n)|2
)
dφ̂(n)

)
,

(1.6)

where 〈n〉2 = 1 + |n|2. While (1.5) is entirely formal, the right-hand side of (1.6)
is a well-defined product measure. Under the measure in (1.6), φ̂(0) is a standard
real-valued Gaussian and (φ̂(n))n∈	 is a sequence of independent complex Gaussians
satisfying E|φ̂(n)|2 = 〈n〉−2. Turning this formal discussion around, we let (
,F , P)

be an ambient probability space containing a sequence of independent complex-valued
standard Gaussians (gn)n∈	 and a standard real-valued Gaussian g0. Then, we can
rigorously define the Gaussian free field gd by

dgd(φ) =
( ∑
n∈Zd

gn
〈n〉e

i〈n,x〉)
#
P, (1.7)

where the subscript # denotes the pushforward. Using the representation (1.7), we see
that a typical sample of gd almost surely lies in Hs

x (T
d) for all s < 1 − d/2 but not

in H1−d/2
x (Td).

We now turn to the construction of the �4
1 and �4

2-models. Based on our formal
expression of the �4

1-model in (1.2), we would like to define

d�4
1(φ)

def= Z−1 exp
(

− 1

4

∫
T

φ4(x) dx
)
dg1(φ). (1.8)

Using either Sobolev embedding or Khintchine’s inequality, we obtain g1-almost
surely that 0 < ‖φ‖L4(T) < ∞. This implies that the density d�4

1/dg1 is well-
defined, almost surely positive, and lies in Lq(g1) for all 1 ≤ q ≤ ∞. In particular,
the �4

1-model is absolutely continuous with respect to the Gaussian free field g1.
We emphasize that the potential energy in (1.8) does not require a renormalization.
Furthermore, we can define truncated �4

1-models by

d�4
1;N (φ)

def= Z−1
N exp

(
− 1

4

∫
T

(P≤Nφ)4(x) dx
)
dg1(φ),

where N is a dyadic integer and P≤N a Littlewood-Paley projection. As was shown in
[7], direct estimates yield the convergence of d�4

1;N /dg1 in Lq(g1) for all 1 ≤ q < ∞
and hence �4

1;N converges to �4
1 in total variation as N tends to infinity.
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In two spatial dimensions, however, we encounter a new difficulty. Since g1-almost
surely ‖φ‖L2 = ∞, the potential energy ‖φ‖4

L4 is almost surely infinite. As a result, the
potential energy requires a renormalization. A direct calculation using the definition
of P≤N in (1.14) below yields

σ 2
N =

∫ ∞

0
dg2(φ)‖P≤Nφ‖2L2(T2)

∼ log(N ).

We then replace the monomial (P≤Nφ)4 by the Hermite polynomial

:(P≤Nφ)4 := (P≤Nφ)4 − 6σ 2
N (P≤Nφ)2 + 3σ 4

N .

This leads to the truncated �4
2-model given by

d�4
2;N (φ)

def= Z−1
N exp

(
− 1

4

∫
T2

:(P≤Nφ)4 : (x) dx
)
dg2(φ).

After this renormalization, one can show (cf. [36]) that the densities d�4
2;N/dg2

converge in Lq(g2) for all 1 ≤ q < ∞ and we can define �4
2 as the limit (in total-

variation) of�4
2;N as N → ∞. As in one spatial dimension, the�4

2-model is absolutely
continuous with respect to the Gaussian free field g2. Using similar tools as for the
�4

2-model, Bourgain [9] constructed the Gibbs measure μ for the Hamiltonian with
a Hartree interaction for β > 2, which corresponds to a relatively smooth interaction
potential V . The key point of this paragraph is that the �4

1-model, the �4
2-model, and

the Gibbs measure μ for a smooth interaction potential can be constructed through
“hard” analysis. As a result, one obtains strong modes of convergence and absolute
continuity with respect to Gaussian free field.

The construction of the �4
3-model, however, is much more complicated. As will

be described below, several of the “hard” conclusions, such as convergence in total-
variation or absolute continuity with respect to the Gaussian free field, are either
unavailable or fail. As a result, we have to (partially) replace hard estimates by softer
compactness arguments. We now give a short overview of the variational approach in
[5,6], which forms the basis of this paper.

In order to use techniques from stochastic control theory, we introduce a family of
Gaussian processes (Wt (x))t≥0 on an ambient probability space (
,F , P) satisfying
LawP(W∞) = g3, which will be defined in Sect. 2.1. We view t as a stochastic time-
variable which serves as a regularization parameter. Using this terminology, we obtain
a truncated �4

3-model by setting

d�4
3;T (φ) = (W∞)#

(
d�

4
3;T (φ)

)
and

d�
4
3;T (φ) = Z−1

T exp
( − 1

4

∫
T3

W 4
T (x) − aTW

2
T (x) − bT dx

)
dP.
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We emphasize already that the �4
3;T -measure does not correspond to a truncated

Hamiltonian, which will be discussed in full detail in Sect. 2.1. In order to construct
the �4

3-model, the main step is to prove the tightness of the �4
3;T -measures. Using

Prokhorov’s theorem, this implies the weak convergence of a subsequence of �4
3;T

and we can define the �4
3-measure as the weak limit. To prove tightness, Barashkov

and Gubinelli obtain uniform bounds in T on the Laplace transform

f ∈ C(C− 1
2−

x (T3); R) →
∫

d�4
3;T (φ) e− f (φ).

The main ingredients for the uniform bounds are the Boué-Dupuis formula (Theo-
rem 2.1) and the para-controlled calculus of Gubinelli, Imkeller, and Perkowski [20],
which has also been used in the stochastic quantization approach to the �4

3-model (cf.
[19]).

While the variational approach yields the existence of the�4
3-measure, it only yields

limited information regarding its properties. In spatial dimensions d = 1, 2, the �4
d -

model is absolutely continuouswith respect to theGaussian free fieldgd , and hence the
samples of�4

3 formany purposes behave like a randomFourier serieswith independent
coefficients. This is an essential ingredient in almost all invariance arguments for
random dispersive equations (see e.g. [8,9,13,33]). Unfortunately, the �4

3-measure
is singular with respect to the Gaussian free field g3. This fact seems to be part of
the folklore in mathematical physics, but it is surprisingly difficult to find a detailed
reference. In an unpublished note available to the author [24],Martin Hairer proved the
singularity using the stochastic quantization approach and regularity structures. Using
the Girsanov-transformation, Barashkov and Gubinelli [6] constructed a reference
measure ν43 for the �4

3-model, which serves a similar purpose as the Gaussian free
field for �4

1 and �4
2. The samples of ν43 are given by an explicit Gaussian chaos and

�4
3 is absolutely continuous with respect to ν43 . Furthermore, Barashkov and Gubinelli

proved that the reference measure ν43 and the Gaussian free field g3 are mutually
singular, which yields a self-contained proof of the singularity of �4

3 with respect to
the Gaussian free field g3.

1.1 Main results andmethods

In the following, we simply write g = g3 for the three-dimensional Gaussian free
field. Let N ≥ 1 be a dyadic integer and define the renormalized potential energy by

:Vλ
N (φ): def= λ

4

∫
T3

(
(V ∗ φ2)φ2 − 2aNφ2 − 4(MNφ)φ

+V̂ (0)a2N + 2bN
)
dx + cλ

N . (1.9)

The coupling constant λ > 0 is introduced for illustrative purposes, but the reader
may simply set λ = 1 as in all previous discussions. The renormalization constants
aN , bN , and cλ

N are as in Definition 2.8 and Proposition 3.2 and the renormalization
multiplierMN is as in Definition 2.8. We emphasize that the renormalization in (1.9)
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goes beyond the usual Wick-ordering, which is only based on the mass ‖P≤Nφ‖2
L2 .

The additional renormalization is contained in the renormalization constant cλ
N , which

is related to the mutual singularity of μ⊗ and g (for 0 < β < 1/2). The truncated and
renormalized Hamiltonian HN is given by

HN [φ0, φ1] def= 1

2

(
‖φ0‖2L2 + ‖∇φ0‖2L2 + ‖φ1‖2L2

)
+ :Vλ

N (P≤Nφ0): , (1.10)

where we omit the dependence on λ > 0 from our notation. We emphasize that only
the quartic term contains a frequency-truncation and renormalization, whereas the
quadratic terms remain unchanged. As described in the beginning of the introduction,
we focus on the first factor of the truncated Gibbs measure μ⊗N , which is given by

dμN (φ) = 1

Zλ
N

exp
(
− :Vλ

N (P≤Nφ):
)
dg(φ). (1.11)

Before we state our main result, we recall the assumptions on the interaction potential
V : T

3 → R from the introduction to the series. In these assumptions, 0 < β < 3 is a
parameter.

Assumptions A We assume that the interaction potential V satisfies

(1) V (x) = cβ |x |−(3−β) for some cβ > 0 and all x ∈ T
3 satisfying ‖x‖ ≤ 1/10,

(2) V (x) �β 1 for all x ∈ T
3,

(3) V (x) = V (−x) for all x ∈ T
3,

(4) V is smooth away from the origin.

We now state the conclusions of this paper which will be needed in the second part
of this series [11]. A more comprehensive version of our results will then be stated
in Theorems 1.3, 1.4, and 1.5 below. The additional results may be useful in further
applications, such as invariant measures for a Schrödinger equation with a Hartree
nonlinearity.

Theorem 1.1 (The Gibbs measure). Let κ > 0 be a fixed positive parameter, let
0 < β < 3 be a parameter, and let the interaction potential V be as in the Assump-
tions A. Then, the sequence of truncated Gibbs measures (μN )N≥1 converges weakly

to a probability measure μ∞ on C−1/2−κ
x (T3), which is called the Gibbs measure.

If in addition 0 < β < 1/2, the Gibbs measure μ∞ and the Gaussian free field g

are mutually singular. Furthermore, there exists a sequence of reference measures
(νN )N≥1 on C−1/2−κ

x (T3) and an ambient probability space (
,F , P) satisfying the
following properties:

(1) (Absolute continuity and Lq-bounds) The truncated Gibbs measuresμN are abso-
lutely continuous with respect to the reference measures νN . More quantitatively,
there exists a parameter q > 1 and a constant C ≥ 1, depending only on β, such
that

μN (A) ≤ CνN (A)
1− 1

q
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for all Borel sets A ⊆ C−1/2−κ
x (T3).

(2) (Representation of νN ) Let γ = min(1/2 + β, 1). There exists a large integer
k = k(β) and two random functions g,RN : (
,F) → C−1/2−κ

x (T3) satisfying
for all p ≥ 2 that

νN = LawP

(G + RN
)
, g = LawP

(G)
, and ‖RN‖L p

ωCγ−κ
x (
×T3)

≤ p
k
2 .

Remark 1.2 After the completion of (the first version of) this series, the author learned
of independentwork byOh,Okamoto, andTolomeo [35], which discusses the focusing
and defocusing three-dimensional (stochastic) nonlinear wave equation with a Hartree
nonlinearity. In the focusing case, the authors provide a complete picture of the con-
struction and properties of the focusing Gibbs measures, which distinguishes the three
regimes β > 2, β = 2, and β < 2 (cf. [35]). In the defocusing case, the authors
construct the Gibbs measures for β > 0 and prove the singularity for 0 < β ≤ 1/2,
which includes the endpoint β = 1/2. The reference measures are briefly discussed
in [35, Appendix C], but only play a minor role in their analysis. The Lq -bound in
Theorem 1.1, which will be essential in the second part of this series [11], is not proven
in [35].

In the first version of this manuscript, we proved the tightness of the truncated
Gibbs measures (μN )N≥1 which only implies the convergence of a subsequence of
(μN )N≥1. In [35], the authors proved the uniqueness of weak subsequential limits,
which lead to the convergence of the full sequence. A version of the uniqueness
argument from [35], which has been modified to match our notation, has now been
included in “Appendix C”.

While the measure-theoretic part of [35] treats all β > 0, the dynamical results are
restricted to β > 1. In particular, the singular regime 0 < β < 1/2 is not covered,
which is the main object of this series.

In addition to the singular regime 0 < β < 1/2, the most interesting cases in Theo-
rem 1.1 are the Newtonian potential |x |−2 (corresponding to β = 1) and the Coulomb
potential |x |−1 (corresponding to β = 2). As mentioned earlier in the introduction,
Bourgain [9] proved a version of Theorem 1.1 in the limited range β > 2, which
corresponds to a relatively smooth interaction potential.

We now split the main theorem (Theorem 1.1) into three parts:

• the tightness and weak convergence of the truncated Gibbs measures μN ,
• the construction and properties of the reference measures νN ,
• the mutual singularity of the Gibbs measure and the Gaussian free field.

Theorem 1.3 (Tightness and convergence). The truncated Gibbs measures (μN )N≥1

are tight on C−1/2−κ
x (T3). Furthermore, the sequence (μN )N≥1 weakly converges to

a limiting measure μ∞.

The overall strategy of the proof of Theorem 1.3 is the same as in the variational
approach of Barashkov and Gubinelli [5]. In comparison with [5], the terms in this
paper often have a more complicated algebraic structure but obey better analytical
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estimates. As any reader familiar with regularity structures or para-controlled cal-
culus may certify, the algebraic structure of most stochastic objects is already quite
complicated, so this trade-off is not always favorable. In addition, the non-locality of
the nonlinearity requires different analytical estimates and we mention the two most
important examples:

(i) The coercive term ‖ f ‖4
L4 in the variational problem for the �4

3-model is replaced
by the potential energy ∫

T3
(V ∗ f 2) f 2 dx .

We emphasize that the coercive term in the variational problem does not contain
a renormalization, which is a result of the binomial formula in Lemma 2.11. In
order to use the potential energy in our estimates, we rely on a fractional derivative
estimate of Visan [41, (5.17)].

(ii) In the variational problem, we encounter mixed terms of the form∫
T3

[(
V ∗ (P≤NW∞ · P≤N f1) · P≤NW∞ · P≤N f2 − (MN P≤N f1

)
P≤N f2

]
dx,

where (Wt )t≥0 is the Gaussian process from the introduction. Based on the liter-
ature on random dispersive equations [8,9,13,14,22], it is tempting to bound this
mixed term through Fourier-analytic and random matrix techniques. We instead
develop a simpler and elegant physical-space approach.

The next theorem gives a more detailed description of the reference measures in
Theorem 1.1. To simplify the notation, we allow the truncation parameter N to take
the value ∞.

Theorem 1.4 (Reference measures). There exists a family of reference measures
(νN )1≤N≤∞ and an ambient probability space (
,F , P) satisfying the following
properties:

(1) Absolute continuity and Lq-bounds: The truncated Gibbs measures μN are abso-
lutely continuous with respect to the reference measures νN . More quantitatively,
there exists a parameter q > 1 and a constant C ≥ 1, depending only on β, such
that

μN (A) ≤ CνN (A)
1− 1

q

for all Borel sets A ⊆ C−1/2−κ
x (T3).

(2) Representation of νN : We have that

νN = LawP

(G(1) + G(3)
N + G(n)

N

)
.

Here, n = n(β) is a large integer and the linear, cubic, and n-th order Gaussian
chaoses are explicitly given by

G(1) = W∞,
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G(3)
N = −λP≤N

∫ ∞

0
J 2s

(
:(V ∗ (P≤NWs)

2)P≤NWs :
)
ds,

G(n)
N = P≤N

∫ ∞

0
〈∇〉− 1

2 J 2s
(

:(〈∇〉− 1
2 P≤NWs)

n :
)
ds,

where we refer the reader to Sect. 2.1 and Definition 2.6 for the definitions of Js
and the renormalizations.

We emphasize that the representation of νN in Theorem 1.4 is much more detailed
than stated in Theorem 1.1. This additional information is not required in our proof
of global well-posedness and invariance in the second part of the series. However,
we believe that the more detailed representation way be relevant for the Schrödinger
equation with a Hartree nonlinearity. The reason lies in low×low×high-interactions,
which are more difficult in Schrödinger equations than in wave equations. In the last
two years, we have seen new and intricate methods dealing with these interactions
[10,13,14], but all of these papers heavily rely on the independence of the Fourier
coefficients. In fact, overcoming this obstruction is mentioned as an open problem in
[14, Section 9.1].

The proof of Theorem 1.4 is based on the Girsanov-approach of Barashkov and
Gubinelli [6]. As mentioned earlier, however, we cannot use the same approximate
Gibbsmeasures as in [6], since they do not correspond to a frequency-truncatedHamil-
tonian. In the second part of the series, the frequency-truncated Hamiltonians are an
essential ingredient in the proof of global well-posedness and invariance. This differ-
ence will be discussed in detail in Sect. 2.1. For now, we simply mention that there is
a trade-off between desirable properties from a PDE or probabilistic perspective.

Our last theorem describes the relationship between the Gibbs measureμ∞ and the
Gaussian free field g.

Theorem 1.5 (Singularity). If 0 < β < 1/2, then the Gibbs measure μ∞ and the
Gaussian free field g are mutually singular. If β > 1/2, then the Gibbs measure is
absolutely continuous with respect to the Gaussian free field g.

Theorem 1.5 determines the exact threshold between absolute continuity and sin-
gularity of μ∞ with respect to g. As mentioned in Remark 1.2, the singularity at
the endpoint β = 1/2 has been obtained in independent work by Oh, Okamoto, and
Tolomeo [35]. The absolute continuity for β > 1/2 already follows from the varia-
tional estimates in our construction of μ∞. The main step is the mutual singularity of
μ∞ and g for 0 < β < 1/2. We provide an explicit event witnessing this singularity,
which is based on the behaviour of the frequency-truncated potential energy

∫
T3

:(V ∗ (P≤Nφ)2)(P≤Nφ)2 : dx

under the different measures.
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1.2 Overview

To orient the reader, let us review the rest of this paper. In Sect. 2.1, we introduce
the stochastic control perspective and recall the Boué–Dupuis formula. In Sect. 2.2,
we estimate several stochastic objects, such as the renormalized nonlinearity : (V ∗
W 2

t )Wt :. Our main tools will be Itô’s formula and Gaussian hypercontractivity. In
Sect. 3, we prove the tightness of the truncated Gibbs measures μN and construct the
limiting measure μ∞. Using the Laplace transform and the Boué-Dupuis formula,
the proof of tightness reduces to estimates for a variational problem, which occupy
most of this section. In Sect. 4, we first construct the reference measures νN and then
examine their properties. The main ingredients are Girsanov’s transformation and our
earlier variational estimates. Finally, in Sect. 5, we prove the singularity of the Gibbs
measure μ∞ with respect to the Gaussian free field g for all 0 < β < 1/2.

1.3 Notation

In the rest of the paper, we use
def= instead of := for definitions. The reason is that

the colon in := may be confused with our notation for renormalized powers in Def-
inition 2.6 below. With a slight abuse of notation, we write dx for the normalized
Lebesgue measure on T

3. That is, we implicitly normalize

∫
T3

1 dx = 1.

We define the Fourier transform of a function f : T
3 → C by

f̂ (n)
def=

∫
T3

f (x)e−inx dx .

For any k ∈ N and n1, . . . , nk ∈ Z
3, we define

n12...k
def=

k∑
j=1

n j . (1.12)

For instance, n12 = n1 + n2 and n123 = n1 + n2 + n3.
We now introduce our frequency-truncation operators. We let ρ : R>0 → [0, 1]

be a smooth, non-increasing function satisfying ρ(y) = 1 for all 0 ≤ y ≤ 1/4
and ρ(y) = 0 for all y ≥ 4. We also assume that min(ρ(y),−ρ′(y)) � 1 for all
1/2 ≤ y ≤ 2. For any t ≥ 0 and n ∈ Z

3, we also define

ρt (n)
def= ρ

(‖n‖2
〈t〉

)
.
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In particular, it holds that t �→ ρt (ξ) is non-decreasing. In order to break up the
frequency truncation, we also set

σt (n)
def=

( d

dt
ρt (n)

) 1
2
. (1.13)

This continuous approach instead of the usual discrete decomposition will be essential
in the stochastic control approach (Sect. 2.1). Nevertheless, we will sometimes use the
usual dyadic Littlewood-Paley operators. For any dyadic N ≥ 1, we define P≤N by

P̂≤N f (n) = ρN (n) f̂ (n). (1.14)

We further set

P1 f = P≤1 f and PN f = P≤N f − P≤N/2 f for all N ≥ 2.

The corresponding Fourier multipliers are denoted by

χ1(n) = ρ1(n) and χN (n) = ρN (n) − ρN/2(n) for all N ≥ 2. (1.15)

For any s ∈ R, the Csx (T3)-norm is defined as

‖ f ‖Cs
x (T

3)
def= sup

N≥1
Ns‖PN f ‖L∞

x (T3). (1.16)

We then define the corresponding space Csx (T3) by

Csx (T3)
def= {

f : T
3 → R| ‖ f ‖Cs

x
< ∞, lim

N→∞ Ns‖PN f ‖L∞
x (T3) = 0

}
. (1.17)

Due to the additional constraint as N → ∞, the space Csx (T3) is separable. This
allows us to later use Prokhorov’s theorem for families of measures on Csx (T3). We
also define

C0t Csx ([0,∞] × T
3)

def= {
f : [0,∞)×T

3 → R| sup
t≥0

‖ f (t, ·)‖Cs
x (T

3) <∞, lim
t→∞ f (t, ·) exists in Csx (T3)

}
.

Similar as above, the additional restriction as t → ∞ makes C0t Csx ([0,∞] × T
3)

separable.
As a measure of tightness in C0t Csx ([0,∞] × T

3), we define for any 0 < α < 1 and
η > 0 the norm

‖ f ‖Cα,η
t Cs

x ([0,∞]×T3)

def= ‖ f (0)‖Cs
x (T

3)

123



14 Stoch PDE: Anal Comp (2022) 10:1–89

+ sup
0≤t,t ′≤∞

(
min(〈t〉, 〈t ′〉)η ‖ f (t) − f (t ′)‖Cs

x (T
3)

1 ∧ |t − t ′|α
)

. (1.18)

For 1 ≤ r ≤ ∞, we also define the Sobolev space W
s,r
x (T3) as the completion of

C∞
x (T3) with respect to

‖ f ‖
W

s,r
x

= ‖Ns PN f ‖�rN Lrx .

We hope that the subscript x prevents any confusion with the stochastic objects in
Sect. 2.2.

2 Stochastic objects

In this section, we introduce the stochastic control framework and describe several
stochastic objects.While the reader with a background in singular SPDE and advanced
stochastic calculus can think of this section as standard, much of this section may be
new to a reader with a primary background in dispersive PDE. As a result, we include
full details for most standard arguments but encourage the expert to skip the proofs.

2.1 Stochastic control perspective

We let (Bn
t )n∈Z3\{0} be a sequence of standard complex Brownian motions such that

B−n
t = Bn

t and Bn
t , Bm

t are independent for n �= ±m. We let B0
t be a standard real-

valued Brownian motion independent of (Bn
t )n∈Z3\{0}. Furthermore, we let Bt (·) be

the Gaussian process with Fourier coefficients (Bn
t )n∈Z3 , i.e.,

Bt (x)
def=

∑
n∈Z3

ei〈n,x〉Bn
t . (2.1)

For every t ≥ 0, the Gaussian process formally satisfies E[Bt (x)Bt (y)] = t · δ(x − y)
and hence Bt (·) is a scalar multiple of spatial white noise. We also let (Ft )t≥0 be the
filtration corresponding to the family of Gaussian processes (Bn

t )t≥0. For future use,
we denote the ambient probability space by (
,F , P).

The Gaussian free field g, however, has covariance (1 − �)−1. To this end, we
now introduce the Gaussian processWt (x). For σt (x) as in (1.13) and any n ∈ Z

3, we
define

Wn
t

def=
∫ t

0

σs(n)

〈n〉 dBn
s . (2.2)
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We note that Wn
t is a complex Gaussian random variable with variance ρ2

t (n)/〈n〉2.
We finally set

Wt (x)
def=

∑
n∈Z3

ei〈n,x〉Wn
t . (2.3)

It is easy to see for any κ > 0 that W ∈ C0t C−1/2−κ
x ([0,∞] × T

3) almost surely. With
a slight abuse of notation, we write dP(W ) for the integration with respect to the law
of W under P, i.e., we omit the pushforward by W , and we write W for the canonical
process on C0t C−1/2−κ

x ([0,∞] × T
3). Comparing Wt and Bt , we have changed the

covariance from t Id to ρt (∇)2(I − �)−1. For any fixed T ≥ 0, we have that

LawP(WT ) = LawP(ρT (∇)W∞). (2.4)

We already emphasize, however, that the processes t �→ Wt and t �→ ρt (∇)W∞
have different laws, since only the first process has independent increments. This
difference will be important in the definition of μ̃T below. To simplify the notation,
we also introduce the Fourier multiplier Jt , which is defined by

Ĵt f (n)
def= σt (n)

〈n〉 f̂ (n), (2.5)

Using this notation, we can represent the Gaussian process Wt through the stochastic
integral

Wt =
∫ t

0
Js dBs .

In a similar spirit, we define for any u : [0,∞) × T
3 → R the integral It [u] by

It [u] def=
∫ t

0
Jsus ds. (2.6)

We now recall the Boué-Dupuis formula [3], where our formulation closely follows [5,
6]. We letHa be the space ofFt -progressively measurable processes u : 
×[0,∞)×
T
3 → R which P-almost surely belong to L2

t,x ([0,∞) × T
3).

Theorem 2.1 (Boué-Dupuis formula). Let 0 < T < ∞, let F : Ct ([0, T ],C∞
x (T3))

→ R be a Borel measurable function, and let 1 < p, q < ∞. Assume that

1

p
+ 1

q
= 1, EP

[|F(W )|p] < ∞, and EP

[
e−qF(W )

]
< ∞, (2.7)

where we regard W as an element of Ct ([0, T ],C∞
x (T3)). Then,

− logEP

[
e−F(W )

]
= inf

u∈Ha
EP

[
F(W + I (u)) + 1

2

∫ T

0
‖us‖2L2(T3)

ds
]
. (2.8)
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Remark 2.2 The optimization problem in (2.8) and, more generally, the change of
perspective from W∞ to the whole process t �→ Wt , is reminiscent of stochastic
control theory.

Due to the frequency projection in the definition of Jt , we have that Wt , It [u] ∈
Ct ([0, T ],C∞

x (T3)). In our arguments below, the smoothness can be used to verify
(2.7) through soft methods. Of course, a soft method cannot yield uniform bounds in
T , which are one of the main goals of this section.

In the introduction, we discussed the Gibbs measure μN corresponding to the
truncated dynamics induced by HN , which has been defined in (1.10). In the spirit of
the stochastic control approach, we now change our notation and use the parameter
T to denote the truncation. Since the law of W∞ under P is the same as the Gaussian
free field g and P≤T = ρT (∇), we obtain that

dμT (φ) = 1

ZT ,λ
exp

(
− :VT ,λ(ρT (∇)φ):

)
d
(
(W∞)#P

)
(φ). (2.9)

The renormalized potential energy VT ,λ is as in (3.2). We view μT as a measure on the
space C−1/2−κ

x (T3) for any fixed κ > 0. In order to utilize the Boué-Dupuis formula,
we lift μT to a measure on C0t C−1/2−κ

x ([0,∞] × T
3).

Definition 2.3 We define the measure μ̃T on C0t C−1/2−κ
x ([0,∞] × T

3) by

dμ̃T (W )
def= 1

ZT ,λ
exp

(− :VT ,λ(ρT (∇)W∞): )
dP(W ). (2.10)

The content of the next lemma explains the relationship between μ̃T and μT .

Lemma 2.4 The Gibbs measure μT is the pushforward of μ̃T under W∞, i.e.,

μT = (W∞)#μ̃T . (2.11)

Due to its central importance to the rest of the paper, we prove this basic identity.

Proof For any measurable function f : C− 1
2−κ

x (T3) → R, we have that

∫
f (φ)dμT (φ) = 1

ZT ,λ

∫
f (φ) exp(− :VT ,λ(ρT (∇)φ):)d((W∞)#P

)
(φ)

= 1

ZT ,λ

∫
f (W∞) exp(− :VT ,λ(ρT (∇)W∞):)dP(W )

=
∫

f (W∞)dμ̃T (W )

=
∫

f (φ)d
(
(W∞)#μ̃T

)
(φ).

This proves the desired identity (2.4). ��
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In [5,6], Barashkov and Gubinelli work with the lifted measure

d�μT (W ) = 1

ZT ,λ
exp

(− :VT ,λ(WT ): )
dP(W ). (2.12)

While WT and ρT (∇)W∞ have the same distribution, the measures μ̃T and �μT do
not coincide. Since this is an important difference between this paper and the earlier
works [5,6], let us explain our motivation for working with μ̃T instead of �μT . From
a probabilistic stand-point, the measure �μT has better properties than μ̃T . This is
related to the independent increments of the process t �→ Wt and we provide further
comments in Remark 4.8 below. From a PDE perspective, however,�μT behaves much
worse than μ̃T . For the proof of globalwell-posedness and invariance in the second part
of this series, it is essential that μT = (W∞)#μ̃T is invariant under the Hamiltonian
flow of (1.10). In contrast, the author is not aware of an explicit expression for the
pushforward of�μT underW∞. In particular, (W∞)#�μT is not directly related toμT and
not necessarily invariant under the Hamiltonian flow of HN . Alternatively, we could
work with the pushforward of �μT under WT . A similar calculation as in the proof
of Lemma 2.4 shows that (WT )#�μT = (ρT (∇))#μT . Unfortunately, (ρT (∇))#μT

also does not seem to be invariant under a truncation of the nonlinear wave equation.
To summarize, while the measure �μT has useful probabilistic properties, it lacks a
direct relationship to the truncated dynamics and is ill-suited for our globalization and
invariance arguments.

Since we rely on ρT (∇)W∞ in the definition of μ̃T , the Gaussian process t �→
ρT (∇)Wt will play an important role in the rest of this paper. As a result, we now
deal with both values T and t simultaneously. In most arguments, T will remain fixed
while we use Itô’s formula and martingale properties in t . To simplify the notation,
we now write

WT
t

def= ρT (∇)Wt and WT ,n
t

def= ρT (n)Wn
t . (2.13)

Since this will be convenient below, we also define

ρT
t (n)

def= ρT (n) · ρt (n), σ T
t (n)

def= ρT (n)σt (n), and J T
t

def= ρT (∇)Jt .

(2.14)

Furthermore, we define the integral operator I Tt by

I Tt [u] = ρT (∇)It [u] =
∫ t

0
J T
s us ds. (2.15)

2.2 Stochastic objects and renormalization

We now proceed with the construction and renormalization of several stochastic
objects. Similar constructions are standard in the probability theory literature and
a comprehensive and well-written introduction can be found in [23,30,36]. In order to

123



18 Stoch PDE: Anal Comp (2022) 10:1–89

make this section accessible to readers with a primary background in dispersive PDEs,
however, we include full details. In a similar spirit, we follow a hands-on approach
and mainly rely on Itô calculus. In Lemma 2.20, however, this approach becomes
computationally infeasible and we also use multiple stochastic integrals (see [34] or
Sect. A.2).

Lemma 2.5 Let SN be the symmetric group on {1, . . . , N } and let W T ,n
t be as in (2.13).

Then, we have for all n1, n2, n3, n4 ∈ Z
3 that

WT ,n1
t =

∫ t

0
dWT ,n1

t1 (2.16)

WT ,n1
t W T ,n2

t =
∑
π∈S2

∫ t

0

∫ t1

0
dW

T ,nπ(2)
t2 dW

T ,nπ(1)
t1 + δn1+n2=0

ρT
t (n1)2

〈n1〉2 , (2.17)

WT ,n1
t W T ,n2

t W T ,n3
t =

∑
π∈S3

∫ t

0

∫ t1

0

∫ t2

0
dW

T ,nπ(3)
t3 dW

T ,nπ(2)
t2 dW

T ,nπ(1)
t1

+ 1

2

∑
π∈S3

δnπ(1)+nπ(2)=0
ρT
t (nπ(1))

2

〈nπ(1)〉2 W
T ,nπ(3)
t , (2.18)

WT ,n1
t W T ,n2

t W T ,n3
t W T ,n4

t =
∑
π∈S4

∫ t

0

∫ t1

0

∫ t2

0

∫ t3

0
dW

T ,nπ(4)
t4 dW

T ,nπ(3)
t3 dW

T ,nπ(2)
t2 dW

T ,nπ(1)
t1

+ 1

4

∑
π∈S4

δnπ(1)+nπ(2)=0
ρT
t (nπ(1))

2

〈nπ(1)〉2 W
T ,nπ(3)
t W

T ,nπ(4)
t

− 1

8

∑
π∈S4

δnπ(1)+nπ(2)=nπ(3)+nπ(4)=0
ρT
t (nπ(1))

2

〈nπ(1)〉2
ρT
t (nπ(3))

2

〈nπ(3)〉2 . (2.19)

The integrals in (2.16)–(2.19) are iterated Itô integrals. This lemma is related to the
product formula for multiple stochastic integrals, see e.g. [34, Proposition 1.1.3].

Proof The first equation (2.16) follows from the definition of the Itô derivative dWn
t .

The second equation (2.17) follows from Itô’s product formula. Indeed, we have
that

WT ,n1
t W T ,n2

t =
∫ t

0
WT ,n2

s dWT ,n1
s +

∫ t

0
WT ,n1

s dWT ,n2
s +

∫ t

0
d〈WT ,n1,WT ,n2〉s

=
∫ t

0

( ∫ s

0
dWT ,n2

τ

)
dWT ,n1

s

+
∫ t

0

( ∫ s

0
dWT ,n1

τ

)
dWT ,n2

s

+ δn1+n2=0

∫ t

0

σ T
s (n1)2

〈n1〉2 ds

=
∑
π∈S2

∫ t

0

∫ t1

0
dW

T ,nπ(2)
t2 dW

T ,nπ(1)
t1 + δn1+n2=0

ρT
t (n1)2

〈n1〉2 .
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The third equation (2.18) follows from Itô’s formula and the second equation (2.17).
Using Itô’s formula, we have that

WT ,n1
t W T ,n2

t W T ,n3
t

= 1

2

∑
π∈S3

∫ t

0
W

T ,nπ(3)
s W

T ,nπ(2)
s dW

T ,nπ(1)
s

+ 1

2

∑
π∈S3

∫ t

0
W

T ,nπ(3)
s d〈WT ,nπ(2) ,WT ,nπ(1)〉s .

The easiest way to keep track of the pre-factors throughout the proof is to compare
the number of terms of each type and the cardinality of the symmetric group. In the
formula above, we have three terms of each type and the cardinality #S3 = 6, so we
need the pre-factor 1/2. By inserting the second equation (2.17) and our expression
for the cross-variation, we obtain

WT ,n1
t W T ,n2

t W T ,n3
t

=
∑
π∈S3

∫ t

0

∫ t1

0

∫ t2

0
dW

T ,nπ(3)
t3 dW

T ,nπ(2)
t2 dW

T ,nπ(1)
t1

+ 1

2

∑
π∈S3

δnπ(3)+nπ(2)=0

∫ t

0

ρT
s (nπ(2))

2

〈nπ(2)〉2 dW
T ,nπ(1)
s

+ 1

2

∑
π∈S3

δnπ(1)+nπ(2)=0

∫ t

0

σ T
s (nπ(1))

2

〈nπ(1)〉2 W
T ,nπ(3)
s ds

=
∑
π∈S3

∫ t

0

∫ t1

0

∫ t2

0
dW

T ,nπ(3)
t3 dW

T ,nπ(2)
t2 dW

T ,nπ(1)
t1

+ 1

2

∑
π∈S3

δnπ(1)+nπ(2)=0

∫ t

0

(
σ T
s (nπ(1))

2

〈nπ(1)〉2 W
T ,nπ(3)
s ds + ρT

s (nπ(1))
2

〈nπ(1)〉2 dW
T ,nπ(3)
s

)

=
∑
π∈S3

∫ t

0

∫ t1

0

∫ t2

0
dW

T ,nπ(3)
t3 dW

T ,nπ(2)
t2 dW

T ,nπ(1)
t1

+ 1

2

∑
π∈S3

δnπ(1)+nπ(2)=0
ρT
t (nπ(1))

2

〈nπ(1)〉2 W
T ,nπ(3)
t .

For the second equality, we also used the permutation invariance of any sum over
π ∈ S3. This completes the proof of the third equation (2.18).

We now prove the fourth and final equation (2.19). The argument differs from the
proof of the third equation only in its notational complexity. Using Itô’s formula and
the third equation (2.18), we obtain that

WT ,n1
t W T ,n2

t W T ,n3
t W T ,n4

t
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= 1

6

∑
π∈S4

∫ t

0
W

T ,nπ(4)
s W

T ,nπ(3)
s W

T ,nπ(2)
s dW

T ,nπ(1)
s

+ 1

4

∑
π∈S4

∫ t

0
W

T ,nπ(4)
s W

T ,nπ(3)
s d〈WT ,nπ(2) ,WT ,nπ(1)〉s

=
∑
π∈S4

∫ t

0

∫ t1

0

∫ t2

0

∫ t3

0
dW

T ,nπ(4)
t4 dW

T ,nπ(3)
t3 dW

T ,nπ(2)
t2 dW

T ,nπ(1)
t1

+ 1

2

∑
π∈S4

δnπ(1)+nπ(2)=0

〈nπ(1)〉2
∫ t

0
ρT
s (nπ(1))

2W
T ,nπ(4)
s dW

T ,nπ(3)
s

+ 1

4

∑
π∈S4

∫ t

0
σ T
s (nπ(1))

2W
T ,nπ(4)
s W

T ,nπ(3)
s ds

=
∑
π∈S4

∫ t

0

∫ t1

0

∫ t2

0

∫ t3

0
dW

T ,nπ(4)
t4 dW

T ,nπ(3)
t3 dW

T ,nπ(2)
t2 dW

T ,nπ(1)
t1

+ 1

4

∑
π∈S4

[
δnπ(1)+nπ(2)=0

〈nπ(1)〉2

×
∫ t

0

(
σ T
s (nπ(1))

2W
T ,nπ(4)
s W

T ,nπ(3)
s ds + ρT

s (nπ(1))
2W

T ,nπ(4)
s dW

T ,nπ(3)
s

+ ρT
s (nπ(1))

2W
T ,nπ(3)
s dW

T ,nπ(4)
s

)]
.

Using Itô’s formula, we obtain that

∫ t

0

(
σ T
s (nπ(1))

2W
T ,nπ(4)
s W

T ,nπ(3)
s ds + ρT

s (nπ(1))
2W

T ,nπ(4)
s dW

T ,nπ(3)
s

+ ρT
s (nπ(1))

2W
T ,nπ(3)
s dW

T ,nπ(4)
s

)

= ρT
t (nπ(1))

2W
T ,nπ(3)
t W

T ,nπ(4)
t − δnπ(3)+nπ(4)=0

∫ t

0
ρT
s (nπ(1))

2 σ T
s (nπ(3))

2

〈nπ(3)〉2 ds.

The total contribution of the second summand is

− 1

4

∑
π∈S4

δnπ(1)+nπ(2)=nπ(3)+nπ(4)=0

〈nπ(1)〉2〈nπ(3)〉2
∫ t

0
ρT
s (nπ(1))

2σ T
s (nπ(3))

2 ds

= −1

8

∑
π∈S4

δnπ(1)+nπ(2)=nπ(3)+nπ(4)=0

〈nπ(1)〉2〈nπ(3)〉2
∫ t

0

×
(
ρT
s (nπ(1))

2σ T
s (nπ(3))

2 + σ T
s (nπ(1))

2ρT
s (nπ(3))

2
)
ds

= −1

8

∑
π∈S4

δnπ(1)+nπ(2)=nπ(3)+nπ(4)=0
ρT
t (nπ(1))

2

〈nπ(1)〉2
ρT
t (nπ(3))

2

〈nπ(3)〉2 .
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This completes the proof of the fourth equation (2.19). ��
Definition 2.6 (Renormalization).Wedefine the renormalization constantsaT

t , bT
t ∈ R

and the multiplier MT
t : L2(T3) → L2(T3) by

aT
t

def=
∑
n∈Z3

ρT
t (n)2

〈n〉2 , bT
t

def=
∑

n1,n2∈Z3

V̂ (n1 + n2)ρT
t (n1)2ρT

t (n2)2

〈n1〉2〈n2〉2

and

M̂T
t f (n)

def=
( ∑
m∈Z3

V̂ (n + m)
ρT
t (m)2

〈m〉2
)
f̂ (n).

Using this notation, we set

: f 2 : de f= f 2 − aT
t , (2.20)

:(V ∗ f 2) f : de f= (V ∗ f 2) f − aT
t V̂ (0) f − 2MT

t f , (2.21)

:(V ∗ f 2) f 2 : de f= (V ∗ f 2) f 2 − aT
t V ∗ f 2 − aT

t V̂ (0) f 2 − 4(MT
t f ) f

+ (aT
t )2V̂ (0) + 2bT

t . (2.22)

Remark 2.7 As is clear from the definition, the renormalized powers in (2.20), (2.21),
and (2.22) depend on the regularization parameter t . This dependence will always be
clear from context and we thus do not reflect it in our notation.

Definition 2.8 (Renormalization of the dynamics). For any N ≥ 1, we define

aN
def= aN∞ = a∞

N , bN
def= bN∞ = b∞

N , and MN
def= MN∞ = M∞

N . (2.23)

Throughout most of the paper, we will only work with the renormalization constants
from Definition 2.6, which contain two finite parameters. The renormalization con-
stants in Definition 2.8 will be more important in the second part of this series.

Proposition 2.9 (Stochastic integral representation of renormalized powers). With
n12, n123, and n1234 defined as in (1.12), we have that

:(WT
t )2 : = 2

∑
n1,n2∈Z3

ei〈n12,x〉
∫ t

0

∫ t1

0
dWT ,n2

t2 dWT ,n1
t1 (2.24)

:(V ∗ (WT
t )2)WT

t : =
∑

n1,n2,n3∈Z3

π∈S3

V̂ (nπ(1) + nπ(2))e
i〈n123,x〉

×
∫ t

0

∫ t1

0

∫ t2

0
dWT ,n3

t3 dWT ,n2
t2 dWT ,n1

t1 (2.25)
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:(V ∗ (WT
t )2)(WT

t )2 : =
∑

n1,n2,n3,n4∈Z3

π∈S4

[
V̂ (nπ(1) + nπ(2))e

i〈n1234,x〉

×
∫ t

0

∫ t1

0

∫ t2

0

∫ t3

0
dWT ,n4

t4 dWT ,n3
t3 dWT ,n2

t2 dWT ,n1
t1

]
. (2.26)

Furthermore, it holds that

∫
T3

:(V ∗ (WT
t )2)(WT

t )2 : dx = 4
∫ t

0

∫
T3

:(V ∗ (WT
s )2)WT

s : dWT
s . (2.27)

Remark 2.10 The ”lower-order” terms inDefinition 2.6were chosenprecisely to obtain
the result in Proposition 2.9. The renormalized powers ofWT

t can be represented solely
using iterated stochastic integrals, which have many desirable properties.

Proposition 2.9 essentially follows from Lemma 2.5, Definition 2.6, and a tedious
calculation. For the sake of completeness, however, we provide full details.

Proof We first prove (2.24). Using (2.17), we have that

(WT
t )2 =

∑
n1,n2∈Z3

ei〈n1+n2,x〉WT ,n1
t W T ,n2

t

=
∑
π∈S2

∑
n1,n2∈Z3

ei〈n1+n2,x〉
∫ t

0

∫ t1

0
dW

T ,nπ(2)
t2 dW

T ,nπ(1)
t1

+
∑

n1,n2∈Z3

δn1+n2=0
ρT
t (n1)2

〈n1〉2 ei〈n1+n2,x〉

=
∑
π∈S2

∑
n1,n2∈Z3

ei〈n1+n2,x〉
∫ t

0

∫ t1

0
dW

T ,nπ(2)
t2 dW

T ,nπ(1)
t1 + aT

t .

By subtracting aT
t from both sides and symmetrizing, this leads to the desired identity.

We now turn to the proof of (2.25). From (2.18), we obtain that

(V ∗ (WT
t )2)WT

t

=
∑

n1,n2,n3∈Z3

V̂ (n1 + n2)e
i〈n123,x〉WT ,n1

t W T ,n2
t W T ,n3

t

=
∑
π∈S3

∑
n1,n2,n3∈Z3

V̂ (n1 + n2)e
i〈n123,x〉

∫ t

0

∫ t1

0

∫ t2

0
dW

T ,nπ(3)
t3 dW

T ,nπ(2)
t2 dW

T ,nπ(1)
t1

+ 1

2

∑
π∈S3

∑
n1,n2,n3∈Z3

V̂ (n1 + n2)e
i〈n123,x〉δnπ(1)+nπ(2)=0

ρT
t (nπ(1))

2

〈nπ(1)〉2 W
T ,nπ(3)
t ,

=
∑
π∈S3

∑
n1,n2,n3∈Z3

V̂ (n1 + n2)e
i〈n123,x〉

∫ t

0

∫ t1

0

∫ t2

0
dW

T ,nπ(3)
t3 dW

T ,nπ(2)
t2 dW

T ,nπ(1)
t1
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+
∑

n1,n3∈Z3

V̂ (0)ei〈n3,x〉 ρT
t (n1)2

〈n1〉2 WT ,n3
t + 2

∑
n1,n3∈Z3

V̂ (n1 + n3)e
i〈n3,x〉 ρT

t (n1)2

〈n1〉2 WT ,n3
t

=
∑
π∈S3

∑
n1,n2,n3∈Z3

V̂ (n1 + n2)e
i〈n123,x〉

∫ t

0

∫ t1

0

∫ t2

0
dW

T ,nπ(3)
t3 dW

T ,nπ(2)
t2 dW

T ,nπ(1)
t1

+ aT
t V̂ (0)WT

t + 2MT
t W

T
t .

After symmetrizing and comparing with Definition 2.6, this leads to the desired iden-
tity. Next, we prove the identity (2.26). Using (2.19), we have that

(V ∗ (WT
t )2)(WT

t )2

=
∑

n1,n2,n3,n4∈Z3

V̂ (n1 + n2)e
i〈n1234,x〉WT ,n1

t W T ,n2
t W T ,n3

t W T ,n4
t

=
∑

n1,n2,n3,n4∈Z3

π∈S4

V̂ (n1 + n2)e
i〈n1234,x〉

∫ t

0

∫ t1

0

∫ t2

0

∫ t3

0
dW

T ,nπ(4)
t4 dW

T ,nπ(3)
t3 dW

T ,nπ(2)
t2 dW

T ,nπ(1)
t1

+ 1

4

∑
n1,n2,n3,n4∈Z3

π∈S4

V̂ (n1 + n2)e
i〈n1234,x〉δnπ(1)+nπ(2)=0

ρT
t (nπ(1))

2

〈nπ(1)〉2 W
T ,nπ(3)
t W

T ,nπ(4)
t (2.28)

− 1

8

∑
n1,n2,n3,n4∈Z3

π∈S4

V̂ (n1 + n2)e
i〈n1234,x〉δnπ(1)+nπ(2)=nπ(3)+nπ(4)=0

ρT
t (nπ(1))

2

〈nπ(1)〉2
ρT
t (nπ(3))

2

〈nπ(3)〉2 . (2.29)

It remains to simplify (2.28) and (2.29). Regarding (2.28), we have that

1

4

∑
n1,n2,n3,n4∈Z3

π∈S4

V̂ (n1 + n2)e
i〈n1234,x〉δnπ(1)+nπ(2)=0

× ρT
t (nπ(1))

2

〈nπ(1)〉2 W
T ,nπ(3)
t W

T ,nπ(4)
t

=
∑

n1,n2,n3∈Z3

V̂ (n1 + n2)
ρT
t (n3)2

〈n3〉2 ei〈n1+n2,x〉WT ,n1
t W T ,n2

t

+ 4
∑

n1,n2,n3∈Z3

V̂ (n1 + n2)
ρT
t (n2)2

〈n2〉2 ei〈n1+n3,x〉WT ,n1
t W T ,n3

t

+
∑

n1,n3,n4∈Z3

V̂ (0)
ρT
t (n1)2

〈n1〉2 ei〈n3+n4,x〉WT ,n3
t W T ,n4

t

= aT
t V ∗ (WT

t )2 + 4(MT
t W

T
t )WT

t + aT
t V̂ (0)(WT

t )2.

Regarding (2.29), we note that

− 1

8

∑
π∈S4

∑
n1,n2,n3,n4∈Z3

V̂ (n1 + n2)e
i〈n1234,x〉δnπ(1)+nπ(2)=nπ(3)+nπ(4)=0
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ρT
t (nπ(1))

2

〈nπ(1)〉2
ρT
t (nπ(3))

2

〈nπ(3)〉2

= −
∑

n1,n3∈Z3

V̂ (0)
ρT
t (n1)2ρT

t (n3)2

〈n1〉2〈n3〉2 − 2
∑

n1,n2∈Z3

V̂ (n1 + n2)ρT
t (n1)2)ρT

t (n2)2

〈n1〉2〈n2〉2

= −V̂ (0)(aT
t )2 − 2bT

t .

After symmetrizing, this completes the proof of (2.26).
Finally, it remains to prove (2.27). Since V is real-valued and even, we have that

V̂ (n) = V̂ (n) = V̂ (−n). As long as n1234 = 0, this implies

∑
π∈S4

V̂ (nπ(1) + nπ(2)) = 4
∑
π∈S3

V̂ (nπ(1) + nπ(2)). (2.30)

Using (2.30), (2.27) follows after inserting (2.25) and (2.26) into the two sides of the
identity. ��

Like the monomials and Hermite polynomials (further discussed below), the gen-
eralized and renormalized powers in Definition 2.6 satisfy a binomial formula.

Lemma 2.11 (Binomial formula). For any f ∈ H1(T3), we have the binomial formu-
las

:(V ∗ (WT
t + f )2)(WT

t + f ):
=:(V ∗ (WT

t )2)WT
t : +(V∗ :(WT

t )2 :) f + 2
[
(V ∗ (WT

t f ))WT
t − MT

t f
]

+ 2(V ∗ (WT
t f )) f + (V ∗ f 2)WT

t + (V ∗ f 2) f

(2.31)

and ∫
T3

:(V ∗ (WT
t + f )2)(WT

t + f )2 : dx

=
∫
T3

:(V ∗ (WT
t )2)(WT

t )2 : dx + 4
∫
T3

:(V ∗ (WT
t )2)WT

t : f dx

+ 2
∫
T3

(V∗ :(WT
t )2 :) f 2 dx

+ 4
∫
T3

[
(V ∗ (WT

t f ))WT
t f − (MT

t f ) f
]
dx

+ 4
∫
T3

(V ∗ f 2) f W T
t dx +

∫
T3

(V ∗ f 2) f 2 dx .

(2.32)

Remark 2.12 Overall, the terms in (2.32) obey better analytical estimates than their
counterparts for the �4

3-model in [6]. However, their algebraic structure is more com-
plicated. The most challenging term is∫

T3

[
(V ∗ (WT

t f ))WT
t f − (MT

t f ) f
]
dx,

123



Stoch PDE: Anal Comp (2022) 10:1–89 25

which requires a delicate random matrix estimate (Sect. 3.3).

Proof of Lemma 2.11 This follows from Definition 2.6 and the classical binomial for-
mula. For the quartic binomial formula (2.32), we also used the self-adjointness of the
convolution with V and the multiplier MT

t . ��
While this is not reflected in our notation, it is clear from Definition 2.6 that the

multiplier MT
t depends linearly on the interaction potential V . In the proof of the

random matrix estimate (Proposition 3.7), we will need to further decompose MT
t ,

both with respect to the interaction potential V and dyadic frequency blocks. We
introduce the notation corresponding to this decomposition in the next definition.

Definition 2.13 We letMT
t [V ; N1, N2] be the Fourier multiplier corresponding to the

symbol

n �→
∑
k∈Z3

V̂ (n + k)

〈k〉2 χN1(k)χN2(k)ρ
T
t (k)2. (2.33)

In the next definition, we define our last renormalization of a stochastic object.

Definition 2.14 We define the correlation function on T
3 by

CT
t [N1, N2](y) def=

∑
k∈Z3

χN1(k)χN2(k)

〈k〉2 ρT
t (k)2ei〈k,y〉. (2.34)

We further define

:(τy PN1W
T
t )PN2W

T
t : (x)

def= (τy PN1W
T
t )(x)PN2W

T
t (x) − CT

t [N1, N2](y). (2.35)

Here, τy denotes the translation operator τy f (x) = f (x − y).

The next lemma relates themultiplier and correlation function fromDefinitions 2.13
and 2.14, respectively.

Lemma 2.15 (Physical space representation of MT
t ). For any f ∈ C∞

x (T3), we have
that

MT
t [V ; N1, N2] f = (

CT
t [N1, N2]V

) ∗ f . (2.36)

Proof By definition of the multiplier MT
t [V ; N1, N2] and since

k �→ 1

〈k〉2χN1(k)χN2(k)ρ
T
t (k)2 (2.37)

is even, the symbol in (2.33) is the convolution of V̂ with (2.37). As a result, the
sequence n �→ MT

t [V ; N1, N2](n) has the inverse Fourier transform is givenby
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( ∑
k∈Z3

χN1(k)χN2(k)

〈k〉2 ρT
t (k)2ei〈k,x〉

)
V (x) = CT

t [N1, N2](x)V (x).

��
InLemma2.5, Proposition 2.9, Lemmas 2.11 and2.15,wehave dealtwith the algebraic
structure of stochastic objects. We now move from algebraic aspects towards analytic
estimates. In the following lemmas, we show that several stochastic objects are well-
defined and study their regularities.

Lemma 2.16 (Stochastic objects I). For every p ≥ 1, ε > 0, and every 0 < γ <

min(β, 1), we have that

sup
t≥0

(
E

[
‖ :(WT

t )2 : ‖p

C−1−ε
x (T3)

]) 1
p � p, (2.38)

sup
t≥0

(
E

[
‖V∗ :(WT

t )2 : ‖p

C−1+β−ε
x (T3)

]) 1
p � p, (2.39)

sup
t≥0

(
E

[
‖ :(V ∗ (WT

t )2)WT
t : ‖p

C− 3
2+γ

x (T3)

]) 1
p � p

3
2 . (2.40)

Furthermore, as t → ∞ and/or T → ∞, the stochastic objects :(WT
t )2 :, V∗ :(WT

t )2 :,
and :(V ∗ (WT

t )2)WT
t : converge in their respective spaces indicated by (2.38)–(2.40).

Remark 2.17 The statement and proof of Lemma 2.16 are standard and the respective
regularities can be deduced by simple “power-counting”. Nevertheless, we present
the proof to familiarize the reader with our set-up and as a warm-up for Lemma 2.20
below.

Proof The first step in the proofs of (2.38)–(2.40) is a reduction to an estimate in
L2(
×T

3) using Gaussian hypercontractivity. We provide the full details of this step
for (2.38), but will omit similar details in the remaining estimates (2.39)–(2.40).

Let N ≥ 1 and let q = q(ε) ≥ 1 be sufficiently large. By using Hölder’s inequality
in ω ∈ 
, it suffices to prove the estimates for p ≥ q. Using Bernstein’s inequality
and Minkowski’s integral inequality, we obtain

‖PN :(WT
t )2 : ‖L p

ωC−1−ε
x (
×T3)

� N−1− ε
2 ‖PN :(WT

t )2 : ‖L p
ωL

q
x (
×T3)

≤ N−1− ε
2 ‖PN :(WT

t )2 : ‖Lq
x L

p
ω(T3×
).

By Gaussian hypercontractivity (Lemma A.1), we obtain that

N−1− ε
2 ‖PN :(WT

t )2 : ‖Lq
x L

p
ω(T3×
) � N−1− ε

2 p‖PN :(WT
t )2 : ‖Lq

x L2
ω(T3×
).

Since the distribution of :(WT
t )2 : is translation invariant, the function x �→ ‖ :(WT

t )2 :
‖L2

ω(
) is constant. We can then replace Lq
x (T

3) by L2
x (T

3) andobtain
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N−1− ε
2 p‖PN :(WT

t )2 : ‖Lq
x L2

ω(T3×
) � N−1− ε
2 p‖PN :(WT

t )2 : ‖L2
x L

2
ω(T3×
)

� N− ε
4 p‖ :(WT

t )2 : ‖
L2

ωH
−1− ε

4
x (
×T3)

.

In order to prove (2.38), it therefore remains to show uniformly in T , t ≥ 0 that

‖ :(WT
t )2 : ‖2

L2
ωH

−1−ε
x (
×T3)

� 1. (2.41)

Using Proposition 2.9, the orthogonality of the iterated stochastic integrals, and Itô’s
isometry, we have that

‖ :(WT
t )2 : ‖2

L2
ωH

−1−ε
x

= 4
∑
n∈Z3

1

〈n〉2+2ε E

[( ∑
n1,n2∈Z3 :
n1+n2=n

∫ t

0

∫ t1

0
dWT ,n2

t2 dWT ,n1
t1

)2]

�
∑

n,n1,n2∈Z3

n1+n2=n

1

〈n〉2+2ε〈n1〉2〈n2〉2 ρT
t (n1)

2ρT
t (n2)

2

�
∑

n1,n2∈Z3

1

〈n1 + n2〉2+2ε〈n1〉2〈n2〉2 � 1.

This completes the proof of (2.38). The estimate (2.39) can be deduced from the
smoothing properties of V or by repeating the exact same argument. It remains to
prove (2.40), which can be reduced using hypercontractivity (and the room in γ ) to
the estimate

‖ :(V ∗ (WT
t )2)WT

t : ‖2
L2

ωH
− 3
2+γ

x

� 1.

Using Proposition 2.9, the orthogonality of the iterated stochastic integrals, and Itô’s
isometry, we have that

‖ :(V ∗ (WT
t )2)WT

t : ‖2
L2

ωH
− 3
2+γ

x

=
∑
n∈Z3

1

〈n〉3−2γ E

[( ∑
π∈S3

∑
n1,n2,n3∈Z3 :
n1+n2+n3=n

V̂ (nπ(1) + nπ(2))

×
∫ t

0

∫ t1

0

∫ t2

0
dWT ,n3

t3 dWT ,n2
t2 dWT ,n1

t1

)2]

�
∑

n1,n2,n3∈Z3

1

〈n1 + n2 + n3〉3−2γ

1

〈n1 + n2〉2β
1

〈n1〉2〈n2〉2〈n3〉2 .
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By first summing in n3, using that 3 − 2γ > 1, and then in n1 and n2, using γ < β,
we obtain

∑
n1,n2,n3∈Z3

1

〈n1 + n2 + n3〉3−2γ

1

〈n1 + n2〉2β
1

〈n1〉2〈n2〉2〈n3〉2

�
∑

n1,n2∈Z3

1

〈n1 + n2〉2+2(β−γ )

1

〈n1〉2〈n2〉2 � 1.

��

We also record the following refinement of (2.40) in Lemma 2.16, which will be
needed in the proof of Lemma 2.20 below.

Corollary 2.18 For every 0 < γ < min(1, β) and any n ∈ Z
3, we can control the

Fourier coefficients of :(V ∗ (WT
t )2)WT

t : by

sup
T ,t≥0

EP

∣∣∣F(
:(V ∗ (WT

t )2)WT
t :

)
(n)

∣∣∣2 � 〈n〉−2γ . (2.42)

Proof Arguing as in the proof of Lemma 2.16, it suffices to prove that

∑
n1,n2,n3∈Z3 :

n123=n

1

〈n12〉2β〈n1〉2〈n2〉2〈n3〉2 � 1

〈n〉2γ . (2.43)

Indeed, after parametrizing the sum by n1 and n3, (2.43) follows from

∑
n1,n2,n3∈Z3 :

n123=n

1

〈n12〉2β〈n1〉2〈n2〉2〈n3〉2 =
∑

n1,n3∈Z3

1

〈n−n3〉2β〈n1〉2〈n − n1 − n3〉2〈n3〉2

�
∑
n3∈Z3

1

〈n − n3〉1+2β〈n3〉2

� 〈n〉−2γ .

��

Lemma 2.19 (Stochastic objects II).Forany sufficiently small δ > 0 andany N1, N2 ≥
1, it holds that

sup
T ,t≥0

(
E

[
sup
y∈T3

‖ :(τy PN1W
T
t )PN2W

T
t : ‖p

C−1−δ
x (T3)

]) 1
p � max(N1, N2)

− δ
10 p.

(2.44)
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Proof Arguing as in the proof of (2.38) in Lemma 2.16, we have that

sup
y∈T3

(
E

[
‖ :(τy PN1W

T
t )PN2W

T
t : ‖p

C−1−δ
x (T3)

]) 1
p

� max(N1, N2)
− δ

2 p. (2.45)

It only remains to move the supremum in y ∈ T
3 into the expectation. From a crude

estimate, we have for all y, y′ ∈ T
3 that

(
E

[
‖ :(τy PN1W

T
t )PN2W

T
t : − :(τy′ PN1W

T
t )PN2W

T
t : ‖p

C−1−δ
x (T3)

]) 1
p

� max(N1, N2)
3‖y − y′‖ p.

By Kolmogorov’s continuity theorem (cf. [40, Theorem 4.3.2]), we obtain for any
0 < α < 1 that

(
E

[
sup

y,y′∈T3

(‖ :(τy PN1W
T
t )PN2W

T
t : − :(τy′ PN1W

T
t )PN2W

T
t : ‖C−1−δ

x (T3)

‖y − y′‖α

)p]) 1
p

�α max(N1, N2)
3 p.

Combining this with (2.45) leads to the desired estimate. ��
The next lemma is similar to Lemma 2.16, but is concerned with more complicated

stochastic objects. In order to shorten the argument, wewill no longer use Itô’s formula
to express products of stochastic integrals. Instead, we will utilize the product formula
for multiple stochastic integrals from [34, Proposition 1.1.3]. Before we state the
lemma, we follow [5,6] and define

W
T ,[3]
t

def=
∫ t

0
(J T

s )2 :(V ∗ (WT
s )2)WT

s : ds. (2.46)

We emphasize that W
T ,[3]
t contains the interaction potential V even though this is not

reflected in our notation.

Lemma 2.20 (Stochastic objects III). For every p ≥ 1, ε > 0, and every 0 < γ <

min(β, 1
2 ), we have that

sup
T ,t≥0

(
E

[
‖W

T ,[3]
t ‖p

C
1
2+γ

x (T3)

]) 1
p � p

3
2 , (2.47)

sup
T ,t≥0

(
E

[
‖(V∗ :(WT

t )2 :)WT ,[3]
t ‖p

C−1+γ
x (T3)

]) 1
p � p

5
2 , (2.48)

sup
T ,t≥0

(
E

[∥∥(
V ∗ (WT

t W
T ,[3]
t )

)
WT

t − MT
t W

T ,[3]
t

∥∥p

C−1+γ
x (T3)

]) 1
p � p

5
2 . (2.49)
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Remark 2.21 The analog of (V∗ : (WT
t )2 :)WT ,[3]

t for the �4
3-model in [5] requires a

further logarithmic renormalization. In our case, however, the additional smoothing
from the interaction potential V eliminates the responsible logarithmic divergence.

Proof We first prove (2.47), which is (by far) the easiest estimate. As in the proof of
Lemma 2.16, we can use Gaussian hypercontractivity (Lemma A.1) to reduce (2.48)
to the estimate

E

[
‖W

T ,[3]
t ‖2

H
1
2+γ

x (T3)

]
� 1. (2.50)

The rest of the argument follows from Corollary 2.18 and a deterministic estimate.
More precisely, it follows from ‖σ T

s ‖L2
s

= 1 that

‖W
T ,[3]
t ‖2

H
1
2+γ

x (T3)

=
∥∥∥ ∫ t

0
σ T
s (∇)2〈∇〉− 3

2+γ :(V ∗ (WT
s )2)WT

s : ds
∥∥∥2
L2
x

=
∑
n∈Z3

∣∣∣ ∫ t

0
σ T
s (n)2F

(
〈∇〉− 3

2+γ :(V ∗ (WT
s )2)WT

s :
)
(n) ds

∣∣∣2

≤
∑
n∈Z3

∫ t

0
σ T
s (n)2

∣∣∣F(
〈∇〉− 3

2+γ :(V ∗ (WT
s )2)WT

s :
)
(n)

∣∣∣2 ds.
For a small δ > 0, we obtain from Corollary 2.18 (with γ replaced by γ + δ) that

E

[
‖W

T ,[3]
t ‖2

H
1
2+γ

x (T3)

]

≤
∑
n∈Z3

∫ t

0
σ T
s (n)2E

[∣∣∣F(
〈∇〉− 3

2+γ :(V ∗ (WT
s )2)WT

s :
)
(n)

∣∣∣2] ds

�
∑
n∈Z3

∫ t

0
σ T
s (n)2

1

〈n〉3+δ
ds � 1.

We now turn to the proof of (2.48). Using the same reductions based on Gaussian
hypercontractivity as before, it suffices to prove that

E

[
‖(V∗ :(WT

t )2 :)WT ,[3]
t ‖2

H−1+γ
x (T3)

]
� 1. (2.51)

We first rewrite (V∗ :(WT
t )2 :)(x)WT ,[3]

t (x) as a product ofmultiple stochastic integrals
instead of iterated stochastic integrals. This allows us to use the product formula from
Lemma A.4, which leads to a (relatively) simple expression. To simplify the notation
below, we define the symmetrization of V̂ (n1 + n2) by

V̂S(n1, n2, n3) = 1

6

∑
π∈S3

V̂ (nπ(1) + nπ(2)).
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From Proposition 2.9, (2.46), and the stochastic Fubini theorem (see [16, Theorem
4.33]), we have that

W
T ,[3]
t (x)

=
∑

n1,n2,n3∈Z3

π∈S3

V̂ (nπ(1) + nπ(2))

〈n123〉2 ei〈n123,x〉

×
∫ t

0
σ T
s (n123)

2
( ∫ s

0

∫ t1

0

∫ t2

0
dWT ,n3

t3 dWT ,n2
t2 dWT ,n1

t1

)
ds

=
∑

n1,n2,n3∈Z3

V̂S(n1, n2, n3)

〈n123〉2 ei〈n123,x〉

×
∫ t

0

∫ t1

0

∫ t2

0

( ∫ t

max(t1,t2,t3)
σ T
s (n123)

2 ds
)
dWT ,n3

t3 dWT ,n2
t2 dWT ,n1

t1

We define the symmetric function f by

f (t1, n1, t2, n2, t3, n3; t, x)
def= V̂s(n1, n2, n3)

6〈n123〉2
( ∫ t

max(t1,t2,t3)
σ T
s (n123)

2 ds
)
ei〈n123,x〉1{0 ≤ t1, t2, t3 ≤ t}.

where we view both t ∈ R>0 and x ∈ T
3 as fixed parameters. Using the language

from Sect. A.2 and Lemma A.2, we obtain that

W
T ,[3]
t (x) = I3[ f (·; t, x)], (2.52)

where I3 is a multiple stochastic integral. After defining

g(t4, n4, t5, n5; t, x) def= V̂ (n4 + n5)e
i〈n45,x〉1{0 ≤ t4, t5 ≤ t},

a similar but easier calculation leads to

(V∗ :(WT
t )2 :)(x) = I2[g(·; t, x)]. (2.53)

By combining (2.52) and (2.53), we obtain that

(V∗ :(WT
t )2 :)(x)WT ,[3]

t (x) = I3[ f (·; t, x)]I2[g(·; t, x)].

By using the product formula for multiple stochastic integrals (Lemma A.4), we
obtainthat
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(V∗ :(WT
t )2 :)(x)WT ,[3]

t (x)

= I5[ f (·; t, x)g(·; t, x)] + 6 · I3[ f (·; t, x) ⊗1 g(·; t, x)]
+ 3 · I1[ f (·; t, x) ⊗2 g(·; t, x)].

Inserting the definitions of f and g, this leads to

(V∗ :(WT
t )2 :)(x)WT ,[3]

t (x) = G5(t, x) + G3(t, x) + G1(t, x), (2.54)

where the Gaussian chaoses G5,G3, and G1 are given by

G5(t, x) =
∑

n1,...,n5∈Z3

V̂ (n12)V̂ (n45)

〈n123〉2
ei〈n12345,x〉

×
∫
[0,t]5

( ∫ t

max(t1,t2,t3)
σ T
s (n123) ds

)
dWT ,n5

t5 . . . dWT ,n1
t1 ,

G3(t, x) =
∑

n1,...,n5∈Z3

[
δn35=0

V̂s(n1, n2, n3)V̂ (n45)

〈n123〉2〈n3〉2
ei〈n124,x〉

×
∫
[0,t]3

( ∫ t

0

∫ t

max(t1,t2,t3)
σ T
t3(n3)

2σ T
s (n123)

2 dsdt3
)
dWT ,n4

t4 dWT ,n2
t2 dWT ,n1

t1

]
,

G1(t, x) = 1

2

∑
n1,...,n5∈Z3

[
δn24=n35=0

V̂s(n1, n2, n3)V̂ (n45)

〈n123〉2〈n2〉2〈n3〉2
ei〈n1,x〉

×
∫
[0,t]

( ∫ t

0

∫ t

0

∫ t

max(t1,t2,t3)
σ T
t2 (n2)

2σ T
t3(n3)

2σ T
s (n123)

2 dsdt3dt2
)
dWT ,n1

t1

]

Using the L2-orthogonality of the multiple stochastic integrals together with
‖σ T

s ‖L2
s (R>0)

≤ 1, we obtain that

E

[
‖(V∗ :(WT

t )2 :)WT ,[3]
t ‖2

H−1+γ
x

]
� E

[
‖G5‖2

H−1+γ
x

]
+ E

[
‖G3‖2

H−1+γ
x

]
+ E

[
‖G1‖2

H−1+γ
x

]

�
∑

n1,n2,n3,n4,n5∈Z3
〈n12345〉−2+2γ 〈n123〉−4|V̂ (n12)|2|V̂ (n45)|2

5∏
j=1

〈n j 〉−2, (2.55)

+
∑

n1,n2,n4∈Z3
〈n124〉−2+2γ

( ∑
n3∈Z3

〈n123〉−2〈n3〉−2|V̂s (n1, n2, n3)||V̂ (n34)|
)2 ∏

j=1,2,4

〈n j 〉−2

(2.56)

+
∑

n1∈Z3
〈n1〉−4+2γ

( ∑
n2,n3∈Z3

〈n123〉−2|V̂s (n1, n2, n3)||V̂ (n23)|〈n2〉−2〈n3〉−2
)2

. (2.57)

The estimates of the sums (2.55)–(2.57) follow from standard arguments. We present
the details for (2.55) and (2.57), but omit the details for the intermediate term (2.56).

We start with the estimate of (2.55). The interactionwith n1, n2, n3 at low frequency
scales and n4, n5 at high frequency scales is worse than all other contributions, so there
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is a lot of room in several steps below. Using Lemma B.6 for the sum in n5, which
requires γ < min(1, β), and summing in n4, we obtain for a small δ > 0 that

∑
n1,n2,n3,n4,n5∈Z3

〈n12345〉−2+2γ 〈n123〉−4|V̂ (n12)|2|V̂ (n45)|2
5∏
j=1

〈n j 〉−2

�
∑

n1,n2,n3,n4∈Z3
〈n123〉−4〈n12〉−2β

( 4∏
j=1

〈n j 〉−2
)( ∑

n5∈Z3
〈n1234 + n5〉−2+2γ 〈n4 + n5〉−2β 〈n5〉−2

)

�
∑

n1,n2,n3∈Z3
〈n123〉−4〈n12〉−2β

( 3∏
j=1

〈n j 〉−2
)( ∑

n4∈Z3

(〈n1234〉−1−δ + 〈n4〉−1−δ
)〈n4〉−2

)

�
∑

n1,n2,n3∈Z3
〈n123〉−4〈n12〉−2β

3∏
j=1

〈n j 〉−2.

Summing in n3, n2, and n1, we obtain that

∑
n1,n2,n3∈Z3

〈n123〉−4〈n12〉−2β
3∏
j=1

〈n j 〉−2

�
∑

n1,n2∈Z3

〈n12〉−3−2β〈n1〉−2〈n2〉−2 �
∑
n1∈Z3

〈n1〉−4 � 1.

We now turn to (2.57), which corresponds to double probabilistic resonance. We
emphasize that this termwould be unboundedwithout smoothing effect of the potential
V , which is the reason for the additional renormalization in the �4

3-model, see e.g. [5,
Lemma 24]. Using Lemma B.6 for the sum in n3, we obtain that

∑
n1∈Z3

〈n1〉−4+2γ
( ∑
n2,n3∈Z3

〈n123〉−2|V̂s(n1, n2, n3)||V̂ (n23)|〈n2〉−2〈n3〉−2
)2

�
∑
n1∈Z3

〈n1〉−4+2γ
( ∑
n2,n3∈Z3

〈n123〉−2〈n23〉−β〈n2〉−2〈n3〉−2
)2

�
∑
n1∈Z3

〈n1〉−4+2γ
( ∑
n2∈Z3

(〈n12〉−1−β + 〈n2〉−1−β
)〈n2〉−2

)2

�
∑
n1∈Z3

〈n1〉−4+2γ � 1,

provided that γ < 1/2. This completes the proof of (2.48).
We now turn to the proof of (2.49). This stochastic object has a more complicated

algebraic structure than the stochastic object in (2.48), but a similar analytic behavior.
From the definition of MT

t , we obtain that

(
V ∗ (WT

t W
T ,[3]
t )

)
(x)WT

t (x) − MT
t W

T ,[3]
t (x)
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=
∑

m1,m4,m5∈Z3

V̂ (m14)e
i〈m145,x〉̂WT ,[3]

t (m1)
(
WT ,m4

t W T ,m5
t − δm45=0

ρT
t (m4)

2

〈m4〉2
)

= 1

2

∑
m1,m4,m5∈Z3

(
V̂ (m14) + V̂ (m15)

)
ei〈m145,x〉̂WT ,[3]

t (m1)

×
(
WT ,m4

t W T ,m5
t − δm45=0

ρT
t (m4)

2

〈m4〉2
)
.

Using the variable names m1,m4,m5 ∈ Z
3 instead of m1,m2,m3 ∈ Z

3 is convenient
once we insert an expression for W

T ,[3]
t . A minor modification of the derivation of

(2.52) shows that

̂
W

T ,[3]
t (m1) = I[ f (·; t,m1)], (2.58)

where the symmetric function f (·; t,m1) is given by

f (t1, n1, t2, n3, t3, n3; t,m1)

= 1{n123 = m1} 1

〈n123〉2 V̂S(n1, n2, n3)

×
( ∫ t

max(t1,t2,t3)
σ T
s (n123)

2 ds
)
1{0 ≤ t1, t2, t3 ≤ t}.

Using Lemmas 2.5 and A.2, we obtain that

WT ,m4
t W T ,m5

t − δm45=0
ρT
t (m4)

2

〈m4〉2 = I2[g(·; t,m4,m5)], (2.59)

where the symmetric function g(·; t,m4,m5) is given by

g(t4, n4, t5, n5)
def= 1

2

(
1{(n4, n5) = (m4,m5)} + 1{(n4, n5)

= (m5,m4)}
)
1{0 ≤ t4, t5 ≤ t}.

The author believes that inserting indicators such as 1{(n4, n5) = (m4,m5)} is nota-
tionally unpleasant, but it allows us to use the multiple stochastic integrals from [34]
without having to “reinvent the wheel”. With this notation, we obtain that

(
V ∗ (WT

t W
T ,[3]
t )

)
(x)WT

t (x) − MT
t W

T ,[3]
t (x)

= 1

2

∑
m1,m4,m5∈Z3

ei〈m145,x〉(V̂ (m14) + V̂ (m15)
) · I3[ f (·; t,m1)]

· I2[g(·; t,m4,m5)].
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Using Lemma A.4, we obtain that

(
V ∗ (WT

t W
T ,[3]
t )

)
(x)WT

t (x) − MT
t W

T ,[3]
t (x) = G̃5(t, x) + G̃3(t, x) + G̃1(t, x),

(2.60)

where the Gaussian chaoses are defined as

G̃5(t, x) =
∑

n1,...,n5∈Z3

V̂ (n12)V̂ (n1234)

〈n123〉2
ei〈n12345,x〉

×
∫
[0,t]5

( ∫ t

max(t1,t2,t3)
σ T
s (n123) ds

)
dWT ,n5

t5 . . . dWT ,n1
t1 ,

G̃3(t, x) = 1

2

∑
n1,...,n5∈Z3

[
δn35=0

V̂s(n1, n2, n3)

〈n123〉2〈n3〉2
(
V̂ (n12) + V̂ (n1234)

)
ei〈n124,x〉

×
∫
[0,t]3

( ∫ t

0

∫ t

max(t1,t2,t3)
σ T
t3(n3)

2σ T
s (n123)

2 dsdt3
)
dWT ,n4

t4 dWT ,n2
t2 dWT ,n1

t1

]
,

G̃1(t, x) = 1

4

∑
n1,...,n5∈Z3

[
δn24=n35=0

V̂s(n1, n2, n3)

〈n123〉2〈n2〉2〈n3〉2
(
V̂ (n12) + V̂ (n13)

)
ei〈n1,x〉

×
∫
[0,t]

( ∫ t

0

∫ t

0

∫ t

max(t1,t2,t3)
σ T
t2 (n2)

2σ T
t3(n3)

2σ T
s (n123)

2 dsdt3dt2
)
dWT ,n1

t1

]
.

This concludes the algebraic aspects of the proof of (2.49). Starting from (2.60), the
analytic estimates are essentially as in the proof of the earlier estimate (2.48) and we
omit the details. This completes the proof of the lemma. ��

In the construction of the drift measure (Sect. 4), we need a renormalization of
(〈∇〉−1/2WT

t )n . The term 〈∇〉−1/2WT
t has regularity 0− and hence the n-th power is

almost defined. While we could use iterated stochastic integrals to define the renor-
malized power, it is notationally convenient to use an equivalent definition through
Hermite polynomials. This definition is also closer to the earlier literature in dispersive
PDE. We recall that the Hermite polynomials {Hn(x, σ 2)}n≥0 are defined through the
generating function

etx−
1
2 σ 2t2 =

∞∑
n=0

tn

n!Hn(x, σ
2).

Definition 2.22 We define the renormalized n-th power by

: f n :def= Hn

(
f , E‖〈∇〉− 1

2WT
t ‖2L2

x

)
. (2.61)

We list two basic properties of the renormalized power in the next lemma.
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Lemma 2.23 (Stochastic objects IV).We have for all n ≥ 1, p ≥ 1, and ε > 0 that

sup
T≥0

(
E

[
‖ :(〈∇〉− 1

2WT
t )n : ‖p

C−ε
x (T3)

]) 1
p �n,ε p

n
2 . (2.62)

Furthermore, we have for all f ∈ H1
x (T3) the binomial formula

:(〈∇〉− 1
2 (WT

t + f ))n :=
n∑

k=0

(
n

k

)
:(〈∇〉− 1

2WT
t )k : (〈∇〉− 1

2 f )n−k . (2.63)

Since the proof is standard, we omit the details. For similar arguments, we refer the
reader to [36].

3 Construction of the Gibbsmeasure

The goal of this section is to prove Theorem 1.3. The main ingredient is the Boué-
Dupuis formula,which yields a variational formulation of theLaplace transformof μ̃T .
Our argument follows earlier work of Barashkov andGubinelli [5], but the convolution
inside the nonlinearity requires additional ingredients (see Sects. 3.2 and 3.3).

3.1 The variational problem, uniform bounds, and their consequences

Due to the singularity of the Gibbs measure for 0 < β < 1/2, which is the main
statement in Theorem 1.5, the construction will require one final renormalization. We
recall that λ > 0 denotes the coupling constant in the nonlinearity and we let cT ,λ be
a real-valued constant which remains to be chosen.

For the rest of this section, we let ϕ : C0t C−1/2−κ
x ([0,∞]×R) → R be a functional

with at most linear growth. We denote the (non-renormalized) potential energy by

V( f )
def=

∫
T3

(V ∗ f 2)(x) f 2(x) dx =
∫
T3×T3

V (x − y) f (y)2 f (x)2 dx dy. (3.1)

We denote the renormalized version of V( f ) by

:VT ,λ( f ):de f= λ

4
·
∫
T3

:(V ∗ f 2) f 2 : dx + cT ,λ, (3.2)

where :(V ∗ f 2) f 2 : is as in Definition 2.6. To further simplify the notation, we denote
for any u : [0,∞) × T

3 → R the space-time L2-norm by

‖u‖2
L2
t,x

def=
∫ ∞

0
‖ut‖2L2

x (T
3)
dt . (3.3)

With this notation, we can now state the main estimate of this section.
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Proposition 3.1 (Main estimate for the variational problem). If the renormalization
constants cT ,λ are chosen appropriately, we have that

EP

[
ϕ(W + I [u])+ :VT ,λ(WT∞ + I T∞[u]): +1

2
‖u‖2

L2
t,x

]

= EP

[
�

T ,ϕ

λ (W , I [u]) + λ

4
V(I T∞(u)) + 1

2
‖lT [u]‖2

L2
t,x

]
,

(3.4)

where

lTt [u] de f= ut + λJ T
t :(V ∗ (WT

t )2)WT
t : (3.5)

and

|�T ,ϕ

λ (W , I [u])| ≤ QT (W , ϕ, λ) + 1

2

(λ

4
V(I T∞(u)) + 1

2
‖lT [u]‖2

L2
t,x

)
. (3.6)

Here, QT (W , ϕ, λ) satisfies for all p ≥ 1 the estimateE[QT (W , ϕ, λ)p] �p 1, where
the implicit constant is uniform in T ≥ 1.

The argument of ϕ in (3.4) is not regularized, that is, we are working withW instead
of WT . This is important to obtain control over μT , which is the pushforward of μ̃T

under W∞.

Remark 3.2 This is a close analog of [5, Theorem 1]. Due to the smoothing effect of
the interaction potential V , however, the shifted drift lT [u] is simpler. In contrast to
the �4

3-model, the difference lT (u) − u does not depend on u. As is evident from the
proof, we have that

�
T ,ϕ

λ (W , I [u]) = ϕ(W + I [u]) + �
T ,0
λ (W , I [u]). (3.7)

This observation will only be needed in Proposition 3.3 below.

We first record the following proposition, which is a direct consequence of Propo-
sition 3.1 and the Boué-Dupuis formula.

Proposition 3.3 The measures μ̃T satisfy the following properties:

(i) The normalization constants ZT ,λ satisfy ZT ,λ ∼λ 1, i.e., they are bounded away
from zero and infinity uniformly in T .

(ii) If the functional ϕ : C0t C−1/2−κ
x ([0,∞] × T

3) → R has at most linear growth,
then

sup
T≥0

Eμ̃T

[
exp

( − ϕ(W )
)]

�ϕ 1.

(iii) The family of measures (μ̃T )T≥0 is tight on C0t C
− 1

2−κ
x ([0,∞] × T

3).
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Proof of Proposition 3.3 We first prove (i). From the definition of μT , we have that

ZT ,λ = EP

[
exp(− :VT ,λ(WT∞):)

]
.

Using the Boué-Dupuis formula and Proposition 3.1, we have that

− log(ZT ,λ) = inf
u∈Ha

EP

[
:VT ,λ(WT∞ + I T∞[u]): +1

2
‖u‖2

L2
t,x

]

= inf
u∈Ha

EP

[
�

T ,0
λ (W , I [u]) + λ

4
V(I T∞(u)) + 1

2
‖lT [u]‖2

L2
t,x

]
.

From (3.6), we directly obtain that

− log(ZT ,λ) ≥ −Cλ. (3.8)

By choosing ut
def= −λJ T

t :(V ∗(WT
t )2)WT

t :, which is equivalent to requiring lTt [u] = 0
and implies I Tt [u] = W

T ,[3]
t , we obtain from Lemma 2.20 that

− log(ZT ,λ) �λ 1 + EP

[
V(λW

T ,[3]
t )

]
�λ 1. (3.9)

By combining (3.8) and (3.9), we obtain that ZT ,λ ∼λ 1.
We now turn to (ii), which controls the Laplace transform of μ̃T . Using the Boué-

Dupuis formula and Proposition 3.1, we obtain that

− log
(
Eμ̃T

[
exp

( − ϕ(W )
)])

= log(ZT ,λ) + inf
u∈Ha

EP

[
�

T ,ϕ

λ (W , I [u]) + λ

4
V(I T∞(u)) + 1

2
‖lT [u]‖2

L2
t,x

]
.

The first summand log(ZT ,λ) has already been controlled. The second summand can
be controlled using exactly the same estimates.

We finally prove (iii). Let α, η > 0 be sufficiently small depending on κ . Since

the embedding Cα,η
t C− 1+κ

2
x ↪→ C0t C

− 1
2−κ

x is compact (see (1.18) for the definition), it
suffices to estimate the Laplace transform evaluated at

ϕ(W ) = −‖W‖
Cα,η
t C− 1+κ

2
x

. (3.10)

While this is not a functional on C0t C
− 1

2−κ
x , we can proceed using a minor modification

of the previous estimates. Using Proposition 3.1 and (3.7), it suffices to prove

EP

[‖W‖
Cα,η
t C− 1+κ

2
x

]
� 1 and ‖It [u]‖

Cα,η
t C− 1+κ

2
x

� ‖u‖L2
t,x

. (3.11)
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The first estimate follows from Kolmogorov’s continuity theorem (cf. [40, Theorem
4.3.2]). The second estimate is deterministic and follows from Sobolev embedding
and Lemma B.4. ��

Using Proposition 3.3, we easily obtain Theorem 1.3.

Proof of Theorem 1.3 The tightness is included in Proposition 3.3. The weak conver-
gence of the sequence (μN )N≥1 follows from tightness and the uniqueness of weak
subsequential limits (Proposition C.1). ��

We also record the following consequence of the proof of Proposition 3.1, which
will play an important role in Sect. 5. The proof of this result will be postponed until
Sect. 3.4.

Corollary 3.4 (Behavior of cT ,λ). If β > 1/2, then we have for all λ > 0 that

sup
T≥1

|cT ,λ| �λ 1. (3.12)

Proposition 3.1 is the most challenging part in the construction of the measure and
the proof will be distributed over the remainder of this subsection.

3.2 Visan’s estimate and the cubic terms

In the variational problem, the potential energy V(I T∞[u]) appears with a favorable
sign. This is crucial to control the terms in :VT ,λ(WT∞ + I T∞[u]): which are cubic in
I T∞[u] and hence cannot be controlled by the quadratic terms ‖u‖2

L2 or ‖lT (u)‖2
L2 .

In the �4
3-model, the potential energy term ‖I T∞[u]‖4

L4 is both stronger and easier
to handle. While we cannot change the strength of V(I T∞[u]), Lemma 3.5 solves the
algebraic difficulties.

Due to the assumed lower-bound on V , we first note that

‖ f ‖4L2
x (T

3)
= ‖ f 2‖2L1

x (T
3)

�
∫
T3×T3

V (x − y) f (y)2 f (x)2 dx dy = V( f ).

Since at high-frequencies the kernel of 〈∇〉−β essentially behaves like |x − y|−(3−β),
we also obtain that

‖〈∇〉− β
2 [ f 2]‖2L2(T3)

= 〈(〈∇〉−β f 2
)
, f 2〉L2

x (T
3)

�
∫
T3×T3

V (x − y) f (y)2 f (x)2 dx dy = V( f ). (3.13)

Unfortunately, the square of f is inside the integral operator 〈∇〉− β
2 , which makes it

difficult to use this estimate. The next lemma yields a much more useful lower bound
on V( f ).
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Lemma 3.5 (Visan’s estimate). Let 0 < β < 3 and f ∈ C∞(T3). Then, it holds that

‖〈∇〉− β
4 f ‖4L4

x (T
3)

� V( f ). (3.14)

This estimate is a minor modification of [41, (5.17)] and we omit the details. We
now turn to the primary application of Visan’s estimate in this work.

Lemma 3.6 (Cubic estimate). For any small δ > 0 and any 1+2δ
2 < θ ≤ 1, it holds

that ∥∥∥〈∇〉 1
2+δ

(
(V ∗ f 2) f

)∥∥∥
L1
x (T

3)
� V( f )

1
2 ‖ f ‖1−θ

L2
x (T

3)
‖ f ‖θ

H1
x (T3)

. (3.15)

Proof We use a Littlewood-Paley decomposition to write

(V ∗ f 2) f =
∑
M,N3

PM
(
V ∗ f 2

) · PN3 f .

We first estimate the contribution for N3 � M . We have that

∑
M,N3 : N3�M

∥∥〈∇〉 1
2+δ

(
PM

(
V ∗ f 2

) · PN3 f
)∥∥

L1
x

�
∑

M,N3 : N3�M

N
1
2+δ

3 ‖PM (V ∗ f 2)‖L2
x
‖PN3 f ‖L2

x

�
( ∑

M,N3 : N3�M

N
1
2+δ

3 M− β
2 N−θ

3

)
‖〈∇〉− β

2 f 2‖L2
x
‖ f ‖1−θ

L2
x

‖ f ‖θ
H1
x

� ‖〈∇〉− β
2 f 2‖L2

x
‖ f ‖1−θ

L2
x

‖ f ‖θ
H1
x
.

Due to (3.13), this contribution is acceptable. Next, we estimate the contribution of
N3 � M . We further decompose

f 2 =
∑
N1,N2

PN1 f · PN2 f .

Then, the total contribution can be bounded using Hölder’s inequality and Fourier
support considerations by

∑
N1,N2,N3,M :

N3�M≤max(N1,N2)

∥∥∥〈∇〉 1
2+δ

(
PM

(
V ∗ (PN1 f · PN2 f )

) · PN3 f
)∥∥∥

L1
x

�
∑

N1,N2,N3,M :
N3�M≤max(N1,N2)

M
1
2+δ‖PM

(
V ∗ (PN1 f · PN2 f )

)‖
L

4
3
x

‖PN3 f ‖L4
x
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�
∑

N1,N2,M :
N3�M≤max(N1,N2)

M
1
2+δ−βN

β
4
3 ‖PN1 f · PN2 f ‖

L
4
3
x

‖PN3〈∇〉− β
4 f ‖L4

x

�
( ∑

N1,N2,M :
N1≥M,N2

M
1
2+δ− 3β

4 N−θ
1 N

β
4
2

)
‖〈∇〉− β

4 f ‖2L4
x
‖ f ‖1−θ

L2
x

‖ f ‖θ
H1
x

� ‖〈∇〉− β
4 f ‖2L4

x
‖ f ‖1−θ

L2
x

‖ f ‖θ
H1
x
.

In the last line, it is simplest to first perform the sum in N2, then in N1, and finally in
M . ��

3.3 A randommatrix estimate and the quadratic terms

In the proof of Proposition 3.1, we will encounter expressions such as

∫
T3

((
V ∗ (WT

t I
T
t [u]))(x)WT

t (x)I Tt [u](x) − (MT
t I

T
t [u])(x)I Tt [u](x)

)
dx .

(3.16)

This term no longer involves an explicit stochastic object, such as : (WT
t )2 : (x),

at a single point x ∈ T
3. By expanding the convolution, we can capture stochastic

cancellations in terms of two spatial variables x ∈ T
3 and y ∈ T

3, which has already
been studied in Lemma 2.19. The most natural way to capture stochastic cancellations
in (3.16), however, is through random operator bounds. This is the object of the next
lemma.

Proposition 3.7 (Randommatrix estimate). Let γ > max(1−β, 1/2) and let 1 ≤ r ≤
∞. We define

OpTt (γ, r)
def= sup

f1, f2 :
‖ f1‖

W
γ,r
x (T3)

≤1,

‖ f2‖
W

γ,r ′
x (T3)

≤1.

[ ∫
T3

V ∗ (WT
t f1) W

T
t f2 dx −

∫
T3

(MT
t f1

)
f2 dx

]
.

Then, we have for all 1 ≤ p < ∞ that

sup
T ,t≥0

‖OpTt (γ, r)‖L p
ω(
) � p. (3.17)

Remark 3.8 Aside from Fourier support considerations, the proof below mainly pro-
ceeds in physical space. If r = 2, an alternative approach is to view OpTt (γ, 2) as the
operator normof a randommatrix acting on the Fourier coefficients.Using a non-trivial
amount of combinatorics, one can then bound OpTt (γ, 2) using the moment method
(see also [14, Proposition 2.8]). This alternative approach is closer to the methods in
the literature on random dispersive equations but more complicated. The estimate for
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r �= 2, which is not needed in this paper, is useful in the study of the stochastic heat
equation with Hartree nonlinearity.

Proof Since this will be important in the proof, we now indicate the dependence of the
multiplier on the interaction potential by writingMT

t [V ]. We use a Littlewood-Paley
decomposition of WT

t , f1, and f2. We then have that

∫
T3

V ∗ (WT
t f1) W

T
t f2 dx −

∫
T3

(MT
t [V ] f1

)
f2 dx

=
∑

K1,K2,N1,N2

[ ∫
T3

V ∗ (PN1W
T
t PK1 f1) PN2W

T
t PK2 f2 dx

−
∫
T3

(MT
t [V ; N1, N2]PK1 f1

)
PK2 f2 dx

]
.

To control this sum, we first define a frequency-localized version of OpTt (γ, r) by

OpTt (r; K1, K2, N1, N2)

def= sup
f1, f2 :

‖ f1‖Lrx ≤1,
‖ f2‖Lr ′x ≤1

[ ∫
T3

V ∗ (PN1W
T
t PK1 f1) PN2W

T
t PK2 f2 dx

−
∫
T3

(MT
t [V ; N1, N2]PK1 f1

)
PK2 f2 dx

]
.

We emphasize the change from W
γ,r
x (T3) to Lr

x (T
3), which simplifies the notation

below. By proving the estimate for a slightly smaller γ , (3.17) reduces to

sup
T ,t≥0

‖OpTt (r; K1, K2, N1, N2)‖L p
ω(
) � p(N1N2)

−δ(K1K2)
γ . (3.18)

By using Lemmas 2.16 and 2.19, it suffices to prove for a small δ > 0 that

OpTt (r; K1, K2, N1, N2) � (N1N2)
−δ(K1K2)

γ

×
(
1 + ‖WT

t ‖2
C− 1

2−δ

x

+ sup
y∈T3

sup
N1,N2

‖ :(τy PN1W
T
t )PN2W

T
t : ‖C−1−δ

x

)
.

(3.19)

By interpolation, we can further reduce to r = 1 or r = ∞. Using the self-adjointness
of the convolution with V and the multiplierMT

t [V ; N1, N2], it suffices to take r = 1.
We now separate the cases N1 ∼ N2 and N1 � N2.

Case 1: N1 � N2. This is the easier (but slightly tedious) case and it does not
contain any probabilistic resonances. We note that MT

t [V ; N1, N2] = 0 and hence
we only need to control the convolution term. From Fourier support considerations,
we also see that this term vanishes unless max(K1, K2) � max(N1, N2). While our
conditions on f1 and f2 are not completely symmetric and we already used the self-
adjointness to restrict to r = 1, we only treat the case K1 � K2. Since our proof only
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relies on Hölder’s inequality and Young’s inequality, the case K1 � K2 can be treated
similarly. We now estimate∣∣∣∣

∫
T3

V ∗ (PN1W
T
t PK1 f1) PN2W

T
t PK2 f2 dx

∣∣∣∣
�

∑
L�K1

∣∣∣∣
∫
T3

PL
(
V ∗ (PN1W

T
t PK1 f1)

)
P̃L

(
PN2W

T
t PK2 f2

)
dx

∣∣∣∣
�

∑
L�K1

∥∥(PLV ) ∗ (PN1W
T
t PK1 f1)

∥∥
L1
x

∥∥P̃L(PN2W
T
t PK2 f2)

∥∥
L∞
x

� ‖PN1W
T
t ‖L∞

x
‖ f1‖L1

x

∑
L�K1

‖PLV ‖L1
x

∥∥P̃L(PN2W
T
t PK2 f2)

∥∥
L∞
x

� N
1
2+δ

1 ‖WT
t ‖

C− 1
2−δ

x

∑
L�K1

L−β
∥∥P̃L(PN2W

T
t PK2 f2)

∥∥
L∞
x

.

We now split the last sum into the cases L � N2 and N2 � L � K1. If L � N2,
we only obtain a non-zero contribution when N2 ∼ K2. Thus, the corresponding
contribution is bounded by

1{K2 ∼ N2}N
1
2+δ

1 ‖WT
t ‖

C− 1
2−δ

x

∑
L�N2

L−β
∥∥P̃L(PN2W

T
t PK2 f2)

∥∥
L∞
x

� 1{K2 ∼ N2}N
1
2+δ

1 ‖WT
t ‖

C− 1
2−δ

x

( ∑
L�N2

L−β
)
‖ f2‖L∞

x
‖PN2W

T
t ‖L∞

x

� 1{K2 ∼ N2}N
1
2+δ

1 N
1
2+δ

2 ‖WT
t ‖2

C− 1
2−δ

x

� (N1N2)
−δK γ

1 K
γ
2 ‖WT

t ‖2
C− 1

2−δ

x

.

In the last line, we also used N1 � K1 and γ > 1/2. If L � N2, we simply estimate

N
1
2+δ

1 ‖WT
t ‖

C− 1
2−δ

x

∑
N2�L�K1

L−β
∥∥P̃L(PN2W

T
t PK2 f2)

∥∥
L∞
x

� N
1
2+δ

1 ‖WT
t ‖

C− 1
2−δ

x

( ∑
N2�L�K1

L−β
)
‖PN2W

T
t ‖L∞

x
‖PK2 f2‖L∞

x

� N
1
2+δ

1 N
1
2−β+δ

2 ‖WT
t ‖2

C− 1
2−δ

x

� (N1N2)
−δK γ

1 ‖WT
t ‖2

C− 1
2−δ

x

,

provided that γ > max(1 − β, 1/2). This completes the estimate in Case 1, i.e.,
N1 � N2.
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Case 2: N1 ∼ N2. This is the more difficult case. Guided by the uncertainty
principle, we decompose the interaction potential by writing V = P�N1V + P�N1

V .
Using the linearity of the multiplier MT

t [V ; N1, N2] in V , we decompose

∫
T3

V ∗ (PN1W
T
t PK1 f1) PN2W

T
t PK2 f2 dx −

∫
T3

(MT
t [V ; N1, N2]PK1 f1

)
PK2 f2 dx

=
∫
T3

(P�N1V ) ∗ (PN1W
T
t PK1 f1) PN2W

T
t PK2 f2 dx

−
∫
T3

(MT
t [P�N1V ; N1, N2]PK1 f1

)
PK2 f2 dx

+
∫
T3

(P�N1
V ) ∗ (PN1W

T
t PK1 f1) PN2W

T
t PK2 f2 dx

−
∫
T3

(MT
t [P�N1

V ; N1, N2]PK1 f1
)
PK2 f2 dx .

Wenow split the proof into two subcases corresponding to the contributions of P�N1V
and P�N1

V .
Case 2.a: N1 ∼ N2, contribution of P�N1V . Similar as in Case 1, we do not rely

on any cancellation between the convolution term and its renormalization. As a result,
we estimates both terms separately.

Wefirst estimate the convolution term.Due to the convolutionwith P�N1V , we only
obtain a non-zero contribution if N1 ∼ K1. Using N1 ∼ N2 in the second inequality
below, we obtain that

∣∣∣ ∫
T3

(P�N1V ) ∗ (PN1W
T
t PK1 f1) PN2W

T
t PK2 f2 dx

∣∣∣
� 1{N1 ∼ K1}‖(P�N1V ) ∗ (PN1W

T
t PK1 f1)‖L1

x
‖P̃�N1(PN2W

T
t PK2 f2)‖L∞

x

� 1{N1 ∼ K1}1{N2 ∼ K2}‖PN1W
T
t ‖L∞

x
‖ f1‖L1

x
‖PN2W

T
t ‖L∞

x
‖ f2‖L∞

x

� 1{N1 ∼ K1}1{N2 ∼ K2}(N1N2)
1
2+δ‖WT

t ‖2
C− 1

2−δ

x

� (N1N2)
−δ(K1K2)

γ ‖WT
t ‖2

C− 1
2−δ

x

.

Second, we turn to the multiplier term. From the definition of MT
t [P�N1V ; N1, N2]

(seeDefinition 2.13),we see that the corresponding symbol is supported on frequencies
|n| ∼ N1. As a result, we only obtain a non-zero contribution if K1 ∼ K2 ∼ N1.
Using Lemma 2.15, Hölder’s inequality, Young’s inequality, and the trivial estimate
‖CT

t [N1, N2]‖L∞
x

� N1, we obtain

∣∣∣ ∫
T3

(MT
t [P�N1V ; N1, N2]PK1 f1

)
PK2 f2 dx

∣∣∣
= 1{K1 ∼ K2 ∼ N1}

∣∣∣ ∫
T3

(
(CT

t [N1, N2]P�N1V ) ∗ PK1 f1
)
PK2 f2 dx

∣∣∣
� 1{K1 ∼ K2 ∼ N1}‖(CT

t [N1, N2]P�N1V ) ∗ PK1 f1‖L1
x
‖PK2 f2‖L∞

x
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� 1{K1 ∼ K2 ∼ N1}‖CT
t [N1, N2]P�N1V ‖L1

x
‖ f1‖L1

x
‖ f2‖L∞

x

� 1{K1 ∼ K2 ∼ N1}‖CT
t [N1, N2]‖L∞

x
‖V ‖L1

x

� 1{K1 ∼ K2 ∼ N1}N1 � (N1N2)
−δ(K1K2)

γ .

This completes the estimate of the contribution from P�N1V .
Case 2.b: N1 ∼ N2, contribution of P�N1V . The estimate for this case relies on

the cancellation between the convolution andmultiplier term, i.e., the renormalization.
One important ingredient lies in the estimate ‖P�N1V ‖L1

x
� N−β

1 , which yields an
important gain.

Using the translation operator τy , we rewrite the convolution term as

∫
T3

(P�N1
V ) ∗ (PN1W

T
t PK1 f1) PN2W

T
t PK2 f2 dx

=
∫
T3

P�N1
V (y)

[ ∫
T3

PK1 f1(x − y)PK2 f2(x)PN1W
T
t (x − y)PN2W

T
t (x) dx

]
dy

=
∫
T3

P�N1
V (y)

[ ∫
T3

(
τy PK1 f1 PK2 f2

)
(x)

(
τy PN1W

T
t PN2W

T
t

)
(x) dx

]
dy.

Using Lemma 2.15, we obtain that

∫
T3

(MT
t [P�N1

V ; N1, N2]PK1 f1
)
PK2 f2 dx

=
∫
T3

((
CT
t [N1, N2]P�N1V

) ∗ PK1 f1
)
(x)PK2 f2(x) dx

=
∫
T3

P�N1V (y)

[ ∫
T3

(
τy PK1 f1 PK2 f2

)
(x)CT

t [N1, N2](y) dx
]
dy.

By recalling Definition 2.14 and combining both identities, we obtain that

∫
T3

(P�N1
V ) ∗ (PN1W

T
t PK1 f1) PN2W

T
t PK2 f2 dx

−
∫
T3

(MT
t [P�N1

V ; N1, N2]PK1 f1
)
PK2 f2 dx

=
∫
T3

P�N1V (y)

[ ∫
T3

(
τy PK1 f1 PK2 f2

)
(x) :(τy PN1W

T
t )PN2W

T
t :(x) dx

]
dy.

Using that :(τy PN1W
T
t )PN2W

T
t :(x) is supported on frequencies � N1, we obtain that

∣∣∣∣
∫
T3

P�N1V (y)

[ ∫
T3

(
τy PK1 f1 PK2 f2

)
(x) :(τy PN1W

T
t )PN2W

T
t :(x) dx

]
dy

∣∣∣∣
� ‖P�N1

V (y)‖L1
y
sup
y∈T3
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×
( ∑
L�N1

L1+δ‖PL
(
(τy PK1 f1)PK2 f2

)‖L1
x

)
sup
y∈T3

‖ :(τy PN1W
T
t )PN2W

T
t : ‖C−1−δ

x

� N−β
1

( ∑
L�N1

L�max(K1,K2)

L1+δ
)

‖ f1‖L1
x
‖ f2‖L∞

x
sup
y∈T3

‖ :(τy PN1W
T
t )PN2W

T
t : ‖C−1−δ

x

� (N1N2)
−δ max(K1, K2)

γ sup
y∈T3

‖ :(τy PN1W
T
t )PN2W

T
t : ‖C−1−δ

x
.

This completes the estimate of the contribution from P�N1V and hence the proof of
the proposition. ��

3.4 Proof of Proposition 3.1 and Corollary 3.4

In this subsection, we reap the benefits of our previous work and prove themain results
of this section.

Proof In this proof, we treat QT = QT (W , ϕ, λ) like an implicit constant and omit the
dependence onW , ϕ, and λ. In particular, its precise definitionmay change throughout
the proof.

From the quartic binomial formula (Lemma 2.11), it follows that

ϕ(W + I (u))+ :VT ,λ(WT∞ + I T∞(u)): +1

2
‖u‖2L2

= λ

∫
T3

:(V ∗ (WT∞)2)(WT∞): I T∞[u] dx + λ

4

∫
T3

(V ∗ (I T∞[u])2)(I T∞[u])2 dx

+ 1

2
‖u‖2L2

+ λ

4

∫
T3

:(V ∗ (WT∞)2)(WT∞)2 : dx + cT ,λ + ϕ(W + I (u))

+ λ

2

∫
T3

(V∗ :(WT∞)2 :)(I T∞[u])2 dx

+ λ

∫
T3

[
(V ∗ (WT∞ I T∞[u]))WT∞ I T∞[u] − (MT

t I
T∞[u])I T∞[u]

]
dx

+ λ

∫
T3
(V ∗ (I T∞[u])2)I T∞[u]WT∞ dx .

We have grouped the terms according to their importance and their degree in I T∞[u].
The first line consists of the main terms, whereas the second and third line consist
of less important terms of increasing degree in I T∞[u]. We will split them further in
(3.23)–(3.26) below and introduce notation for the individual terms.

Since :(V∗(WT∞)2)WT∞:has regularitymin(− 3
2+β,− 1

2 )− and I T∞[u]has regularity
1, the term

λ

∫
T3

:(V ∗ (WT∞)2)WT∞: I T∞[u] dx
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is potentially unbounded as T → ∞. As in [5], we absorb it into the quadratic term
1
2‖u‖2

L2 . To this end, we want to remove the integral in I T∞[u] and obtain an expression
in the drift u. From Itô’s formula, it holds that

λ

∫
T3

:(V ∗ (WT∞)2)WT∞: I T∞[u] dx

= λ

∫ T

0

∫
T3

:(V ∗ (WT
t )2)WT

t : J T
t ut dxdt

+ λ

∫ T

0

∫
T3

I Tt [u] d(:(V ∗ (WT
t )2)WT

t :).

The second term is a martingale (in the upper limit of integration) and therefore has
expectation equal to zero. Together with the self-adjointness of Jt , it follows that

EP

[
λ

∫
T3

:(V ∗ (WT∞)2)WT∞: I T∞[u] dx + 1

2
‖u‖2L2

]

= EP

[
λ

∫ T

0

∫
T3

J T
t

(
:(V ∗ (WT

t )2)WT
t :

)
ut dxdt + 1

2
‖u‖2L2

]

= EP

[1
2

∥∥∥lT [u]
∥∥∥2
L2

− λ2

2

∥∥∥J T
t

(
:(V ∗ (WT

t ))WT
t :

)∥∥∥2
L2

]
,

where lT [u] is as in (3.5). To simplify the notation, we write

wt
def= lTt [u] = ut + λJ T

t

(
:(V ∗ (WT

t )2)WT
t :

)
. (3.20)

With W
T ,[3]
t as in (2.46), it follows that

I Tt [w] = I Tt [u] + λW
T ,[3]
t . (3.21)

By inserting this back into the quartic binomial formula, we obtain that

EP

[
ϕ(W + I (u))+ :VT ,λ(WT∞ + I T∞[u]): +1

2
‖u‖2

L2
t,x

]
= EP

[E0 + cT ,λ
] + EP

[E1 + E2 + E3
]

+ EP

[λ

4

∫
T3

(V ∗ (I T∞[w])2)(I T∞[w])2 dx + 1

2
‖w‖2

L2
t,x

]
.

(3.22)

where the “error” terms E j , with j = 0, 1, 2, 3, are given by

E0 def= λ

4

∫
T3

:(V ∗ (WT∞)2)(WT∞)2 : dx − λ2

2

∥∥∥J T
t

( :(V ∗ (WT
t )2)WT

t : )∥∥∥2
L2
t L2

x

+ λ3

2

∫
T3

(V∗ :(WT∞)2 :)(WT ,[3]∞ )2 dx
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+ λ3
∫
T3

(
V ∗ (WT∞W

T ,[3]∞ )WT∞W
T ,[3]∞ − (MT∞W

T ,[3]∞ )WT ,[3]∞
)
dx, (3.23)

E1 def= ϕ(W + I [u]) − λ2
∫
T3

(V∗ :(WT∞)2 :)WT ,[3]∞ I T∞[w] dx

− 2λ2
∫
T3

((
V ∗ (WT∞W

T ,[3]∞ )
)
WT∞ − MT∞W

T ,[3]∞
)
I T∞[w] dx, (3.24)

E2 def= λ

∫
T3

((
V ∗ (WT∞ I T∞[w]))WT∞ I T∞[w] − (MT∞ I T∞[w])I T∞[w]

)
dx

+ λ

2

∫
T3

(V∗ :(WT∞)2 :)(I T∞[w])2 dx, (3.25)

E3 def= λ

∫
T3

(
V ∗ (I T∞[w] − λW

T ,[3]∞ )2
)
(I T∞[w] − λW

T ,[3]∞ )WT∞ dx

+ λ

4

∫
T3

(
(V ∗ (I T∞[w] − λW

T ,[3]∞ )2)(I T∞[w] − λW
T ,[3]∞ )2

− (V ∗ (I T∞[w])2)(I T∞[w])2)
)
dx . (3.26)

Since E0 does not depend on w, we can define

cT ,λ def= −EP

[E0]. (3.27)

The behavior of cT ,λ as T → ∞ is irrelevant for the rest of the proof. However,
it determines whether the Gibbs measure is singular or absolutely continuous with
respect to the Gaussian free field (see Sect. 5). From the estimates (B.3) and (B.4), it
is easy to see that

− QT + 1

2

(λ

4
V(I T∞[u]) + 1

2
‖w‖2

L2
t,x

)
≤ λ

4
V(I T∞[w]) + 1

2
‖w‖2

L2
t,x

≤ QT + 2
(λ

4
V(I T∞[u])

+ 1

2
‖w‖2

L2
t,x

)
.

Thus, it suffices to bound the terms in E1, E2, and E3 pointwise by

QT + 1

8

(λ

4
V(I T∞[w]) + 1

2
‖w‖2

L2
t,x

)
.

We treat the individual summands separately.
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Contribution of E1: For the first summand in E1, the linear growth of ϕ, Sobolev
embedding, a minor modification of (2.47), and Lemma B.4 imply that

|ϕ(W + I [u])| � ‖W‖
C0
t C

− 1
2−κ

x

+ ‖I [J Tt
( :(V ∗ (WT

t )2)WT
t : )]‖

C0
t C

− 1
2−κ

x

+ ‖I [w]‖
C0
t C

− 1
2−κ

x

� QT + ‖I [w]‖Ct H1
x

� 1

δ
QT + δ‖w‖2

L2
t,x

.

(3.28)

For the second summand in E1, we have from Lemma 2.20 that

λ

∣∣∣ ∫
T3

(V∗ :(WT∞)2 :)WT ,[3]∞ I T∞[w] dx
∣∣∣ � λ‖(V∗ :(WT∞)2 :)WT ,[3]∞ ‖C−1

x
‖I T∞[w]‖H1

x

� 1

δ
QT + δ‖w‖2

L2
t,x

.

For the third summand in E1, we have from Lemmas 2.20 and B.4 that

λ2
∫
T3

((
V ∗ (WT∞W

T ,[3]∞ )
)
WT∞ − MT∞W

T ,[3]∞
)
I T∞[w] dx

� λ2‖(V ∗ (WT∞W
T ,[3]∞ )

)
WT∞ − MT∞W

T ,[3]∞ ‖C−1
x

‖I T∞[w]‖H1
x

� 1

δ
QT + δ‖w‖2

L2
t,x

.

Contribution of E2: For the first summand in E2, the random matrix estimate (Propo-
sition 3.7) implies for every 0 < γ < min(β, 1

2 ) that

λ

∣∣∣ ∫
T3

((
V ∗ (WT∞ I T∞[w]))WT∞ I T∞[w] − (MT∞ I T∞[w])I T∞[w]

)
dx

∣∣∣
� QT ‖I T∞[w]‖2

H1−γ
x

� 1

δ
QT + δ

(
λ‖I T∞[w]‖4L2

x
+ ‖I T∞[w]‖2H1

x

)
� 1

δ
QT + δ

(
λV(I T∞[w]) + ‖I T∞[w]‖2H1

x

)
.

The second summand in E2 can easily be controlled using Lemma 2.16.
Contribution of E3:We estimate the first summand in E3 by

λ

∣∣∣ ∫
T3

(
V ∗ (I T∞[w] − λW

T ,[3]∞ )2
)
(I T∞[w] − λW

T ,[3]∞ )WT∞ dx
∣∣∣

� λ‖WT∞‖
C

− 1
2−δ

x

∥∥∥〈∇〉 1
2+δ

((
V ∗ (I T∞[w] − λW

T ,[3]∞ )2
)
(I T∞[w] − λW

T ,[3]∞ )
)∥∥∥

L1
x

.

In the second factor, we bound the contribution of (V ∗ I T∞[w]2)I T∞[w] using
Lemma 3.6. In contrast, the terms containing at least one factor of W

T ,[3]
t can be
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controlled using Lemma 2.20, (B.3) and (B.4). This leads to

‖WT∞‖
C

− 1
2−ε

x

∥∥∥〈∇〉 1
2+δ

((
V ∗ (I T∞[w] − λW

T ,[3]∞ )2
)
(I T∞[w] − λW

T ,[3]∞ )
)∥∥∥

L1
x

� λQT

(
1 + V(I T∞[w]]) 1

2 ‖I T∞[w]‖1−θ

L2 ‖I T∞[w]‖θ
H1
x

+ ‖I T∞[w]‖2
H

1
2+2δ

)
� QT + δ

(
λV(I T∞[w]) + ‖w‖2

L2
t,x

)
.

The second summand in E3 can be controlled using the same (or simpler) arguments.
��

Based on the proof of Proposition 3.1, we can also determine the behavior as
T → ∞ of the renormalization constants cT ,λ. In particular, we obtain a short proof
of Corollary 3.4.

Proof of Corollary 3.4 We let β > 1/2 and choose any 1/2 < γ < min(β, 1). Using
the definition of cT ,λ in (3.27), it remains to control the expectation of E0, which is
defined in (3.23). We treat the four terms in E0 separately.

The first term has zero expectation by Proposition 2.9. For the second term, we
obtain from Corollary 2.18 that

EP

[∥∥∥J T
t

( :(V ∗ (WT
t )2)WT

t : )∥∥∥2
L2
t L2

x

]

�
∑
n∈Z3

∫ ∞

0

σ T
t (n)2

〈n〉2
1

〈n〉2γ dt �
∑
n∈Z3

1

〈n〉2+2γ � 1.

For the third term, we obtain from Lemmas 2.16 and 2.20 that∣∣∣∣EP

[ ∫
T3

(V∗ :(WT∞)2 :)(WT ,[3]∞ )2 dx

]∣∣∣∣ � EP

[
‖V∗ :(WT∞)2‖C−1/2

x
‖W

T ,[3]∞ ‖2Cγ
x

]
� 1.

For the fourth term, we obtain from Lemma 2.20 and the random matrix estimate
(Proposition 3.7) that∣∣∣∣EP

[ ∫
T3

(
V ∗ (WT∞W

T ,[3]∞ )WT∞W
T ,[3]∞ − (MT∞W

T ,[3]∞ )WT ,[3]∞
)
dx

]∣∣∣∣
� EP

[
OpT∞(γ, 2)‖W

T ,[3]∞ ‖2
Hγ
x

]
� 1.

This completes the argument. ��

4 The reference and drift measures

In this section, we prove Theorem 1.4, which contains information regarding the
reference measures. In this paper, we will use the reference measure ν∞ to prove the
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singularity of the Gibbs measure (Theorem 1.5). In the second part of this series, the
reference measures will play an essential role in the probabilistic local well-posedness
theory.

As in previous sections, we replace the truncation parameter N by T . Due to its
central importance, let us provide an informal description of the terms in the repre-
sentation of νT . The first summand follows the distribution of the Gaussian free field,
which has independent Fourier coefficients and regularity −1/2−. The second sum-
mand is a cubic Gaussian chaos with regularity min(1/2 + β, 1)−. Finally, the third
summand is a Gaussian chaos of order n with regularity 5/2−.

The statement of Theorem 1.4 is concerned with measures on C−1/2−κ
x (T3). At

this point, it should not be surprising to the reader that the proof mostly uses the
lifted measures μ̃T and μ̃∞. We will construct a reference measure Q

u
T for μ̃T , and

the reference measure νT will be given by the pushforward of Q
u
T under W∞. Since

the main tool in the construction of Q
u
T is Girsanov’s theorem, we call Q

u
T the drift

measure. This section is a modification of the arguments in Barashkov and Gubinelli’s
paper [6]. Since lT [u] in Proposition 3.1 is simpler than in the �4

3-model, however,
we obtain slightly stronger results. For instance, we prove Lq -bounds for the density
DT in (4.23), whereas the analogous density in [6] only satisfies “local” Lq -bounds.

4.1 Construction of the drift measure

We define the forcing term

�T (WT )t
def= −λJ T

t

(
:(V ∗ (WT

t )2)WT
t :

)
+ J T

t 〈∇〉− 1
2 :(〈∇〉− 1

2WT
t )n :, (4.1)

where n is a large odd integer depending on β. The first summand in (4.1) is the
main term. The second summand in (4.1) yields necessary coercivity in the proof of
Lemma 4.3 and Proposition 4.7, but can be safely ignored for most of the argument.
We define the drift uT through the integral equation

uT
t = �T (WT − I T [uT ])t

= −λJ T
t

(
:(V ∗ (WT

t − I Tt [uT ])2)(WT
t − I Tt [uT ]):

)
+ J T

t 〈∇〉− 1
2 :

(
〈∇〉− 1

2
(
WT

t − I Tt [uT ]))n: .
(4.2)

We also define the drift u, which does not contain any regularization in the interaction,
by

ut = −λJt
(

:(V ∗ (Wt − It [u])2)(Wt − It [u]):
)

+Jt 〈∇〉− 1
2 :

(
〈∇〉− 1

2
(
Wt − It [u]))n : . (4.3)

Using the binomial formulas (Lemmas 2.11 and 2.23), we see that the integral equation
has smooth coefficients on every compact subset of [0,∞)×T

3. As a result, it can be

123



52 Stoch PDE: Anal Comp (2022) 10:1–89

solved locally in time using standard ODE-theory. Due to the polynomial nonlinearity,
however, we will need to rule out finite-time blowup. To this end, we introduce the
blow-up time Texp[uT ] ∈ (0,∞], which we will later show to be infinite almost surely
with respect to both P and Q

u
T . The reason is that the highest-degree term in (4.2),

which is given by −J T
t 〈∇〉−1/2(〈∇〉−1/2 I Tt [uT ])n, is defocusing. We also introduce

the stopping time

τT ,N
def= inf

{
t ∈ [0,∞) :

∫ t

0
‖uT

s ‖2L2
x
ds = N

}
. (4.4)

From the integral equation, it is clear that uT
t (·) is supported in frequency space on the

finite set {n ∈ Z
3 : ‖n‖ � 〈t〉}. As a result, the L2

t L
2
x -norm can be used as a blow-up

criterion and the solution uT
t exists for all times t ≤ τT ,N , i.e., Texp[uT ] > τT ,N . We

then define the truncated solution by

uT ,N
t

def= 1{t ≤ τT ,N } uT
t . (4.5)

From the definition of τT ,N , it follows that∫ ∞

0
‖uT ,N

s ‖2L2
x
ds ≤ N .

Thus, uT ,N satisfies Novikov’s condition and we can define the shifted probability
measure Q

u
T ,N by

dQ
u
T ,N

dP
= exp

( ∫ ∞

0

∫
T3

uT ,N
s dBs − 1

2

∫ ∞

0
‖uT ,N

s ‖2L2 ds
)
. (4.6)

Here, the L2
x -pairing in the integral

∫ ∞
0

∫
T3 uT ,N

s dBs is implicit, i.e.,

∫ ∞

0

∫
T3

uT ,N
s dBs =

∫ ∞

0
〈uT ,N

s , dBs〉L2
x (T

3) =
∑

n1,n2∈Z3 :
n1+n2=0

∫ ∞

0

̂uT ,N
s (n1) dB

n2
s .

We emphasize that the stochastic integral
∫ ∞
0

∫
T3 uT ,N

s dBs only depends on the Brow-
nian process B through the Gaussian process W . This is important in order to view
Q

u
T ,N as a measure on C0t C−1/2−κ

x ([0,∞] × T
3) without changing the expression for

the density. To make this direct dependence on W clear, we note that uT and hence
τT ,N are functions of WT , and hence W , directly from their definition. By using the
definition of uT , the self-adjointness of J T

t , and dWT
s = J T

s dBs , we obtain that

∫ ∞

0

∫
T3

uT ,N
s dBs

=
∫ ∞

0

∫
T3

(
− λ :(V ∗ (WT

t − I Tt [uT ])2)(WT
t − I Tt [uT ]):
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+ 〈∇〉− 1
2 :(〈∇〉− 1

2 (WT
t − I Tt [uT ]))n :

)
dWT

s .

The expression on the right-hand side clearly is a function of WT and hence W . With
a slight abuse of notation, we will keep writing the integral with respect to dBs , since
it is more compact.

By Girsanov’s theorem, the process

BuT ,N

t
def= Bt −

∫ t

0
uT ,N
s ds (4.7)

is a cylindrical Brownian motion under Q
u
T ,N . In particular, the law of BuT ,N

t under
Q

u
T ,N coincides with the law of Bt under P. As a consequence, the process

WuT ,N

t
def= Wt −

∫ t

0
Jsu

T ,N
s ds = Wt − It [uT ,N ] (4.8)

satisfies

LawQ
u
T ,N

(WuT ,N

t ) = LawP(W ). (4.9)

To avoid confusion, let us remark on a technical detail. In the definition (4.8), the drift
uT ,N
s is supported on frequencies |n| � 〈T 〉. The right-hand side of (4.8), however, does

not contain a further frequency projection. In particular, W and hence WuT ,N
contain

arbitrarily high frequencies. This is related to the definition of the truncated Gibbs
measureμT , where the density only depends on frequencies� 〈T 〉, but whose samples
contain arbitrarily high frequencies. Put differently, we regularize the interaction but
not the samples themselves. To make notational matters even worse, while WuT ,N

contains all frequencies, we will often work with ρT (∇)WuT ,N
, which only contains

frequencies � 〈T 〉. Similar as in Sect. 2.1, we define the truncated processWT ,uT ,N

t by

WT ,uT ,N

t
def= ρT (∇)WuT ,N

t . (4.10)

Due to the integral equation (4.2), we have that

uT ,N
t = 1{t ≤ τT ,N }

[
− λJ T

t

(
:(V ∗ (WT ,uT ,N

t )2)WT ,uT ,N

t :
)

+J T
t 〈∇〉− 1

2 :(〈∇〉− 1
2WT ,uT ,N

t
)n :

]
. (4.11)

We intend to use Q
u
T ,N (and the limit as N → ∞) as a reference measure for μ̃T .

Due to (4.9), the law of WT ,uT ,N

t under Q
u
T ,N does not depend on N . In our estimates

of uT ,N
t through the integral equation, it is therefore natural to view WT ,uT ,N

t as given.
Under this perspective, the right-hand side of (4.11) no longer depends on uT and
yields an explicit expression for uT . For comparison, the corresponding equation in
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the �4
3-model (cf. [6, (14)]) is a linear integral equation. We now start to estimate the

drift uT .

Lemma 4.1 For all 1 ≤ M ≤ N, all S ≥ 0, and all 0 < γ < min(1, β), it holds that

EQ
u
T ,N

[ ∫ τM∧S

0
‖uT

s ‖2L2 ds
]

� max(S1−2γ , 1). (4.12)

In particular, it holds that

Q
u
T ,N

(
τT ,M ≤ S

)
� max(S1−2γ , 1)

M
. (4.13)

Proof We recall from the definition of the drift measure that

LawQ
u
T ,N

(WuT ,N

) = LawP(W ) and LawQ
u
T ,N

(WT ,uT ,N
) = LawP(WT )

As a result, we obtain that

EQ
u
T ,N

[ ∫ τM∧S

0
‖uT

s ‖2L2 ds
]

≤ EP

[ ∫ S

0

∥∥∥λJ T
s

( :(V ∗ (WT
s )2)WT

s : ) + J T
s 〈∇〉− 1

2 :(〈∇〉− 1
2WT

s

)n :
∥∥∥2
L2

ds
]

� λ2EP

[ ∫ S

0

∥∥∥λJ T
s

( :(V ∗ (WT
s )2)WT

s : )∥∥∥2
L2

ds
]

+ E

[ ∫ S

0

∥∥∥J T
s 〈∇〉− 1

2 :(〈∇〉− 1
2WT

s

)n :
∥∥∥2
L2

ds
]
.

For the first summand, we obtain from the definition of J T
s and Lemma 2.16 that

EP

[ ∫ S

0

∥∥∥λJ T
s

( :(V ∗ (WT
s )2)WT

s : )∥∥∥2
L2

ds
]

�
( ∫ S

0
〈t〉−2γ dt

)
sup
t≥0

E
[∥∥ :(V ∗ (WT

t )2)WT
t : ∥∥2

H− 3
2+γ

]
� max(S1−2γ , 1).

For the second summand, we obtain from Lemma 2.23 that

E

[ ∫ S

0

∥∥∥J T
s 〈∇〉− 1

2 :(〈∇〉− 1
2WT

s

)n :
∥∥∥2
L2

ds
]

�
( ∫ S

0
〈t〉−4+2ε dt

)
sup
t≥0

E
[∥∥ :(〈∇〉− 1

2Wt )
n : ∥∥2

H−ε

]
� 1.

This yields the desired estimate. ��
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Lemma 4.2 For all 1 ≤ M ≤ N, 1 ≤ p < ∞, and γ < min(1/2, β), it holds that

sup
T ,t≥0

(
EQ

u
T ,N

[‖It [uT ,M ]‖p

C
1
2+γ

x (T3)

]) 1
p �p 1.

Furthermore, we have that for any 0 < α < 1 and 0 < η < 1/2 that

sup
T≥0

(
EQ

u
T ,N

[‖I [uT ,M ]‖p
Cα,η
t C0

x ([0,∞]×T3)

]) 1
p �p 1, (4.14)

where the Cα,η
t C0x -norm is as in (1.18).

The proof of Lemma 4.2 is easier than its counterpart [6, (16)] in the �4
3-model,

which requires a Gronwall argument. The second estimate (4.14) is needed for techni-
cal reasons related to tightness, and we encourage the reader to skip its proof on first
reading.

Proof The argument is similar to the proof of Lemma 4.1. From the definition of uT ,M

and uT ,N , we have that

uT ,M
s = 1{s ≤ τT ,M}uT ,N

s . (4.15)

Thus, we obtain that

‖It [uT ,M ]‖
C

1
2+γ

x

≤
∫ t∧τT ,M

0
‖JsuT ,N

s ‖
C

1
2+γ

x

ds ≤
∫ t

0
‖JsuT ,N

s ‖
C

1
2+γ

x

. (4.16)

Using the integral equation (4.2) again, we obtain that

‖It [uT ,M ]‖
C

1
2+γ

x

≤ λ

∫ t

0
‖Js J T

s :(V ∗ (WT ,uT ,N

s )2)WT ,uT ,N

s : ‖
C

1
2+γ

x

ds

+
∫ t

0
‖Js J T

s 〈∇〉− 1
2 :(〈∇〉− 1

2WT ,uT ,N

s

)n : ‖
C

1
2+γ

x

ds.

(4.17)

Using that

LawQ
u
T ,N

(WuT ,N

) = LawP(W ),

we obtain from Lemmas 2.20 and 2.23 that

(
EQ

u
T ,N

[‖It [uT ,M ]‖p

C
1
2+γ

x

]) 1
p

� λ

∫ t

0

(
EP‖Js J T

s :(V ∗ (WT
s )2)WT

s : ‖p

C
1
2+γ

x

) 1
p ds
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+
∫ t

0

(
EP‖Js J T

s 〈∇〉− 1
2 :(〈∇〉− 1

2WT
s

)n : ‖p

C
1
2+γ

x

) 1
p ds

�p

∫ t

0
〈s〉−1+γ−min(1/2,β)+δ ds +

∫ t

0
〈s〉−3+γ+δ ds

�p 1.

This completes the proof of the first estimate. The second estimate (4.14) follows from
a minor modification of the proof. To simplify the notation, we set

A(s)
def= ‖Js J T

s :(V ∗ (WT ,uT ,N

s )2)WT ,uT ,N

s : ‖L∞
x

+ ‖Js J T
s 〈∇〉− 1

2

:(〈∇〉− 1
2WT ,uT ,N

s

)n : ‖L∞
x

For any K ≥ 1, we have from a similar argument as in (4.17) that

sup
0≤t ′≤t :
t,t ′∼K

‖It [uT ,M ] − It ′ [uT ,M ]‖L∞
x

1 ∧ |t − t ′|α � sup
0≤t ′≤t :
t,t ′∼K

1

1 ∧ |t − t ′|α
∫ t

t ′
A(s) ds

�
∫
s∼K

A(s) ds +
( ∫

s∼K
A(s)

1
1−α ds

)1−α

.

Proceeding as in the first estimate, this implies that

(
EQ

u
T ,N

[(
sup

0≤t ′≤t :
t,t ′∼K

‖It [uT ,M ] − It ′ [uT ,M ]‖L∞
x

1 ∧ |t − t ′|α
)p]) 1

p � K− 1
2−γ .

The desired estimate of the Cα,η
t C0x -norm then follows by summing over dyadic scales

and using a telescoping series if the times are not comparable. ��
In Lemmas 4.1 and 4.2, we controlled the process uT with respect to the measures
Q

u
T ,N . Unfortunately, the proof of Proposition 4.4 below also requires the absence of

finite-time blowup for uT with respect P. This is the subject of the next lemma.

Lemma 4.3 For any T ≥ 1, it holds that Texp[uT ] = ∞ P-almost surely.

The proof of the analogue for the �4
3-model (cf. [6, Lemma 5]) extends verbatim

to our situation and we omit the minor modifications. To ease the reader’s mind, let
us briefly explain why the same argument applies here. In most of this section, the
most important term in the integral equation (4.2) is the first summand. It has the
lowest regularity and is closely tied to the interactions in the Hamiltonian. The result
of Lemma 4.3, however, is essentially a soft statement. If we fix a time S ≥ 1 and
only want to rule out Texp[uT ] ≤ S, the low regularity is inessential and only leads to a
loss in powers of S. The main term is then given by the (auxiliary) second summand,
which is defocusing and exactly the same as in the �4

3-model.
The next proposition eliminates the stopping time from our drift measures.
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Proposition 4.4 The family of measures (Qu
T ,N )T ,N≥0 is tight on C0t C−1/2−κ

x ([0,∞]×
T
3). For any fixed T ≥ 0, the sequence of measures (Qu

T ,N )N≥0 weakly converges to
a measure Q

u
T as N → ∞. For any S ≥ 0, the limiting measure Q

u
T satisfies

dQ
u
T |FS

dP|FS

= exp
( ∫ S

0

∫
T3

uT
s dBs − 1

2

∫ S

0
‖uT

s ‖2L2 ds
)
. (4.18)

Our argument differs from the proof of [6, Lemma 7], which is the analog for the
�4

3-model. The argument in [6] relies on Kolmogorov’s extension theorem, whereas
we rely on tightness and Prokhorov’s theorem. This is important in the proof of Corol-
lary 4.5 below, since the measuresQ

u
T are not (completely) consistent. We also believe

that this clarifies the mode of convergence. Before we begin with the proof, we state
the following corollary.

Corollary 4.5 The measures Q
u
T weakly convergence to a measure Q

u∞ on C0t C−1/2−κ
x

([0,∞] × T
3) as T → ∞. For any S ≥ 0, it holds that

dQ
u∞|FS

dP|FS

= exp
( ∫ S

0

∫
T3

usdBs − 1

2

∫ S

0
‖us‖2L2 ds

)
, (4.19)

where us is as in (4.3).

Proof of Proposition 4.4 We first prove that the family of measures (Qu
T ,N )T ,N≥0,

viewed as measures for W , are tight on C0t C−1/2−κ
x ([0,∞] × T

3). From (4.8), we
have that

W = WuT ,N + I [uT ,N ]. (4.20)

Since the law of WuT ,N
under Q

u
T ,N agrees with the law of W under P, an application

of Kolmogorov’s continuity theorem (cf. [40, Theorem 4.3.2]) yields for any p ≥ 1,
0 < α < 1

2 , and 0 < η < κ/2 that

EQ
u
T ,N

[
‖WuT ,N ‖p

Cα,η
t C−(1+κ)/2

x

]
= EP

[
‖W‖p

Cα,η
t C−(1+κ)/2

x

]
�p 1.

Together with (4.20) and Lemma 4.2, this implies

EQ
u
T ,N

[
‖W‖p

Cα,η
t C−(1+κ)/2

x

]
�p 1

Since the embedding Cα,η
t C−(1+κ)/2

x ↪→ C0t C−1/2−κ
x is compact, this implies the tight-

ness of the family of measures (Qu
T ,N )T ,N≥0.

ByProkhorov’s theorem, a subsequence of (Qu
T ,N )N weakly converges to ameasure

Q
u
T . Once we proved (4.18), this can be upgraded to weak convergence of the full

sequence, since (4.18) uniquely identifies the limit. With a slight abuse of notation,
we therefore ignore this distinction between a subsequence and the full sequence.
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Let S ≥ 0 and let f : C0t C−1/2−κ
x ([0, S] × T

3) → R be continuous, bounded, and
nonnegative. We write f (W ) for f (W |[0,S]). Using the weak convergence of Q

u
T ,N to

Q
u
T , we have that

EQ
u
T
[ f (W )] = lim

N→∞ EQ
u
T ,N

[ f (W )] = lim
N→∞

(
EQ

u
T ,N

[1{τT ,N ≥ S} f (W )]

+ EQ
u
T ,N

[1{τT ,N < S} f (W )]
)
.

Using Lemma 4.2, the second term is controlled by

EQ
u
T ,N

[1{τT ,N < S} f (W )] ≤ ‖ f ‖∞Q
u
T ,N (τT ,N < S) � ‖ f ‖∞

max(S1−2γ , 1)

N
,

which converges to zero as N → ∞. Together with the definition of Q
u
T ,N and the

martingale property of the Girsanov density, this implies

EQ
u
T
[ f (W )]

= lim
N→∞ EQ

u
T ,N

[1{τT ,N ≥ S} f (W )]

= lim
N→∞ EP

[
f (W )1{τT ,N ≥ S} exp

( ∫ τT ,N

0
uT
s dBs − 1

2

∫ τT ,N

0
‖uT

s ‖2L2 ds
)]

= lim
N→∞ EP

[
f (W )1{τT ,N ≥ S}

× exp
( ∫ S

0
uT
s dBs − 1

2

∫ S

0
‖uT

s ‖2L2 ds
)]

.

Using monotone convergence and Lemma 4.3, we obtain

lim
N→∞ EP

[
f (W )1{τT ,N ≥ S} exp

( ∫ S

0
uT
s dBs − 1

2

∫ S

0
‖uT

s ‖2L2 ds
)]

= EP

[
f (W )1{Texp[uT ] > S} exp

( ∫ S

0
uT
s dBs − 1

2

∫ S

0
‖uT

s ‖2L2 ds
)]

= EP

[
f (W ) exp

( ∫ S

0
uT
s dBs − 1

2

∫ S

0
‖uT

s ‖2L2 ds
)]

.

��
Proof of Corollary 4.5 Due to Proposition 4.4, the family of measures (Qu

T )T≥0 is tight.
By Prokhorov’s theorem, it follows that a subsequence weakly converges to a measure
Q

u∞. Once (4.19) is proven, it uniquely identifies the limit Q
u∞. With a slight abuse

of notation, we therefore assume as before that the whole sequence Q
u
T converges

weakly to Q
u∞.

Since WT
t = Wt and I Tt = It for all 0 ≤ t ≤ T /4 (by our choice of ρ), it follows

from the integral equation (4.2) that uT
s = us for all 0 ≤ s ≤ T /4. Using (4.18), it
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follows for all S ≤ T /4 that

dQ
u
T |FS

dP|FS

= exp
( ∫ S

0

∫
T3

usdBs − 1

2

∫ S

0
‖us‖2L2 ds

)
. (4.21)

The corresponding identity (4.19) for Q
u∞ then follows by taking T → ∞. ��

Corollary 4.6 For any T ≥ 1, S ≥ 1, and any 0 < γ < min(β, 1/2), the measure Q
u
T

satisfies the two estimates

EQ
u
T

[ ∫ S

0
‖uT

s ‖2L2 ds
]

� max(S1−2γ , 1),

sup
t≥0

(
EQ

u
T

[‖It [uT ]‖p

C
1
2+γ

x

]) 1
p �p 1.

The corollary directly follows from Lemmas 4.1, 4.2, and Proposition 4.4.

4.2 Absolutely continuity with respect to the drift measure

We recall the definition of the measure μ̃T from (2.10), which states that

dμ̃T

dP
= 1

ZT ,λ
exp

(
− :VT ,λ(WT∞):

)
. (4.22)

Using Proposition 4.4, we obtain that

DT
def= dμ̃T

dQ
u
T

= dμ̃T

dP

dP

dQ
u
T

= 1

ZT ,λ
exp

(
− :VT ,λ(WT∞):

−
∫ ∞

0

∫
T3

uT
t dBt + 1

2

∫ ∞

0
‖uT

t ‖2L2 dt
)
. (4.23)

Since dBt = dBuT
t + uT

t dt , we also obtain that

DT = 1

ZT ,λ
exp

(
− :VT ,λ(WT∞): −

∫ ∞

0

∫
T3

uT
t dB

uT
t − 1

2

∫ ∞

0
‖uT

t ‖2L2 dt
)
. (4.24)

Proposition 4.7 (Lq -bounds). If n ∈ N in the definition of uT is odd and sufficiently
large, there exists a q > 1 such that

sup
T≥0

EQ
u
T

[
|DT |q

]
�n,q 1. (4.25)

Remark 4.8 We point out two important differences between Proposition 4.7 and the
corresponding result for the �4

3-model in [6, Lemma 9]. The first difference is a
consequence of working with μ̃T instead of �μT as described in Sect. 2.1. Barashkov
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and Gubinelli define and bound the density DT with respect to the same measure
Q

u∞ for all T ≥ 1. In contrast, our density is defined with respect to Q
u
T and we

make no statements about the behavior of DT with respect to Q
u
S for any S �= T .

Since the increments of T �→ ρT (∇)W∞ are not independent, such a statement would
be especially difficult if S and T are close. The second difference is a result of the
smoothing effect of the interaction potential V . While the Hartree-nonlinearity allows
us to prove the full Lq -bound (4.25), the corresponding result in the�4

3-model requires
the localizing factor exp(−‖W∞‖nC−1/2−ε

x
).

The rest of this subsection is dedicated to the proof of the Lq -bounds (Proposi-
tion 4.7). Since we intend to apply the Boué-Dupuis formula to bound the density DT

in Lq(Qu
T ), we first study the effect of shifts in BuT on the integral equation (4.2). For

any w ∈ Ha , we define

uT ,w

s
def= �(WT ,uT + w)s

= −λ :(V ∗ (WT ,uT

s + I Ts [w])2)(WT ,uT

s + I Ts [w]):
+ J T

s 〈∇〉− 1
2 :(〈∇〉− 1

2 (WT ,uT

s + I Ts [w]))n : .

Using the cubic binomial formula (Lemma 2.11), we obtain that

uT ,w

s = −λJ T
s :(V ∗ (WT ,uT

s )2)WT ,uT

s : +r T ,w

s , (4.26)

where the remainder r T ,w
s is given by

r T ,w

s = −λJ T
s

(
(V∗ :(WT ,uT

s )2 :)I Ts [w]
)

− 2λJ T
s

(
(V ∗ (WT ,uT

s I Ts [w]))WT ,uT

s − MT
s I

T
s [w]

)
− 2λJ T

s

(
(V ∗ (WT ,uT

s I Ts [w]))I Ts [w]
)

− λJ T
s

(
(V ∗ I Ts [w]2)WT ,uT

s

)
− λJ T

s

(
(V ∗ I Ts [w]2)I Ts [w]

)
+ J T

s 〈∇〉− 1
2 :(〈∇〉− 1

2 (WT ,uT

s + I Ts [w]))n : .

We also define hT ,w = w + uT ,w. We further decompose

r T ,w

s = r̃ T ,w

s + J T
s 〈∇〉− 1

2 :(〈∇〉− 1
2 (WT ,uT

s + I Ts [w]))n : .

Before we begin the main argument, we prove the following auxiliary lemma.

Lemma 4.9 (Estimate of r̃ T ,w

t ). Let ε, δ > 0 be small absolute constants and let n ≥
n(δ, β) be sufficiently large. Then, we have for all t ≥ 0that
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〈t〉1+δ ‖̃r T ,w

t ‖2L2
x

�n,δ,β,λ CεQt (W
T ,uT ) + ε

(
‖I Tt [w]‖n+1

W
− 1
2 ,n+1

x

+
∫ t

0
‖ws‖2L2

x
ds

)
.

(4.27)

Remark 4.10 We emphasize that the implicit constant does not depend on ε. In the
application of Lemma 4.9, we will choose ε > 0 sufficiently small depending on
δ, n, β, λ.

Proof In the following argument, the implicit constants are allowed to depend on
n, δ, β, and λ but not on ε. We estimate the five terms in r̃ T ,w

t separately and do not
require any new ingredients. We only rely on Lemma 2.16, Proposition 3.7, Hölder’s
inequality, and Bernstein’s inequality.

For the first term, we have from the definition of J T
t and Lemma 2.16 that

∥∥∥J T
t

(
(V∗ :(WT ,uT

t )2 :)I Tt [w]
)∥∥∥2

L2
x

� 〈t〉−1−2δ
∥∥∥(

(V∗ :(WT ,uT

t )2 :)I Tt [w]
)∥∥∥2

H−1+δ
x

� 〈t〉−1−2δ
∥∥∥V∗ :(WT ,uT

t )2 :
∥∥∥2C−1+2δ

x
‖I Tt [w]‖2

H1−δ
x

� 〈t〉−1−2δ
∥∥∥V∗ :(WT ,uT

t )2 :
∥∥∥2C−1+2δ

x
‖I Tt [w]‖2δ

W
− 1
2 ,n+1

x

‖I Tt [w]‖2−δ

H1
x

� 〈t〉−1−2δCε Qt (W
T ,uT ) + 〈t〉−1−2δε

(
‖I Tt [w]‖n+1

W
− 1
2 ,n+1

x

+ ‖I Tt [w]‖2H1
x

)
.

For the second term, we have from duality and Proposition 3.7 for all 0 < γ <

min(β, 1) that

∥∥Jt((V ∗ (WT ,uT

t I Tt [w]))WT ,uT

t − MT
t I

T
t [w]

)∥∥2
L2
x

≤ 〈t〉−1−2γ ‖J T
t

(
(V ∗ (WT ,uT

t I Tt [w]))WT ,uT

t − MT
t I

T
t [w]

)∥∥2
H−(1−γ )
x

� 〈t〉−1−2γ Qt (W
T ,uT )‖I Tt [w]‖2

H1−γ
x

� 〈t〉−1−2γCε Qt (W
T ,uT ) + 〈t〉−1−2γ ε

(
‖I Tt [w]‖n+1

W
− 1
2 ,n+1

x

+ ‖I Tt [w]‖2H1
x

)
.

For the third term, we estimate

‖J T
t

(
(V ∗ (WT ,uT

t I Tt [w]))I Tt [w]
)
‖2L2

x

� 〈t〉−3‖V ∗ (WT ,uT

t I Tt [w])‖2L4
x
‖I Tt [w]‖2L4

x

� 〈t〉−3‖WT ,uT

t ‖2L∞
x

‖I Tt [w]‖4L4
x

� 〈t〉−3+1+2δ‖WT ,uT

t ‖2
C− 1

2−δ

x

‖I Tt [w]‖4L4
x
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� Cε〈t〉−2+2δ ‖WT ,uT

t ‖2
4+δ
δ

C− 1
2−δ

x

+ ε〈t〉−2+2δ‖I Tt [w]‖4+δ

L4
x

� Cε〈t〉−2+2δQt (W
T ,uT ) + ε〈t〉−2+2δ

(
‖I Tt [w]‖n+1

W
− 1
2 ,n+1

x

+ ‖I Tt [w]]‖2H1
x

)
.

In the last line, we use [6, Lemma 20].
The fourth term can be estimated exactly like the third term. To estimate the fifth

term, we only rely on Hölder’s inequality, Bernstein’s inequality, and the Fourier
support condition of I Tt [w]. We have that

‖J T
t

(
(V ∗ I Tt [w]2)I Tt [w]

)
‖2L2

x
� 〈t〉−3‖(V ∗ I Tt [w]2)I Tt [w]‖2L2

x
� 〈t〉−3‖I Tt [w]‖6L6

x

� 〈t〉−3+ δ
2 ‖I Tt [w]‖6

L
6

6+δ
x

� 〈t〉−3+ δ
2 ‖I Tt [w]‖4

W
− 1
2 , 4

δ
x

‖I Tt [w]‖2H1
x

� 〈t〉−3+2δ‖I Tt [w]‖4+δ

W
− 1
2 , 4

δ
x

‖I Tt [w]‖2−δ

H1
x

� Cε〈t〉−3+2δ + ε〈t〉−3+2δ
(
‖I Tt [w]‖n+1

W
− 1
2 ,n+1

x

+ ‖I Tt [w]‖2H1
x

)
.

In the second last inequality, we used that ‖I Tt [w]‖H1
x

� 〈t〉 3
2 ‖I Tt [w]‖

H−1/2
x

. This

completes the estimate of all five terms in r̃ T ,w

t and hence the proof. ��

Equipped with Lemma 4.9, we can now prove the Lq -bound for DT .

Proof of Proposition 4.7 The proof splits into two steps.
Step 1: Formulation as a variational problem. In order to prove the desired estimate

(4.25), it suffices to obtain a lower bound on − logEQ
u
T
[Dq

T ]. Using the Boué-Dupuis
formula, we obtain

− logEQ
u
T
[Dq

T ] − q log(ZT ,λ)

= − logEQ
u
T

[
exp

(
− q

(
:VT ,λ(WT ,uT∞ + I T∞[u]): −

∫ ∞

0

∫
T3

uT
t dB

uT
t

− 1

2

∫ ∞

0
‖uT

t ‖2L2 dt
))]

= inf
w∈Ha

E

[
q

(
:VT ,λ(WT ,uT∞ + I T∞[w] + I T∞[uT ,w]): +

∫ ∞

0

∫
T3

uT ,w

t dBuT
t

+
∫ ∞

0

∫
T3

uT ,w

t wt dx dt

+ 1

2

∫ ∞

0
‖uT ,w

t ‖2L2 dt

)
+ 1

2

∫ ∞

0
‖wt‖2L2 dt

]
.
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Since T �→ ∫ T
0

∫
T3 u

T ,w

t dBuT
t is a martingale, its expectation vanishes. We now insert

the change of variables uT ,w = hT ,w − w into the formula above, and obtain that

− logEQ
u
T
[Dq

T ] − q log(ZT ,λ)

= inf
w∈L2

t,x a

EQ
u
T

[
q
(

:VT ,λ(WT ,uT∞ + I T∞[hT ,w]): +1

2

∫ ∞

0
‖hw

t ‖2L2 dt

− 1

2

∫ ∞

0
‖wt‖2L2 dt

)
+ 1

2

∫ ∞

0
‖wt‖2L2 dt

]

= inf
w∈Ha

EQ
u
T

[
q
(

:VT ,λ(WT ,uT∞ + I T∞[hT ,w]): +1

2

∫ ∞

0
‖hw

t ‖2L2 dt
)

− q − 1

2

∫ ∞

0
‖wt‖2L2 dt

]
.

Since we want to obtain a lower bound, the most dangerous term in the expression
above is − q−1

2

∫ ∞
0 ‖wt‖2L2 dt . Using our previous information about the variational

problem (Propositions 3.1 and 3.3) and the nonnegativity of V(I T∞[hT ,w]), we obtain
that

− logEQ
u
T
[Dq

T ] ≥ −C + inf
w∈Ha

EQ
u
T

×
[
1

4

∫ ∞

0
‖lTt (hT ,w)‖2L2 dt − q − 1

2

∫ ∞

0
‖wt‖2L2 dt

]
. (4.28)

Recalling the definition of lTt (hT ,w) from Proposition 3.1 and (4.26), we obtain that

lTt (hT ,w) = hT ,w

t + λJ T
t :(V ∗ (WT ,uT

t )2)WT ,uT

t :
= (uT ,w

t + wt ) + J T
t :(V ∗ (WT ,uT

t )2)WT ,uT

t :
= (r T ,w

t + wt ).

Together with our previous estimate, this leads to

− logEQ
u
T
[Dq

T ] ≥ −C + inf
w∈Ha

EQ
u
T

×
[
1

4

∫ ∞

0
‖wt + r T ,w

t ‖2L2 dt − q − 1

2

∫ ∞

0
‖wt‖2L2 dt

]
.

By choosing q sufficiently close to one, it only remains to establish

E

∫ ∞

0
‖wt‖2L2 dt � 1 + E

∫ ∞

0
‖wt + r T ,w

t ‖2L2 dt . (4.29)

This bound is proven via a Gronwall-type argument.
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Step 2: Gronwall-type argument. This step crucially relies on the smoother term in
the definition of the drift (4.2). We essentially follow the proof of [6, Lemma 11]. As
in [6], we introduce the auxiliary process

Auxs(W
T ,uT , w) =

n∑
i=0

(
n

i

)
〈∇〉− 1

2 J T
s

(
:(〈∇〉− 1

2WT ,uT

s )i : (〈∇〉− 1
2 I Ts [w])n−i

)
.

(4.30)

With this notation, it holds that r T ,w = r̃ T ,w + Aux(WT ,uT , w). We then expand

w2
s = 2(ws + r T ,w

s )2 − 4wsr
T ,w

s − 2(r T ,w

s )2 − w2
s

= 2(ws + r T ,w

s )2 − 4ws r̃
T ,w

s − 2(rw
s )2 − w2

s − 4Auxs(W
T ,uT , w).

(4.31)

Using Itô’s integration by parts formula, we have for all s ≤ t that

4
∫ t

0

∫
T3

Auxs(W
T ,uT , w)ws dx ds

= 4
n∑

i=0

(
n

i

) ∫ t

0

∫
T3

:(〈∇〉− 1
2WT ,uT

s )i : (〈∇〉− 1
2 I Ts [w])n−i (〈∇〉− 1

2 J T
s ws) dx ds

= 4
n∑

i=0

1

n + 1 − i

(
n

i

) ∫ t

0

∫
T3

:(〈∇〉− 1
2WT ,uT

s )i : ∂

∂s
(〈∇〉− 1

2 I Ts [w])n+1−i dx ds

= 4
n∑

i=0

1

n + 1 − i

(
n

i

) ∫
T3

:(〈∇〉− 1
2WT ,uT

t )i : (〈∇〉− 1
2 I Tt [w])n+1−i dx

− 4
n∑

i=0

1

n + 1 − i

(
n

i

)∫ t

0

∫
T3

(〈∇〉− 1
2 I Ts [w])n+1−id

( :(〈∇〉− 1
2WT ,uT

s )i : )
.

Due to the martingale property, the second summand has zero expectation. After
setting

Auxt (W
T ,uT , w)

def=
n∑

i=0

1

n + 1 − i

(
n

i

) ∫
T3

:(〈∇〉− 1
2WT ,uT

t )i

: (〈∇〉− 1
2 I Tt [w])n+1−i dx, (4.32)
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we obtain from (4.31) that

E

[ ∫ t

0
‖ws‖2L2 ds + 4Auxt (W

T ,uT , w)
]

= E

[ ∫ t

0

(
2‖ws + r T ,w

s ‖2L2 − 4〈ws, r̃
T ,w

s 〉 − ‖ws‖2L2 − 2‖r T ,w

s ‖2L2

)
ds

]

≤ E

[
2

∫ t

0
‖ws + r T ,w

s ‖2L2 ds + 4
∫ T

0
‖̃r T ,w

s ‖2L2 ds
]
.

(4.33)

We perform the Gronwall-type argument based on the quantity �(t), which is defined
by

�(t)
def= E

∫ t

0
‖ws‖2L2 ds + ‖I Tt [w]‖n+1

W
− 1
2 ,n+1

x

. (4.34)

By [6, Lemma 12] and (4.33), we have that

�(t) � 1 + E

[ ∫ t

0
‖ws‖2L2 ds + Auxt (W

T ,uT , w)

]

� 1 + E

[ ∫ t

0
‖r T ,w

s + ws‖2L2 ds +
∫ t

0
‖̃r T ,w

s ‖2L2 ds

]
.

From Lemma 4.9, we obtain for ε, δ > 0 that

�(t) �δ 1 + E

[ ∫ t

0
‖r T ,w

s + ws‖2L2 ds + Cε

∫ t

0
〈s〉−1−δQs(W, λ) ds

]

+ ε

∫ t

0
〈s〉−1−δ�(s) ds

�δ Cε + E

[ ∫ t

0
‖r T ,w

s + ws‖2L2 ds

]
+ ε sup

0≤s≤t
�(s).

By choosing ε > 0 sufficiently small depending on δ, this implies the desired estimate.
��

4.3 The referencemeasure

Using our construction of the drift measures Q
u
T , we now provide a short proof of

Theorem 1.4. As in the rest of this section, we use the truncation parameter T .

Proof of Theorem 1.4 For any 1 ≤ T ≤ ∞, we define the reference measure νT as

νT
def= (W∞)#Q

u
T .
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By using the Lq -bound (Proposition 4.7), we have that for all Borel sets A ⊆
C−1/2−κ
x (T3) that

μT (A) = μ̃T (W∞ ∈ A) = EQ
u
T

[
1
{
W∞ ∈ A

}
DT

]
≤

(
EQ

u
T

[
Dq
T

]) 1
q
Q

u
T (W∞ ∈ A)

1− 1
q

� νT (A)
1− 1

q .

This proves the first part of Theorem 1.4. Regarding the representation of νT , which
forms the second part of Theorem 1.4, we have that

νT = LawQ
u
T
(W∞)

= LawQ
u
T
(Wu∞ + I∞[uT ])

= LawQ
u
T

(
Wu∞ − λρT (∇)

∫ ∞

0
J 2s :(V ∗ (WT ,u

s )2)WT ,u
s : ds

+ ρT (∇)

∫ ∞

0
〈∇〉− 1

2 J 2s :(〈∇〉− 1
2WT ,u

s

)n : ds
)

= LawP

(
W∞ − λρT (∇)

∫ ∞

0
J 2s :(V ∗ (WT

s )2)WT
s : ds

+ ρT (∇)

∫ ∞

0
〈∇〉− 1

2 J 2s :(〈∇〉− 1
2WT

s

)n : ds
)
.

This completes the proof. ��

5 Singularity

In this section, we prove Theorem 1.5. The majority of this section deals with the
singularity for 0 < β < 1/2. The absolute continuity for β > 1/2 will be deduced
from Corollary 3.4 and requires no new ingredients. Theorem 1.5 is important for the
motivation of this series of papers, since we provide the first proof of invariance for a
Gibbs measure which is singular with respect to the corresponding Gaussian free field.
The methods of this section, however, will not be used in the rest of this two-paper
series.

We prove the singularity of the Gibbs measure μ∞ and the Gaussian free field g

through the explicit event in Proposition 5.1.

Proposition 5.1 (Singularity). Let 0 < β < 1
2 and let δ > 0 be sufficiently small.

Then, there exists a (deterministic) sequence (Sm)∞m=1 ⊆ R>0 converging to infinity
such that

lim
m→∞

1

S1−2β−δ
m

∫
T3

:(V ∗ (ρSm (∇)φ)2)(ρSm (∇)φ)2 : dx = 0 g-a.s. (5.1)
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and

lim
m→∞

1

S1−2β−δ
m

∫
T3

:(V ∗ (ρSm (∇)φ)2)(ρSm (∇)φ)2 : dx = −∞ μ∞-a.s. (5.2)

Here, g is the Gaussian free field, μ∞ is the Gibbs measure, and φ ∈ C− 1
2−κ

x (T3)

denotes the random element.

Remark 5.2 In the statement of the proposition, the reader may wish to replace φ by
W∞, g by P, and μ∞ by μ̃∞. We choose the notation φ to emphasize that this is a
property of g and μ∞ only and does not rely on the stochastic control perspective. Of
course, the stochastic control perspective is heavily used in the proof.

To simplify the notation, we define

W
S,3
s

def=:(V ∗ (WS
s )2)WS

s : and W
S,4
s

def=:(V ∗ (WS
s )2)(WS

s )2 : . (5.3)

We note that the dependence on the interaction potential V is not reflected in this
notation. We first study the behavior of the integral of WS,4∞ with respect to P. This is
the easier part of the proof and the statement (5.1) follows from the following lemma.

Lemma 5.3 (Quartic power under the Gaussian free field). Let 0 < β < 1/2. Then,
we have that

sup
S≥1

EP

[( 1

S
1
2−β

∫
T3

W
S,4∞ dx

)2]
� 1. (5.4)

Proof From Proposition 2.9, we obtain that∫
T3

W
S,4∞ dx =

∑
n1,n2,n3,n4∈Z3 :

n1234=0

( ∑
π∈S4

V̂ (nπ(1) + nπ(2))
)

×
∫ ∞

0

∫ s1

0

∫ s2

0

∫ s3

0
dWS,n4

s4 dWS,n3
s3 dWS,n2

s2 dWS,n1
s1 .

Since the iterated stochastic integrals are uncorrelated, we obtain that

EP

[( ∫
T3

W
S,4∞ dx

)2]

�
∑

n1,n2,n3,n4∈Z3 :
n1234=0

( ∑
π∈S4

V̂ (nπ(1) + nπ(2))
)2 4∏

j=1

ρ S
s (n j )

2

〈n j 〉2

�
∑

n1,n2,n3,n4∈Z3 :
n1234=0

〈n12〉−2β
4∏
j=1

ρ S
s (n j )

2

〈n j 〉2

123



68 Stoch PDE: Anal Comp (2022) 10:1–89

�
∑

n1,n2,n3∈Z3

〈n123〉−2〈n12〉−2β
3∏
j=1

ρ S
s (n j )

2

〈n j 〉2 .

It now only remains to estimate the sum. Provided that β < 1/2, we first sum in n3,
then n2, and finally n1 to obtain

∑
n1,n2,n3∈Z3

〈n123〉−2〈n12〉−2β
3∏
j=1

ρ S
s (n j )

2

〈n j 〉2 �
∑

n1,n2∈Z3

〈n12〉−1−2β
2∏
j=1

ρ S
s (n j )

2

〈n j 〉2

�
∑
n1∈Z3

ρ S
s (n1)

2

〈n1〉2+2β � S1−2β.

��
We now begin our study of the integral

∫
T3 W

S,4∞ dx under Q
u∞. Naturally, we would

like to replace (most) occurrences of WS by WS,u , since the law of WS,u under Q
u∞ is

explicit. This is the objective of our first (algebraic) lemma.

Lemma 5.4 For any S ≥ 1, it holds that∫
T3

W
S,4∞ dx = −4λ

∫ ∞

0

∫
T3

(J S
s W

S,u,3
s ) · JsWu,3

s dx ds (5.5)

+ 4
∫ ∞

0

∫
T3

(J S
s W

S,u,3
s )dBu

s − 4λ
3∑
j=1

∫ ∞

0

∫
T3

AS, j
s [u] · JsWu,3

s dx ds

(5.6)

+ 4
3∑
j=1

∫ ∞

0

∫
T3

AS, j
s [u]dBu

s

+ 4
∫ ∞

0

∫
T3

W
S,3
s

(
Js〈∇〉− 1

2 :(〈∇〉− 1
2Wu

s

)n :
)
dx ds, (5.7)

where

AS,1
s [u] def= J S

s

(
(V∗ :(WS,u

s )2 :)I Ss [u]
)

+ 2J S
s

(
V ∗ (WS,u

s I Ss [u]) · WS,u
s − MS

s I
S
s [u]

)
,

(5.8)

AS,2
s [u] = J S

s

(
(V ∗ (I Ss [u])2)WS,u

s

)
+ 2J S

s

(
(V ∗ (WS,u

s I Ss [u]))I Ss [u]
)
, (5.9)

AS,3
s [u] = J S

s

(
(V ∗ I Ss [u]2)I Ss [u]

)
. (5.10)

Proof Using (2.27) from Proposition 2.9 together with the integral equation for u, i.e.
(4.3), we obtain that∫

T3
W

S,4∞ dx = 4
∫ ∞

0

∫
T3

W
S,3
s dWS

s

123



Stoch PDE: Anal Comp (2022) 10:1–89 69

= 4
∫ ∞

0

∫
T3

W
S,3
s (J S

s us) dx ds + 4
∫ ∞

0

∫
T3

W
S,3
s dWS,u

s

= −4λ
∫ ∞

0

∫
T3

(J S
s W

S,3
s )(JsW

u,3
s ) dx ds + 4

∫ ∞

0

∫
T3

(J S
s W

S,3
s )dBu

s

+ 4
∫ ∞

0

∫
T3

(J S
s W

S,3
s )(Js〈∇〉− 1

2 :(〈∇〉− 1
2Wu

s )n : dx ds (5.11)

From the cubic binomial formula (2.31) and the definition of AS, j
s , it follows that

J S
s W

S,3
s = J S

s W
S,u,3
s +

3∑
j=1

AS, j
s [u].

Inserting this into (5.11) leads to the desired identity. ��

We begin by studying the right-hand side of (5.5), which is the main term. Our first
lemma controls the expectation, which will be upgraded to a pointwise estimate later.

Lemma 5.5 If 0 < β < 1/2 and S ≥ 1 is sufficiently large, then

EQ
u∞

[ ∫ ∞

0

∫
T3

(J S
s W

S,u,3
s ) · JsWu,3

s dx ds
]

� S1−2β. (5.12)

Proof Since the law of Wu under Q
u∞ coincides with the law of W under P, it holds

that

EQ
u∞

[ ∫ ∞

0

∫
T3

(J S
s W

S,u,3
s ) · JsWu,3

s dx ds
]

= EP

[ ∫ ∞

0

∫
T3

(J S
s W

S,3
s ) · JsW3

s dx ds
]
.

(5.13)

The rest of the proof consists of a tedious but direct calculation. Using the real-
valuedness of W and the stochastic integral representation (2.25), we have that

∫
T3

(J S
s W

S,3
s ) · JsW3

s dx

=
∫
T3

(J S
s W

S,3
s ) · JsW3

s dx

=
∑
n∈Z3

σ S
s (n)σs(n)

〈n〉2
∑

n1,n2,n3∈Z3,

m1,m2,m3∈Z3

n123=m123=n

[( ∑
π∈S3

V̂ (nπ(1) + nπ(2))
)( ∑

τ∈S3
V̂ (mτ(1) + mτ(2))

)

×
( ∫ s

0

∫ s1

0

∫ s2

0
dW

S,n3
s3 dW

S,n2
s2 dW

S,n1
s1

)( ∫ s

0

∫ s1

0

∫ s2

0
dW

T ,s3
m3 dW

T ,s2
m2 dW

T ,s1
m1

)]
.
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Taking expectations, we only obtain a non-trivial contribution for (n1, n2, n3) =
(m1,m2,m3), and it follows that

EP

[ ∫
T3

(J S
s W

S,3
s ) · JsW3

s dx
]

=
∑

n1,n2,n3∈Z3

[
σ S
s (n123)σs(n123)

〈n123〉2
( ∑

π∈S3
V̂ (nπ(1) + nπ(2))

)2( 3∏
j=1

1

〈n j 〉2
)

×
∫ s

0

∫ s1

0

∫ s2

0

( 3∏
j=1

(
σs j (n j )σ

S
s j (n j )

))
ds3ds2ds1

]

= 1

6

∑
n1,n2,n3∈Z3

[
σ S
s (n123)σs(n123)

〈n123〉2

×
( ∑

π∈S3
V̂ (nπ(1) + nπ(2))

)2( 3∏
j=1

1

〈n j 〉2
)( 3∏

j=1

∫ s

0
σs j (n j )σ

S
s j (n j )ds j

)]
.

By recalling that σ S
s = ρS · σs , integrating in s, using Lemma B.1, and symmetry

considerations, we obtain that

EP

[ ∫ ∞
0

∫
T3

(J S
s W

S,3
s ) · JsW3

s dxds
]

= 1

6

∑
n1,n2,n3∈Z3

ρS(n123)

〈n123〉2
( ∑

π∈S3
V̂ (nπ(1) + nπ(2))

)2( 3∏
j=1

ρS(n j )

〈n j 〉2
)

×
∫ ∞
0

σs(n123)
2
( 3∏

j=1

ρs(n j )
2
)
ds

≥ c
∑

n1,n2,n3∈Z3

ρS(n123)

〈n123〉2
1

〈n12〉2β
( 3∏

j=1

ρS(n j )

〈n j 〉2
) ∫ ∞

0
σs(n123)

2
( 3∏

j=1

ρs(n j )
2
)
ds

− C
∑

n1,n2,n3∈Z3

ρS(n123)

〈n123〉2
1

〈n12〉1+2β

( 3∏
j=1

ρS(n j )

〈n j 〉2
) ∫ ∞

0
σs(n123)

2
( 3∏

j=1

ρs(n j )
2
)
ds,

where c,C > 0 are small and large constants depending only onV . The only difference
between the two terms lies in the power of 〈n12〉. Theminor termcan easily be estimated
from aboveby
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∑
n1,n2,n3∈Z3

ρS(n123)

〈n123〉2
1

〈n12〉1+2β

( 3∏
j=1

ρS(n j )

〈n j 〉2
) ∫ ∞

0
σs(n123)

2
( 3∏

j=1

ρs(n j )
2
)
ds

�
∑

n1,n2,n3∈Z3

1

〈n123〉2〈n12〉1+2β〈n1〉2〈n2〉2〈n3〉2

� 1.

Using Lemma B.5, the main term can be estimated from below by

∑
n1,n2,n3∈Z3

ρS(n123)

〈n123〉2
1

〈n12〉2β
( 3∏

j=1

ρS(n j )

〈n j 〉2
) ∫ ∞

0
σs(n123)

2
( 3∏

j=1

ρs(n j )
2
)
ds

�
∑

n1,n2,n3∈Z3 :
|n j−Se j |≤S/20

1

〈n123〉2〈n12〉2β〈n1〉2〈n2〉2〈n3〉2

� S−8−2β#{(n1, n2, n3) ∈ (Z3)3 : |n j − Se j | ≤ S/20 for j = 1, 2, 3}
� S1−2β.

This completes the proof of the lemma. ��

Before we can upgrade Lemma 5.5, we need the following estimate of the AS, j .

Lemma 5.6 Let 0 < β < 1/2, let δ > 0 sufficiently small, and let k ≥ 1 be sufficiently
large depending on β. For any v : R>0 × T

3 → R and any j = 1, 2, 3, it then holds
that

‖AS, j
s [v]‖2L2

x
� 〈s〉−1−2β+20δ

(
Qs(W

u) + ‖I Ss [v]‖k
C− 1

2−δ

x

+ ‖I Ss [v]‖2H1
x

)
. (5.14)

Remark 5.7 As is clear from the proof, this estimate can be slightly refined. Ignoring δ-
losses, the worst power 〈s〉−1−2β only occurs with ‖I Ss [v]‖2

H1−β
x

instead of ‖I Ss [v]‖2
H1
x
.

However, (5.14) is sufficient for our purposes.

Proof We treat the estimates for j = 1, 2, 3 separately. We first estimate AS,1
s , which

consists of two terms. For the first summand, we havethat
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∥∥∥J S
s

(
(V∗ :(WS,u

s )2 :)I Ss [v]
)∥∥∥2

L2
x

� 〈s〉−1−2β+4δ
∥∥∥(

(V∗ :(WS,u
s )2 :)I Ss [v]

)∥∥∥2
H−1+β−2δ
x

� 〈s〉−1−2β+4δ‖V∗ :(WS,u
s )2 : ‖2C−1+β−δ

x
‖I Ss [v]‖2

H1−β
x

� 〈s〉−1−2β+4δ‖V∗ :(WS,u
s )2 : ‖2C−1+β−δ

x
‖I Ss [v]‖β

H−1
x

‖I Ss [v]‖2−β

H1
x

.

Provided that k � β−1, the desired statement follows from Young’s inequality. The
estimate for the second summand is similar, except that in the second inequality above
we use the random matrix estimate (Proposition 3.7) instead of Hölder’s inequality.

Next, we estimate AS,2
s . Let η > 0 remain to be chosen. Using (B.6) from

Lemma B.3, we can control the first term in AS,2
s by

∥∥∥J S
s

(
(V ∗ (I Ss [v])2)WS,u

s

)∥∥∥2
L2
x

� 〈s〉−2+4δ
∥∥∥〈∇〉− 1

2−2δ
(
(V ∗ (I Ss [v])2)WS,u

s

)∥∥∥2
L2
x

� 〈s〉−2+4δ‖WS,u
s ‖2

C− 1
2−δ

x

‖I Ss [v]‖2
C− 1

2−δ

x

‖I Ss [v]‖2
H1+4δ
x

� 〈s〉−2+12δ‖WS,u
s ‖2

C− 1
2−δ

x

‖I Ss [v]‖2
C− 1

2−δ

x

‖I Ss [v]‖2H1
x

� 〈s〉−2+12δ+8η‖WS,u
s ‖2

C− 1
2−δ

x

‖I Ss [v]‖2+η

C− 1
2−δ

x

‖I Ss [v]‖2−η

H1
x

� 〈s〉−2+12δ+8η
(
‖WS,u

s ‖
8
η

C− 1
2−δ

x

+ ‖I Ss [v]‖
4(2+η)

η

C− 1
2−δ

x

+ ‖I Ss [v]‖2H1
x

)
.

After choosingη = 10k−1, the desired estimate followsprovided that k � (1/2−β)−1.
The only difference in the estimate of the second term in AS,2

s is thatweuse (B.5) instead
of (B.6).

We now turn to the estimate of AS,3
s . Arguing exactly as in our estimate for AS,2

s ,
we obtain that∥∥∥J S

s

(
(V ∗ (I Ss [v])2)I Ss [v]

)∥∥∥2
L2
x

� 〈s〉−2+12δ+8η‖I Ss [v]‖4+η

C− 1
2−δ

x

‖I Ss [v]‖2−η

H1
x

.

Using Young’s inequality, this contribution is acceptable. ��
We are now ready to upgrade our bound on the expectation from Lemma 5.5 into

a pointwise statement. The main tool will be the Boué-Dupuis formula.

Lemma 5.8 For any δ > 0, there exists a sequence (Sm)∞m=1 converging to infinity
such that

lim
m→∞

1

S1−2β−δ
m

∫ ∞

0

∫
T3

(
J Sm
s W Sm ,u,3

s

)(
JsW

u,3
s

)
dx ds = ∞ Q

u∞-a.s. (5.15)
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Proof Let k ≥ 1 remain to be chosen. We define the auxiliary function

GS = 1

S1−2β−δ

∫ ∞

0

∫
T3

(
J S
s W

S,u,3
s

)(
JsW

u,3
s

)
dx ds + sup

0≤s<∞
‖Wu

s ‖k
C− 1

2−δ

x (T3)

.

(5.16)

We will now show that

lim
S→∞ EQ

u∞

[
e−GS

]
= 0, (5.17)

which implies the desired result. We could switch from (Wu, Q
u∞) to (W , P), which

we have done several times above. Since the AS, j
s in (5.8)–(5.10) are defined in terms

of Wu , however, we decided not to change the measure.

We define A j
s similar as in (5.8)–(5.10), but with J S

s replaced by Js , I Ss replaced by
Is , and WS,u replaced by Wu . Since all our estimates for AS, j were uniform in S ≥ 1,
they also hold for A j . Using the Boué-Dupuis formula (Theorem 2.1) and the cubic
binomial formula, we have that

− logEQ
u∞

[
e−GS

]
= inf

v∈Ha
EQu

[
1

S1−2β−δ

∫ ∞

0

∫
T3

(
J S
s

(
:(V ∗ (WS,u

s + I Ss [v])2)(WS,u
s + I Ss [v]):

)

× Js
(
:(V ∗ (Wu

s + Is [v])2)(Wu
s + Is [v]):

))
dx ds + sup

0≤s<∞
‖Wu

s + Is [v]‖k
C− 1

2 −δ

x

+ 1

2
‖v‖2L2

s L
2
x

]

= EQ
u∞

[
1

S1−2β−δ

∫ ∞

0

∫
T 3

J S
s

(
:(V ∗ (WS,u

s )2)WS,u
s :

)
Js

(
:(V ∗ (Wu

s )2)Wu
s :

)
dx ds

]
(5.18)

+ inf
v∈Ha

EQ
u∞

[
sup

0≤s<∞
‖Wu

s + Is [v]‖k
C− 1

2 −δ

x

+ 1

2

∫ ∞

0
‖vs‖2L2

x
ds (5.19)

+ 1

S1−2β−δ

3∑
j=1

∫ ∞

0

∫
T3

(J S
s W

S,u,3
s )A j

s [v] dx ds

+ 1

S1−2β−δ

3∑
j=1

∫ ∞

0

∫
T3

(JsW
u,3
s )AS, j

s [v] dx ds (5.20)

+ 1

S1−2β−δ

3∑
i, j=1

∫ ∞

0

∫
T3

AS,i
s [v]A j

s [v] dx ds
]
. (5.21)

The main term is given by (5.18). By Lemma 5.5, we see that (5.18) converges to
infinity as S → ∞. Thus, it remains to obtain a lower bound on the variational
problem in (5.19)–(5.21). The terms in (5.19) are nonnegative and help with the lower
bound. In contrast, the terms in (5.20) and (5.21) are viewed as errors and will be
estimated in absolute value.
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Regarding (5.19), we briefly note that

EQu

[
sup

0≤s<∞
‖Wu

s + Is[v]‖k
C− 1

2−δ

x

]
≥ 1

2
EQ

u∞

[
sup

0≤s<∞
‖Is[v]‖k

C− 1
2−δ

x

]
− C .

In the estimates below, we will often use that AS, j
s [v] = 0 for all s � S. We begin

with the first term in (5.20). We have that

∣∣∣ 1

S1−2β−δ

∫ ∞

0

∫
T3

(J S
s W

S,u,3
s )A j

s [v] dx dt
∣∣∣

≤ 1

S1−2β−δ

∫ ∞

0
1{s � S}〈s〉− 1

2 ‖J S
s W

S,u,3
s ‖2L2 ds + 1

S1−2β−δ

∫ ∞

0

1{s � S}〈s〉 1
2 ‖A j

s [v]‖2L2 ds. (5.22)

For the first term in (5.22), we obtain from Lemma 2.20 that

EQ
u∞

[
1

S1−2β−δ

∫ ∞

0
1{s � S}〈s〉− 1

2 ‖J S
s W

S,u,3
s ‖2L2 ds

]

� 1

S1−2β−δ

∫ ∞

0
1{s � S}〈s〉− 1

2−2β+2δ
EQu

[
‖W

S,u,3
s ‖2

H
− 3
2+β−δ

x

]
ds

� 1

S1−2β−δ

∫ ∞

0

1{s � S}〈s〉− 1
2−2β+2δ ds

� 1.

(5.23)

For the second term in (5.22), we obtain from Lemma 5.6 that

EQ
u∞

[
1

S1−2β−δ

∫ ∞

0
1{s � S}〈s〉 1

2 ‖A j
s [v]‖2L2 ds

]

� 1

S1−2β−δ

∫ ∞

0
1{s � S}〈s〉− 1

2−2β
EQ

u∞

[
Qs(W

u)
]
ds

+ 1

S1−2β−δ
EQu

[ ∫ ∞

0
1{s � S}〈s〉− 1

2−2β
(
‖Is[v]‖k

C− 1
2−δ

x

+ ‖Is[v]‖2H1
x

)
ds

]

� 1 + Sδ max(S− 1
2 , S2β−1)EQ

u∞

[
sup

0≤s<∞

(
‖Is[v]‖k

C− 1
2−δ

x

+ ‖Is[v]‖2H1
x

)]

� 1 + Sδ max(S− 1
2 , S2β−1)EQ

u∞

[
sup

0≤s<∞
‖Is[v]‖k

C− 1
2−δ

x

+ ‖v‖2L2
s L

2
x

]
. (5.24)

In the last line, we also Lemma B.4. Since S → ∞, this contribution can be absorbed
in the coercive term (5.22). The estimate of the second summand in (5.20) is exactly
the same.
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Regarding the error terms in (5.21), we have that

∣∣∣ 1

S1−2β−δ

3∑
i, j=1

∫ ∞

0

∫
T3

AS,i
s [v]A j

s [v] dx ds
∣∣∣

� 1

S1−2β−δ

3∑
j=1

∫ ∞

0
1{s � S}

(
‖AS,i

s [v]‖2L2
x
+ ‖A j

s [v]‖2L2
x

)
dx ds.

The right-hand side can now be controlled using the same (or simpler) estimates as
for the second summand in (5.22). This completes the proof. ��

Essentially the same estimates as in the previous proof can also be used to control
the minor terms in (5.6) and (5.7). We record them in the following lemma.

Lemma 5.9 Let 0 < β < 1/2, let δ > 0 and let j = 1, 2, 3. Then, it holds that

lim
S→∞ EQ

u∞

[(
1

S
1
2−β+δ

∫ ∞

0

∫
T3

J S
s W

S,u,3
s dBu

s

)2]
= 0, (5.25)

lim
S→∞ EQ

u∞

[
1

max(S1−3β+δ, 1)

∣∣∣∣
∫ ∞

0

∫
T3

AS, j
s [u] · JsWu,3

s dx ds

∣∣∣∣
]

= 0, (5.26)

lim
S→∞ EQ

u∞

[(
1

max(S
1
2−2β+δ, 1)

∫ ∞

0

∫
T3

AS, j
s [u]dBu

s

)2]
= 0, (5.27)

lim
S→∞ EQ

u∞

[
1

Sδ

∣∣∣∣
∫ ∞

0

∫
T3

(J S
s W

S,3
s )(Js〈∇〉− 1

2 :(〈∇〉− 1
2Wu

s )n :) dx ds
∣∣∣∣
]

= 0. (5.28)

Proof We begin with the proof of (5.25). Using Itô’s isometry, we have that

EQu

[(
1

S
1
2−β+δ

∫ ∞

0

∫
T3

J S
s W

S,u,3
s dBu

s

)2]

= 1

S1−2β+2δ

∫ ∞

0
EQ

u∞

[
‖J S

s W
S,u,3
s ‖2L2

x

]
ds.

Arguing essentially as in (5.23), we obtain that

1

S1−2β+2δ

∫ ∞

0
EQ

u∞

[
‖J S

s W
S,u,3
s ‖2L2

x

]
ds

� 1

S1−2β+2δ

∫ ∞

0
1{s � S}〈s〉−2β+δ ds � S−δ,

which yields (5.25).
We now turn to (5.26). Using Lemma 5.6 and Corollary 4.6, we have for all ε > 0

that

EQ
u∞

[
‖AS, j

s [u]‖2L2
x

]
� 〈s〉−1−2β+20ε(1 + (〈s〉1−( 12+β)+ε

)2
) � 〈s〉−4β+40ε . (5.29)
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Using Lemma 2.16 and (5.29), we obtain that

EQ
u∞

[∣∣∣∣
∫ ∞

0

∫
T3

AS, j
s [u] · JsWu,3

s dx ds

∣∣∣∣
]

� EQ
u∞

[ ∫ ∞

0
1{s � S}〈s〉−β‖JsWu,3

s ‖2L2
x
ds

]

+ EQ
u∞

[ ∫ ∞

0
1{s � S}〈s〉β‖AS, j

s [u]‖2L2
x
ds

]

�
∫ ∞

0
1{s � S}〈s〉−3β+40ε ds � S− δ

2 max(1, S1−3β+δ).

Next, we prove (5.26). Using Itô’s isometry and (5.29), we have that

EQ
u∞

[( ∫ ∞

0

∫
T3

AS, j
s [u]dBu

s

)2]
� EQ

u∞

[ ∫ ∞

0
1{s � S}‖AS, j

s [u]‖2L2
x
ds

]

�
∫ ∞

0
1{s � S}〈s〉−4β+40ε ds

� S−δ max(S
1
2−2β+δ, 1)2.

Finally, we turn to (5.28), which is the most regular term. We first recall the algebraic
identity J S

s W
S,3
s = J S

W
S,u,3
s + ∑3

j=1 A
S, j
s [u]. Then, Lemma 2.16 and (5.29) yield

EQ
u∞

[
‖J S

s W
S,3
s ‖2L2

x

]
� 〈s〉−2β+2ε . (5.30)

From Lemma 2.23, we have that

EQ
u∞

[
‖Js〈∇〉− 1

2 :(〈∇〉− 1
2Wu

s

)n : ‖2L2
x

]
� 〈s〉−4+2ε . (5.31)

By combining (5.30) and (5.31), we obtain

EQ
u∞

[∣∣∣∣
∫ ∞

0

∫
T3

(J S
s W

S,3
s )(Js〈∇〉− 1

2 :(〈∇〉− 1
2Wu

s )n :) dx ds
∣∣∣∣
]

� EQ
u∞

[ ∫ ∞

0
1{s � S}〈s〉−1‖J S

s W
S,3
s ‖2L2

x
ds

]

+ EQ
u∞

[ ∫ ∞

0
〈s〉‖Js〈∇〉− 1

2 :(〈∇〉− 1
2Wu

s

)n : ‖2L2
x
ds

]

�
∫ ∞

0

(
〈s〉−1−2β+2ε + 〈s〉−3+ε

)
ds � 1.

��
We are now ready to prove the main result of this section.
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Proof of Proposition 5.1 We recall from Lemma 5.4 that

1

S1−2β−δ

∫
T3

W
S,4∞ dx = − 4λ

S1−2β−δ

∫ ∞

0

∫
T3

(J S
s W

S,u,3
s ) · JsWu,3

s dx ds

+RS(Wu, u), (5.32)

where the remainder R(Wu, u) contains the terms from (5.6) and (5.7) with an addi-
tional S−1+2β+δ . By Lemma 5.8, there exists a deterministic sequence Sm such that
the first summand in (5.32) converges to−∞ almost surely with respect to Q

u∞. Since
0 < β < 1/2, we have that

1 − 2β > max
(1
2

− β, 1 − 3β,
1

2
− 2β, 0

)
.

Using Lemma 5.9, this implies that the remainderRS(Wu, u) converges to zero in
L1(Qu∞). By passing to a subsequence if necessary, we can assume that RSm (Wu, u)

converges to zero almost surely with respect to Q
u∞. Using (5.32), this implies that

lim
m→∞

1

S1−2β−δ
m

∫
T3

W
Sm ,4∞ dx = −∞ Q

u∞-a.s.

Using β < 1/2 and Lemma 5.3, the integral S−1+2β+δ
∫
T3 W

S,4∞ dx converges to zero
in L2(P). By passing to another subsequence if necessary, we obtain that

lim
m→∞

1

S1−2β−δ
m

∫
T3

W
Sm ,4∞ dx = 0 P-a.s.

Since μ∞ is absolutely continuous with respect to ν∞ = (W∞)#Q
u∞ and g =

LawP(W∞), this implies (5.1) and (5.2). ��
Equipped with Corollary 3.4 and Proposition 5.1, we now provide a short proof of

Theorem 1.5.

Proof of Theorem 1.5 If 0 < β < 1/2, then themutual singularity of theGibbsmeasure
μ∞ and the Gaussian free field g directly follows from Proposition 5.1.

If β > 1/2, we claim that for all p ≥ 1 that

dμT

dg
∈ L p(g) (5.33)

with uniform bounds in T ≥ 1. Since μT converges weakly to μ∞, this implies the
absolute continuity μ∞ � g.

In order to prove the claim, we recall that μT = (W∞)#μ̃T and g = (W∞)#P.
Furthermore, we see from (2.10) that the density dμ̃T /dP is a function of W∞. As a
result, we obtain for all p ≥ 1 that∫ (dμ̃T

dP

)p
dP =

∫ (dμT

dg

)p
dg
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Thus, it suffices to bound the density dμ̃T /dP in L p(P). From the definition of μ̃T

(Definition 2.3) and the definition of the renormalized potential energy in (3.2), we
have that

(dμ̃T

dP

)p = 1(ZT ,λ
)p exp

(
− p :VT ,λ(WT∞):

)

= 1(ZT ,λ
)p exp

(
− λp

4

∫
T3

:(V ∗ (WT∞)2)(WT∞)2 : dx − pcT ,λ

)

= ZT ,pλ(ZT ,λ
)p exp(cTpλ − pcT ,λ) · 1

ZT ,pλ
exp

(
− :VT ,pλ(WT∞):

)
.

The first two factors are uniformly bounded in T by Proposition 3.3 and Corollary 3.4.
The last factor is uniformly bounded in L1(P) for all T ≥ 1 since we only replaced
the coupling constant λ by pλ. This completes the proof of the claim (5.33). ��
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Appendix A. Probability theory

In this section we recall two concepts from probability theory, namely, Gaussian
hypercontractivity and multiple stochastic integrals.

A.1 Gaussian hypercontractivity

In several places of this paper, we reduced probabilistic L p-bounds to probabilistic
L2-bounds using Gaussian hypercontractivity, which is closely related to logarithmic
Sobolev embeddings. In the dispersive PDE community, among others, the resulting
estimates are known as Wiener chaos estimates. A version of the following lemma
can be found in [39, Theorem I.22], [34, Theorem 1.4.1], and most papers on random
dispersive PDE.
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Lemma A.1 Let k ≥ 1 and let f : (R>0 × Z
3)k → C be deterministic, bounded, and

measurable. For any t ≥ 0, define the random variable

Xt =
∑

n1,...,nk∈Z3

∫ t

0

∫ t1

0
. . .

∫ tk−1

0
f (t1, n1, . . . , tk, nk)dW

nk
tk dWnk−1

tk−1
. . . dWn1

t1 .

(A.1)

Then, it holds for all p ≥ 2 that

‖Xt‖L p(
) ≤ (p − 1)
k
2 ‖Xt‖L2(
). (A.2)

A.2 Multiple stochastic integrals

This section is based on [34, Section 1.1] and we refer the reader to this excellent book
for more details. Of particular importance to us is [34, Example 1.1.2], which discuss
the specific case of a d-dimensional Brownian motion.

We identify WT with a Gaussian process on H = L2(R>0 × Z
3, dt ⊗ dn), where

dt is the Lebesgue measure and dn is the counting measure. For any h ∈ H, we define

WT [h] =
∑
n∈Z3

∫ ∞

0
h(t, n)dWT ,n

t . (A.3)

For any h, h′ ∈ H, we have that

E

[
WT [h]WT [h′]

]
=

∑
n∈Z3

∫ ∞

0
h(t, n)h′(t,−n)

σ T
t (n)2

〈n〉2 dt . (A.4)

Since we did not include a complex conjugate in the left-hand side of (A.4), we note
that this does not yield a positive-definite bilinear form. We also did not include the
weight ρT

t (n)2/〈n〉2 in the definition of H. Thus, the “covariance” in (A.4) does not
coincide with the inner product on H and instead is only dominated by it. As is clear
from [34, Section 1.1], this only requires minor modifications in both the arguments
and formulas.

For any k ≥ 1 and any function f ∈ Hk = L2
(
(R>0 × Z

3)k,
⊗k

j=1( dt ⊗ dn)
)
,

the multiple stochastic integral

Ik[ f ] =
∑

n1,...,nk∈Z3

∫ ∞

0
. . .

∫ ∞

0
f (t1, n1, . . . , tk, nk)dW

T ,nk
tk . . . dWT ,n1

t1 (A.5)

can be defined as in [34, Section 1.1.2]. If f is symmetric in the pairs (t1, n1), (t2, n2),
. . . , (tk, nk), we can relate the multiple stochastic integral to an iterated stochastic
integral.
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Lemma A.2 Let k ≥ 1 and let f ∈ Hk be symmetric. Then, it holds that

Ik[ f ] = k!
∑

n1,...,nk∈Z3

∫ ∞

0

∫ t1

0
. . .

∫ tk−1

0
f (t1, n1, . . . , tk, nk)dW

T ,nk
tk . . . dWT ,n1

t1 ,

(A.6)

where the right-hand side is understood as an iterated Itô integral.

This lemma follows from [34, (1.27)] and the discussion below it. The primary reason
for working with multiple stochastic integrals instead of iterated stochastic integrals
is the simpler representation of their products. In order to state the product formula in
Lemma A.4 below, we need one further definition.

Definition A.3 (Contraction). Let k, l ≥ 1 and let f ∈ Hk and g ∈ Hl be symmetric.
For any 0 ≤ r ≤ min(k, l), we define the contraction of r indices by

( f ⊗r g)(t1, n1, . . . , tk+l−2r , nk+l−2r )

def=
∑

m1,...,mr∈Z3

∫ ∞

0
. . .

∫ ∞

0

[
f (t1, n1, . . . , tk−r , nk−r , s1,m1, . . . , sr ,mr )

× g(tk+1−r , nk+1−r , . . . , tk+l−2r , nk+l−2r , s1,

− m1, . . . , sr ,−mr )

k∏
j=1

σ T
s j (m j )

2

〈m j 〉2
]
dsr . . . ds1.

The reader should note the relationship to the covariance (A.4). If f , g ∈ H = H1,
then

E

[
WT [ f ]WT [g]

]
= f ⊗1 g.

A slight modification of [34, Proposition 1.1.3] then yields the following result.

Lemma A.4 (Product formula). For any k, l ≥ 1 and any symmetric f ∈ Hk and
g ∈ Hl , it holds that

Ik[ f ] · Il [g] =
min(k,l)∑
r=0

r !
(
k

r

)(
l

r

)
Ik+l−2r [ f ⊗r g]. (A.7)

Appendix B. Auxiliary analytic estimates

In this section, we record several auxiliary results, which have been placed here to not
interrupt the flow of the argument.

123



Stoch PDE: Anal Comp (2022) 10:1–89 81

Harmonic analysis

We record a non-stationary phase argument and several standard trilinear product
estimates.

Lemma B.1 (Asymptotics of V̂ ). There exists a constant c = cβ ∈ R such that

∣∣∣V̂ (n) − cβ

〈n〉β
∣∣∣ � 1

〈n〉β+1 . (B.1)

Remark B.2 On the Euclidean space R
3, instead of the periodic torus T

3, the Fourier
transform of |x |β−3 is given exactly by cβ |ξ |−β . At high frequencies, the Fourier
transform V̂ is determined by the singularities of V , and hence the difference between
R
3 andT

3 should not be essential. In fact, amore precise description of the asymptotics
of V̂ is given by cβ |n|−β1{n �= 0} + OM (〈n〉−M ), but it is easier to work with (B.1).

Proof We denote by FR3 the Fourier transform on R
3 given by

FR3 f (ξ) =
∫
R3

f (x)e−i〈ξ,x〉 dx .

Let {χN }N≥1 be as in (1.15), which we naturally extend from Z
3 to R

3. Because we
require additional room, we define for any x ∈ T

3 and N ≥ 1 the function

χ̃N (x)
def= χN (100x). (B.2)

Let n ∈ Z
3\{0}. Using the assumptions on the interaction potential V , we obtain that

V̂ (n) =
∫
T3

V (x)e−i〈n,x〉 dx

=
∫
T3

V (x)χ̃1(x)e
−i〈n,x〉 dx +

∫
T3

V (x)(1 − χ̃1(x))e
−i〈n,x〉 dx

=
∫
R3

|x |−(3−β)χ̃1(x)e
−i〈n,x〉 dx +

∫
T3

V (x)(1 − χ̃1(x))e
−i〈n,x〉 dx

= FR3
[|x |−(3−β)

]
(ξ) −

∑
N≥2

∫
R3

|x |−(3−β)χ̃N (x)e−i〈n,x〉 dx

+
∫
T3

V (x)(1 − χ̃1(x))e
−i〈n,x〉 dx .

The first summand is given exactly by cβ‖n‖−β
2 . A non-stationary phase argument for

the second and third term shows that they are bounded byOM (〈n〉−M ) for all M ≥ 1.
This implies that

V̂ (n) = cβ‖n‖−β
2 1{n �= 0} + OM (〈n〉−M ).
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Since ‖n‖−β
2 = 〈n〉−β + O(〈n〉−1−β), this leads to (B.1). ��

The following estimates are used in the paper to control several minor error terms.

Lemma B.3 (Trilinear estimates). For any sufficiently small δ > 0, we have for all
f , g, h ∈ C∞

x (T3) the estimates

∥∥∥〈∇〉 12+δ
(
(V ∗ ( f g)) h

)∥∥∥
L1x

� ‖ f ‖
H

1
2+2δ
x

‖g‖
H

1
2+2δ
x

‖h‖
C
1
2+2δ
x

, (B.3)

∥∥∥〈∇〉 12+δ
(
(V ∗ ( f g)) h

)∥∥∥
L1x

� ‖ f ‖
C
1
2+2δ
x

‖g‖
H

1
2+2δ
x

‖h‖
H

1
2+2δ
x

, (B.4)

∥∥∥〈∇〉− 1
2−2δ

(
(V ∗ ( f g)) h

)∥∥∥
L2x

� ‖ f ‖
C− 1

2−δ

x

(
‖g‖

C− 1
2−δ

x

‖h‖
H1+4δ
x

+ ‖g‖
H1+4δ
x

‖h‖
C− 1

2−δ

x

)
(B.5)

∥∥∥〈∇〉− 1
2−2δ

(
(V ∗ ( f g)) h

)∥∥∥
L2x

�
(
‖ f ‖

C− 1
2−δ

x

‖g‖
H1+4δ
x

+ ‖ f ‖
H1+4δ
x

‖g‖
C− 1

2−δ

x

)
‖h‖

C− 1
2−δ

x

.

(B.6)

These estimates are essentially an easier version of the fractional product formula.
They can be proven using a paraproduct decomposition and Hölder’s inequality and
we omit the details. We always included δ-loss on the right-hand side of (B.3), so we
can avoid all summability or endpoint issues. We also never rely on the smoothing
effect of the interaction potential V .

The integral operator and truncations

We now record two properties related to the integral operator It and the associated
frequency truncations ρ and σ .

Lemma B.4 ([5, Lemma 2]). For any space-time function u : [0,∞) × T
3 → R and

any δ > 0, it holds that

sup
T ,t≥0

‖I Tt [u]‖H1
x (T3) � ‖u‖L2

t L2
x ([0,∞)×T3) (B.7)

and

sup
T ,t,s≥0

‖I Ts [u] − I Tt [u]‖2
H1−δ
x (T3)

� min(s, t)−2δ min(1, |t − s|)‖u‖2
L2
t L2

x ([0,∞)×T3)
.

(B.8)

Proof The first estimate (B.7) follows directly from [5, Lemma 2]. Since I Ts [u]− I Tt [u]
is supported on frequencies � min(s, t), we have that

‖I Ts [u] − I Tt [u]‖H1−δ
x (T3)

� min(t, s)−δ‖I Ts [u] − I Tt [u]‖H1
x (T3).

The rest of the statement then again follows from [5, Lemma 2]. ��
The result in [5] is only stated for It instead of I Tt , but the same argument applies.
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Lemma B.5 (Well-behaved truncations). If S ≥ 1 and n1, n2, n3 ∈ Z
3 satisfy ‖n j −

Se j‖2 ≤ S/20 for all j = 1, 2, 3, where e j is the j-th canonical basis vector, then

ρS(n123)
( 3∏

j=1

ρS(n j )
) ∫ ∞

0
σs(n123)

2
( 3∏

j=1

ρs(n j )
2
)
ds � 1. (B.9)

While the proof is a bit technical and depends on the precise regions in the definition
of ρ, this lemma should not be taken too seriously.

Proof We recall the lower bound min(ρ(y),−ρ′(y)) � 1 for all 1/2 ≤ y ≤ 2 from
the definition of ρ. From the assumptions, we directly obtain that

|‖n123‖2 − √
3S| ≤ 3

20
S.

In particular, we obtain that 3/2 ·S ≤ ‖n123‖2 ≤ 19/20 ·S. Since 19/20 ·S ≤ ‖n j‖2 ≤
21/20 · S for all j = 1, 2, 3, it follows that

ρS(n123)
( 3∏

j=1

ρS(n j )
)

� 1.

We estimate the integral by

∫ ∞

0
σs(n123)

2
( 3∏

j=1

ρs(n j )
2
)
ds

�
∫ ∞

0
〈s〉−11

{ 〈s〉
2

≤ ‖n123‖ ≤ 2〈s〉
}( 3∏

j=1

1
{
‖n j‖2 ≤ 2〈s〉

})
ds

� S−1
( ∫ ∞

0
1
{1
2
max(‖n1‖, ‖n2‖, ‖n3‖, ‖n123‖) ≤ s ≤ 2‖n123‖

}
ds − 2

)

= S−1
(3
2
‖n123‖2 − 2

)
� 1,

where we used that S ≥ 1. ��

A basic counting estimate

The following estimate has been used to control stochastic objects (see Lemma 2.20).

Lemma B.6 Let v,w ∈ Z
3 and let α, β > 0 satisfy 1 < α + β < 3. Then,

∑
n∈Z3

1

〈n + v〉α〈n + w〉β〈n〉2 � min(〈v〉, 〈w〉)1−α−β. (B.10)
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Remark B.7 The estimate (B.10) is not sharp if v and w have different magnitudes.
For our purposes, however, (B.10) will be sufficient.

Proof of Lemma B.6 Using Young’s inequality, we have that

1

〈n + v〉α〈n + w〉β � 1

〈n + v〉α+β
+ 1

〈n + w〉α+β
. (B.11)

Using this inequality, the estimate (B.10) reduces to

∑
n∈Z3

1

〈n + v〉α+β〈n〉2 � 〈v〉1−α−β.

This can easily be proven by decomposing the sum into the regions |n| � |v|, |n| ∼ |v|
and |n| � |v|. ��

Appendix C. Uniqueness of weak subsequential limits

In this section, we sketch the proof of the uniqueness of weak subsequential limits of
(μT )T≥1, which has been obtained in [35, Proposition 6.6]. For the convenience of
the reader, we present the argument from [35] in our notation.

Proposition C.1 The limit

lim
T→∞

∫
dμT (φ) exp(− f (φ)) (C.1)

exists for all Lipschitz functions f : C−1/2−κ
x (T3) → R. In particular, weak subse-

quential limits of (μT )T≥1 are unique.

Remark C.2 The only reason why Proposition C.1 does not (immediately) yield the
weak convergence of (μT )T≥1 is that we do not prove that the limit in (C.1) corre-
sponds to the Laplace transform of a limiting measure. As described in the proof of
Theorem 1.3, this part follows from Prokhorov’s theorem.

As was observed in [35], Proposition C.1 follows essentially from the same esti-
mates as in the proof of uniform bounds on the variational problem (Proposition 3.1).

Proof We recall from (2.9) that

dμT (φ) = 1

ZT ,λ
exp

(
− :VT ,λ(ρT (∇)φ):

)
d
(
(W∞)#P

)
(φ). (C.2)

We now split the proof into two steps.
Step 1: Reduction. Let k ≥ 1 be a large integer. In this step, we reduce the existence

of the limit in (C.1) to the existence of the limit

lim
T→∞ EP

[
exp

(
− f (W∞)− :VT ,λ(WT∞): −ε‖W∞‖kC−1/2−κ

x

)]
(C.3)
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for all Lipschitz functions f : C−1/2−κ
x (T3) → R and all ε > 0. To this end, we first

note that

1 − exp(−εxk) ≤ εxk ≤ k!ε exp(x)

for all x ≥ 0. Using Proposition 3.3, this implies

∣∣∣EP

[
exp

(
− f (W∞)− :VT ,λ(WT∞):

)]
− EP

[
exp

(
− f (W∞)− :VT ,λ(WT∞): −ε‖W∞‖kC−1/2−κ

x

)]∣∣∣
= EP

[(
1 − exp

(
− ε‖W∞‖kC−1/2−κ

x

))
exp

(
− f (W∞)− :VT ,λ(ρT (∇)W∞):

)]
�k ε · EP

[
exp

(
‖W∞‖C−1/2−ε

x
− f (W∞)− :VT ,λ(ρT (∇)W∞):

)]
�k,λ, f ε.

Thus, the existence of the limit in (C.3) implies the existence of the limit

lim
T→∞ EP

[
exp

(
− f (W∞)− :VT ,λ(WT∞):

)]
(C.4)

for all Lipschitz functions f : C−1/2−κ
x (T3) → R. By setting f ≡ 0, we see that (C.4)

implies the convergence of the normalization constants ZT ,λ as T → ∞. Since (C.1)
and (C.4) only differ by a factor of ZT ,λ, we obtain that the limit in (C.1) exists.

Step 2: Existence of the regularized limit (C.3). Using the Boué-Dupuis formula
(Theorem 2.1) and arguing as in the derivation of (3.22), we have that

− log
(
EP

[
exp

(
− f (W∞)− :VT ,λ(WT∞): −ε‖W∞‖kC−1/2−κ

x

)])
= inf

w∈Ha
EP

[
E T
1 [w] + E T

2 [w] + E T
3 [w] + λ

4
V(I T∞[w])

+ 1

2
‖w‖2

L2
t,x

+ ε‖I∞[w] + W∞‖kC−1/2−κ
x

]
.

(C.5)

Here, V is as in (3.1) and E T
1 [w], E T

2 [w], and E T
3 [w] are as in (3.24)–(3.26), but the

term ϕ(W + I [u]) in (3.24) is replaced by

f (W∞ + I∞[J T
t :(V ∗ (WT

t )2)WT
t :] + I∞[w]).

In contrast to (3.24)–(3.26), we also reflect the dependence on T andw in our notation.
To avoid confusion, we also recall that the termEP

[E0+cT ,λ
]
in (3.22) vanishes due to

our choice of cT ,λ. Our estimates in the proof of Proposition 3.3 show that the infimum
in (C.5) can be take over w ∈ Ha satisfying the additional bound

EP

[λ

4
V(I T∞[w]) + 1

2
‖w‖2

L2
t,x

+ ε‖I∞[w]‖kC−1/2−κ
x

]
�λ 1.
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In order to conclude the existence of the limit (C.3), it therefore suffices to prove for
all T , S ≥ 1 the estimate

3∑
j=1

∣∣∣EP

[
E T
j [w] − E S

j [w]
]∣∣∣ +

∣∣∣EP

[
V(I T∞[w]) − V(I S∞[w])

]∣∣∣
�λ,ε,k min(S, T )−η

(
1 + EP

[1
2
‖w‖2

L2
t,x

+ ε‖I∞[w]‖kC−1/2−κ
x

])
,

(C.6)

whereη > 0 is sufficiently small.We only present the estimate (C.6) forE T
1 [w]−E S

1 [w]
and V(I T∞[w]) − V(I S∞[w]), since the remaing estimates are similar.

Step 2.a: Estimate of E T
1 [w] − E S

1 [w]. For the convenience of the reader, we recall
that

E T
1 [w] def= f (W∞ + I∞[J T

t :(V ∗ (WT
t )2)WT

t :] + I∞[w])
− λ2

∫
T3

(V∗ :(WT∞)2 :)WT ,[3]∞ I T∞[w] dx

− 2λ2
∫
T3

((
V ∗ (WT∞W

T ,[3]∞ )
)
WT∞ − MT∞W

T ,[3]∞
)
I T∞[w] dx .

(C.7)

We estimate the contributions of the three terms separately. For the first summand in
(C.7), we have that

∣∣ f (W∞ + I∞[J T
t :(V ∗ (WT

t )2)WT
t :] + I∞[w]) − f (W∞ + I∞[J S

t :(V ∗ (WS
t )2)WS

t :]
+ I∞[w])∣∣

≤ Lip( f )
∥∥I∞[J T

t :(V ∗ (WT
t )2)WT

t :] − I∞[J S
t :(V ∗ (WS

t )2)WS
t :]∥∥C−1/2−κ

x
.

The desired estimate then follows from a minor modification of (2.47).
We now turn to the second summand in (C.7). First, we note for any γ > 0 that

‖I T∞[w] − I S∞[w]‖
H1−γ
x

= ‖(ρT (∇) − ρS(∇))I∞[w]‖H1−γ (C.8)

� min(S, T )−γ ‖I∞[w]‖H1
x
. (C.9)

Now, we let 0 < γ < γ ′ < min(1/2, β). Using (C.8), we obtain that

∣∣∣ ∫
T3

(V∗ :(WT∞)2 :)WT ,[3]∞ I T∞[w] dx −
∫
T3

(V∗ :(WS∞)2 :)WS,[3]∞ I S∞[w] dx
∣∣∣

�
∥∥∥(V∗ :(WT∞)2 :)WT ,[3]∞ − (V∗ :(WS∞)2 :)WS,[3]∞

∥∥∥C−1+γ ′
x

‖I T∞[w]‖
H1−γ
x

+
∥∥∥(V∗ :(WS∞)2 :)WS,[3]∞

∥∥∥C−1+γ ′
x

‖I T∞[w] − I S∞[w]‖
H1−γ
x

�
(∥∥∥(V∗ :(WT∞)2 :)WT ,[3]∞ − (V∗ :(WS∞)2 :)WS,[3]∞

∥∥∥C−1+γ ′
x
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+ min(S, T )−γ
∥∥∥(V∗ :(WS∞)2 :)WS,[3]∞

∥∥∥C−1+γ ′
x

)
× ‖I∞[w]‖H1

x
.

The desired estimate then follows from aminormodification of (2.47) and LemmaB.4.
The estimate of the third term in (C.7) is similar and we omit the details.

Step 2.b: Estimate of V(I T∞[w])−V(I S∞[w]). Using Hölder’s inequality and inter-
polation, it holds that

‖ϕ‖L4
x (T

3) � ‖ϕ‖
2(1−κ)
3+4κ

C−1/2−κ
x (T3)

‖ϕ‖
1+6κ
3+4κ

H1−κ
x (T3)

. (C.10)

Using Hölder’s inequality, (C.10), and I Tt = ρT (∇)It , we obtain that

∣∣∣V(I T∞[w]) − V(I S∞[w])
∣∣∣

�
(‖I T∞[w]‖L4

x
+ ‖I S∞[w]‖L4

x

)3‖I T∞[w] − I S∞[w]‖L4
x

� ‖I∞[w]‖4·
2(1−κ)
3+4κ

C−1/2−κ
x

‖I∞[w]‖3·
1+6κ
3+4κ

H1
x

‖I T∞[w] − I S∞[w]‖
1+6κ
3+4κ

H1−κ
x

� min(S, T )−
(1+6κ)κ
3+4κ ‖I∞[w]‖4·

2(1−κ)
3+4κ

C−1/2−κ
x

‖I∞[w]‖4·
1+6κ
3+4κ

H1
x

.

Since 4(1 + 6κ)/(3 + 4κ) < 2, the desired estimate follows from Lemma B.4 and
Young’s inequality. ��
Remark C.3 As seen in the proof of Proposition C.1, the regularizing factor
exp

( − ε‖W∞‖kC−1/2−κ
x

)
in (C.3) is needed to estimate V(I T∞[w]) − V(I S∞[w]).

References

1. Albeverio, S., Kusuoka, S.: The invariant measure and the flow associated to the �4
3-quantum field

model. arXiv:1711.07108 (2017)
2. Benfatto, G., Cassandro, M., Gallavotti, G., Nicolò, F., Olivieri, E., Presutti, E., Scacciatelli, E.: Some

probabilistic techniques in field theory. Commun. Math. Phys. 59(2), 143–166 (1978)
3. Boué, M., Dupuis, P.: A variational representation for certain functionals of Brownian motion. Ann.

Probab. 26(4), 1641–1659 (1998)
4. Brydges,D.C., Fröhlich, J., Sokal,A.D.:Anewproof of the existence and nontriviality of the continuum

ϕ42 and ϕ43 quantum field theories. Commun. Math. Phys. 91(2), 141–186 (1983)
5. Barashkov, N., Gubinelli, M.: A variational method for �4

3. arXiv:1805.10814 (2018)

6. Barashkov, N., Gubinelli, M.: The �4
3 measure via Girsanov’s theorem. arXiv:2004.01513 (2020)

7. Bourgain, J.: Periodic nonlinear Schrödinger equation and invariant measures. Commun. Math. Phys.
166(1), 1–26 (1994)

8. Bourgain, J.: Invariant measures for the 2D-defocusing nonlinear Schrödinger equation. Commun.
Math. Phys. 176(2), 421–445 (1996)

9. Bourgain, J.: Invariantmeasures for theGross–Piatevskii equation. J.Math. PuresAppl. 76(8), 649–702
(1997)

10. Bringmann, B.: Almost sure local well-posedness for a derivative nonlinear wave equation.
arXiv:1809.00220 (2018)

123

http://arxiv.org/abs/1711.07108
http://arxiv.org/abs/1805.10814
http://arxiv.org/abs/2004.01513
http://arxiv.org/abs/1809.00220


88 Stoch PDE: Anal Comp (2022) 10:1–89

11. Bringmann, B.: Invariant Gibbs measures for the three-dimensional wave equation with a Hartree
nonlinearity II: dynamics. arXiv:2009.04616 (2020)

12. Catellier, R., Chouk, K.: Paracontrolled distributions and the 3-dimensional stochastic quantization
equation. Ann. Probab. 46(5), 2621–2679 (2018)

13. Deng, Y., Nahmod, A.R., Yue, H.: Invariant Gibbs measures and global strong solutions for nonlinear
Schrödinger equations in dimension two. arXiv:1910.08492 (2019)

14. Deng, Y., Nahmod, A.R., Yue, H.: Random tensors, propagation of randomness, and nonlinear disper-
sive equations. arXiv:2006.09285 (2020)

15. Da Prato, G., Debussche, A.: Strong solutions to the stochastic quantization equations. Ann. Probab.
31(4), 1900–1916 (2003)

16. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics
and Its Applications, vol. 44. Cambridge University Press, Cambridge (1992)

17. Feldman, J.S., Osterwalder, K.: The Wightman axioms and the mass gap for weakly coupled (�4)3
quantum field theories. Ann. Phys. 97(1), 80–135 (1976)

18. Folland, G.B.: Quantum Field Theory, volume 149 of Mathematical Surveys and Monographs. A
Tourist Guide for Mathematicians. American Mathematical Society, Providence (2008)

19. Gubinelli, M., Hofmanová, M.: Global solutions to elliptic and parabolic �4 models in Euclidean
space. Commun. Math. Phys. 368(3), 1201–1266 (2019)

20. Gubinelli, M., Imkeller, P., Perkowski, N.: Paracontrolled distributions and singular PDEs. Forum
Math. 3, 75 (2015)

21. Glimm, J., Jaffe, A.: Quantum Physics. A Functional Integral Point of View, 2nd edn. Springer, New
York (1987)

22. Gubinelli, M., Koch, H., Oh, T.: Paracontrolled approach to the three-dimensional stochastic nonlinear
wave equation with quadratic nonlinearity. arXiv:1811.07808 (2018)

23. Gubinelli, M., Perkowski, N.: An introduction to singular SPDEs. In: Stochastic Partial Differential
Equations and Related Fields, Volume 229 of Springer Proceedings of the Mathematical Statistics, pp.
69–99. Springer, Cham (2018)

24. Hairer, M.: φ4 is orthogonal to GFF. Private Commun.
25. Hairer, M.: A theory of regularity structures. Invent. Math. 198(2), 269–504 (2014)
26. Hairer, M., Matetski, K.: Discretisations of rough stochastic PDEs. Ann. Probab. 46(3), 1651–1709

(2018)
27. Iwata, K.: An infinite-dimensional stochastic differential equation with state space C(R). Probab.

Theory Relat. Fields 74(1), 141–159 (1987)
28. Magnen, J., Sénéor, R.: The infinite volume limit of the φ4

3 model. Ann. Inst. H. Poincaré Sect. A (N.
S.) 24(2), 95–159 (1976)

29. Mourrat, J.-C., Weber, H.: The dynamic �4
3 model comes down from infinity. Commun. Math. Phys.

356(3), 673–753 (2017)
30. Mourrat, J.-C., Weber, H., Xu,W.: Construction of�4

3 diagrams for pedestrians. In: From Particle Sys-
tems to Partial Differential Equations, Volume 209 of Springer Proceedings ofMathematical Statistics,
pp. 1–46. Springer, Cham (2017)

31. Nelson, E.: Derivation of the schrödinger equation from newtonian mechanics. Phys. Rev. 150, 1079–
1085 (1966)

32. Nelson, E.: Dynamical Theories of Brownian Motion. Princeton University Press, Princeton (1967)
33. Nahmod, A.R., Oh, T., Rey-Bellet, L., Staffilani, G.: Invariant weighted Wiener measures and almost

sure global well-posedness for the periodic derivative NLS. J. Eur. Math. Soc. (JEMS) 14(4), 1275–
1330 (2012)

34. Nualart, D.: The Malliavin Calculus and Related Topics Probability and Its Applications (New York),
2nd edn. Springer, Berlin (2006)

35. Oh, T., Okamoto, M., Tolomeo, L.: Focusing �4
3-model with a Hartree-type nonlinearity.

arXiv:2009.03251 (2020)
36. Oh, T., Thomann, L.: A pedestrian approach to the invariant Gibbs measures for the 2-d defocusing

nonlinear Schrödinger equations. Stoch. Part. Differ. Equ. Anal. Comput. 6(3), 397–445 (2018)
37. Park, Y.M.: Convergence of lattice approximations and infinite volume limit in the (λφ4−σφ2−τφ)3

field theory. J. Math. Phys. 18(3), 354–366 (1977)
38. Parisi, G., Wu, Y.-S.: Perturbation theory without gauge fixing. Sci. Sin. 24, 483 (1981)
39. Simon, B.: The P(φ)2 Euclidean (Quantum) Field Theory. Princeton Series in Physics, Princeton

University Press, Princeton (1974)

123

http://arxiv.org/abs/2009.04616
http://arxiv.org/abs/1910.08492
http://arxiv.org/abs/2006.09285
http://arxiv.org/abs/1811.07808
http://arxiv.org/abs/2009.03251


Stoch PDE: Anal Comp (2022) 10:1–89 89

40. Stroock, D.W.: Probability Theory: An Analytic View, 2nd edn. Cambridge University Press, Cam-
bridge (2011)

41. Visan, M.: The defocusing energy-critical nonlinear Schrödinger equation in higher dimensions. Duke
Math. J. 138(2), 281–374 (2007)

42. Watanabe, H.: Block spin approach to φ4
3 field theory. J. Stat. Phys. 54(1–2), 171–190 (1989)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Invariant Gibbs measures for the three-dimensional wave equation with a Hartree nonlinearity I: measures
	Abstract
	Introduction to the series
	1 Introduction
	1.1 Main results and methods
	1.2 Overview
	1.3 Notation

	2 Stochastic objects
	2.1 Stochastic control perspective
	2.2 Stochastic objects and renormalization

	3 Construction of the Gibbs measure
	3.1 The variational problem, uniform bounds, and their consequences
	3.2 Visan's estimate and the cubic terms
	3.3 A random matrix estimate and the quadratic terms
	3.4 Proof of Proposition 3.1 and Corollary 3.4

	4 The reference and drift measures
	4.1 Construction of the drift measure
	4.2 Absolutely continuity with respect to the drift measure
	4.3 The reference measure

	5 Singularity
	Acknowledgements
	Appendix A. Probability theory
	A.1 Gaussian hypercontractivity
	A.2 Multiple stochastic integrals

	Appendix B. Auxiliary analytic estimates
	Harmonic analysis
	The integral operator and truncations
	A basic counting estimate

	Appendix C. Uniqueness of weak subsequential limits
	References




