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Abstract
We establish finite time extinction with probability one for weak solutions of the
Cauchy–Dirichlet problem for the 1D stochastic porous medium equation with
Stratonovich transport noise and compactly supported smooth initial datum. Heuris-
tically, this is expected to hold because Brownian motion has average spread rate
O(t

1
2 )whereas the support of solutions to the deterministic PME grows only with rate

O(t
1

m+1 ). The rigorous proof relies on a contraction principle up to time-dependent
shift forWong–Zakai type approximations, the transformation to a deterministic PME
with two copies of a Brownian path as the lateral boundary, and techniques from the
theory of viscosity solutions.
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1 Introduction

We study the stochastic porous medium equation with Stratonovich transport noise
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du = �um dt + ν∇u ◦ dBt (1)

in the space-time cylinder Q = D×(0, T ) for some bounded convex domain D ⊂ Rd

with C2 boundary ∂ D and time horizon T ∈ (0,∞]. Here u ≥ 0 denotes the so-called
density variable, B is a d-dimensional standard Brownian motion and m > 1 as well
as ν > 0 are parameters. Moreover, the Stratonovich differential ν∇u ◦ dBt is an
abbreviation for the expression 1

2ν
2�u dt + ν∇u · dBt .

We are in particular interested in studying the corresponding Cauchy–Dirichlet
problem, i.e., we supplement the stochastic PDE (1) with

u(x, 0) = u0(x), x ∈ D̄, (2)

u(x, t) = 0, (x, t) ∈ ∂ D × (0, T ]. (3)

The initial condition is given by a non-negative smooth function u0 ∈ C∞
cpt(D) with

compact support in D. In particular, (2) and (3) are compatible to any order.
The main result of the present work is that weak solutions (in the precise sense of

Definition 1 below) to the 1D Cauchy–Dirichlet problem of the SPME (1)–(3) become
extinct in finite time on a set of full probability. For a mathematically precise statement
we refer the reader to Theorem 3 below. To the best of the author’s knowledge, this is
the first result establishing finite time extinction in the slow diffusion regime m > 1
for the stochastic porous medium equation. In contrast, finite time extinction in the
fast diffusion regime 0 < m < 1 is well known in several cases. For instance, Barbu,
Da Prato and Röckner establish finite time extinction for porous medium type models
with multiplicative noise in the works [2–4]. Gess treats the case of stochastic sign fast
diffusion equations in [13]. In a very recent work of Turra [18], finite time extinction
in the fast diffusion regime is established for transport noise. The slow diffusion case
with transport noise, however, is left open.

The underlying idea of the present work is to exploit that the support of solutions
to the deterministic porous medium equation grows only with rate O(t

1
m+1 ) whereas

Brownian motion spreads on average with a faster rate O(t
1
2 ). Hence one may expect

that the effect of the random advection term in (1) eventually dominates the non-linear
diffusion term, thus leading to finite time extinction on a set of full probability. Let us
briefly mention the three main ingredients which provide a rigorous justification for
this heuristic (for a more detailed and mathematical account on the strategy, we refer
the reader to Sect. 3). Along the way we provide connections to the—for the purposes
of this work—relevant parts of the by now extensive literature for the stochastic porous
medium equation.

In a first step, we recover the unique weak solution (in the sense of Definition 1
below) to the Cauchy–Dirichlet problem of the SPME (1)–(3) by means of a suit-
able Wong–Zakai approximation. We then perform, on the level of the approximate
solutions, a simple stochastic flow transformation yielding smooth solutions to a deter-
ministic porous medium equation, but now with two copies of a mollified Brownian
path as the lateral boundary. In principle, we would then like to remove the mollifi-
cation parameter to formally obtain a subsolution to the deterministic PME with two
copies of a Brownian path as the lateral boundary. We may view this object—again
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at least on a formal level—as a subsolution to the full space porous medium equation
by trivially extending it outside of the domain. We finally put a Barenblatt profile
above the solution at the initial time. It follows by the comparison principle that finite
time extinction happens once the domain with two copies of a Brownian path as the
lateral boundary is pushed outside the support of such a Barenblatt solution. Since the

support of the Barenblatt solution has finite speed of propagation of order O(t
1

m+1 ),
this actually occurs with probability one.

However, two technical issues being linked to each other arise in the above strategy.
The first is concerned with the proposed limit passage after the stochastic flow trans-
formation. The problem is that the domains onwhich the approximate and transformed
solutions are supported are not monotonically ordered as one sends the mollification
scale to zero. This fact together with the desire tomake use of the comparison principle
motivated us to perform this limit passage in the framework of viscosity theory by
means of the technique of semi-relaxed limits. This allows us to rigorously construct
a maximal subsolution for the deterministic porous medium equation with two copies
of a Brownian path as the lateral boundary (to be understood in the precise sense of
Definition 14 below). To the best of the author’s knowledge, the present work seems
to be the first instance to make use of viscosity theory to study the Dirichlet problem
for the stochastic porous medium equation after stochastic flow transformation.

A notion of viscosity solution for the full space deterministic porous medium equa-
tion has been developed by Caffarelli and Vázquez [5] (see also the work of Vázquez
andBrändle [20]). However, as a consequence of the degeneracy of the porousmedium
equation the usual notion of supersolutions from [6] had to be adapted. But since we
only need to talk about subsolutions for our purposes, this is actually of no concern
for us.

However, by taking a semi-relaxed limit it is by no means clear anymore how this
maximal subsolution and the transformed unique weak solution to (1)–(3) relate to
each other. In order to close the argument, we need to make sure that the unique weak
solution of the original problem (1)–(3) is dominated after stochastic flow transfor-
mation by the constructed maximal subsolution in a suitable sense. It turns out that
we can justify this once we provided convergence of the Wong–Zakai approximations
in a strong enough topology like L1. Let us mention at this point the recent work of
Fehrman and Gess [11], who prove rough path well-posedness for nonlinear gradient
type noise using a kinetic formulation which in particular implies Wong-Zakai type
results, but with the equation being posed on the torus.

There has been recently a lot of focus on providing well-posedness for stochastic
porous medium equations in an L1 framework. The corresponding notion of solution
is the one of entropy solutions first put forward in the work of Dareiotis, Gerencsér and
Gess [7], and the theory is based on a quantitative L1 contraction principle for such
solutions. In the work [7], the authors consider the case of nonlinear multiplicative
noise with periodic boundary conditions. The subsequent work of Dareiotis and Gess
[9] treats the regime of nonlinear conservative gradient noise (again with periodic
boundary conditions), whereas the recent work [10] by Dareiotis, Gess and Tsatsoulis
provides the corresponding theory of [7] for the Dirichlet problem on smooth domains.
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Following ideas developed in [7], we roughly speaking aim to establish L1 conver-
gence of the sequence of Wong–Zakai approximations. However, as we are concerned
in this work with the Cauchy–Dirichlet problem for the SPME with transport noise,
the actual implementation differs in some aspects to the above mentioned works.
Most importantly, since two different approximate solutions are advected with differ-
ent speeds (as a consequence of the two associated different mollification scales) it
is natural to introduce a time-dependent, random shift function and to compare the
Wong–Zakai approximations only after shifting. We then essentially establish quanti-
tative L1 contraction for this sequence of shifted densities, see Proposition 5 below for
the mathematically precise formulation. This result may be of independent interest.

Notation

Throughout the paper, we fix a filtered probability space (�,F ,F,P) with filtration
F = (Ft )t∈[0,∞) which is subject to the usual conditions, i.e., the filtration F is
right-continuous and F0 is P-complete. By B = (Bt )t∈[0,∞) we denote a standard
d-dimensional F-Brownian motion. For a given time horizon T ∈ (0,∞] we let PT

be the predictable σ -field on �T := � × [0, T ].
For two maps f and g, we write f ◦ g to denote the composition of f with g.

We slightly abuse notation here since we already use the symbol ◦ for Stratonovich
integration. However, it will always be clear from the context in which sense it is to
be interpreted.

Let D ⊂ Rd be an open domain. (In the one-dimensional setting, we will instead
use the notation I ⊂ R for a bounded open interval.) The space of all smooth func-
tions with compact support in D is denoted byC∞

cpt(D), whereasC0(D̄) represents the

space of all continuous functions on the closure D̄ with bounded supremum norm. The
space H1

0 (D) is the usual space of Sobolev functions with zero trace on the bound-
ary. Its topological dual space will be denoted by H−1. The space of H−1 valued,
continuous and F-adapted stochastic processes intersected with Lq(�T ,PT ; Lq(D))

is denoted by H−1
q (D). The space of L2(D) valued, continuous and F-adapted

stochastic processes intersected with the space L2(�T ,PT ; H1
0 (D))) (resp. the space

L2(�T ,PT ; H1(D))) is L2
0(D) (resp. L2(D)). If we want to specify the target values

for a function space, we will include this in the notation. E.g., C∞
cpt(D; [0,∞)) is the

space of all non-negative smooth functions with compact support in D. The space of
functions of bounded variation is denoted by BV .

The Lebesgue measure onRd is denoted by Ld , the s-dimensional Hausdorff mea-
sure byHs . We write χA for the indicator function of a measurable set A (with respect
to any measure space). For two numbers a, b ∈ R we abbreviate a ∨ b for their
maximum respectively a ∧ b for their minimum. Finally, we define a+ := a ∨ 0 and
sign+(a) := χ(0,∞)(a) for a ∈ R.
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2 Main result

The main result of the present work establishes that weak solutions of the one-
dimensional stochastic porous medium equation with Stratonovich transport noise
(1)–(3) almost surely have the finite time extinction property. Before we provide the
precise statement, let us introduce the notion of weak solutions.

Definition 1 Let D ⊂ Rd be a bounded domain with C2 boundary, T ∗ ∈ (0,∞] be
a time horizon as well as u0 ∈ C∞

cpt(D; [0,∞)) be an initial density. A non-negative

stochastic process u ∈ H−1
m+1(D) is called a weak solution to the Cauchy–Dirichlet

problem (1)–(3) of the stochastic porous medium equation (SPME) with initial density
u0 on the space time cylinder Q = D ×(0, T ∗) if for all φ ∈ C∞

cpt(D)with probability
one it holds
∫

D
u(x, T )φ(x) dx −

∫
D

u0(x)φ(x) dx

=
∫ T

0

∫
D

(
um(x, t)+1

2
ν2u(x, t)

)
�φ(x) dx dt −

∫ T

0

∫
D

νu(x, t)∇φ(x) dx dBt

(4)

for all T ∈ (0, T ∗).

Remark 2 Existence and uniqueness of weak solutions in the sense of Definition 1
was established, for instance, in [8, Theorem 3.3]. In fact, the authors consider a
much more general class of degenerate quasilinear stochastic PDE, allowing for more
general initial conditions and, in particular, for signed solutions.

Being equipped with the notion of weak solutions we may now formulate the main
result of the present work, which is finite time extinction with probability one for weak
solutions of the 1D stochastic porous medium equation with Stratonovich transport
noise.

Theorem 3 Let I ⊂ R be a bounded open interval, and let u ∈ H−1
m+1(I ) be the unique

weak solution to the SPME (1)–(3) with initial density u0 ∈ C∞
cpt(I ; [0,∞)) on the

space-time cylinder I × (0,∞) in the sense of Definition 1. Define a stopping time by
means of

Textinct := inf{T ≥ 0 : u(·, T ) = 0 almost everywhere in I }. (5)

Then there exists a constant M = M(u0) > 0 depending only on the initial density
such that

P(Textinct ≤ T ) ≥ P
(
inf

{
t ≥ 0 : |Bt | ≥ L1(I )+Mt

1
m+1

} ≤ T
)

(6)

for all T ∈ (0,∞). Moreover, for T̂extinct := inf{T ≥ 0 : |BT | ≥ L1(I )+MT
1

m+1 } it
holds P(Textinct < ∞) = P(T̂extinct < ∞) = 1. Finally, for all T ∈ (0,∞) we have
almost surely on {T ≥ T̂extinct} that u(·, T ) = 0 is satisfied almost everywhere in I .
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3 Outline of the strategy

Let us comment on the strategy for the proof of the main result, Theorem 3. In a
nutshell the argument works as follows. By stochastic flow transformation, which in
our case of pure transport noise is of particularly easy form, we may consider first the
transformed densities

v(x, t) := u(x−νBt , t), (x, t) ∈
⋃

t∈(0,∞)

(νBt+I ) × {t}.

Formally, the transformed density v is then subject to the deterministic porous
medium equation

∂tv = ∂xxv
m in

⋃
t∈(0,∞)

(νBt+I ) × {t},

with initial density v(·, 0) = u0 and Dirichlet boundary conditions on the lateral
boundary

⋃
t∈[0,∞)(νBt+∂ I ) × {t}. Extending v trivially to the entire space-time

domain R × (0,∞), and denoting this extension by v̄, we obtain, at least formally,
a subsolution to the Cauchy problem of the deterministic porous medium equation
∂t v̄ = ∂xx v̄

m with initial density v̄(·, 0) = u0 ≥ 0.
Now, we may choose a Barenblatt profile B with free boundary ∂ I at t = 0 and

which strictly dominates the initial density, i.e., {B(·, 0) = 0} = ∂ I and u0 < B(·, 0)
on I . By comparison it follows v̄ ≤ B onR×(0,∞). Since the support of theBarenblatt

solution has finite speed of propagation of order O(T
1

m+1 ) (with the implicit constant
only depending on the initial density), we deduce the validity of (6). However, since

Brownian motion has average spread rate of order O(T
1
2 ) and we assume that m > 1,

this entails that finite time extinction happens with probability one: P(Textinct < ∞) =
1.

To make this argument rigorous, we rely on a suitable approximation procedure.
To this end, we first consider the d-dimensional setting and fix a finite time horizon
T ∗ ∈ (0,∞). Moreover, choose ρ ∈ C∞

cpt((0, 1); [0,∞)) with
∫
R ρ(r) dr = 1 and

define ρε := 1
ε
ρ( ·

ε
) for ε > 0. We then introduce the smooth approximations Bε =

(Bε
t )t∈[0,∞) to Brownian motion defined via

Bε
t :=

∫ ∞

0
ρε(t−s)Bs ds. (7)

Since the mollifier ρ is supported on positive times, we note that Bε is F-adapted.
We also have almost surely that

sup
ε>0

‖Bε‖C0([0,T ∗]) < ∞ (8)
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as well as

Bε → B uniformly on [0, T ∗] as ε → 0. (9)

Fix α ∈ ( 13 ,
1
2 ). For purely technical reasons, we make also use of the classical fact

that there is a square integrable random variable Cα such that with probability one

|Bt − Bs | ≤ Cα|t − s|α for all s, t ∈ [0, T ∗]. (10)

In particular, for each integer M ≥ 1 and each δ > 0 we can find an ε′ = ε′(M, δ) > 0
such that for all ε ≤ ε′ it holds

sup
t∈[0,T ∗]

|Bt − Bε
t | ≤ δ almost surely on {Cα ≤ M}. (11)

We then proceed by considering the inhomogeneous Cauchy–Dirichlet problem

duε = �um
ε dt + ν∇uε · dBε

t , (x, t) ∈ D × (0, T ∗), (12)

uε(x, 0) = u0(x) + ε, x ∈ D̄, (13)

uε(x, t) = ε, (x, t) ∈ ∂ D × (0, T ∗]. (14)

Note that the regularization not only comes from the Wong–Zakai approxima-
tion ∇uε · dBε

t = ( d
dt Bε

t · ∇)uε dt , but also from choosing strictly positive initial and
boundary data. In this way we circumvent the degeneracy at u = 0 of the porous
medium operator at the level of the approximations, i.e., we can solve the problem
(12)–(14) in a classical and pathwise sense such that the maximum principle applies.
Proofs will be provided in the subsequent Sect. 4.

Lemma 4 For each ε > 0, there exist uε ∈ ε+L2
0(D) such that the following holds

true on a set with probability one (e.g., so that (8) holds):
For all ε > 0 the map uε is the unique classical solution of the Cauchy–Dirichlet

problem (12)–(14) in the sense that uε ∈ C2,1
x,t (D̄×[0, T ∗])∩C∞(D×(0, T ∗)) and the

equations (12)–(14) are satisfied pointwise everywhere. From the maximum principle,
we have the bounds

ε ≤ uε(x, t) ≤ ε + ‖u0‖L∞(D) (15)

for all ε > 0 and all (x, t) ∈ D̄×[0, T ∗]. There is a constant C = C(T ∗, ν, u0) > 0
and some β > 0 such that the a priori estimates

sup
T ∈[0,T ∗]

∫
D

1

2
|uε|2(T ) dx +

∫ T ∗

0

∫
D

mum−1
ε |∇uε|2 dx dt ≤

∫
D

1

2
|uε(0)|2 dx,

(16)

sup
T ∈[0,T ∗]

E
∫

D

T

2
|∇um

ε |2(T ) dx + E
∫ T ∗

0

∫
D

t

2
mum−1

ε |∂t uε|2 dx dt ≤ ε−βC, (17)
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E
∫ T ∗

0

∫
D

t |�um
ε |2 dx dt ≤ ε−βC (18)

hold true almost surely for all ε > 0.

A key ingredient for the rigorous justification of the comparison argument outlined
at the beginning of this section is that the Wong–Zakai type approximations uε from
Lemma 4 recover the unique weak solution u to the Cauchy–Dirichlet problem (1)–
(3) in a certain pointwise sense. We obtain this by establishing a sort of contraction
principle for the sequence of uε by means of Kružkov’s device of variable doubling
[14]. To this end, the proof loosely follows the strategy of Dareiotis, Gerencsér and
Gess [7] or Dareiotis and Gess [9] who study entropy solutions for stochastic porous
medium type equations posed on the torus. The Cauchy–Dirichlet problem in the
framework of entropy solutions was recently studied in the work of Dareiotis, Gess
and Tsatsoulis [10]. However, they do not consider the case of gradient type noise.
Let us also mention the recent work of Fehrman and Gess [11], who prove rough path
well-posedness for nonlinear gradient type noise using a kinetic formulation which in
particular implies Wong-Zakai type results, but with the equation being posed on the
torus..

As we are concerned in this work with the Cauchy–Dirichlet problem for the SPME
with transport noise, and roughly speaking aim to establish L1 convergence for the
Wong–Zakai type approximations uε, the actual implementation of the doubling of
variables technique differs in some aspects to the above mentioned works. First, since
two different solutions uε and u ε̂ are advected at different speeds, it seems to be
natural to introduce for our purpose a (time-dependent, random) shift function and to
compare the solutions only after shifting, i.e., we are led to study L1 convergence for
the sequence

u←
ε (x, t) := uε(x+ν(Bt−Bε

t ), t).

Second, since the introduction of this shift in turn changes the domain on which the
equation for u←

ε is posed it is necessary to create a boundary layer in order to apply
the doubling of variables method up to the boundary. This is done by means of an
additional truncation as follows.

Let κ > 0 and δ ∈ (0, κ
2 ) be fixed. We then choose a smooth and convex map

ζ : R → [0,∞) such that ζ(r) = 0 for r ≤ 0, ζ(r) = r −1 for r ≥ 2 and ζ(r) ≤ r ∨0
for all r ∈ R. Define ζδ(r) := δζ( r

δ
). There is a constant C > 0 independent of δ such

that

sup
r∈R

|(ζδ)
′(r)| + |r |(ζδ)

′′(r) ≤ C, (19)

(ζδ)
′(r) → sign+(r) and ζδ(r) ↗ r+ := max{r , 0} as δ → 0, (20)

|ζδ(r)−r+| ≤ Cδ for all r ∈ R, and ζδ(r) = r − δ for all r ≥ 2δ. (21)

Let ζ δ
κ (r) := κ + ζδ(r−κ). The idea then is to study basically L1 contraction

for the sequence ζ ε
κ ◦ u←

ε for ε ≤ κ
2 . Note that for each time slice t ∈ [0, T ∗] the
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function ζ ε
κ ◦ u←

ε (·, t) is C∞ in the open domain −ν(Bt−Bε
t ) + D, and for ε ≤ κ

2 it
is actually constant in a neighborhood of −ν(Bt−Bε

t ) + ∂ D. Extending in each time
slice uε to ε outside of the domain D, and denoting this extension again by uε, we
see that ζ ε

κ ◦ u←
ε (·, t) is C∞ even on the whole space Rd . In summary, by introducing

a boundary layer as above there is no jump of the Neumann data for ζ ε
κ ◦ u←

ε across
the boundary −ν(Bt−Bε

t ) + ∂ D. This turns out to be absolutely essential in order to
apply the doubling of variables technique up to the boundary.

Proposition 5 (Contraction principle up to time-dependent shift for truncated Wong–
Zakai type approximations) For each ε > 0 let uε denote the unique classical solution
to (12)–(14) in the sense of Lemma 4. We extend uε to a function defined onRd ×[0, T ∗]
by setting it equal to ε outside of D ×[0, T ∗]. Denoting this extension again by uε we
then define for all ε > 0 the shifted densities

u←
ε (x, t) := uε(x+ν(Bt−Bε

t ), t), (x, t) ∈ Rd × [0, T ∗]. (22)

There exists a constant C̄ > 0 and an exponent ϑ > 0 such that for all truncation
levels κ ∈ (0, T ∗ ∧ 1) and all compact sets K ⊂ D, there exists a small constant
ε0 = ε0(κ, K ) such that for all ε, ε̂ ≤ ε0 it holds

sup
T ∈[κ,T ∗]

E
∫

K
|κ ∨ u←

ε (x, T )−κ ∨ u←
ε̂

(x, T )| dx

≤ C̄(ε ∨ ε̂)ϑ + C̄κ + E
∫

D
|κ ∨ (u0(x)+ε)−κ ∨ (u0(x)+ε̂)| dx .

(23)

Wemay lift this quantitative stability estimate for the truncated and shifted densities
κ ∨ u←

ε to qualitative L1 convergence of the shifted densities u←
ε .

Corollary 6 Let the assumptions and notation of Proposition 5 be in place. Then the
sequence of shifted densities u←

ε is Cauchy in C([τ, T ∗]; L1(�×D,P ⊗ Ld)) for all
positive times τ ∈ (0, T ∗). The sequence of shifted densities is moreover Cauchy in
L1([0, T ∗]; L1(�×D,P⊗Ld)). Let u ∈ L1([0, T ∗]; L1(�×D,P⊗Ld)) denote the
corresponding limit in this space. Then, u is also the weak limit of the Wong–Zakai
type approximations uε from Lemma 4 in the space Lm+1(�T ∗ ,PT ∗; Lm+1(D))

The final issue concerning theWong–Zakai type approximations uε from Lemma 4
is the identification of the limit object u in Corollary 6 as the unique weak solution to
the Cauchy–Dirichlet problem (1)–(3) of the stochastic porous medium equation.

Proposition 7 Let u ∈ Lm+1(�T ∗ ,PT ∗; Lm+1(D)) be the limit of the Wong–Zakai
approximations uε in the sense of Corollary 6. Then it holds that u ∈ H−1

m+1(D), and
u is the unique weak solution to the Cauchy–Dirichlet problem (1)–(3) with initial
density u0 ∈ C∞

cpt(D; [0,∞)) in the sense of Definition 1. Moreover, u satisfies the
bounds 0 ≤ u ≤ ‖u0‖L∞(D).

From now on we will restrict ourselves to the one-dimensional setting d = 1. We
still have to make rigorous the outlined comparison argument. The key ingredient
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for this will be provided in Sect. 5.1. It consists of the construction of a maximal
subsolution p̄max (in the sense of viscosity theory [6], precise definitions will follow
in Sect. 5.1) for the Cauchy–Dirichlet problem of the porous medium equation after
stochastic flow transformation

∂t p̄ = (m−1) p̄∂xx p̄ + |∂x p̄|2, (x, t) ∈
⋃

t∈(0,T ∗)
(νBt+I ) × {t}, (24)

p̄(x, 0) = p̄0(x), x ∈ Ī , (25)

p̄(x, t) = 0, (x, t) ∈
⋃

t∈(0,T ∗]
(νBt+∂ I ) × {t}. (26)

The pressure variable p is obtained from the density variable u via the transformation
g(u) with g : [0,∞) → [0,∞) given by g(r) := m

m−1rm−1. To the best of the
author’s knowledge, the present work seems to be the first instance to make use of the
pressure formulation to study the stochastic porous medium equation after stochastic
flow transformation in the setting of viscosity theory.

Themain difficulty for solving (24)–(26) comes from the fact that the lateral bound-
ary consists of two translates of a Brownian trajectory. To overcome the lack of
regularity of the lateral boundary, we first consider the approximate initial-boundary
value problem (see Lemma 15)

∂t p̄ε = (m−1) p̄ε∂xx p̄ε + |∂x p̄ε|2, (x, t) ∈
⋃

t∈(0,T ∗)
(νBε

t +I ) × {t}, (27)

p̄ε(x, 0) = p̄0,ε(x), x ∈ Ī , (28)

p̄ε(x, t) = m

m − 1
εm−1, (x, t) ∈

⋃
t∈(0,T ∗]

(νBε
t +∂ I ) × {t}, (29)

and then pass to the limit ε → 0 by means of the technique of semi-relaxed limits,
see for instance [6, Section 6]. In this way we obtain a maximal subsolution to the
problem (24)–(26) in the sense of viscosity theory [6], see Proposition 16. The main
motivation for working in the framework of viscosity theory is the non-monotonicity
of the underlying space-time domains

⋃
t∈(0,T ∗)(νBε

t +I ) × {t} as ε → 0 which
necessitates the usage of a relaxed limit. In this way, however, the interpretation of the
lateral boundary condition (26) in a strong sense is lost in the limit. It is well-known
that boundary regularity for solutions to stochastic PDEs with gradient type noise and
given Dirichlet data proves to be a delicate issue. This already shows up in the linear
case, see, for instance, the works by Krylov [15] and [16]. For a recent work in the
semilinear regime, we refer the reader to [12]. On the other side, “continuity up to the
lateral boundary” is inessential for our purposes and anyway not expected, if at all, to
be obtained by the methods in this work.

Note that the maximal subsolution p̄max of course depends on the realization of
Brownian motion, and is therefore random. However, since the construction of p̄max
is ultimately a purely deterministic consequence of the probabilistic facts (8)–(11),
we obtain the maximal subsolution in a pathwise sense on a set of full probability.
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The proof of Theorem 3, which is the content of Sect. 5.5, then roughly speaking
proceeds as follows. Denoting by p the map which we obtain from the unique weak
solution u of (1)–(3) in the sense of Definition 1 by first applying a stochastic flow
transformation and then a density-to-pressure transformation, we have the estimate
p ≤ p̄max, see Proposition 17. This bound is essentially a combination of the following
facts:

(i) The solution to (27)–(29) may in fact be obtained from the Wong–Zakai type
approximations uε of (12)–(14) by first applying a stochastic flow transformation
and then a density-to-pressure transformation.

(ii) The Wong–Zakai approximations uε (or more precisely, their shifted counterparts
(22)) converge on each positive time slice in L1 to the unique weak solution of the
Cauchy–Dirichlet problem (1)–(3), see Corollary 6.

(iii) The maximal subsolution to (24)–(26) dominates the upper semi-relaxed limit
(with respect to parabolic space-time cylinders) of the transformed uε. However,
taking a semi-relaxed limit allows to compare with the transformed density u by
means of the previous two items.

Finally, we compare the maximal subsolution p̄max to a Barenblatt profile (written
in the pressure variable) as outlined in the heuristic argument. We make use of the
comparison principle in the framework of viscosity solutions for the deterministic
porous medium equation as developed by Caffarelli and Vázquez [5] resp. Vázquez
andBrändle [20]. The remaining argument after comparingwith the Barenblatt profile,
in particular the derivation of (6), then works as already sketched before.

4 Recovering weak solutions byWong–Zakai type approximations

4.1 Proof of Lemma 4 (Wong–Zakai type approximation)

Wemakeuse of a usual trick of avoiding the degeneracy of the porousmediumoperator,
see for instance [19, Proof of Theorem 5.5]. Let ε > 0 be fixed and choose a bounded
smooth function aε : R → [m( ε

2 )
m−1,∞) such that it holds aε(r) = mrm−1 for all

r ∈ [ε, ε+‖u0‖L∞(D)]. By the choice of aε and since Bε
t as defined in (7) is smooth

on [0, T ∗] almost surely, we can make use of standard quasilinear theory [17] to solve
the PDE

∂t uε = ∇ · (
aε(uε)∇uε

) + ν
( d

dt
Bε

t · ∇
)

uε on D̄ × [0, T ∗]

in a classical sense, i.e., we obtain with probability one a classical solution uε ∈
C2,1

x,t (D̄×[0, T ∗]) ∩ C∞(D×(0, T ∗)). It is then immediate from the choice of aε and
the regularity of uε that the equations (12)–(14) are satisfied pointwise everywhere.
We can infer from the maximum principle that ε ≤ uε(x, t) ≤ ε + ‖u0‖L∞(D) holds
true for all (x, t) ∈ D̄×[0, T ∗] as it is asserted in (15). The derivation of the energy
estimate (16) is standard: multiply the equation with uε, integrate over D and use the
regularity of uε to integrate by parts in the spatial differential operators. Note in this
respect that as a consequence of (15) and (14) it holds n∂ D · ∇um

ε ≤ 0 on ∂ D, where
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n∂ D is the exterior unit normal vector field along the C2 manifold ∂ D. This is the only
reason for the inequality sign in (16) as we may compute for the second term

∫
D

d

dt
Bε

t · uε∇uε dx =
∫

D

d

dt
Bε

t · uε∇(uε−ε) dx

= −
∫

D

d

dt
Bε

t · (uε−ε)∇uε = −
∫

D

d

dt
Bε

t · 1
2
∇|uε−ε|2 = 0.

We proceed with the bound (17) for the time derivative. Multiplying the equa-
tion (12) with ∂t um

ε , integrating over D, performing an integration by parts in the term
with the porous medium operator and estimating the transport term by Hölder’s and
Young’s inequality yields for all t ∈ (0, T ∗) the estimate

∫
D

mum−1
ε (t)|∂t uε|2(t) dx + d

dt

∫
D

1

2
|∇um

ε |2(t) dx

≤ 1

2

∫
D

mum−1
ε (t)|∂t uε|2(t) dx + ν2

2

∫
D

∣∣∣ d
dt

Bε
t

∣∣∣2mum−1
ε (t)|∇uε|2(t) dx .

Multiplying this bound with t and integrating the resulting estimate over (0, T ) we
may infer using also (16) and (15)

∫ T

0

∫
D

t

2
mum−1

ε |∂t uε|2 dx dt + T

2

∫
D

|∇um
ε |2(T ) dx

≤ 1

2

∫ T

0

∫
D

|∇um
ε |2 dx dt + sup

0≤t≤T ∗

∣∣∣ d
dt

Bε
t

∣∣∣2 T ∗ν2

2

∫ T

0

∫
D

mum−1
ε |∇uε|2 dx dt

≤
(m

2
(ε+‖u0‖L∞)m−1+T ∗ν2

2
sup

0≤t≤T ∗

∣∣∣ d
dt

Bε
t

∣∣∣2
) ∫

D

1

2
|uε|2(0) dx

for all T ∈ (0, T ∗). Moreover, it follows from (7) and Doob’s maximal inequality
thatE sup0≤t≤T ∗ | ddt Bε

t |2 ≤ Cε−β T ∗E|BT ∗ |2 for some absolute constant C > 0. This
establishes the estimate (17). The bound (18) is now a consequence of plugging in
the equation (12), then using the triangle inequality, estimating the term with the time
derivative by means of (17) and bounding the transport term similarly as at the end of
the proof of (17). This concludes the proof of Lemma 4. ��

4.2 Proof of Proposition 5 (Contraction principle up to time-dependent shift for
truncated Wong–Zakai type approximations)

Fix κ > 0 and let ζδ denote the smooth and convex approximation to the positive part
truncation r �→ r+ := r ∨ 0 on scale δ > 0 such that (19)–(21) hold true. Define
ζ δ
κ (r) := κ + ζδ(r−κ) which is a smooth and convex approximation to the truncation

r �→ r ∨ κ . Finally, fix ε, ε̂ ≤ κ
2 and abbreviate for what follows vε := ζ εq

κ ◦ u←
ε

resp. vε̂ := ζ ε̂q

κ ◦ u←
ε̂
, where q > 1 will be a large exponent to be specified later on
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in the proof. See (22) for the definition of the shifted densities. Finally, fix a compact
set K ⊂ D.

We aim to derive an estimate for supT ∈[0,T ∗] E‖vε−vε̂‖L1(K ) of the same type as
the asserted bound (23). The proof of this proceeds in several steps. For the sake of
better readability, let us occasionally break the proof into intermediate results.

Lemma 8 Let the assumptions and notation of Sect. 4.2 be in place. We next choose a
smooth, even and convex map η : R → [0,∞) such that η(r) = |r | − 1 for |r | ≥ 2
and η(r) ≤ |r | for all r ∈ R. Define ηδ(r) := δη( r

δ
). There is a constant C > 0

independent of δ such that

sup
r∈R

|(ηδ)
′(r)| + |r |(ηδ)

′′(r) ≤ C, (30)

(ηδ)
′(r) → sign(r) and ηδ(r) ↗ |r | as δ → 0, (31)

|ηδ(r)−|r || ≤ Cδ for all r ∈ R, and ηδ(r) = |r | − δ for all |r | ≥ 2δ. (32)

Then the following “entropy estimate” holds true

− E
∫ T ∗

0

∫
Rd

ηδ

(
vε(x, t)−Ẑ)

∂t ξ(x, t) dx dt

≤ −E
∫ T ∗

0

∫
Rd

|∇vm
ε (x, t)|2(ηδ)

′′(vm
ε (x, t)−Ẑm)

ξ(x, t) dx dt

+ E
∫ T ∗

0

∫
Rd

ηδ

(
vm
ε (x, t)−Ẑm)

�ξ(x, t) dx dt

− E
∫ T ∗

0

∫
Rd

1

2
ν2|∇vε(x, t)|2(ηδ)

′′(vε(x, t)−Ẑ)
ξ(x, t) dx dt

+ E
∫ T ∗

0

∫
Rd

1

2
ν2ηδ

(
vε(x, t)−Ẑ)

�ξ(x, t) dx dt

− E
∫ T ∗

0

∫
Rd

νηδ

(
vε(x, t)−ẑ

)∇ξ(x, t) dx dBt

∣∣∣∣
ẑ=Ẑ

+ E
∫ T ∗

0

∫
Rd

�vm
ε (x, t)ξ(x, t)

{
(ηδ)

′(vε(x, t)−Ẑ) − (ηδ)
′(vm

ε (x, t)−Ẑm)}
dx dt

− E
∫ T ∗

0

∫
Rd

m
(
(u←

ε )m−1−vm−1
ε

)
(x, t)∇vε(x, t) · (ηδ)

′(vε(x, t)−Ẑ)∇ξ(x, t) dx dt

(33)

for all ξ ∈ C∞
cpt(R

d × (0, T ∗); [0,∞)) and all bounded random variables Ẑ ∈
L∞(�). An analogous estimate holds true for vε̂, see (49) below for the precise
statement.

Proof Step 1 (Equation for u←
ε and u←

ε̂
): The first step is to derive the equation for

the shifted densities u←
ε and u←

ε̂
, respectively. To this end, we aim to apply Itô’s

formula with respect to
∫
Rd uε(x, t)η(x−ν(Bt−Bε

t ), t) dx , where η is an F-adapted
random test function η ∈ C∞

cpt(R
d × (0, T ∗)). Note that ∂t uε ≡ 0 on the lateral
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boundary ∂ D × (0, T ∗). Hence, it holds ∂t uε ∈ C(Rd × (0, T ∗)) and we thus obtain
from an application of Itô’s formula for each F-adapted random test function η ∈
C∞
cpt(R

d × (0, T ∗)) with probability one

−
∫ T ∗

0

∫
Rd

uε(x, t)∂tη(x−ν(Bt−Bε
t ), t) dx dt

=
∫ T ∗

0

∫
Rd

∂t uε(x, t)η(x−ν(Bt−Bε
t ), t) dx dt

+
∫ T ∗

0

∫
Rd

uε(x, t)ν
d

dt
Bε

t · ∇η(x−ν(Bt−Bε
t ), t) dx dt

+
∫ T ∗

0

∫
Rd

uε(x, t)
1

2
ν2�η(x−ν(Bt−Bε

t ), t) dx dt

−
∫ T ∗

0

∫
Rd

uε(x, t)ν∇η(x−ν(Bt−Bε
t ), t) dx dBt . (34)

Since uε solves the equation (12) classically in D × (0, T ∗), and is by definition
constant outside of it, we may compute

∫ T ∗

0

∫
Rd

∂t uε(x, t)η(x−ν(Bt−Bε
t ), t) dx dt

=
∫ T ∗

0

∫
Rd\∂ D

�um
ε (x, t)η(x−ν(Bt−Bε

t ), t) dx dt

+
∫ T ∗

0

∫
Rd

η(x−ν(Bt−Bε
t ), t)ν

d

dt
Bε

t · ∇uε(x, t) dx dt .

(35)

(Despite ∂ D having Lebesgue measure zero, the domain of integration in the first right
hand side term is Rd \ ∂ D since ∇um

ε may jump across the domain boundary ∂ D for
all i ∈ {1, . . . , d}, and hence ∂i∇um

ε may not exist in the sense of weak derivatives
in Rd × (0, T ∗) for all i ∈ {1, . . . , d}.) Integrating by parts in the second term on
the right hand side of the latter identity as well as performing a change of variables
x �→ x + ν(Bt−Bε

t ) yields

∫ T ∗

0

∫
Rd

∂t uε(x, t)η(x−ν(Bt−Bε
t ), t) dx dt

+
∫ T ∗

0

∫
Rd

uε(x, t)ν
d

dt
Bε

t · ∇η(x−ν(Bt−Bε
t ), t) dx dt

=
∫ T ∗

0

∫
Rd\(−ν(Bt −Bε

t )+∂ D)

�(u←
ε )m(x, t)η(x, t) dx dt .

(36)

Note that there is no boundary integral appearing from the integration by parts in the
second term on the right hand side of (35) since uε ∈ C(Rd × (0, T ∗)). We compute
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analogously

∫ T ∗

0

∫
Rd

uε(x, t)
1

2
ν2�η(x−ν(Bt−Bε

t ), t) dx dt

= −
∫ T ∗

0

∫
Rd

1

2
ν2∇u←

ε (x, t) · ∇η(x, t) dx dt

(37)

as well as

−
∫ T ∗

0

∫
Rd

uε(x, t)ν∇η(x−ν(Bt−Bε
t ), t) dx dBt .

=
∫ T ∗

0

∫
Rd

ν∇u←
ε (x, t)η(x, t) dx dBt .

(38)

From (34), (36), (37) and (38) we infer that for each F-adapted random test function
η ∈ C∞

cpt(R
d × (0, T ∗)) it holds with probability one

−
∫ T ∗

0

∫
Rd

u←
ε (x, t)∂tη(x, t) dx dt

=
∫ T ∗

0

∫
Rd\(−ν(Bt −Bε

t )+∂ D)

�(u←
ε )m(x, t)η(x, t) dx dt

−
∫ T ∗

0

∫
Rd

1

2
ν2∇u←

ε (x, t) · ∇η(x, t) dx dt

+
∫ T ∗

0

∫
Rd

ν∇u←
ε (x, t)η(x, t) dx dBt .

(39)

Analogously one derives the equation for u←
ε̂
.

Step 2 (Convex approximation to r �→ r ∨ κ as test function): In the next step we
aim to derive the equation for vε = ζ εq

κ ◦ u←
ε based on the equation for the shifted

density derived in (39). The idea is to test the equation (39) with the test function η :=(
(ζ εq

κ )′ ◦u←
ε

)
ξ , where ξ ∈ C∞

cpt(R
d ×(0, T ∗); [0,∞)) is arbitrary. However, since the

shifted density u←
ε is only Hölder continuous in the time variable we have to regularize

first. To this end, we make use of the Steklov average ηh(x, t) := 1
h

∫ t
t−h η(x, s) ds

which is an admissible test function for (39) for all sufficiently small h > 0 (depending
only on the support of ξ ). Since ∂tηh(x, t) = η(x,t)−η(x,t−h)

h we obtain by a simple
change of variables

−
∫ T ∗

0

∫
Rd

u←
ε (x, t)∂tηh(x, t) dx dt

= −
∫ T ∗

0

∫
Rd

1

h

(
u←

ε (x, t+h)−u←
ε (x, t)

)
(ζ εq

κ )′(u←
ε (x, t))ξ(x, t) dx dt

(40)
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for each h > 0 and each ξ ∈ C∞
cpt(R

d×(0, T ∗); [0,∞)) almost surely. We then

deduce from the smoothness and convexity of ζ εq

κ as well as by reverting the change
of variables the bound

−
∫ T ∗

0

∫
Rd

u←
ε (x, t)∂tηh(x, t) dx dt

≥ −
∫ T ∗

0

∫
Rd

1

h

(
ζ εq

κ (u←
ε (x, t+h)) − ζ εq

κ (u←
ε (x, t))

)
ξ(x, t) dx dt

= −
∫ T ∗

0

∫
Rd

1

h

(
ξ(x, t−h)−ξ(x, t)

)
ζ εq

κ (u←
ε (x, t)) dx dt

for each h > 0 and each ξ ∈ C∞
cpt(D×(0, T ∗); [0,∞)) almost surely. Hence, we may

infer from this, (39) and standard properties of the Steklov average after letting h → 0
the estimate

−
∫ T ∗

0

∫
Rd

ζ εq

κ (u←
ε (x, t))∂tξ(x, t) dx dt

≤
∫ T ∗

0

∫
Rd\(−ν(Bt −Bε

t )+∂ D)

�(u←
ε )m(x, t)(ζ εq

κ )′(u←
ε (x, t))ξ(x, t) dx dt

−
∫ T ∗

0

∫
Rd

1

2
ν2∇u←

ε (x, t) · ∇(
(ζ εq

κ )′(u←
ε (x, t))ξ(x, t)

)
dx dt

+
∫ T ∗

0

∫
Rd

ν∇u←
ε (x, t)(ζ εq

κ )′(u←
ε (x, t))ξ(x, t) dx dBt , (41)

which is valid for each ξ ∈ C∞
cpt(R

d×(0, T ∗); [0,∞)) on a set with probability one.

Note that on Rd \ (−ν(Bt−Bε
t ) + ∂ D) we may apply the chain rule to compute that

∇u←
ε (x, t)(ζ εq

κ )′(u←
ε (x, t)) = ∇(ζ εq

κ ◦u←
ε )(x, t). Furthermore, note that (ζ εq

κ )′(r) =
0 holds true for all r ≤ κ . In particular, because of u←

ε ∈ C(Rd×[0, T ∗]) and the
choice ε ≤ κ

2 we have for all t ∈ [0, T ∗] that (ζ εq

κ )′ ◦ u←
ε (·, t) ≡ 0 in a neighborhood

of the interface (−ν(Bt−Bε
t )+∂ D). This in turn means that we can integrate by parts

in the first term on the right hand side of (41) without producing an additional surface
integral. Taking all of these information together yields the bound

−
∫ T ∗

0

∫
Rd

(ζ εq

κ ◦ u←
ε )∂tξ dx dt

≤ −
∫ T ∗

0

∫
Rd

m(u←
ε )m−1|∇u←

ε |2((ζ εq

κ )′′ ◦ u←
ε

)
ξ dx dt

−
∫ T ∗

0

∫
Rd

m(u←
ε )m−1∇(ζ εq

κ ◦ u←
ε ) · ∇ξ dx dt

−
∫ T ∗

0

∫
Rd

1

2
ν2|∇u←

ε |2((ζ εq

κ )′′ ◦ u←
ε

)
ξ dx dt
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−
∫ T ∗

0

∫
Rd

1

2
ν2∇(ζ εq

κ ◦ u←
ε ) · ∇ξ dx dt

+
∫ T ∗

0

∫
Rd

ν∇(ζ εq

κ ◦ u←
ε )ξ dx dBt (42)

for each ξ ∈ C∞
cpt(R

d×(0, T ∗); [0,∞)) almost surely. Exploiting the sign (ζ εq

κ )′′ ≥ 0

and making use of the abbreviation vε = ζ εq

κ ◦ u←
ε we arrive at the estimate

−
∫ T ∗

0

∫
Rd

vε(x, t)∂tξ(x, t) dx dt

≤ −
∫ T ∗

0

∫
Rd

∇vm
ε (x, t) · ∇ξ(x, t) dx dt

−
∫ T ∗

0

∫
Rd

1

2
ν2∇vε(x, t) · ∇ξ(x, t) dx dt

+
∫ T ∗

0

∫
Rd

ν∇vε(x, t)ξ(x, t) dx dBt

−
∫ T ∗

0

∫
Rd

m
(
(u←

ε )m−1−vm−1
ε

)
(x, t)∇vε(x, t) · ∇ξ(x, t) dx dt (43)

which is valid for all ξ ∈ C∞
cpt(R

d×(0, T ∗); [0,∞)) almost surely. An analogous

estimate also holds true for the pair (u←
ε̂

, vε̂ = ζ ε̂q

κ ◦ u←
ε̂

), i.e.,

−
∫ T ∗

0

∫
Rd

vε̂(y, s)∂t ξ̃ (y, s) dy ds

≤ −
∫ T ∗

0

∫
Rd

∇vm
ε̂

(y, s) · ∇ ξ̃ (y, s) dy ds

−
∫ T ∗

0

∫
Rd

1

2
ν2∇vε̂(y, s) · ∇ ξ̃ (y, s) dy ds

+
∫ T ∗

0

∫
Rd

ν∇vε̂(y, s)ξ̃ (y, s) dy dBs

−
∫ T ∗

0

∫
Rd

m
(
(u←

ε̂
)m−1−vm−1

ε̂

)
(y, s)∇vε̂(y, s) · ∇ ξ̃ (y, s) dy ds (44)

for all ξ̃ ∈ C∞
cpt(D×(0, T ∗); [0,∞)) almost surely.

Step 3 (Convex approximation ηδ to r �→ |r | as test function): We proceed by
testing the inequality (43) with (ηδ)

′(vε(x, t)−ẑ)ξ(x, t) where the test function ξ ∈
C∞
cpt(R

d × (0, T ∗); [0,∞)) and ẑ ∈ R are arbitrary. This again incorporates several
integration by parts which we do not want to produce any additional surface integrals.
We reiterate that this will indeed not be the case since neither the Dirichlet data nor the
Neumann data for vε jump across the interfaces −ν(Bt−Bε

t )+ ∂ D for all t ∈ [0, T ∗].
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Hence, arguing similar to the previous step using in particular the Steklov average and
the convexity of ηδ we obtain the estimate

−
∫ T ∗

0

∫
Rd

ηδ

(
vε(x, t)−ẑ

)
∂tξ(x, t) dx dt

≤ −
∫ T ∗

0

∫
Rd

∇vm
ε (x, t) · ∇(

(ηδ)
′(vε(x, t)−ẑ

)
ξ(x, t)

)
dx dt

−
∫ T ∗

0

∫
Rd

1

2
ν2∇vε(x, t) · ∇(

(ηδ)
′(vε(x, t)−ẑ)ξ(x, t)

)
dx dt

−
∫ T ∗

0

∫
Rd

νηδ

(
vε(x, t)−ẑ

)∇ξ(x, t) dx dBt

−
∫ T ∗

0

∫
Rd

m
(
(u←

ε )m−1−vm−1
ε

)
(x, t)|∇vε(x, t)|2(ηδ)

′′(vε(x, t)−ẑ
)
ξ(x, t) dx dt

−
∫ T ∗

0

∫
Rd

m
(
(u←

ε )m−1−vm−1
ε

)
(x, t)∇vε(x, t) · (ηδ)

′(vε(x, t)−ẑ
)∇ξ(x, t) dx dt

(45)

for all ξ ∈ C∞
cpt(R

d × (0, T ∗); [0,∞)) and all ẑ ∈ R. As a preparation for what
follows, we post-process the right hand side of the latter inequality. Integrating by
parts, adding zero and using the chain rule we may rewrite the non-linear diffusion
term as follows

−
∫ T ∗

0

∫
Rd

∇vm
ε (x, t) · ∇(

(ηδ)
′(vε(x, t)−ẑ

)
ξ(x, t)

)
dx dt

= −
∫ T ∗

0

∫
Rd

|∇vm
ε (x, t)|2(ηδ)

′′(vm
ε (x, t)−ẑm)

ξ(x, t) dx dt

+
∫ T ∗

0

∫
Rd

ηδ

(
vm
ε (x, t)−ẑm)

�ξ(x, t) dx dt

+
∫ T ∗

0

∫
Rd

�vm
ε (x, t)ξ(x, t)

{
(ηδ)

′(vε(x, t)−ẑ
) − (ηδ)

′(vm
ε (x, t)−ẑm)}

dx dt .

(46)

Analogously one obtains for the Stratonovich correction term

−
∫ T ∗

0

∫
Rd

1

2
ν2∇vε(x, t) · ∇(

(ηδ)
′(vε(x, t)−ẑ)ξ(x, t)

)
dx dt

= −
∫ T ∗

0

∫
Rd

1

2
ν2|∇vε(x, t)|2(ηδ)

′′(vε(x, t)−ẑ
)
ξ(x, t) dx dt

+
∫ T ∗

0

∫
Rd

1

2
ν2ηδ

(
vε(x, t)−ẑ

)
�ξ(x, t) dx dt . (47)
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Since χsupp∇vεvε ≤ χsupp∇vε u←
ε by the definition of vε = ζ εq

κ ◦ u←
ε and the

truncation ζ εq

κ we observe that the penultimate term in (45) has a favorable sign.
Together with the two identities (46) and (47) the bound (45) thus yields for all ẑ ∈ R
and all ξ ∈ C∞

cpt(R
d×(0, T ∗); [0,∞)) almost surely the estimate

−
∫ T ∗

0

∫
Rd

ηδ

(
vε(x, t)−ẑ

)
∂tξ(x, t) dx dt

≤ −
∫ T ∗

0

∫
Rd

|∇vm
ε (x, t)|2(ηδ)

′′(vm
ε (x, t)−ẑm)

ξ(x, t) dx dt

+
∫ T ∗

0

∫
Rd

ηδ

(
vm
ε (x, t)−ẑm)

�ξ(x, t) dx dt

−
∫ T ∗

0

∫
Rd

1

2
ν2|∇vε(x, t)|2(ηδ)

′′(vε(x, t)−ẑ
)
ξ(x, t) dx dt

+
∫ T ∗

0

∫
Rd

1

2
ν2ηδ

(
vε(x, t)−ẑ

)
�ξ(x, t) dx dt

−
∫ T ∗

0

∫
Rd

νηδ

(
vε(x, t)−ẑ

)∇ξ(x, t) dx dBt

+
∫ T ∗

0

∫
Rd

�vm
ε (x, t)ξ(x, t)

{
(ηδ)

′(vε(x, t)−ẑ
) − (ηδ)

′(vm
ε (x, t)−ẑm)}

dx dt

−
∫ T ∗

0

∫
Rd

m
(
(u←

ε )m−1−vm−1
ε

)
(x, t)∇vε(x, t) · (ηδ)

′(vε(x, t)−ẑ
)∇ξ(x, t) dx dt .

(48)

Step 4 (Substituting ẑ � Ẑ and taking expectation): We define for every λ > 0 a
smooth and compactly supported cut-off ρ̄λ := 1

λ
ρ̄( ·

λ
) by rescaling a standard even

cut-off function ρ̄ ∈ C∞
cpt((−1, 1); [0,∞)) such that

∫
R ρ̄(r) dr = 1. We may then

multiply the inequality (48) with the non-negative random variable ρλ(ẑ−Ẑ), take the
expected value of the resulting almost sure estimate, and finally integrate over ẑ ∈ R.
We claim that taking the limit λ → 0 produces the desired estimate (33).

To this end, we focus on the parameter dependent stochastic integral term R �
ẑ �→ X(ẑ) := ∫ T ∗

0

∫
Rd νηδ

(
vε(x, t)−ẑ

)∇ξ(x, t) dx dBt . Note that because of the
maximum principle bound (15), the definition vε = ζ εq

κ ◦ u←
ε , as well as the

Burkholder–Davis–Gundy inequality it holds E|X ′(0)| + E|X ′′(0)| < ∞. Hence,
E

∣∣X(ẑ)|ẑ=Ẑ
∣∣ ≤ ‖Ẑ‖L∞E|X ′(0)| < ∞, E

∣∣X ′(ẑ)|ẑ=Ẑ
∣∣ ≤ ‖Ẑ‖L∞E|X ′′(0)| < ∞, and

E

∣∣∣∣X(ẑ)
∣∣
ẑ=Ẑ −

∫
R

ρλ(ẑ−Ẑ)X(ẑ) dẑ

∣∣∣∣ ≤
∫
R

ẑρλ(ẑ) dẑ E
∣∣X ′(ẑ)|ẑ=Ẑ

∣∣ → 0 as λ → 0.

This yields the claim for the noise term appearing in (48). We observe that all the
other terms can be dealt with based on the estimates (15)–(18) from Lemma 4, which
in turn concludes the proof of (33).
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Finally, by taking (44) instead of (43) as a starting point for the previous two steps
we obtain along the same lines that

− E
∫ T ∗

0

∫
Rd

ηδ

(
vε̂(y, s)−Z)

∂t ξ̃ (y, s) dy ds

≤ −E
∫ T ∗

0

∫
Rd

|∇vm
ε̂

(y, s)|2(ηδ)
′′(vm

ε̂
(y, s)−Zm)

ξ̃ (y, s) dy ds

+ E
∫ T ∗

0

∫
Rd

ηδ

(
vm
ε̂

(y, s)−Zm)
�ξ̃(y, s) dy ds

− E
∫ T ∗

0

∫
Rd

1

2
ν2|∇vε̂(y, s)|2(ηδ)

′′(vε̂(y, s)−Z)
ξ̃ (y, s) dy ds

+ E
∫ T ∗

0

∫
Rd

1

2
ν2ηδ

(
vε̂(y, s)−Z)

�ξ̃(y, s) dy ds

− E
∫ T ∗

0

∫
Rd

νηδ

(
vε̂(y, s)−z

)∇ ξ̃ (y, s) dy dBs

∣∣∣∣
z=Z

+ E
∫ T ∗

0

∫
Rd

�vm
ε̂

(y, s)ξ̃ (y, s)
{
(ηδ)

′(vε̂(y, s)−Z) − (ηδ)
′(vm

ε̂
(y, s)−Zm)}

dy ds

− E
∫ T ∗

0

∫
Rd

m
(
(u←

ε̂
)m−1−vm−1

ε̂

)
(y, s)∇vε̂(y, s) · (ηδ)

′(vε̂(y, s)−Z)∇ ξ̃ (y, s) dy ds,

(49)

for all test functions ξ̃ ∈ C∞
cpt(R

d × (0, T ∗); [0,∞)), as well as all bounded random
variables Z . This concludes the proof of Lemma 8. ��

We continue with the proof of Proposition 5. The next step takes care of the proper
choice of test functions ξ(x, t) resp. ξ̃ (y, s) in the latter two estimates. After that, we
start merging them by i) substituting Ẑ = vε̂(y, s) in (33) resp. Z = vε(x, t) in (49),
ii) integrating over the respective independent variables (y, s) resp. (x, t), and iii)
summing the two resulting inequalities.

Consider the mollifier ρ ∈ C∞
cpt((0, 1); [0,∞))with

∫
R ρ(r) dr already used in (7),

and define for τ > 0 the scaled kernel ρτ := 1
τ
ρ( ·

τ
). Let ϕ ∈ C∞

cpt((0, T ∗); [0, 1]) and
fix another even mollifier γ ∈ C∞

cpt(B1; [0,∞)) such that
∫

B1
γ (x) dx = 1. For θ > 0

let γθ := 1
θd γ ( ·

θ
). Now, since K ⊂ D is compact we can find a scale sc ∈ (0, 1) such

that K is contained in Dsc := {x ∈ D : dist(x, ∂ D) > sc}. Moreover, because D has
a C2 boundary ∂ D there exists (cf. [1, Lemma 5.4]) a sequence (ξ̄h)h and a constant
C = C(D) such that

(i) ξ̄h ∈ H1
0 (D; [0, 1]), ξ̄h = χD on {x ∈ D : dist(x, ∂ D) ≥ h},

(ii) it holds
∫

D ∇φ · ∇ ξ̄h dx ≥ 0 for all φ ∈ H1
0 (D; [0,∞)),

(iii) supp∇ ξ̄h ⊂ {x ∈ D : dist(x, ∂ D) < h}, and we have the bounds

C−1 ≤
∫

D
|∇ ξ̄h | dx ≤ C,

∫
D

|∇ ξ̄h |2 dx ≤ Ch−1. (50)
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We then fix once and for all a scale h ∈ (0, sc), and set ξ̄ := ξ̄h . Note that ξ̄ ≡ 1 on K
by the choice of sc and h. For purely technical reasons, we actually consider in the
following a mollified version of ξ̄ . Let ξ̄l := γl ∗ ξ̄ for l > 0.

Let now y ∈ Rd and s ∈ (0, T ∗) be fixed. We then define the test function

ξ(x, t, y, s) := ρτ (t−s)ϕ
( t+s

2

)
γθ (x−y)ξ̄l

( x+y

2

)
, (x, t) ∈ Rd×(0, T ∗). (51)

For this to be an admissible choice in (48) we need to restrict the range of the various
parameters. Assuming that

2τ < min{inf suppϕ, T ∗− sup suppϕ} and θ ∨ l <
sc

4
(52)

we observe ξ(·, ·, y, s) ∈ C∞
cpt(R

d×(0, T ∗); [0,∞)) and is thus admissible for (48).

Moreover, for every x ∈ Rd and t ∈ (0, T ∗) the test function

ξ̃ (y, s, x, t) := ξ(x, t, y, s), (y, s) ∈ Rd×(0, T ∗) (53)

then also represents an admissible choice for (33) under the same restrictions (52) on
the parameters. We have everything in place to merge (48) and (33).

Testing (33) with the admissible test functions ξ(·, ·, y, s) from (51) for every
(y, s) ∈ Rd×(0, T ∗), integratingover (y, s) ∈ Rd×(0, T ∗), then repeating everything
with (49) based on the admissible test functions ξ̃ (·, ·, x, t) from (53) for every (x, t) ∈
Rd×(0, T ∗), and finally summing the two resulting inequalities (using in particular
that ηδ is even) yields an estimate of the form

ERdt ≤ ERporMed + ERcorr + ERnoise + ERerror (54)

for all (τ, θ, l) subject to (52), all δ > 0 and all ε, ε̂ ≤ κ
2 . Here, we introduced for

convenience the abbreviations

Rdt := −
∫ T ∗

0

∫
Rd

∫ T ∗

0

∫
Rd

ηδ

(
vε(x, t)−vε̂(y, s)

)
(∂t+∂s)ξ(x, t, y, s) dy ds dx dt,

RporMed := −
∫ T ∗

0

∫
Rd

∫ T ∗

0

∫
Rd

|∇vm
ε (x, t)|2(ηδ)

′′(vm
ε (x, t)−vm

ε̂
(y, s)

)

× ξ(x, t, y, s) dx dt dy ds

+
∫ T ∗

0

∫
Rd

∫ T ∗

0

∫
Rd

ηδ

(
vm
ε (x, t)−vm

ε̂
(y, s)

)
�xξ(x, t, y, s) dx dt dy ds

−
∫ T ∗

0

∫
Rd

∫ T ∗

0

∫
Rd

|∇vm
ε̂

(y, s)|2(ηδ)
′′(vm

ε (x, t)−vm
ε̂

(y, s)
)

× ξ(x, t, y, s) dy ds dx dt

+
∫ T ∗

0

∫
Rd

∫ T ∗

0

∫
Rd

ηδ

(
vm
ε (x, t)−vm

ε̂
(y, s)

)
�yξ(x, t, y, s) dy ds dx dt,
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Rcorr := −
∫ T ∗

0

∫
Rd

∫ T ∗

0

∫
Rd

1

2
ν2|∇vε(x, t)|2(ηδ)

′′(vε(x, t)−vε̂(y, s)
)

× ξ(x, t, y, s) dx dt dy ds

+
∫ T ∗

0

∫
Rd

∫ T ∗

0

∫
Rd

1

2
ν2ηδ

(
vε(x, t)−vε̂(y, s)

)
�xξ(x, t, y, s) dx dt dy ds

−
∫ T ∗

0

∫
Rd

∫ T ∗

0

∫
Rd

1

2
ν2|∇vε̂(y, s)|2(ηδ)

′′(vε(x, t)−vε̂(y, s)
)

× ξ(x, t, y, s) dy ds dx dt

+
∫ T ∗

0

∫
Rd

∫ T ∗

0

∫
Rd

1

2
ν2ηδ

(
vε(x, t)−vε̂(y, s)

)
�yξ(x, t, y, s) dy ds dx dt,

Rnoise := −
∫ T ∗

0

∫
Rd

∫ T ∗

0

∫
Rd

νηδ

(
vε(x, t)−ẑ

)∇xξ(x, t, y, s) dx dBt

∣∣∣∣
ẑ=vε̂(y,s)

dy ds

−
∫ T ∗

0

∫
Rd

∫ T ∗

0

∫
Rd

νηδ

(
z−vε̂(y, s)

)∇yξ(x, t, y, s) dy dBs

∣∣∣∣
z=vε(x,t)

dx dt,

as well as

Rerror :=
∫ T ∗

0

∫
Rd

∫ T ∗

0

∫
Rd

{
(ηδ)

′(vε(x, t)−vε̂(y, s)
)−(ηδ)

′(vm
ε (x, t)−vm

ε̂
(y, s)

)}

× (�xvm
ε )(x, t)ξ(x, t, y, s) dx dt dy ds

+
∫ T ∗

0

∫
Rd

∫ T ∗

0

∫
Rd

{
(ηδ)

′(vε̂(y, s)−vε(x, t)
) − (ηδ)

′(vm
ε̂

(y, s)−vm
ε (x, t)

)}

× (�yvm
ε̂

)(y, s)ξ̃ (y, s, x, t) dy ds dx dt

−
∫ T ∗

0

∫
Rd

∫ T ∗

0

∫
Rd

m
(
(u←

ε )m−1−vm−1
ε

)
(x, t)∇x ξ(x, t, y, s)

· ∇vε(x, t)(ηδ)
′(vε(x, t)−vε̂(y, s)

)
dx dt dy ds

−
∫ T ∗

0

∫
Rd

∫ T ∗

0

∫
Rd

m
(
(u←

ε̂
)m−1−vm−1

ε̂

)
(y, s)∇y ξ̃ (y, s, x, t)

· ∇vε̂(y, s)(ηδ)
′(vε̂(y, s)−vε(x, t)

)
dy ds dx dt .

Before wemove on with removing the doubling in the time variable by studying the
limit τ → 0 let us first perform some computations on the non-linear diffusion term
RporMed and the correction term Rcorr. Exploiting that (ηδ)

′′ ≥ 0 and ξ ≥ 0, completing
the square |∇vm

ε |2+|∇vm
ε̂

|2 = |∇vm
ε −∇vm

ε̂
|2 + 2∇vm

ε · ∇vm
ε̂
and integrating by parts

entails that

−
∫
Rd

∫
Rd

|∇vm
ε (x, t)|2(ηδ)

′′(vm
ε (x, t)−vm

ε̂
(y, s)

)
ξ dx dy

−
∫
Rd

∫
Rd

|∇vm
ε̂

(y, s)|2(ηδ)
′′(vm

ε (x, t)−vm
ε̂

(y, s)
)
ξ dx dy
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≤
∫
Rd

∫
Rd

2ξ(∇y · ∇x )ηδ

(
vm
ε (x, t)−vm

ε̂
(y, s)

)
dx dy

=
∫
Rd

∫
Rd

ηδ

(
vm
ε (x, t)−vm

ε̂
(y, s)

)
2(∇x · ∇y)ξ dx dy.

Since (�x+�y)(γθ (x−y)ξ̄l(
x+y
2 )) = γθ (x−y) 12�ξ̄l(

x+y
2 )+ξ̄l(

x+y
2 )2�γθ(x−y)

and (2∇x · ∇y)(γθ (x−y)ξ̄l(
x+y
2 )) = γθ (x−y) 12�ξ̄l(

x+y
2 )−ξ̄l(

x+y
2 )2�γθ(x−y), we

thus obtain the estimate

RporMed ≤
∫ T ∗

0

∫
Rd

∫ T ∗

0

∫
Rd

ηδ

(
vm
ε (x, t)−vm

ε̂
(y, s)

)

× ρτ (t−s)ϕ
( t+s

2

)
γθ (x−y)�ξ̄l

( x+y

2

)
dx dt dy ds

=:R(1)
porMed.

The idea eventually is—after letting τ → 0, δ → 0 and removing the doubling in
the spatial variables (the latter by fine-tuning the scales θ > 0 and l > 0 as suitably
chosen powers of ε ∨ ε̂)—to integrate by parts and to use the sign in condition ii) for
the spatial test function ξ̄ . We will make this precise together with all the required
error estimates in a later stage of the proof. For the moment, we only wish to mention
that because of the convexity of ηδ and ξ ≥ 0 it holds

Rcorr ≤
∫ T ∗

0

∫
Rd

∫ T ∗

0

∫
Rd

1

2
ν2ηδ

(
vε(x, t)−vε̂(y, s)

)
(�x+�y)ξ(x, t, y, s) dx dt dy ds

=: R(1)
corr.

The task therefore reduces to post-process the bound

ERdt ≤ ER(1)
porMed + ER(1)

corr + ERnoise + ERerror (55)

with the remaining three terms left unchanged from the estimate (54). In a first step
we aim to remove the doubling in the time variable by letting τ → 0.

Lemma 9 Let the assumptions and notation of Sect. 4.2 until this point be in place.
Define the quantities

R(1)
dt := −

∫ T ∗

0

∫
Rd

∫
Rd

ηδ

(
vε(x, t)−vε̂(y, t)

)
γθ (x−y)ξ̄l

( x+y

2

) d

dt
ϕ(t) dy dx dt,

(56)

R(2)
porMed :=

∫ T ∗

0

∫
Rd

∫
Rd

ηδ

(
vm
ε (x, t)−vm

ε̂
(y, t)

)
ϕ(t)γθ (x−y)�ξ̄l

( x+y

2

)
dy dx dt,

(57)

R(2)
corr :=

∫ T ∗

0

∫
Rd

∫
Rd

1

2
ν2ηδ

(
vε(x, t)−vε̂(y, t)

)
ϕ(t)γθ (x−y)�ξ̄l

( x+y

2

)
dy dx dt,

(58)
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R(1)
error :=

∫ T ∗

0

∫
Rd

∫
Rd

{
(ηδ)

′(vε(x, t)−vε̂(y, t)
)−(ηδ)

′(vm
ε (x, t)−vm

ε̂
(y, t)

)}

× (�xv
m
ε )(x, t)γθ (x−y)ξ̄l

( x+y

2

)
ϕ(t) dy dx dt

+
∫ T ∗

0

∫
Rd

∫
Rd

{
(ηδ)

′(vε̂(y, t)−vε(x, t)
) − (ηδ)

′(vm
ε̂

(y, t)−vm
ε (x, t)

)}

× (�yv
m
ε̂

)(y, t)γθ (x−y)ξ̄l

( x+y

2

)
ϕ(t) dy dx dt

−
∫ T ∗

0

∫
Rd

∫
Rd

m
(
(u←

ε )m−1−vm−1
ε

)
(x, t)∇x

(
γθ (x−y)ξ̄l

( x+y

2

))
ϕ(t)

· ∇vε(x, t)(ηδ)
′(vε(x, t)−vε̂(y, t)

)
dy dx dt

−
∫ T ∗

0

∫
Rd

∫
Rd

m
(
(u←

ε̂
)m−1−vm−1

ε̂

)
(y, t)∇y

(
γθ (x−y)ξ̄l

( x+y

2

))
ϕ(t)

· ∇vε̂(y, t)(ηδ)
′(vε̂(y, t)−vε(x, t)

)
dy dx dt .

(59)

Then the estimate

ER(1)
dt ≤ ER(2)

porMed + ER(2)
corr + ER(1)

error (60)

holds true for all (θ, l) subject to (52), all δ > 0 and all ε, ε̂ ≤ κ
2 .

Proof It follows from (51) that (∂t+∂s)ξ = ϕ′( t+s
2 )ρτ (t−s)γθ (x−y)ξ̄l(

x+y
2 ). In par-

ticular, the singular terms as τ → 0 cancel. Hence, it follows by Lebesgue’s dominated
convergence based on the regularity and the bounds for the Wong–Zakai approxima-
tion uε from Lemma 4 and definition (22) of the shifted densities u←

ε that

ERdt → ER(1)
dt as τ → 0. (61)

Relying again on Lebesgue’s dominated convergence due to the regularity and the a
priori estimates for the Wong–Zakai approximation uε from Lemma 4 and the defi-
nition (22) of the shifted densities u←

ε , we may also easily pass to the limit τ → 0
in all the terms on the right hand side of (55) except for the noise term Rnoise. More
precisely, we obtain

ER(1)
porMed → ER(2)

porMed as τ → 0, (62)

ER(1)
corr → ER̃(2)

corr, as τ → 0, (63)

ERerror → ER(1)
error as τ → 0, (64)

with the shorthand

123



916 Stoch PDE: Anal Comp (2021) 9:892–939

R̃(2)
corr :=

∫ T ∗

0

∫
Rd

∫
Rd

1

2
ν2ηδ

(
vε(x, t)−vε̂(y, t)

)
ϕ(t)

× (�x+�y)
(
γθ (x−y)ξ̄l

( x+y

2

))
dy dx dt .

We proceed with the discussion of the noise term Rnoise, and claim that as τ → 0

ERnoise →
∫ T ∗

0

∫
Rd

∫
Rd

1

2
ν2ηδ

(
vε(x, t)−vε̂(y, t)

)
ϕ(t)

× 2(∇x · ∇y)
(
γθ (x−y)ξ̄l

( x+y

2

))
dy dx dt . (65)

Recall that (�x+�y)(γθ (x−y)ξ̄l(
x+y
2 )) = γθ (x−y) 12�ξ̄l(

x+y
2 )+ξ̄l(

x+y
2 )2�γθ(x−y)

and 2(∇x · ∇y)(γθ (x−y)ξ̄l(
x+y
2 )) = γθ (x−y) 12�ξ̄l(

x+y
2 )−ξ̄l(

x+y
2 )2�γθ(x−y).

Hence, the combination of (63) and (65) yields

ER(1)
corr + ERnoise → ER(2)

corr (66)

as τ → 0, which in view of (61), (62) and (64) entails the desired estimate (60).
Hence, it remains to verify (65).

To this end, we again define for λ > 0 the cut-off ρ̄λ := 1
λ
ρ̄( ·

λ
) by means of a

standard even cut-off function ρ̄ ∈ C∞
cpt((−1, 1); [0,∞)) such that

∫
R ρ̄(r) dr=1. Fur-

thermore, let X(y, s; ẑ) := − ∫ s+τ

s

∫
Rd νηδ

(
vε(x, t)−ẑ

)∇xξ(x, t, y, s) dx dBt and
Y (x, t; z) := − ∫ t

t−τ

∫
Rd νηδ

(
z−vε̂(y, s)

)∇yξ(x, t, y, s) dy dBs . Hence, using that
the mollifier ρ is supported on the positive real axis, we may rewrite for all τ > 0
subject to (52)

Rnoise =
∫ T ∗−τ

0

∫
Rd

X(y, s; ẑ)
∣∣
ẑ=vε̂(y,s) dy ds +

∫ T ∗

τ

∫
Rd

Y (x, t; z)
∣∣
z=vε(x,t) dx dt .

Based on the argument given in Step 4 of the proof of Lemma 8, it holds

ERnoise = lim
λ→0

E
∫ T ∗−τ

0

∫
Rd

∫
R

ρ̄λ

(
vε̂(y, s)−ẑ

)
X(y, s; ẑ) dẑ dy ds

+ lim
λ→0

E
∫ T ∗

τ

∫
Rd

∫
R

ρ̄λ

(
vε(x, t)−z

)
Y (x, t; z) dz dx dt

=: lim
λ→0

ER(1),λ
noise + lim

λ→0
ER(2),λ

noise .

Observe that ER(1),λ
noise = 0 since the bounded random variable vε̂(y, s) is measurable

with respect toFs . Similarly, due to the fact that vε(x, t−τ) is bounded andmeasurable
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with respect to Ft−τ we may actually write for all λ ∈ (0, 1]

ER(2),λ
noise = E

∫ T ∗

τ

∫
Rd

∫
R

Y (x, t; z)
{
ρ̄λ

(
vε(x, t)−z

)−ρ̄λ

(
vε(x, t−τ)−z

)}
dz dx dt .

(67)

As a preparation for what follows, we present regularity estimates for Y . More pre-
cisely, we claim that for all m, n ≥ 1 there exists a constant C > 0 such that

(
E‖∂m

z ∇n
x Y‖8L∞

x,t,z(Rd×[0,T ]×R)

) 1
8 ≤ Cτ− 3

4 , (68)

uniformly over all τ subject to (52). For a proof of (68), it suffices to show that

(
E‖∂m̂

z ∇ n̂
x Y‖8

L8
t ([0,T ];L8

x,z(Rd×R))

) 1
8 ≤ Cm̂ ,̂nτ− 1

2 , (69)

(
E‖∂t∂

m̂
z ∇ n̂

x Y‖8
L8

t ([0,T ];L8
x,z(Rd×R))

) 1
8 ≤ Cm̂ ,̂nτ− 3

2 , (70)

uniformly over all τ subject to (52). Indeed, by passing through a fractional Sobolev
space in the time variable we may interpolate between the previous two estimates

to obtain E‖∂m̂
z ∇ n̂

x Y‖8
W 8,δ

t ([0,T ];L8
x,z(Rd×R))

≤ Cδ,m̂ ,̂nτ 8(−δ− 1
2 ), uniformly over all τ

subject to (52). In particular, fixing δ = 1
4 in combination with Sobolev embedding

allows to deduce (68). For a proof of (69), we may appeal to the Burkholder–Davis–
Gundy inequality and the maximum principle bound (15), which imply the desired
estimate in form of (with the scaling in τ resulting from ρτ )

E‖∂m̂
z ∇ n̂

x Y‖8
L8

t ([0,T ];L8
x,z(Rd×R))

≤ Cm̂τ−8
∫ T ∗

τ

∫
Rd

E

∣∣∣∣
∫ t

t−τ

∫
Bθ (x)

∣∣∣∇ n̂
x ∇y

(
γθ (x−y)ξ̄l

( x+y

2

))∣∣∣2 dy ds

∣∣∣∣
4

dx dt

≤ Cm̂ ,̂nτ−4.

Similarly, one derives the estimate (70) with the scaling in τ stemming from ∂tρτ .
Let now f : Rd × (0, T ∗) → [0,∞) be a smooth and compactly supported space-

time mollifier. It then follows from (39) that f ∗ u←
ε satisfies pointwise

d( f ∗ u←
ε )t =

{
�x ( f ∗ (u←

ε )m) + 1

2
ν2�x ( f ∗ u←

ε )
}
dt + ν∇x ( f ∗ u←

ε ) · dBt .

Applying Itô’s formula to Fz ◦ ( f ∗ u←
ε ), Fz := ρ̄λ

(
ζ εq

κ (·)− z
) ∈ C∞(R), thus yields

Fz
(
( f ∗ u←

ε )(x, t)
) − Fz

(
( f ∗ u←

ε )(x, t−τ)
)

=
∫ t

t−τ

F ′
z

(
( f ∗ u←

ε )(x, �)
){

�x ( f ∗ (u←
ε )m) + 1

2
ν2�x ( f ∗ u←

ε )
}
(x, �) d�
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+
∫ t

t−τ

1

2
ν2F ′′

z

(
( f ∗ u←

ε )(x, �)
)|∇x ( f ∗ u←

ε )|2(x, �) d�

+
∫ t

t−τ

νF ′
z

(
( f ∗ u←

ε )(x, �)
)∇x ( f ∗ u←

ε )(x, �) dB� (71)

for all x ∈ Rd , all t ∈ (τ, T ∗) and all z ∈ R. The left hand side term of (71) represents
a proxy for ρ̄λ

(
vε(x, t)−z

)−ρ̄λ

(
vε(x, t−τ)−z

)
in (67). Substituting this proxy into

the right hand side term of (67), then inserting the identity (71), integrating by parts
once in the terms with second-order spatial derivatives, and exploiting Itô’s isometry
for the third right hand side term of (71), we deduce that it holds

E
∫ T ∗

τ

∫
Rd

∫
R

Y (x, t; z)
{

Fz
(
( f ∗ u←

ε )(x, t)
) − Fz

(
( f ∗ u←

ε )(x, t−τ)
)}

dz dx dt

= −E
∫ T ∗

τ

∫
Rd

∫
R

∇x Y (x, t; z) ·
∫ t

t−τ

F ′
z

(
( f ∗ u←

ε )(x, �)
)

× (
f ∗ ∇x (u

←
ε )m)

(x, �) d� dz dx dt

− E
∫ T ∗

τ

∫
Rd

∫
R

Y (x, t; z)
∫ t

t−τ

F ′′
z

(
( f ∗ u←

ε )(x, �)
)

× (
f ∗ m(u←

ε )m−1|∇x u←
ε |2)(x, �) d� dz dx dt

− E
∫ T ∗

τ

∫
Rd

∫
R

∇x Y (x, t; z) ·
∫ t

t−τ

F ′
z

(
( f ∗ u←

ε )(x, �)
)

× 1

2
ν2( f ∗ ∇x u←

ε )(x, �) d� dz dx dt

− E
∫ T ∗

τ

∫
Rd

∫
R

∫ t

t−τ

∫
Rd

ν2ηδ

(
z−vε̂(y, s)

)∇yξ(x, t, y, s)

· ∇x
(
Fz ◦ ( f ∗ u←

ε )
)
(x, s) dy ds dz dx dt .

Based on the regularity estimates for Y , the estimates for uε from Lemma 4, and the
support properties of the test function ξ , we may let the mollifier f run through a
space-time Dirac sequence and pass to the limit. This updates (67) to

ER(2),λ
noise

= −E
∫ T ∗

τ

∫
Rd

∫
R

∂z∇x Y (x, t; z) ·
∫ t

t−τ

ρ̄λ

(
vε(x, �)−z

)
(ζ εq

κ )′
(
u←

ε (x, �)
)

× ∇x (u
←
ε )m(x, �) d� dz dx dt

− E
∫ T ∗

τ

∫
Rd

∫
R

∂z∇x Y (x, t; z) ·
∫ t

t−τ

ρ̄λ

(
vε(x, �)−z

)
(ζ εq

κ )′
(
u←

ε (x, �)
)

× 1

2
ν2∇x u←

ε (x, �) d� dz dx dt

123



Stoch PDE: Anal Comp (2021) 9:892–939 919

− E
∫ T ∗

τ

∫
Rd

∫
R

∂zY (x, t; z)
∫ t

t−τ

ρ̄λ

(
vε(x, �)−z

)
(ζ εq

κ )′′
(
u←

ε (x, �)
)

× m(u←
ε )m−1(x, �)|∇x u←

ε |2(x, �) d� dz dx dt

− E
∫ T ∗

τ

∫
Rd

∫
R

∂2z Y (x, t; z)
∫ t

t−τ

ρ̄λ

(
vε(x, �)−z

)∣∣(ζ εq

κ )′
(
u←

ε (x, �)
)∣∣2

× m(u←
ε )m−1(x, �)|∇x u←

ε |2(x, �) d� dz dx dt

− E
∫ T ∗

τ

∫
Rd

∫
R

∫ t

t−τ

∫
Rd

ν2ηδ

(
z−vε̂(y, s)

)∇yξ(x, t, y, s)

· ∇x
(
ρ̄λ(vε(x, s)−z)

)
dy ds dz dx dt

=: ER(3),λ
noise + ER(4),λ

noise + ER(5),λ
noise + ER(6),λ

noise + ER(7),λ
noise , (72)

where we also integrated by parts in the z-variable to avoid derivatives of ρ̄λ (which
is required for λ → 0).

The upshot of the argument is now the following. Based on the regularity estimates
for Y , the estimates for uε from Lemma 4, and the support properties of the test
function ξ , we claim that it holds

lim
τ→0

lim
λ→0

6∑
i=3

ER(i),λ
noise = 0. (73)

We give details for the term R(5),λ
noise ; the other terms may be dealt with similarly.

By Hölder’s inequality with respect to the exponents (q,
q+1

q ), q = 8, the bound∫ T ∗
τ

∫ t
t−τ

|g(�)| d� dt ≤ τ
∫ T ∗
0 |g(t)| dt , and the estimate (15), we obtain

E
∣∣R(5),λ

noise

∣∣

≤ τ
(
E‖∂zY‖q

L∞
x,t,z(Rd×[0,T ]×R)

) 1
q
(
E

∣∣∣∣
∫ T ∗

0

∫
Rd

m(u←
ε )m−1|∇u←

ε |2 dx dt

∣∣∣∣
q+1

q
) q

q+1

uniformly over all τ subject to (52) and all λ ∈ (0, 1]. By a change of variables to
switch from u←

ε to uε, the energy estimate (16), as well as the the regularity esti-

mate (68) for Y , we may deduce from the previous display that E
∣∣R(5),λ

noise

∣∣ ≤ Cτ
1
4

uniformly over all τ subject to (52) and all λ ∈ (0, 1]. Hence, we obtain as claimed
limτ→0 limλ→0 ER(5),λ

noise = 0.

It remains to consider the term R(7),λ
noise . However, after performing an integration

by parts it directly follows (the limits τ → 0 and λ → 0 are unproblematic by the
support properties of ξ , and the regularity properties of uε due to Lemma 4)

lim
τ→0

lim
λ→0

ER(7),λ
noise =

∫ T ∗

0

∫
Rd

∫
Rd

1

2
ν2ηδ

(
vε(x, t)−vε̂(y, t)

)
ϕ(t)

× 2(∇x · ∇y)
(
γθ (x−y)ξ̄l

( x+y

2

))
dy dx dt .

(74)
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The combination of (72)–(74) finally entails (65), which in turn concludes the proof
of Lemma 9 as already argued above. ��

We continue with the proof of Proposition 5 taking care in the next step of the error
terms. More precisely, we may derive the following bound.

Lemma 10 Let the assumptions and notation of Sect. 4.2 until this point be in place.
In particular, recall the definition of the error term R(1)

error from (59). We then have the
estimate

ER(1)
error ≤ C(κ)l−1θ−1(ε ∨ ε̂)q + Oδ→0(1) (75)

for all (θ, l) subject to (52), all δ > 0 and all ε, ε̂ ≤ κ
2 .

Proof We start estimating by Hölder’s inequality

E

∣∣∣∣
∫ T ∗

0

∫
Rd

∫
Rd

(�xv
m
ε )(x, t)γθ (x−y)ξ̄l

( x+y

2

)
ϕ(t)

× {
(ηδ)

′(vε(x, t)−vε̂(y, t)
)−(ηδ)

′(vm
ε (x, t)−vm

ε̂
(y, t)

)}
dy dx dt

∣∣∣∣

≤
(
E

∫ T ∗

0

∫
Rd

∫
Rd

∣∣(ηδ)
′(vε(x, t)−vε̂(y, t)

)−(ηδ)
′(vm

ε (x, t)−vm
ε̂

(y, t)
)∣∣2 dy dx dt

) 1
2

× ‖ϕ‖L∞(0,T ∗)

(inf suppϕ)
1
2

(
E

∫ T ∗

0

∫
Rd

t |(�xv
m
ε )(x, t)|2 dx dt

) 1
2 ‖ξ̄l‖L∞(Rd )‖γθ‖L∞(Rd ).

However, by the bounds (18) and (30), the convergence (31) and the fact that
sign(a−b) = sign(am−bm) due to the monotonicity of r �→ rm we infer by an
application of Lebesgue’s dominated convergence theorem based on the regularity of
the Wong–Zakai approximation uε from Lemma 4 that the term on the right hand side
of the latter bound vanishes as δ → 0.

Recall that κ ≤ vε ≤ u←
ε on supp∇vε. Hence, we can estimate by means of (21)

χsupp∇vε

∣∣(u←
ε )m−1(x, t)−vm−1

ε (x, t)
∣∣

≤ χsupp∇vε sup
r∈[vε(x,t),u←

ε (x,t)]
(m−1)rm−2|vε(x, t)−u←

ε (x, t)|

≤ C(κ)χsupp∇vε ε
q .

We may then estimate using also (19), the definition (22) of the shifted densities
u←

ε , ‖∇ ξ̄l‖L∞(Rd ) ≤ ‖∇γl‖L1(Rd )‖ξ̄‖L∞(Rd ) ≤ Cl−1 (which follows from Young’s
inequality and condition i) for the spatial cut-off ξ̄ ), ‖ϕ‖L∞(0,T ∗) ≤ 1, a change of
variables x �→ x−ν(Bt−Bε

t ), the fact that u←
ε ≥ κ on supp∇vε, and finally the a

priori estimate (16)
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E

∣∣∣∣
∫ T ∗

0

∫
Rd

∫
Rd

(
(u←

ε )m−1(x, t)−vm−1
ε (x, t)

)

× ∇vε(x, t) · ∇x

(
γθ (x−y)ξ̄l

( x+y

2

))
ϕ(t) dy dx dt

∣∣∣∣
≤ Cl−1θ−1E

∫ T ∗

0

∫
Rd

χsupp∇vε

∣∣(u←
ε )m−1(x, t)−vm−1

ε (x, t)
∣∣|∇u←

ε (x, t)| dx dt

≤ C(κ)l−1θ−1εq
(
E

∫ T ∗

0

∫
D

mum−1
ε (x, t)|∇uε(x, t)|2 dx dt

) 1
2

≤ C(κ)l−1θ−1εq .

Since the other two terms of R(1)
error can be treated along the same lines, we obtain

in total the asserted estimate (75). This concludes the proof of Lemma 10. ��
We continue with the proof of Proposition 5.We have by now everything in place to

let δ → 0 in (60). A straightforward application of Lebesgue’s dominated convergence
theorem based on the convergence in (31) and the regularity and bounds for theWong–
Zakai approximations uε from Lemma 4 shows that by letting δ → 0 in (60) and using
(75) it holds

ER(2)
dt ≤ ER(3)

porMed + ER(3)
corr + C(κ)l−1θ−1(ε ∨ ε̂)q (76)

for all (θ, l) subject to (52), and all ε, ε̂ ≤ κ
2 . The updated terms in this inequality are

given by

R(2)
dt := −

∫ T ∗

0

∫
Rd

∫
Rd

∣∣vε(x, t)−vε̂(y, t)
∣∣γθ (x−y)ξ̄l

( x+y

2

) d

dt
ϕ(t) dy dx dt,

R(3)
porMed :=

∫ T ∗

0

∫
Rd

∫
Rd

∣∣vm
ε (x, t)−vm

ε̂
(y, t)

∣∣ϕ(t)γθ (x−y)�ξ̄l

( x+y

2

)
dy dx dt,

R(3)
corr :=

∫ T ∗

0

∫
Rd

∫
Rd

1

2
ν2

∣∣vε(x, t)−vε̂(y, t)
∣∣ϕ(t)γθ (x−y)�ξ̄l

( x+y

2

)
dy dx dt,

respectively. We may proceed with the next step which consists of removing the
doubling in the spatial variables. More precisely, the following holds true.

Lemma 11 Let the assumptions and notation of Sect. 4.2 until this point be in place.
Define the quantities

R(3)
dt := −

∫ T ∗

0

∫
Rd

∫
Rd

∣∣vε(x, t)−vε̂(y, t)
∣∣γθ (x−y)ξ̄l(x)

d

dt
ϕ(t) dy dx dt,

R(5)
porMed :=

∫ T ∗

0
ϕ(t)

∫
Rd

∣∣vm
ε (x, t)−vm

ε̂
(x, t)

∣∣�ξ̄l(x) dx dt,

R(5)
corr :=

∫ T ∗

0
ϕ(t)

∫
Rd

1

2
ν2

∣∣vε(x, t)−vε̂(x, t)
∣∣�ξ̄l(x) dx dt .
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We then have the estimate

ER(3)
dt ≤ ER(5)

porMed + ER(5)
corr + C(κ)l−1θ−1(ε ∨ ε̂)q + C(κ)l−3θ (77)

for all ϕ ∈ C∞
cpt((0, T ∗); [0, 1]) with ‖ϕ‖W 1,1(0,T ∗) ≤ C̄, all (θ, l) subject to (52) and

all ε, ε̂ ≤ κ
2 .

Proof By a straightforward estimate, wemay replace in all three terms ξ̄l(
·−y
2 ) by ξ̄l(·)

and therefore update the estimate (76) to

ER(3)
dt ≤ ER(4)

porMed + ER(4)
corr + C(κ)l−1θ−1(ε ∨ ε̂)q + Cl−3θ‖ϕ‖W 1,1,(0,T ∗) (78)

for all (θ, l) subject to (52) and all ε, ε̂ ≤ κ
2 , where

R(4)
porMed :=

∫ T ∗

0

∫
Rd

∫
Rd

∣∣vm
ε (x, t)−vm

ε̂
(y, t)

∣∣ϕ(t)γθ (x−y)�ξ̄l(x) dy dx dt,

R(4)
corr :=

∫ T ∗

0

∫
Rd

∫
Rd

1

2
ν2

∣∣vε(x, t)−vε̂(y, t)
∣∣ϕ(t)γθ (x−y)�ξ̄l(x) dy dx dt,

respectively. We estimate using ‖�ξ̄l‖L∞(Rd ) ≤ ‖∇2γl‖L1(Rd )‖ξ̄‖L∞(Rd ) ≤ Cl−2

(which follows from Young’s inequality and condition i) for the spatial cut-off ξ̄ ), a
change of variables y �→ y+x , u←

ε ≥ κ on supp∇vε, and the bounds (19) resp. (16)

∣∣∣∣ER(4)
corr − E

∫ T ∗

0

∫
Rd

1

2
ν2

∣∣vε(x, t)−vε̂(x, t)
∣∣ϕ(t)�ξ̄l(x) dx dt

∣∣∣∣
≤ CE

∫ T ∗

0

∫
Rd

∫
Rd

∣∣vε̂(y, t)−vε̂(x, t)
∣∣γθ (x−y)|�ξ̄l(x)|ϕ(t) dy dx dt

≤ Cl−2θE
∫ T ∗

0

∫
Rd

∫
Rd

γθ (x−y)

∫ 1

0
|∇vε̂(r x+(1−r)y, t)| dr dy dx dt

≤C(κ)l−2θE
∫ 1

0

∫ T ∗

0

∫
Rd

∫
Rd

γθ (y)(u←
ε̂

)
m−1
2 (x−ry, t)|∇u←

ε̂
(x−ry, t)| dx dy dt dr

≤ C(κ)l−2θ

(
E

∫ T ∗

0

∫
D

mum−1
ε̂

(x, t)|∇u ε̂(x, t)|2 dx dt

) 1
2

≤ C(κ)l−2θ

for all (θ, l) subject to (52) and all ε, ε̂ ≤ κ
2 . Arguing along the same lines we also get

the estimate

∣∣∣∣ER(4)
porMed − E

∫ T ∗

0

∫
Rd

∣∣vm
ε (x, t)−vm

ε̂
(x, t)

∣∣ϕ(t)�ξ̄l(x) dx dt

∣∣∣∣ ≤ C(κ)l−2θ

for all (θ, l) subject to (52) and all ε, ε̂ ≤ κ
2 . Summarizing we then obtain the desired

inequality (77). This concludes the proof of Lemma 11. ��
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We continue with the proof of Proposition 5. The next step takes care of estimating
the non-linear diffusion term and the correction term.

Lemma 12 Let the assumptions and notation of Sect. 4.2 until this point be in place.
In particular, recall from the statement of Lemma 11 the definition of the quantities
R(5)
porMed and R(5)

corr. Then there exists some l(ξ̄ ) > 0 small enough and some absolute

constant C̄ > 0 such that we have the estimate

ER(5)
porMed + ER(5)

corr ≤ C̄κ + C(κ)l−2(ε ∨ ε̂)α (79)

for all (θ, l) subject to (52) resp. l < l(ξ̄ ), and all ε, ε̂ ≤ κ
2 .

Proof We first aim to replace vε resp. vε̂ by ζ εq

κ ◦ uε resp. ζ ε̂q

κ ◦ u ε̂ in the two terms

R(5)
porMed and R(5)

corr. This can be done by an estimation similar to the proof of Lemma 11,

this time using in particular (7), (10) and EC2
α < ∞, which yields the bound

ER(5)
porMed + ER(5)

corr

≤ −E
∫ T ∗

0
ϕ(t)

∫
Rd

|(ζ εq

κ ◦ uε)
m(x, t)−(ζ ε̂q

κ ◦ u ε̂)
m(x, t)|�ξ̄l(x) dx dt

− E
∫ T ∗

0
ϕ(t)

∫
Rd

1

2
ν2|(ζ εq

κ ◦ uε)(x, t)−(ζ ε̂q

κ ◦ u ε̂)(x, t)|�ξ̄l(x) dx dt

+ C(κ)l−2(ε ∨ ε̂)α.

However, it follows from ε, ε̂ ≤ κ
2 that (ζ εq

κ ◦ uε)
m−(ζ ε̂q

κ ◦ u ε̂)
m ∈ H1

0 (D) as well as
(ζ εq

κ ◦ uε)−(ζ ε̂q

κ ◦ u ε̂) ∈ H1
0 (D). An integration by parts together with condition ii)

of the spatial cut-off function ξ̄ then entails

ER(5)
porMed + ER(5)

corr

≤ −E
∫ T ∗

0
ϕ(t)

∫
Rd

∇|(ζ εq

κ ◦ uε)
m(x, t)−(ζ ε̂q

κ ◦ u ε̂)
m(x, t)| · ∇ ξ̄l(x) dx dt

− E
∫ T ∗

0
ϕ(t)

∫
Rd

1

2
ν2∇|(ζ εq

κ ◦ uε)(x, t)−(ζ ε̂q

κ ◦ u ε̂)(x, t)| · ∇ ξ̄l(x) dx dt

+ C(κ)l−2(ε ∨ ε̂)α

≤ −E
∫ T ∗

0
ϕ(t)

∫
Rd

∇|(ζ εq

κ ◦ uε)
m(x, t)−(ζ ε̂q

κ ◦ u ε̂)
m(x, t)| · ∇(ξ̄l−ξ̄ )(x) dx dt

− E
∫ T ∗

0
ϕ(t)

∫
Rd

1

2
ν2∇|(ζ εq

κ ◦ uε)(x, t)−(ζ ε̂q

κ ◦ u ε̂)(x, t)| · ∇(ξ̄l−ξ̄ )(x) dx dt

+ C(κ)l−2(ε ∨ ε̂)α.

It remains to bound the two terms featuring the difference ∇ ξ̄l−∇ ξ̄ . By continuity
of translations in L2, however, together with the a priori estimate (16) we find some
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small enough l(ξ̄ ) > 0 such that

l < l(ξ̄ ) ⇒ ‖ξ̄l−ξ̄‖H1(Rd ) ≤ κ
m+1
2 , (80)

holds true, and therefore in particular the desired estimate (79) for some absolute
constant C̄ > 0. ��

We continue with the proof of Proposition 5. It is straightforward to estimate

∣∣∣∣−ER(3)
dt −E

∫ T ∗

0

d

dt
ϕ(t)

∫
Rd

∫
Rd

|vε(x, t)−vε̂(x, t)|γθ (x−y)ξ̄ (x) dy dx dt

∣∣∣∣ ≤ C̄κ

for all l subject to (80) and all ϕ ∈ C∞
cpt((0, T ∗); [0, 1]) with ‖ϕ‖W 1,1(0,T ∗) ≤ C̄ . In

summary, we thus obtain together with (79) the estimate

−ER(4)
dt := −E

∫ T ∗

0

d

dt
ϕ(t)

∫
Rd

∫
Rd

|vε(x, t)−vε̂(y, t)|γθ (x−y)ξ̄ (x) dy dx dt

≤ C(κ)l−1θ−1(ε ∨ ε̂)q + C(κ)l−2(ε ∨ ε̂)α + C(κ)l−3θ + C̄κ (81)

for all ϕ ∈ C∞
cpt((0, T ∗); [0, 1]) with ‖ϕ‖W 1,1(0,T ∗) ≤ C̄ , all (θ, l) subject to (52) resp.

(80), and all ε, ε̂ ≤ κ
2 .

In the next step we take care of the term ER(4)
dt . Employing the same argument

leading to [7, (4.20)] (instead of using [7, Lemma 3.2] to treat the initial condition we
can also rely on the continuity down to t = 0 thanks to Lemma 4) we infer that the
estimate (81) entails the bound (recall that the initial condition is deterministic)

E
∫

D

∫
D

|vε(x, T )−vε̂(y, T )|γθ (x−y)ξ̄ (x) dy dx

≤
∫

D

∫
D

|vε(x, 0)−vε̂(y, 0)|γθ (x−y)ξ̄ (x) dy dx

+ C(κ)l−1θ−1(ε ∨ ε̂)q + C(κ)l−2(ε ∨ ε̂)α + C(κ)l−3θ + C̄κ (82)

for all T ∈ [0, T ∗], all (θ, l) subject to (52) resp. (80), and all ε, ε̂ ≤ κ
2 . We then

estimate for all T ∈ [κ, T ∗] by means of (17), (19) and ‖ξ̄‖L∞(D) ≤ 1

∣∣∣∣E
∫

D

∫
D

|vε(x, T )−vε̂(y, T )|γθ (x−y)ξ̄ (x) dy dx−E
∫

D
|vε(x, T )−vε̂(x, T )|ξ̄ (x) dx

∣∣∣∣
≤ E

∫
D

∫
D

|vε̂(y+x, T )−vε̂(x, T )|γθ (y)ξ̄ (x) dx dy

≤ CθE
∫ 1

0

∫
Rd

∫
Rd

|∇u←
ε̂

(x−ry, T )|γθ (y) dx dy dr

≤ C(κ)θE
∫

D
um−1

ε̂
|∇u ε̂| dx ≤ C(κ)ε̂−βθ.
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Sincewemay assume in this argumentwithout loss of generality that ε ≤ ε̂ (otherwise,
switch the roles of vε̂ and vε in the previous estimate) we obtain together with an
analogous estimate based on the regularity of the initial condition and the fact that
ξ̄ ≡ 1 on K as well as ξ̄ ≥ 0 on D,

E
∫

K
|vε(x, T )−vε̂(x, T )| dx

≤
∫

D
|vε(x, 0)−vε̂(x, 0)| dx + C(κ)l−1θ−1(ε ∨ ε̂)q + C(κ)l−2(ε ∨ ε̂)α

+ C(κ)(ε ∨ ε̂)−βθ + C(κ)l−3θ + C̄κ (83)

for all T ∈ [κ, T ∗], all (θ, l) subject to (52) resp. (80), and all ε, ε̂ ≤ κ
2 . As a

consequence of (21) and the triangle inequality, we may finally switch from vε(·) =
ζ εq

κ

(
u←

ε (·)) = κ + ζεq
(
u←

ε (·)−κ
)
to κ ∨ u←

ε (·) = κ + (
u←

ε (·)−κ
)
+, which yields

E
∫

K
|κ ∨ u←

ε (x, T )−κ ∨ u←
ε̂

(x, T )| dx

≤ E
∫

K
|vε(x, T )−vε̂(x, T )| dx + CLd(D)(ε ∨ ε̂)q

≤
∫

D
|κ ∨ u←

ε (x, 0)−κ ∨ u←
ε̂

(x, 0)| dx + C(κ)l−1θ−1(ε ∨ ε̂)q

+ C(κ)l−2(ε ∨ ε̂)α + C(κ)(ε ∨ ε̂)−βθ + C(κ)l−3θ + C̄κ (84)

for all T ∈ [κ, T ∗], all (θ, l) subject to (52) resp. (80), and all ε, ε̂ ≤ κ
2 . We eventually

arrived at the last step of the proof.
In light of the right hand side terms in (84) we first define θ := (ε ∨ ε̂)β+1, then

fix ϑ̄ > 0 and q > 0 such that 2ϑ̄ < α, 3ϑ̄ < β + 1 as well as β + 1 + ϑ̄ < q, and
finally define l := (ε ∨ ε̂)ϑ̄ . Choosing ε0 > 0 small enough, we can ensure that (θ, l)
satisfy (52) resp. (80). Hence, these choices guarantee that we may infer from (84)
a bound of the type (23) with right hand side terms C(κ)(ε ∨ ε̂)2ϑ for some suitable
exponent ϑ > 0. Choosing ε0 even smaller, if needed, we can avoid the dependence of
the constant on the data by sacrificing a power ϑ , which entails (23). This concludes
the proof of Proposition 5. ��

4.3 Proof of Corollary 6 (L1 convergence of shifted densities)

Let δ > 0 be fixed but arbitrary. By the triangle inequality we may estimate

sup
T ∈[κ,T ∗]

E
∫

D
|u←

ε (T )−u←
ε̂

(T )| dx

≤ sup
T ∈[κ,T ∗]

E
∫

D
|u←

ε (T )|χ{uε(T )<κ} + |u←
ε̂

(T )|χ{uε̂ (T )<κ} dx
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+ sup
T ∈[κ,T ∗]

E
∫

D
|κ ∨ u←

ε (x, T )−κ ∨ u←
ε̂

(x, T )| dx

for all κ ∈ (0, T ∗ ∧ 1) and all ε, ε̂ ≤ κ
2 . Hence, it follows from splitting D =

K ∪ (D \ K ) together with the bounds (15) and (23) as well as the definition (22) of
the shifted densities that

sup
T ∈[κ,T ∗]

E
∫

D
|u←

ε (T )−u←
ε̂

(T )| dx

≤ 2Ld(D)κ + 2Ld(D \ K )
(
κ ∨ (1+‖u0‖L∞(D))

) + C̄(ε ∨ ε̂)ϑ + C̄κ

+ E
∫

D
|κ ∨ (u0(x)+ε)−κ ∨ (u0(x)+ε̂)| dx .

The term with the initial data is estimated similarly by

E
∫

D
|κ ∨ (u0(x)+ε)−κ ∨ (u0(x)+ε̂)| dx ≤ 2Ld(D)κ + Ld(D)|ε−ε̂|

for all κ > 0 and all ε, ε̂ ≤ κ
2 . Choosing first κ < τ sufficiently small such that

(4Ld(D)+C̄)κ ≤ δ
2 , we may then fix a large enough compact set K ⊂ D and some

small enough ε0(κ, K ) such that the bound

sup
T ∈[τ,T ∗]

E
∫

D
|u←

ε (T )−u←
ε̂

(T )| dx ≤ δ

holds true for all ε, ε̂ ≤ ε0. This proves that the sequence of shifted densities u←
ε

is a Cauchy sequence in the space C([τ, T ∗]; L1(�×D,P ⊗ Ld)) for all τ > 0.
The corresponding assertion in the space L1([0, T ∗]; L1(�×D,P ⊗ Ld)) is proved
similarly based on the additional estimate

E
∫ T ∗

0

∫
D

|u←
ε −u←

ε̂
| dx dt

≤ 2Ld(D)κ(1+‖u0‖L∞(D)) + (T ∗−κ) sup
T ∈[κ,T ∗]

E
∫

D
|u←

ε (T )−u←
ε̂

(T )| dx .

Let us denote the corresponding limit in L1([0, T ∗]; L1(�×D,P ⊗ Ld)) by u.
On the other side, it follows immediately from the bound (15) that the sequence

of densities uε has a weak limit in the space Lm+1(�T ∗ ,PT ∗; Lm+1(D)), which we
denote by ū. It remains to verify that u = ū. To this end, let φ ∈ C∞

cpt(D × [0, T ∗])
and A ∈ FT ∗ be fixed. We then have

EχA

∫ T ∗

0

∫
D
(u−ū)φ dx dt = lim

ε→0
EχA

∫ T ∗

0

∫
D
(u←

ε −uε)φ dx dt .
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By a simple change of variables and the definition (22) we may write

E
∫ T ∗

0

∫
D
(u←

ε −uε)φ dx dt

= E
∫ T ∗

0

∫
Rd

uε(x, t)
(
φ(x−ν(Bt−Bε

t ), t)−φ(x, t)
)
dx dt .

Exploiting (7), (10) and (15) we further estimate

∣∣∣∣E
∫ T ∗

0

∫
Rd

uε(x, t)
(
φ(x−ν(Bt−Bε

t ), t)−φ(x, t)
)
dx dt

∣∣∣∣
≤ C‖∇φ‖L∞(D×[0,T ∗])εαECα ≤ Cεα.

Hence, we may infer that

EχA

∫ T ∗

0

∫
D
(u−ū)φ dx dt = 0

holds true for all φ ∈ C∞
cpt(D × [0, T ∗]) and A ∈ FT ∗ . This shows that u = ū and

thus concludes the proof of Corollary 6. ��

4.4 Proof of Proposition 7 (Recovering the unique weak solution)

Let a test function φ ∈ C∞
cpt(D) be fixed, and define K := suppφ. Fix also an integer

M ≥ 1, and let Cα be the square integrable random variable of (10). Let δ ∈ (0, 1)
be such that {x ∈ Rd : dist(x, K ) ≤ δ} ⊂ D. Let ε′ = ε′(M, δ) be the constant from
(11). By Itô’s formula, the definition (22) and the fact that the uε solve (12) classically
we have for all ε ≤ ε′ and all measurable A ∈ FT ∗ (cf. the argument in the first step
of the proof of Proposition 5)

Eχ{Cα≤M}χA

∫
D

u←
ε (x, T )φ(x) dx − Eχ{Cα≤M}χA

∫
D
(u0(x)+ε)φ(x) dx

= Eχ{Cα≤M}χA

∫ T

0

∫
D

(
�(u←

ε )m(x, t)+1

2
ν2�u←

ε (x, t)
)
φ(x) dx dt

+ Eχ{Cα≤M}χA

∫ T

0

∫
D

ν∇u←
ε (x, t)φ(x) dx dBt

(85)

for all T ∈ (0, T ∗). Define the shifted test function

φ←
ε (x, t) := φ(x−ν(Bt−Bε

t )),
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so that we obtain by a simple change of variables

Eχ{Cα≤M}χA

∫
D

u←
ε (x, T )φ(x) dx − Eχ{Cα≤M}χA

∫
D
(u0(x)+ε)φ(x) dx

= Eχ{Cα≤M}χA

∫ T

0

∫
D

(
�um

ε (x, t)+1

2
ν2�uε(x, t)

)
φ←

ε (x, t) dx dt

+ Eχ{Cα≤M}χA

∫ T

0

∫
D

ν∇uε(x, t)φ←
ε (x, t) dx dBt .

(86)

Note that as a consequence of (11) we have almost surely on {Cα ≤ M} for all ε ≤ ε′
and all t ∈ [0, T ∗] that suppφ←

ε (·, t) ⊂⊂ D. Hence, integrating by parts on the right
hand side in (86) does not produce any boundary integrals so that after reversing the
change of variables we obtain the identity

Eχ{Cα≤M}χA

∫
D

u←
ε (x, T )φ(x) dx − Eχ{Cα≤M}χA

∫
D
(u0(x)+ε)φ(x) dx

= Eχ{Cα≤M}χA

∫ T

0

∫
D

(
(u←

ε )m(x, t)+1

2
ν2u←

ε (x, t)
)
�φ(x) dx dt

− Eχ{Cα≤M}χA

∫ T

0

∫
D

νu←
ε (x, t)∇φ(x) dx dBt .

(87)

We aim to pass to the limit ε0 ≥ ε → 0 in all four terms. This is possible
by the convergence of the shifted densities u←

ε in C([τ, T ∗]; L1(�×D,P⊗Ld))

as well as in L1([0, T ∗]; L1(�×D,P⊗Ld)), see Corollary 6. Because of the uni-
form bound (15) the convergence in L1 can actually be lifted to convergence in any
Lq([0, T ∗]; Lq(�×D,P⊗Ld)), q ∈ (1,∞), which makes the limit passage possi-
ble in the non-linear diffusion term as well as the noise term (using for the latter,
e.g., the Burkholder–Davis–Gundy inequality). In summary, we obtain from letting
ε0 ≥ ε → 0 the identity

Eχ{Cα≤M}χA

∫
D

u(x, T )φ(x) dx − Eχ{Cα≤M}χA

∫
D

u0(x)φ(x) dx

= Eχ{Cα≤M}χA

∫ T

0

∫
D

(
um(x, t)+1

2
ν2u(x, t)

)
�φ(x) dx dt

− Eχ{Cα≤M}χA

∫ T

0

∫
D

νu(x, t)∇φ(x) dx dBt

for all T ∈ (0, T ∗). Since M ≥ 1 as well as A ∈ FT ∗ were arbitrary, and the random
variable Cα is integrable, we thus recover (4). This concludes the proof of Proposition 7
since the asserted bounds for u follow immediately from (15). ��
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5 Finite time extinction property

5.1 Viscosity theory: maximal subsolution in a rough domain

From now on we will restrict ourselves to the one-dimensional setting d = 1. To start
we recall some language from viscosity theory (cf. [6]). In particular, we aim to make
precise what we mean by a subsolution to the Cauchy–Dirichlet problem (24)–(26) of
the porous medium equation with two copies of a Brownian path as lateral boundary;
and analogously for the corresponding regularized problem (27)–(29).

In a first step, we introduce the relevant notions for the full space problem. The
porous medium operator in terms of the pressure variable is encoded by the functional

F : [0,∞) × R × R → R, (r , q, X) �→ (m−1)r X + |q|2. (88)

Let T ∗ ∈ (0,∞] be a time horizon and p : R × (0, T ∗) → R be a function. The
parabolic semijet J 2,+ p(x, t) of p at (x, t) ∈ R× (0, T ∗) is the set of all (q, a, X) ∈
R3 such that

p(y, s) ≤p(x, t) + a(s − t) + q(y − x) + 1

2
X(y − x)2

+ o(|s−t | + |y−x |2) as R × (0, t] � (y, s) → (x, t).
(89)

Note that the condition in (89) is a slightly weaker test than the one of [6, (8.1)] since
we are only allowing for s ≤ t . This minor technicality turns out to be convenient
proving that subsolutions to, say, (24)–(26) in the sense of Definition 14 below are
also subsolutions to (90) and (91). Moreover, (89) is in accordance with the definition
of subsolutions in [5, Definition 1].

Definition 13 Let T ∗ ∈ (0,∞] be a time horizon and p0 ∈ C∞
cpt(R; [0,∞)) be an

initial pressure. An upper-semicontinuous function p : R × [0, T ∗) → [0,∞) is
called a subsolution for the Cauchy problem of the porous medium equation with
initial pressure p0

∂t p = (m−1)p∂xx p + |∂x p|2, (x, t) ∈ R × (0, T ∗), (90)

p(x, 0) = p0(x), x ∈ R, (91)

if it holds

a − F(p(x, t), q, X) ≤ 0 (92)

for all (x, t) ∈ R × (0, T ∗) and all (q, a, X) ∈ J 2,+ p(x, t), as well as if it holds
p(x, 0) ≤ p0(x) for all x ∈ R.

In the language of [6], the functional a − F(r , p, X) encoding the porous medium
equation in terms of the pressure variable is not proper. But note that it is at least
degenerate elliptic. Since we will only deal with subsolutions (or for the regularized
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problem with classical solutions), this is of no concern for us (cf. [5] or [20] for a
viscosity theory of the Cauchy problem of the deterministic porous medium equation).

We continue with the notion of subsolutions to (24)–(26) (resp. (27)–(29)). Since
we have to incorporate Brownian paths as the lateral boundary, the following construc-
tions are of course random. However, all results of this section turn out to be purely
deterministic consequences of the probabilistic facts (8), (9), (10) and (11). In other
words, we proceed with constructions to be understood in a pathwise sense.

The functional for the lateral boundary condition of the limit problem is simply
defined by C : R → R, r �→ r . The one for the regularized problem is given by
Cε : R → R, r �→ r − m

m−1ε
m−1. We then introduce a lower-semicontinuous func-

tional

G− : R × (0, T ∗) × [0,∞) × R3 → R

(x, t, r , q, a, X) �→

⎧⎪⎨
⎪⎩

a − F(r , q, X), (x, t) ∈ ⋃
t∈(0,T ∗)(νBt+I ) × {t},

(a − F(r , q, X)) ∧ C(r), (x, t) ∈ ⋃
t∈(0,T ∗)(νBt+∂ I ) × {t},

C(r), else,
(93)

encoding the equations (24) and (26). The corresponding functional for the regularized
problem, i.e., encoding (27) and (29), is given by

G−
ε : R × (0, T ∗) × [0,∞) × R3 → R

(x, t, r , q, a, X) �→
{

a − F(r , q, X), (x, t) ∈ ⋃
t∈(0,T ∗)(νBε

t +I ) × {t},
Cε(r), else.

(94)

Definition 14 Let T ∗ ∈ (0,∞] be a time horizon, I ⊂ R be a bounded interval
and p̄0 ∈ C∞

cpt(I ; [0,∞)) be an initial pressure. An upper-semicontinuous function
p̄ : R × [0, T ∗) → [0,∞) is called a subsolution for the Cauchy–Dirichlet problem
(24)–(26) with initial pressure p̄0 if

G−(x, t, p̄(x, t), q, a, X) ≤ 0 (95)

holds true for all (x, t) ∈ R × (0, T ∗) and all (q, a, X) ∈ J 2,+ p̄(x, t), as well as if
p̄(x, 0) ≤ p̄0(x) is satisfied for all x ∈ R.

Analogously, we call an upper-semicontinuous function p̄ε : R×[0, T ∗) → [0,∞)

a subsolution for the Cauchy–Dirichlet problem (27)–(29) if

G−
ε (x, t, p̄ε(x, t), q, a, X) ≤ 0 (96)

holds true for all (x, t) ∈ R × (0, T ∗) and all (q, a, X) ∈ J 2,+ p̄ε(x, t), as well as if
p̄ε(x, 0) ≤ p̄0,ε(x) is satisfied for all x ∈ R.
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The reasons for relaxing (24)–(26) (resp. (27)–(29)) to the full space setting are
twofold. On one hand, working in this framework turns out to be convenient when
studying (any sort of) convergence of the subsolutions p̄ε for the regularized problem.
On the other hand, we also want to exploit the established results from the viscosity
theory [5] (see also [20]) for the Dirichlet problem of the deterministic porous medium
equation (90) and (91).

We proceed with a list of intermediate results needed to prove the main result of
this work, Theorem 3. The corresponding proofs will be provided afterwards. The first
result concerns the construction of a subsolution to the regularized Cauchy–Dirichlet
problem (27)–(29).

Lemma 15 Given ε > 0, let uε denote the unique weak solution to (12)–(14) with
initial density u0 ∈ C∞

cpt(I ; [0,∞)) in the sense of Lemma 4. Define an associated
pressure function as follows:

p̄ε : R × [0, T ∗) → [0,∞)

(x, t) �→
{

m
m−1uε(x−νBε

t , t)m−1, (x, t) ∈ ⋃
t∈[0,T ∗)(νBε

t +I ) × {t},
m

m−1ε
m−1, else.

(97)

On a set with probability one the following then holds true:
For each ε > 0, the associated pressure p̄ε is continuous and a subsolution of

the problem (27) and (29) with initial pressure p̄0,ε(x) := m
m−1 (u0(x)+ε)m−1 in the

sense of Definition 14. Moreover, we have the bounds

m

m − 1
εm−1 ≤ p̄ε(x, t) ≤ m

m − 1
(ε+‖u0‖L∞(I ))

m−1 (98)

for all (x, t) ∈ R × [0, T ∗). Finally, p̄ε is also a subsolution of the Cauchy prob-
lem (90)–(91) with initial pressure p0,ε(x) := m

m−1 (u0(x)+ε)m−1 in the sense of
Definition 13.

In a next step, we construct on a set of probability one themaximal subsolution (also
referred to as Perron’s solution) p̄max of the limit Cauchy–Dirichlet problem (24)–(26)
in the sense ofDefinition 14. Using standard arguments from viscosity theory, themain
issue is to establish the existence of a subsolution to (24)–(26). This will be done by
means of the technique of semi-relaxed limits.

Proposition 16 For each ε > 0 let p̄ε denote the subsolution of (27)–(29) as con-
structed in Lemma 15. Define the upper semi-relaxed limit (with respect to backwards
parabolic cylinders)

p̄semi−rel(x, t)

:= lim
ε→0

sup
ε̂≤ε

{
p̄ε̂(y, s) : (y, s) ∈ R×[0, T ∗), (y, s) ∈ (x−ε, x+ε)×(t−ε2, t]} (99)

for all (x, t) ∈ R × [0, T ∗). Then the following holds true almost surely:
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The upper-semicontinuous envelope of p̄semi−rel is a subsolution of (24)–(26) with
initial pressure p̄0(x) := m

m−1u0(x)m−1 in the sense of Definition 14. Define

p̄max(x, t) := sup{ p̄(x, t) : p̄ is a subsol. of (24)−(26), (x, t) ∈ R×[0, T ∗)}.
(100)

Then p̄max(x, t) < ∞ for all (x, t) ∈ R × [0, T ∗), and p̄max is a subsolution of
(24)–(26) with initial pressure p̄0(x) := m

m−1u0(x)m−1 in the sense of Definition 14.
Denoting by pvisc ∈ C(R×[0, T ∗)) the viscosity solution of (90) and (91) with initial
pressure p0(x) := m

m−1u0(x)m−1 in the sense of [5, Definition 4] we have

p̄max(x, t) ≤ pvisc(x, t) (101)

for all (x, t) ∈ R × [0, T ∗).

A crucial estimate for the proof of Theorem 3 is the content of the following result.
The asserted bound is important in the sense that it serves to close the loop between
the pathwise constructions performed in this section and the unique weak solution of
the SPME (1)–(3).

Proposition 17 Let u ∈ H−1
m+1(I ) denote the unique weak solution of the Cauchy–

Dirichlet problem (1)–(3) with initial density u0 ∈ C∞
cpt(I ; [0,∞)) in the sense of

Definition 1. Define an associated pressure function as follows:

p : R × (0, T ∗) → [0,∞)

(x, t) �→
{

m
m−1u(x−νBt , t)m−1, (x, t) ∈ ⋃

t∈[0,T ∗)(νBt+I ) × {t},
0, else.

(102)

Let p̄max be the associated maximal subsolution of the problem (24)–(26) as con-
structed in Proposition 16. Then, for all t ∈ (0, T ∗) the bound

p(·, t) ≤ p̄max(·, t) (103)

holds true almost surely almost everywhere in R.

We have by now everything in place to proceed with the proofs.

5.2 Proof of Lemma 15 (Subsolution for the regularized problem)

The assertion that p̄ε ∈ C(R×[0, T ∗)) follows from the definition (97), the regularity
of theWong–Zakai approximation uε ∈ C( Ī ×[0, T ∗)) and that uε satisfies the lateral
boundary condition (14) (cf. Lemma 4) pointwise. Moreover, p̄ε(x, 0) = p̄0,ε(x)

holds true for all x ∈ R because of (97), supp u0 ⊂ I and uε(x, 0) = u0(x) + ε. The
upper and lower bound of (98) is a direct consequence of again the definition (97) and
the upper and lower bound of (15).
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We next have to show that (96) is satisfied for all (x, t) ∈ R × (0, T ∗) and all
(q, a, X) ∈ J 2,+ p̄ε(x, t). The claim is trivial for (x, t) ∈ ⋃

t∈(0,T ∗)(νBε
t +I ) × {t}.

Indeed, since uε solves (12)–(14) classically in I × (0, T ∗) and Bε is smooth we infer
from (97), the chain rule and elementary computations that p̄ε satisfies the porous
medium equation ∂t p̄ε = p̄ε∂xx p̄ε+|∂x p̄ε|2 classically in the open space-time domain⋃

t∈(0,T ∗)(νBε
t +I )×{t}. If (x, t) ∈ ⋃

t∈(0,T ∗)(νBε
t +(R \ I ))×{t}, the claim is again

trivial by the definition (97) of p̄ε and (94). This proves (96).
We finally have to show that (92) holds true for all (x, t) ∈ R × (0, T ∗) and all

(q, a, X) ∈ J 2,+ p̄ε(x, t). By the previous reasoning, it just remains to consider the
case of a space-time point on the lateral boundary (x, t) ∈ ⋃

t∈(0,T ∗)(νBε
t +∂ I )×{t}.

Without loss of generality we may assume that (x, t) sits on the upper part of the
lateral boundary. Let (q, a, X) ∈ J 2,+ p̄ε(x, t) be fixed. Since p̄ε satisfies the lateral
boundary condition (29) pointwise, it follows from the definition of the parabolic
semijet (89) that

p̄ε(x−1/k, t) ≤ m

m − 1
εm−1 − q

k
+ X

2k2
+ o(1/k2)

as well as

m

m − 1
εm−1 = p̄ε(x+1/k, t) ≤ m

m − 1
εm−1 + q

k
+ X

2k2
+ o(1/k2)

for all sufficiently large k ≥ 1. Due to the lower bound in (98) we infer by adding
both inequalities that 0 ≤ X/k2 + o(1/k2) for all sufficiently large k ≥ 1. From this
we deduce that X ≥ 0. Using once more (89) as well as that p̄ε satisfies the lateral
boundary condition (29) pointwise it also holds

p̄ε(x, t−1/k) ≤ m

m − 1
εm−1 − a

k
+ o(1/k)

for all sufficiently large k ≥ 1. Hence, by another application of the lower bound in
(98) we infer that 0 ≤ −a/k + o(1/k) for all sufficiently large k ≥ 1. In other words,
it holds a ≤ 0. To summarize we have shown that

a − F( p̄ε(x, t), q, X) = a − (m−1) p̄ε(x, t)X − |q|2 ≤ 0

is satisfied for all (x, t) ∈ ⋃
t∈(0,T ∗)(νBε

t +∂ I )×{t} and all (q, a, X) ∈ J 2,+ p̄ε(x, t).
This proves (92) and thus concludes the proof of Lemma 15. ��

5.3 Proof of Proposition 16 (Perron’s solution for the limit problem)

First note that 0 ≤ p̄semi-rel(x, t) < ∞ is satisfied for all (x, t) ∈ R × [0, T ∗) as a
consequence of (99) and (98). Since p̄ε(x, 0) = p̄0,ε(x) = m

m−1 (u0(x)+ε)m−1 for
all x ∈ R we deduce that p̄semi-rel(x) = m

m−1u0(x)m−1 = p̄0(x) holds true for all
x ∈ R since u0 is continuous and the semi-relaxed limit (99) is defined in terms of
backwards parabolic cylinders.
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We aim to show that p̄semi-rel satisfies (95) for all (x, t) ∈ R × (0, T ∗) and all
(q, a, X) ∈ J 2,+ p̄(x, t). For this, we will proceed in two steps as follows. Consider
the lower-semicontinuous functional

G−
ε,lsc : R × (0, T ∗) × [0, ∞) × R3 → R

(x, t, r , q, a, X) �→

⎧⎪⎨
⎪⎩

a − F(r , q, X), (x, t) ∈ ⋃
t∈(0,T ∗)(νBε

t +I ) × {t},
(a − F(r , q, X)) ∧ Cε(r), (x, t) ∈ ⋃

t∈(0,T ∗)(νBε
t +∂ I ) × {t},

Cε(r), else.

(104)

Since p̄ε is a subsolution of (27)–(29) in the sense of Definition 14, it of course also
satisfies

G−
ε,lsc(x, t, p̄ε(x, t), q, a, X) ≤ 0 (105)

for all (x, t) ∈ R × (0, T ∗) and all (q, a, X) ∈ J 2,+ p̄ε(x, t). Now, define the lower
semi-relaxed limit functional

G−
semi−rel(x, t, r , q, a, X)

:= lim
ε→0

inf
ε̂≤ε

{
G−

ε̂,lsc(y, s, r̂ , q̂, â, X̂) : (y, s) ∈ R×(0, T ∗)×[0,∞)×R3,

(y, s) ∈ (x−ε, x+ε)×(t−ε2, t], |(r−r̂ , q−q̂, a−â, X−X̂)| < ε
}
.

(106)

In a first step, we check that p̄semi-rel satisfies

G−
semi-rel(x, t, p̄semi-rel(x, t), q, a, X) ≤ 0 (107)

for all (x, t) ∈ R × (0, T ∗) and all (q, a, X) ∈ J 2,+ p̄semi-rel(x, t). In a second step,
we identify the lower semi-relaxed limit G−

semi−rel with the functional G− defined in
(93) as a consequence of the uniform convergence (9).

The validity of (107) is a consequence of standard viscosity theory. More precisely,
(107) follows as a combination of [6, Lemma 6.1], [6, Remark 6.3] (for the purpose
of subsolutions, the equations do not have to be proper) as well as the applicability of
[6, Proposition 4.3]. Hence, let us show that G−

semi−rel = G−.
Due to the uniform convergence (8) and the definitions (93), (104) and (106) the

statement is clear for space-time points (x, t) /∈ ⋃
t∈(0,T ∗)(νBt+∂ I )×{t}. Hence, let

us fix a point (x, t) ∈ ⋃
t∈(0,T ∗)(νBt+∂ I )×{t} and an ε > 0. Let

ε̂∗(ε) := sup{0 < ε̂ ≤ ε : ν|B ε̂
t −Bt | < ε/2}.

Note that ε̂∗ > 0 because of the uniform convergence (8). We then have
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lim
ε→0

inf
(r̂ ,q̂,â,X̂)

(â−F(r̂ , q̂, X̂)) ∧ Cε(r̂) ≤ G−
semi−rel(x, t, r , q, a, X)

≤ lim
ε→0

inf
(r̂ ,q̂,â,X̂)

(â−F(r̂ , q̂, X̂)) ∧ Cε̂∗(ε)(r̂),

and where both inner infima run over all points (r̂ , q̂, â, X̂) ∈ [0,∞) × R3 such
that |(r−r̂ , q−q̂, a−â, X−X̂)| < ε. It follows that G−

semi−rel(x, t) = G−(x, t) as
claimed.

We have shown so far that p̄semi-rel satisfies all conditions of Definition 14 except
of being upper-semicontinuous on R × [0, T ∗). Since p̄semi-rel is subject to (95),
it is a classical fact of viscosity theory that also its upper-semicontinuous envelope
satisfies (95). (A rigorous argument consists of applying [6, Lemma 6.1] to a constant
sequence.) It remains to check whether the upper-semicontinuous envelope of p̄semi-rel
satisfies the initial condition with respect to p̄0 := m

m−1um−1
0 . This follows from the

following reasoning.
Consider the classical solution (and therefore also viscosity solution in the sense of

[5, Definition 4]) pε
visc of (90) and (91) with initial pressure p0,ε := m

m−1 (u0+ε)m−1.
Because of (8), we can choose almost surely a space-time cylinder Q = Q(Bε)

such that the parabolic closure of
⋃

t∈(0,T ∗)(νBε
t +I )×{t} is contained in Q. By the

maximum principle, pε
visc is also subject to (98) on R × [0, T ∗). In particular, pε

visc
dominates p̄ε on the parabolic boundary of Q. Since p̄ε is continuous and a subsolution
of (90)–(91) by Lemma 15, it follows from [20, Lemma 2.5] that

p̄ε(x, t) ≤ pε
visc(x, t) (108)

for all (x, t) in the parabolic closure of Q, hence for all (x, t) ∈ R × [0, T ∗) by
expanding Q to R × [0, T ∗). Since pε

visc ↘ pvisc with pvisc ∈ C(R × [0, T ∗)) being
the viscosity solution of (90)–(91) with initial pressure p0(x) := m

m−1u0(x)m−1 in
the sense of [5, Definition 4], cf. the proof of [5, Lemma 2.2], we obtain together
with (108) and an application of Dini’s theorem the bound

p̄semi-rel(x, t) ≤ lim
ε→0

sup
ε̂≤ε

{
pε̂
visc(y, s) : (y, s) ∈ (x−ε, x+ε)×(t−ε2, t]}

≤ lim
ε→0

sup
{

pε
visc(y, s) : (y, s) ∈ (x−ε, x+ε)×(t−ε2, t]}

≤ lim
ε→0

pε
visc(x, t)

+ lim
ε→0

sup
{∣∣pε

visc(y, s)−pε
visc(x, t)

∣∣ : (y, s) ∈ (x−ε, x+ε)×(t−ε2, t]}

≤pvisc(x, t) (109)

for all (x, t) ∈ R × [0, T ∗). However, since we already proved that p̄semi-rel(x, 0) =
m

m−1u0(x)m−1 = pvisc(x, 0) and pvisc is continuous, it follows that also the upper-
semicontinuous envelope of p̄semi-rel attains the initial condition. Hence, it is a
subsolution of (24)–(26) in the sense of Definition 14.
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Wecontinuewith the verification of the claims regarding p̄max. To this end, consider
first an arbitrary subsolution p̄ of (24)–(26) with initial pressure p̄0 := m

m−1um−1
0 in

the sense of Definition 14. The argument showing (109) more generally proves that

p̄(x, t) ≤ pvisc(x, t) (110)

is satisfied for all (x, t) ∈ R × [0, T ∗). Hence, since we already established the
existence of a subsolution to (24)–(26) the definition of p̄max is meaningful, and the
asserted bound (101) then follows at once from (110). In particular, p̄max < ∞ is
satisfied onR×[0, T ∗). That p̄max is subject to (95) is once again a classical fact from
viscosity theory, see [6, Lemma 4.2]. Moreover, as we have already argued for the
semi-relaxed limit psemi-rel, it then follows that the upper-semicontinuous envelope of
p̄max constitutes a subsolution of (24)–(26). However, by the definition of p̄max we
may then infer that p̄max is actually equal to its upper-semicontinuous envelope; in
particular, a subsolution of (24)–(26) in the sense of Definition 14. This concludes the
proof of Proposition 16. ��

5.4 Proof of Proposition 17 (Comparison of transformed weak solution with
viscosity solution)

It obviously suffices to prove that for all t ∈ (0, T ∗)

p(·, t) ≤ p̄semi-rel(·, t) (111)

almost surely almost everywhere in R. By definition of p, see (102), and since we
have p̄semi-rel ≥ 0 it moreover suffices to show that (111) is almost surely satisfied for
all t ∈ (0, T ∗) almost everywhere in νBt + I .

We aim to exploit Corollary 6, i.e., that the unique weak solution u of (1)–(3) can
be recovered by means of the Wong–Zakai approximations uε from Lemma 4, at least
after employing an additional time-dependent shift (22). So fix an integer M ≥ 1 as
well as some κ > 0. Let Cα be the square integrable random variable of the estimate
(10). Let finally ε > 0 be fixed, and denote by ε′ = ε′(M, ε) the constant from (11).

We then have by means of the estimate (11) that

m

m − 1
u ε̂(x−νBt , t)m−1

= m

m − 1
u ε̂

(
(x−ν(Bt−B ε̂

t )) − νB ε̂
t , t

)m−1

≤ sup
ε̂≤ε

{
p̄ε̂(y, s) : (y, s) ∈ R×[0, T ∗), (y, s) ∈ (x−ε, x+ε)×(t−ε2, t]}

=: P̄ε(x, t) (112)

almost surely on {Cα ≤ M} for all ε̂ ≤ ε∧ε′ and all (x, t) ∈ ⋃
t∈(0,T ∗)(νBt+I )×{t}.

Fix t ∈ (0, T ∗), let φ ∈ C∞
cpt(νBt+I ; [0,∞)) be an arbitrary test function and let

A ∈ FT ∗ . It follows from (112) that
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0 ≤ EχA∩{Cα≤M}
∫
R

φ(x+νB ε̂
t )

m

m − 1
u←

ε̂
(x, t)m−1 dx

≤ EχA∩{Cα≤M}
∫
R

φ(x)P̄ε(x, t) dx
(113)

for all ε̂ ≤ ε ∧ ε′, all t ∈ (0, T ∗), all φ ∈ C∞
cpt(νBt+I ; [0,∞)) and all A ∈ FT ∗ . As a

consequence of the bound (113), the convergences in (9) resp. Corollary 6 as well as
the definition (99) of the semi-relaxed limit p̄semi-rel, we thus obtain the estimate

0 ≤ EχA∩{Cα≤M}
∫
R

φ(x)
m

m − 1
u(x−νBt , t)m−1 dx

≤ EχA∩{Cα≤M}
∫
R

φ(x) p̄semi-rel(x, t) dx
(114)

for all t ∈ (0, T ∗), all φ ∈ C∞
cpt(νBt+I ; [0,∞)) and all A ∈ FT ∗ . Since the test

function and A are arbitrary, we deduce that the following bound holds true for all
t ∈ (0, T ∗) almost surely on {Cα ≤ M} almost everywhere in νBt+I :

p(·, t) = m

m − 1
u(· −νBt , t)m−1 ≤ p̄semi-rel(·, t).

Since M ≥ 1 is arbitrary, and the random variable Cα is integrable, we may infer from
this the desired bound (103). This concludes the proof of Proposition 17. ��

5.5 Proof of Theorem 3 (Finite time extinction with probability one)

Let pvisc ∈ C(R × [0,∞)) be the unique viscosity solution of (90)–(91) with initial
pressure p0(x) := m

m−1u0(x)m−1 in the sense of [5, Definition 4]. Since the time hori-
zon T ∗ < ∞ was arbitrary in Proposition 16 and Proposition 17, we have constructed
almost surely a (maximal) subsolution p̄max of (24)–(26) on R × [0,∞) in the sense
of Definition 14 such that it holds almost surely

p̄max(x, t) ≤ pvisc(x, t) (115)

for all (x, t) ∈ R × [0,∞), as well as for all t ∈ (0,∞)

p(x, t) ≤ p̄max(x, t) (116)

almost surely almost everywhere inR,where p is definedonR×(0,∞)via (102) based
on the unique weak solution of the Cauchy–Dirichlet problem (1)–(3) on R × (0,∞)

with initial density u0.
Next, we choose a delayed Barenblatt solution B (written in terms of the pressure

variable) with free boundary ∂ I at t = 0 and which strictly dominates the initial
density, i.e., {B(·, 0) = 0} = ∂ I and u0 < B(·, 0) on I . The free boundary associated

to the Barenblatt solution B can then be written as
⋃

t∈[0,∞)(M̄t
1

m+1 +∂ I )×{t} for a
constant M̄ = M̄(u0) > 0 depending only on the initial density.
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We remark that the Barenblatt solution B is a viscosity solution of (90) and (91)
in the sense of [5, Definition 4] strictly dominating pvisc at t = 0 in the sense of [5,
Definition 5]. Hence, it follows from the comparison principle [5, Theorem 4.1] that
almost surely

pvisc(x, t) ≤ B(x, t) (117)

for all (x, t) ∈ R × [0,∞).
Let M > M̄ be fixed but otherwise arbitrary, and define the stopping time T̂extinct :=

inf{t ≥ 0 : |Bt | ≥ L1(I )+Mt
1

m+1 } as in the statement of Theorem 3. Furthermore, fix
T ∈ (0,∞) and consider ÂT := {T̂extinct ≤ T }. Note that T̂extinct > 0. By almost sure
continuity of Bt and since M > M̄ , there is almost surely on ÂT some tq ∈ Q∩ (0, T ]
such that |Btq | ≥ L1(I ) + M̄t

1
m+1

q . As a consequence of (115) and the choice of M̄ ,

we deduce that almost surely on ÂT it holds p̄max(·, tq) ≡ 0. Moreover, (116) entails
that almost surely we have p ≤ pmax for all t ∈ Q ∩ (0,∞) almost everywhere in R.
Hence, we may deduce that ÂT ⊂ {Textinct ≤ T } up to some P null set. This proves
the desired bound (6).

Finite time extinction with probability one now follows from standard properties
of Brownian motion. Indeed, assume that we have P(T̂extinct < ∞) < 1. There would
then exist a constant C < ∞ such that on a set with non-vanishing probability it holds

0 ≤ t− 1
2 |Bt | < C for all t ∈ (1,∞); a contradiction. Hence, P(T̂extinct < ∞) = 1

which also by (6) entails that P(Textinct < ∞) = 1.
It remains to prove that u(·, T ) vanishes almost surely almost everywhere in I

from the stopping time T̂extinct onwards. So let T ∈ (0,∞) be fixed. We infer from
(115) together with (117) that almost surely p̄max(·, T̂extinct) ≡ 0. In addition, we note
that p̄max is almost surely a subsolution of (90) and (91) on R × [0,∞) with initial
pressure p0(x) := m

m−1u0(x)m−1 in the sense of Definition 13. For a proof, the only
non-trivial case is that of a lateral boundary point (x, t) ∈ ⋃

t∈(0,∞)(νBt+I )×{t}
such that C( p̄max(x, t)) = p̄max(x, t) ≤ 0. Since p̄max(x, t) ≥ 0 by construction, it
follows that p̄max(x, t) = 0. From this point onwards one may argue as for p̄ε in the
proof of Lemma 15.

However, once a subsolution became trivial it stays trivial (by comparison with the
trivial viscosity solution). We deduce that p̄max(·, T ) ≡ 0 is satisfied almost surely
on {T ≥ T̂extinct}. The claim thus follows from another application of (116). This
concludes the proof of Theorem 3. ��
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