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Abstract
We study a system of two reflected SPDEs which share a moving boundary. The
equations describe competition at an interface and are motivated by the modelling of
the limit order book in financial markets. The derivative of the moving boundary is
given by a function of the two SPDEs in their relative frames. We prove existence and
uniqueness for the equations until blow-up, and show that the solution is global when
the boundary speed is bounded. We also derive the expected Hölder continuity for
the process and hence for the derivative of the moving boundary. Both the case when
the spatial domains are given by fixed finite distances from the shared boundary, and
when the spatial domains are the semi-infinite intervals on either side of the shared
boundary are considered. In the second case, our results require us to further develop
the known theory for reflected SPDEs on infinite spatial domains by extending the
uniqueness theory and establishing the local Hölder continuity of the solutions.

Keywords SPDE · Reflection · Moving boundary · Stochastic heat equation

1 Introduction

There are many models for the behaviour of interfaces that arise in physical, bio-
logical and financial problems. In this paper we explore interfaces in one dimension
determined by competition between two types, which could be thought of as particles,
species or offers to buy or sell, depending on the application. We think of a type as
occupying a region on one side of the interface and evolving according to a reflected
stochastic partial differential equation driven by white noise with a Dirichlet condition
on the interface. The interface itself moves as a function of the profiles of the two types.
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One motivation is the evolution of the limit order book in a financial market. In this
setting orders to buy or sell arrive at a rate determined by their distance to the best price
and prices will rise or fall according to the order flow imbalance between the bid and
ask sides of the book. It is also possible to build biological models in which two species
interact at an interface and their behaviour is determined by the distance of individuals
from the interface.Wedonot focus on themodelling aspects, insteadour aim is to estab-
lish existence, uniqueness and some properties of solutions to equations of the form

∂u1

∂t
= �u1 + f1(p(t) − x, u1(t, x)) + σ1(p(t) − x, u1(t, x))Ẇ + η1

∂u2

∂t
= �u2 + f2(x − p(t), u2(t, x)) + σ2(x − p(t), u2(t, x))Ẇ + η2,

(1.1)

where u1 and u2 have spatial domains on either side of the point p(t) at any given
time, and η1, η2 are reflection measures which keep the profiles positive. We impose
Dirichlet boundary conditions so that u1(t, p(t)) = u2(t, p(t)) = 0, with the point
p(t) evolving according to the equation

p′(t) = h(u1(t, p(t) − ·), u2(t, p(t) + ·), (1.2)

where h is a Lipschitz function mapping pairs of continuous functions to real num-
bers. The driving noise Ẇ here is space–timewhite noise, whilst the drift and diffusion
coefficients fi and σi for i = 1, 2 depend on the spatial coordinate in the frame relative
to the boundary, as well as the value of the solution itself at that point.

Within the class of equations produced by this model are approximations of the
Stefan problem, where the motion of the boundary would be given by

p′(t) = γ

(
∂u1

∂x
(t, p(t)) + ∂u2

∂x
(t, p(t))

)
, (1.3)

for some γ ∈ R. The combination of the space–time white noise, moving boundary
and the reflectionmeasure make it difficult to find conditions which ensure differentia-
bility of the profiles at the boundary, and so to arrive at an equation with precisely these
dynamics. However, by choosing h to be a function which emphasises the mass close
to the interface, so that the boundary is still being moved by the “relative pressure” of
the two sides, we will have existence and uniqueness for a systemwhich approximates
the Stefan problem.

1.1 Reflected SPDE and SPDEs withmoving boundaries in the literature

Reflected SPDEs of the type

∂u

∂t
= �u + f (x, u) + σ(x, u)Ẇ + η, (1.4)

where Ẇ is space–timewhite noise and η is a reflectionmeasure, were initially studied
in [8]. In [8], the domain for the equation is [0, T ] × [0, 1], with Dirichlet boundary
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conditions imposed on u. Existence and uniqueness are established for the equation in
the case of constant volatility i.e. σ ≡ 1. Existence for the equation in the case when
σ = σ(x, u) satisfies Lipschitz and linear growth conditions in its second argument
was then established in [4] using a penalization method. The penalization approach
was adapted in [9], in which the corresponding result is proved in the case when the
domain for Eq. (1.4) is [0, T ] × R. Uniqueness for varying volatility σ = σ(x, u)

on compact spatial domains was then proved by in [10]. The authors decouple the
obstacle problem and SPDE components of the problem. This allows them to prove
existence via a two-step Picard iteration, as well as uniqueness.

Similarly, there has been much recent work on moving boundary problems for
SPDEs. In [6], existence and uniqueness for solutions to a Stefan problem for an
SPDE driven by spatially coloured noise is proved. The corresponding problem in the
casewhen the SPDE is driven by space–timewhite noisewas then studied in [11] under
the condition that the volatility vanishes quickly enough at the moving interface. More
recent work on such problems include the models in [7] and in [5]. In these papers
the focus is on essentially the same equations as (1.1) but without reflection and with
coloured noise. Different boundary conditions are imposed at the interface in the two
papers and in particular they are able to include a Brownian motion in the dynamics
for the motion of the boundary. When thinking of the equations in [5,7] as models for
the limit order book, the incorporation of a Brownian term ensures that the resulting
price process is a semi-martingale.

1.2 Main results and contributions

In this paper we combine aspects of the models discussed above and consider the
system of two reflected SPDEs sharing a moving boundary, (1.1). We examine the
problem in two cases- firstly when the spatial domain is restricted to a fixed distance
from the moving boundary and secondly when the spatial domain is infinite in both
directions. Existence and uniqueness for the system is proved in both of these cases.
Our approach is similar to that of [10]. As in [10], we decouple the problem into
studying a deterministic obstacle problem and applying SPDE estimates. The non-
Lipschitz term created by the moving boundary is controlled by a suitably truncated
version of the problem, for which existence and uniqueness is proved by a Picard
argument. Consistency among the solutions of the truncated problems allows us to
piece these together to obtain a solution to our original problem which exists until
some blow-up time.

In the case when the spatial domain is infinite, our analysis extends the known
uniqueness theory for reflected SPDEs on infinite spatial domains. In [9], uniqueness
for the reflected stochastic heat equation on R is proved in the case when σ ≡ 1. We
obtain uniqueness for a class of volatility coefficients which are allowed to depend on
space and the solution itself at that particular point in space–time. The main condition
here is that the coefficient σ is Lipschitz in its second argument, with a Lipschitz
constant which decays exponentially fast in the spatial variable.

The local Hölder continuity of the solutions to our equations is also established, in
both the case when the spatial domain is finite and when it is infinite. As one might
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expect, solutions can be shown to be up to 1
4 -Hölder continuous in time and up to 1

2 -
Hölder continuous in space. In the case of the infinite spatial domain, this is a new
result even for static reflected SPDEs. We argue by suitably adapting the proof in [3],
in which the corresponding result was proved for solutions to static reflected SPDEs
on compact spatial domains. As a corollary, we can also show that the derivative of
the boundary is up to 1

4 -Hölder continuous in time, with this regularity inherited from
the solution and a Lipschitz condition on the function h in (1.2).

An outline of the paper is as follows. In Sect. 2 we will discuss the deterministic
obstacle problem, a key ingredient in working with reflected processes. In Sect. 3 we
look at the case where the SPDEs are supported on finite intervals in themoving frame.
The case of semi-infinite intervals in the moving frame is the topic of Sect. 4. The heat
kernel estimates necessary for obtaining the SPDE estimates as well as the proofs for
Sect. 2 are in the “Appendix”.

1.3 An application: limit order books

Themajority of modern trading takes place in limit order markets. In a limit order mar-
ket, all traders are able to place orders of three types. Limit orders are offers to buy/sell
which do not lead to an immediate transaction; they only result in a transaction when
they are matched with incomingmarket orders. Market orders are offers to buy/sell the
asset which match with an existing limit order and so result in immediate transaction.
Finally, traders are able to cancel limit orders which they previously placed. The order
book itself at a given time is simply the record of unexecuted, uncancelled limit orders
at that time. There has been much interest in trying to model the dynamics of the book,
particularly in a high frequency setting.

As in [5,7], we can think of our Eq. (1.1) as being a model for the limit order book.
In this context, we would think of the spatial variable as representing the price or the
log-price. The random fields u1(t, x) and u2(t, x) would then be the density of limit
orders existing at price x and time t on the bid and ask sides of the book respectively,
and we can choose the function h to represent an approximation of the local imbalance
at the mid price. The volatility terms in our equations can naturally be thought of as
the presence of high frequency trading in the model, which together with the drift
term models the arrivals and cancellations of limit orders. The price process is then
driven by the relative pressure of the existing orders on the two sides of the book. A
potential advantage of our model over similar models in the literature is the presence
of the reflection measure, which ensures that order volumes remain positive without
the need for a multiplicative term in front of the noise.

Figures 1 and 2 are included here for illustrative purposes. We make use of data
provided by the LOBSTER (Limit Order Book System, The Efficient Reconstructor)
database. Figure 1 shows the evolution of the bid price process for the SPDR Trust
Series I on June 21 2012 between 09:30:00.000 and 10:30:00.000 EST. Figure 2
displays a simulated price process obtained from our moving boundary model on the
compact spatial domain [0, 1]. Note that space here is on the scale of dollars i.e. a
spatial interval of size 1 represents a price interval of size $1. We use a simple forward
Euler finite difference scheme in order to produce the simulation. Using the data of
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Fig. 1 Bid price process for the SPDR Trust Series I on June 21 2012 between 09:30:00.000 and
10:30:00.000 EST

Fig. 2 Simulated price process

incoming market orders, limit orders and cancellations of the SPDR Trust Series I at
the different relative prices over the same time period as in Fig. 1, we fit the drift and
volatility coefficients (which we assume to depend on the relative price only) of our
SPDEs. When fitting these, we assume that these parameters are symmetric for the
two sides of the order book, which is the case for this particular dataset up to a small
error. Note that, for smooth functions k and large λ > 0, the functional gλ given by

gλ(k) :=
∫ 1

0
λ2e−λx k(x) dx (1.5)

places most emphasis on the mass of k near zero. It is also the case that gλ(k) → k′(0)
as λ → ∞. Recall that the functional h in our equations determines the derivative of
the boundary as a function of the two sides of the book, as in (1.2). For our simulation,
we make the choice

h(u1, u2) = αgλ(u
1 − u2), (1.6)

123



Stoch PDE: Anal Comp (2019) 7:746–807 751

with α = 5 and λ = 100. The boundary movement is therefore driven primarily by
the local imbalance of offers to buy and sell at the mid, and approximates a Stefan
condition. We also remark here that the Laplacian terms in our simulation were scaled
down by a factor of 0.2 in order to ensure that the order book profiles obtained by the
simulation are on the correct scale.

We note that the boundary motion for our equations can be shown to be C1,α for
α < 1/4. However, by choosing h to approximate the derivative at the boundary and
looking at the price process over sufficiently long timescales, we can generate price
processes that are rough at the appropriate scale as can be seen in Fig. 2.

2 A deterministic parabolic obstacle problem

In this section we will define and state some simple results for deterministic parabolic
obstacle problems on both the compact spatial interval [0, 1] and the infinite interval
[0,∞). The intuition for these equations is that the solutions solve the heat equation
with a constraint that they must lie above some predetermined continuous function of
time and space. It is important to note that both the obstacle and the solutions will be
continuous functions here. In addition, being able to control differences in the solution
by differences in the obstacles will be key in allowing us to introduce the reflection
component in our SPDEs later.

2.1 The deterministic obstacle problem on [0, 1]

The obstacle problem on the compact interval [0, 1] was originally discussed in [8],
in which the proofs can be found.

Definition 2.1 Let v ∈ C([0, T ];C0((0, 1))) with v(0, ·) ≤ 0. We say that the pair
(z, η) satisfies the heat equation with obstacle v if:

(i) z ∈ C([0, T ];C0((0, 1))), z(0, x) ≡ 0 and z ≥ v.
(ii) η is a measure on (0, 1) × [0, T ].
(iii) z weakly solves the PDE

∂z

∂t
= ∂2z

∂x2
+ η (2.1)

That is, for every t ∈ [0, T ] and every φ ∈ C2((0, 1)) ∩ C0((0, 1)),

∫ 1

0
z(t, x)φ(x)dx =

∫ t

0

∫ 1

0
z(s, x)φ′′(x)dxds +

∫ t

0

∫ 1

0
φ(x)η(dx, ds).

(iv)
∫ t
0

∫ 1
0 (z(s, x) − v(s, x)) η(dx, ds) = 0.

The following result from [8] gives us existence and uniqueness for solutions to
this problem. It is also proved that we can bound the difference between two solutions
in the L∞-norm by the difference in the L∞-norm of the obstacles. This will be very
helpful when proving estimates later, as it will allow us to control our reflected SPDE
by an unreflected SPDE.
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Theorem 2.2 ([8], Theorem 1.4)For every v ∈ C([0, T ];C0((0, 1)))with v(0, ·) ≤ 0,
there exists a unique solution to the above obstacle problem. In addition, if (z1, η1)
and (z2, η2) solve the obstacle problems with obstacles v1 and v2 respectively, then
for t ∈ [0, T ], we have the estimate

‖z1 − z2‖∞,t ≤ ‖v1 − v2‖∞,t (2.2)

where ‖.‖∞,t is defined for u ∈ C([0, T ] × [0, 1]) by

‖u‖∞,t := sup
s∈[0,t]

sup
x∈[0,1]

|u(s, x)|.

2.2 The deterministic obstacle problem on [0,∞)

Before discussing the obstacle problem in this section, we first introduce the relevant
function spaces which we will be working on.

Definition 2.3 For r ∈ R, we say that u : [0,∞) → R is in the space Lr if

‖u‖Lr := sup
x≥0

e−r x |u(x)| < ∞. (2.3)

We say that u ∈ Cr if u ∈ Lr and u is continuous. Cr is equipped with the same norm
as Lr

Definition 2.4 We say that u : [0, T ] × [0,∞) → R is in the space C T
r if u is

continuous and
sup

t∈[0,T ]
sup
x≥0

e−r x |u(t, x)| < ∞. (2.4)

We are now in position to define the obstacle problem in this setting.

Definition 2.5 Fix some r ∈ R. Let v ∈ C T
r such that v(t, 0) = 0 for every t ∈ [0, T ]

and v(0, ·) ≤ 0. We say that the pair (z, η) satisfies the heat equation with obstacle v

and exponential growth r on [0,∞) if:

(i) z ∈ C T
r , z(t, 0) = 0, z(0, x) = 0 and z ≥ v.

(ii) η is a measure on (0,∞) × [0, T ].
(iii) z weakly solves the PDE

∂z

∂t
= ∂2z

∂x2
+ η. (2.5)

That is, for every t ∈ [0, T ] and every φ ∈ C∞
c ([0,∞)) with φ(0) = 0,

∫ ∞

0
z(t, x)φ(x)dx =

∫ t

0

∫ ∞

0
z(s, x)φ′′(x)dxds +

∫ t

0

∫ ∞

0
φ(x)η(dx, ds).

(iv)
∫ t
0

∫ ∞
0 (z(s, x) − v(s, x)) η(dx, ds) = 0.
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We note that the deterministic obstacle problem on the spatial domain R is con-
sidered in [9]. Here, we pose the problem in C T

r for any r ∈ R, and we work on the
spatial domain [0,∞) rather than R. A proof of the following result is provided in the
“Appendix”.

Theorem 2.6 For every r ∈ R and every v ∈ C T
r such that v(t, 0) = 0 for every

t ∈ [0, T ] and v(0, ·) ≤ 0, there exists a unique solution (z, η) to the heat equation
on [0,∞) with Dirichlet condition and obstacle v. Furthermore, if v1, v2 ∈ C T

r , we
have that

‖z1 − z2‖C T
r

≤ Cr ,T ‖v1 − v2‖C T
r

, (2.6)

where zi is the solution to the obstacle problem corresponding to vi .

3 Themoving boundary problem on finite intervals in the relative
frame

We are interested in the following reflected moving boundary problem:

∂u1

∂t
= �u1 + f1(p(t) − x, u1(t, x)) + σ1(p(t) − x, u1(t, x))Ẇ + η1

∂u2

∂t
= �u2 + f2(x − p(t), u2(t, x)) + σ2(x − p(t), u2(t, x))Ẇ + η2,

(3.1)

where u1 and u2 satisfy Dirichlet boundary conditions enforcing that they are zero at
p(t), with the point p(t) evolving according to the equation

p′(t) = h(u1(t, p(t) − ·), u2(t, p(t) + ·)).

Here, Ẇ is a space–time white noise and h : C([0, 1])2 �→ R, satisfies certain condi-
tions which we will introduce later. (η1, η2) are reflection measures for the functions
u1 and u2 respectively, keeping the profiles positive and satifying the conditions

(i)
∫ ∞
0

∫
R
u1(t, x) η1(dt, dx) = 0, and

(ii)
∫ ∞
0

∫
R
u2(t, x) η2(dt, dx) = 0.

In this section, we consider the case when the functions u1 and u2 are supported
in the sets {(t, x) ∈ [0,∞) × R | x ∈ [p(t) − 1, p(t)]} and {(t, x) ∈ [0,∞) × R | x
∈ [p(t), p(t) + 1]} respectively.

3.1 Formulation of themoving boundary problem

We would like to formalise what we mean by (3.1) in the compact case. Before doing
so, we define what we mean for a space–time white noise to respect a given filtration.
This will be useful in some of the measurability arguments which follow.
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Definition 3.1 Let (
,F ,Ft ,P) be a complete filtered probability space. Suppose
that Ẇ is a space–time white noise defined on this space. Define for t ≥ 0 and
A ∈ B(R),

Wt (A) := Ẇ ([0, t] × A).

We say that Ẇ respects the filtration Ft if (Wt (A))t≥0,A∈B(R) is an Ft - martingale
measure i.e. if for every A ∈ B(R), (Wt (A))t≥0 is an Ft -martingale.

Let (
,F ,P) be a complete probability space, and Ẇ space–time white noise
on R

+ × R. Let Ft be the filtration generated by the white noise, so that Ft =
σ({W (s, x) | x ∈ R, s ≤ t}). Suppose that (u1, η1, u2, η2, p) is an Ft -adapted pro-
cess solving (3.1). Then p : R+ × 
 �→ R is a Ft -adapted process such that the
paths of p(t) are almost surely C1 (note that, in particular, p is Ft -predictable). Let
ϕ ∈ C∞

c ([0,∞)×(0, 1)), and define the functionφ by settingφ(t, x) = ϕ(t, p(t)−x).
By multiplying the equation for u1 in (3.1) by such a φ and integrating over space and
time, interpreting the derivatives in the usual weak sense, we obtain the expression∫

R

u1(t, x)φ(t, x)dx =
∫
R

u1(0, x)φ(0, x)dx +
∫ t

0

∫
R

u1(s, x)
∂φ

∂t
(s, x)dxds

+
∫ t

0

∫
R

u1(s, x)
∂2φ

∂x2
(s, x)dxds

+
∫ t

0

∫
R

f1(p(s) − x, u1(t, x))φ(s, x)dxds

+
∫ t

0

∫
R

σ1(p(s) − x, u1(t, x))φ(s, x)W (dx, ds)

+
∫ t

0

∫
R

φ(s, x)η1(ds, dx).

We now introduce a change in the spatial variable in order to associate our problem
with a fixed boundary problem. Setting v1(t, x) = u1(t, p(t)− x), the above equation
becomes∫ 1

0
v1(t, x)φ(t, p(t) − x)dx =

∫ 1

0
v1(0, x)φ(0, p(0) − x)dx

+
∫ t

0

∫ 1

0
v1(s, x)

∂φ

∂t
(s, p(s) − x)dxds

+
∫ t

0

∫ 1

0
v1(s, x)

∂2φ

∂x2
(s, p(s) − x)dxds

+
∫ t

0

∫ 1

0
f1(x, v

1(s, x))φ(s, p(s) − x)dxds

+
∫ t

0

∫ 1

0
σ1(x, v

1(s, x))φ(s, p(s) − x)Wp(dx, ds)

+
∫ t

0

∫ 1

0
φ(s, p(s) − x)η1p(dx, ds).
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Here, Ẇp and η1p are obtained by fromW and η by shifting by p(t). That is, for t ∈ R
+

and A ∈ B(R),

Ẇp([0, t]×A) =
∫ t

0

∫
p(s)−A

W (ds, dy), η1p([0, t]×A) =
∫ t

0

∫
p(s)−A

η1(dy, ds),

(3.2)
Note that, since the process p(t) isFt -predictable, Ẇp is then also a space time white
noise which respects the filtrationFt . Also, η1p is a reflection measure for v, so that

∫ T

0

∫ 1

0
v1(t, x) η1p(dt, dx) = 0. (3.3)

We can calculate

∂φ

∂t
(s, x) = ∂ϕ

∂t
(t, p(t) − x) + p′(t)∂ϕ

∂x
(t, p(t) − x). (3.4)

It therefore follows that

∫ 1

0
v1(t, x)ϕ(t, x)dx =

∫ 1

0
v1(0, x)ϕ(0, x)dx +

∫ t

0

∫ 1

0
v1(s, x)

∂ϕ

∂t
(s, x)dxds

+
∫ t

0

∫ 1

0
v1(s, x)p′(s)∂ϕ

∂x
(s, x)dxds

+
∫ 1

0

∫ t

0
v1(s, x)

∂2ϕ

∂x2
(s, x)dxds

+
∫ 1

0

∫ t

0
f1(x, v

1(s, x))ϕ(s, x)dxds

+
∫ 1

0

∫ t

0
σ1(x, v

1(s, x))ϕ(s, x)Wp(dx, ds)

+
∫ 1

0

∫ t

0
ϕ(s, x)η1p(ds, dx).

We can perform similar manipulations to obtain a weak form for v2(t, x) :=
u2(t, p(t) + x). This yields that for test functions ϕ ∈ C∞

c ([0,∞) × (0, 1)), we
should have that

∫ 1

0
v2(t, x)ϕ(t, x)dx =

∫ 1

0
v2(0, x)ϕ(0, x)dx +

∫ t

0

∫ 1

0
v2(s, x)

∂ϕ

∂t
(s, x)dxds

−
∫ t

0

∫ 1

0
v2(s, x)p′(s)∂ϕ

∂x
(s, x)dxds

+
∫ 1

0

∫ t

0
v2(s, x)

∂2ϕ

∂x2
(s, x)dxds

+
∫ 1

0

∫ t

0
f2(x, v

2(s, x))ϕ(s, x)dxds
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+
∫ 1

0

∫ t

0
σ2(x, v

2(s, x))ϕ(s, x)W−
p (dx, ds)

+
∫ 1

0

∫ t

0
ϕ(s, x)η2p(ds, dx),

where Ẇ−
p is given by

Ẇ−
p ([0, t] × A) = Ẇp([0, t] × (−A)).

Note also that, since (u1, η1, u2, η2, p) isFt -adapted,weknow that (v1, η1p, v
2, η1p, p)

is alsoFt -adapted.

Remark 3.2 By noting that Ẇp and Ẇ−
p respect the filtration Ft , we ensure that our

solutions cannot “see the future” of the space-changed driving noises Ẇp and Ẇ−
p . It

of coursemakes sense intuitively that this should be the case, since they aremeasurable
with respect to the filtration generated by Ẇ . We would expect that the solution is in
fact adapted to the filtration generated by the noises Ẇ i

p. We see this indirectly, when
we later prove that in any filtered space with a space–time white noise which respects
the filtration, there exists a unique solution to the problem. As we can choose to take
the filtration to be generated by the noise, the unique solution in an enlarged space
must be adapted to the noise.

Remark 3.3 The above formulation would need to be adjusted if we were anticipating
rough paths for p(t). For example, if p(t) were a semimartingale with a non-zero
diffusion component, wewould have to apply I t ô’s formula for the change of variables
(3.4), which would change our weak form.

We now define what we mean by a solution to a particular class of reflected SPDEs.
The preceding calculation will allow us to connect the solutions to these SPDEs to our
moving boundary problem.

Definition 3.4 Let (
,F ,Ft ,P) be a complete filtered probability space. Let Ẇ be
a space time white noise on this space which respects the filtration Ft . Suppose that
ṽ is a continuous Ft -adapted process taking values in C0(0, 1). Let h : C0(0, 1) ×
C0(0, 1) → R and F : C0(0, 1) → C0(0, 1) be Lipschitz functions. For the Ft -
stopping time τ , we say that the pair (v, η) is a local solution to the reflected SPDE

∂v

∂t
= �v + h(v, ṽ)

∂F(v)

∂x
+ f (x, v) + σ(x, v)Ẇ + η

with Dirichlet boundary conditions v(t, 0) = v(t, 1) = 0 and initial data v0 ∈
C0(0, 1)+, until time τ , if

(i) For every x ∈ [0, 1] and every t ∈ [0,∞), v(t, x) isFt -measurable.
(ii) v ≥ 0 almost surely.
(iii) v

∣∣[0,τ )×[0,1] ∈ C([0, τ ) × [0, 1]) almost surely.
(iv) v(t, x) = ∞ for every t ≥ τ almost surely.
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(v) η is a measure on (0, 1) × [0,∞) such that

(a) For every measurable map ψ : [0, 1] × [0,∞) → R,

∫ t

0

∫ 1

0
ψ(x, s) η(dx, ds) (3.5)

isFt -measurable.
(b)

∫ ∞
0

∫ 1
0 v(t, x) η(dx,dt) = 0.

(vi) There exists a localising sequence of stopping times τn ↑ τ almost surely, such
that for every ϕ ∈ C1,2

c ([0,∞) × [0, 1]) such that ϕ(s, 0) = ϕ(s, 1) = 0 for
every s ≥ 0,

∫ 1

0
v(t ∧ τn, x)ϕ(t ∧ τn, x)dx =

∫ 1

0
v(0, x)ϕ(0, x)dx

+
∫ t∧τn

0

∫ 1

0
v(s, x)

∂ϕ

∂t
(s, x)dxds

+
∫ t∧τn

0

∫ 1

0
v(s, x)

∂2ϕ

∂x2
(s, x)dxds

−
∫ t∧τn

0

∫ 1

0
F(v(s, ·))(x)h(v(s, ·), ṽ(s, ·))

× ∂ϕ

∂x
(s, x)dxds

+
∫ t∧τn

0

∫ 1

0
f (x, v(s, x))ϕ(s, x)dxds

+
∫ t∧τn

0

∫ 1

0
σ(x, v(s, x))ϕ(s, x)W (dx, ds)

+
∫ t∧τn

0

∫ 1

0
ϕ(s, x) η(ds, dx).

(3.6)
for every t ≥ 0 almost surely.

We say that a local solution is maximal if it cannot be extended to a solution on a
larger stochastic interval. We say that a local solution is global if we can take τn = ∞
in (3.6).

Remark 3.5 Condition (iv) above is included for the purposes of discussing uniqueness
only.

Before stating the formal definition for our moving boundary problem we intro-
duce some notation which will allow us to easily write down the profiles in suitable
relativised coordinates.

Definition 3.6 For p0 ∈ R, we define �1
p0 : R → R such that

�1
p0(x) = p0 − x .
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For a function p : [0,∞) → R we then define θ1p : [0,∞) × R → [0,∞) × R such
that

θ1p(t, x) := (t,�1
p(t)(x)).

We similarly define �2
p0 : R → R such that

�2
p0(x) = x − p0,

and θ2p : [0,∞) × R → [0,∞) × R such that

θ2p(t, x) := (t,�2
p(t)(x)).

Definition 3.7 For a space time white noise Ẇ , we denote by Ẇ− the space time white
noise such that Ẇ−([0, t] × A) = Ẇ ([0, t] × (−A)).

Definition 3.8 Let (
,F ,Ft ,P) be a complete filtered probability space. Let Ẇ be
a space time white noise on this space which respects the filtration Ft . We say that
the quintuple (u1, η1, u2, η2, p) is a local solution to the moving boundary problem
with initial data (u10, u

2
0, p0), where (u10 ◦ (�1

p0)
−1, u20 ◦ (�2

p0)
−1) ∈ C0((0, 1))+ ×

C0((0, 1))+, up to the Ft -stopping time τ if

(i) (v1, η̃1) := (u1 ◦ (θ1p)
−1, η1 ◦ (θ1p)

−1) solves the reflected SPDE

∂v1

∂t
= �v1 − h(v1(t, ·), v2(t, ·))∂v1

∂x
+ f1(x, v

1) + σ1(x, v
1)Ẇ + η̃1 (3.7)

with Dirichlet boundary conditions v1(0) = v1(1) = 0 and initial data v10 =
u10 ◦ (�1

p0)
−1 until time τ .

(ii) (v2, η̃2) := (u2 ◦ (θ2p)
−1, η2 ◦ (θ2p)

−1) solves the reflected SPDE

∂v2

∂t
= �v2 + h(v1(t, ·), v2(t, ·))∂v2

∂x
+ f2(x, v

2) + σ2(x, v
2)Ẇ− + η̃2 (3.8)

with Dirichlet boundary conditions v2(0) = v2(1) = 0 and initial data v20 =
u20 ◦ (�2

p0)
−1 until time τ .

(iii) p(0) = p0 and p′(t) isFt -adapted, with p′(t) = h(v1(t, ·), v2(t, ·)).
We refer to (v1, η̃1, v2, η̃2) as the solution to the moving boundary problem in the
relative frame.

We now introduce the precise conditions on the coefficients. We suppose that for
i = 1, 2, fi , σi are measurable mappings fi , σi : [0, 1] × R

+ → R and that h :
C0((0, 1))2 → R is a measurable function such that
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(I) For every x ∈ [0, 1], u, v ∈ R
+,

| fi (x, u) − fi (x, v)| + |σi (x, u) − σi (x, v)| ≤ C |u − v|

for some constant C .
(II) | fi (x, u)| + |σi (x, u)| ≤ R(1 + |u|) for some constant R.
(III) h is bounded on bounded sets.
(IV) h is Lipschitz, so there exists a constant K such that for every u1, u2, v1, v2 ∈

C0((0, 1)), |h(u1, v1) − h(u2, v2)| ≤ K (‖u1 − u2‖∞ + ‖v1 − v2‖∞).

3.2 Existence and uniqueness

Theorem 3.9 Let (
,F ,Ft ,P) be a complete filtered probability space. Let Ẇ be
a space time white noise on this space which respects the filtration Ft . Suppose that
f , σ and h satisfy the conditions (I)–(IV). Then there exists a unique maximal solution
(u1, η1, u2, η2, p) to the moving boundary problem. The blow-up time, τ , is given by

τ := sup
M>0

[
inf

{
t ≥ 0 | ‖u1‖∞,t + ‖u2‖∞,t ≥ M

}]
,

with τ > 0 almost surely.

The following notation for the Dirichlet heat kernel will be used throughout the rest
of the paper.

Definition 3.10 We define H(t, x, y) to be the Dirichlet heat kernel on [0, 1], so that

H(t, x, y) := 1√
4π t

∞∑
n=−∞

[
exp

(
− (x − y + 2n)2

4t

)
− exp

(
− (x + y + 2n)2

4t

)]
.

(3.9)

We will prove that we have global existence to the problem where the moving
boundary term is truncated. Before doing so, we present the following result which
will be applied in the argument.

Proposition 3.11 Fix T > 0 and let v ∈ L p(
; L∞([0, T ] × [0, 1])), where p > 10.
Define, for t ∈ [0, T ] and x ∈ [0, 1],

w(t, x) :=
∫ t

0

∫ 1

0
H(t − s, x, y)v(s, y)W(dy, ds).

Then we have that w is continuous, and for t ∈ [0, T ],

E
[‖w(t, x)‖p

∞,t
] ≤ Cp,TE

[∫ t

0
‖v(s, x)‖p∞,sds

]
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Proof Let t ∈ [0, T ]. We have that, for τ, s ∈ [0, t] and x, y ∈ [0, 1]

E
[|w(τ, x) − w(s, y)|p]

≤ CpE

[∣∣∣∣
∫ τ

s

∫ 1

0
H(τ − r , x, z)v(r , z)W(dz, dr)

∣∣∣∣
p
]

+ CpE

[∣∣∣∣
∫ s

0

∫ 1

0
[H(τ − r , x, z) − H(τ − r , y, z)] v(r , z)W(dz, dr)

∣∣∣∣
p
]

+ CpE

[∣∣∣∣
∫ s

0

∫ 1

0
[H(τ − r , y, z) − H(s − r , y, z)] v(r , z)W(dz, dr)

∣∣∣∣
p
]

.

(3.10)
For the first term, we have by the Burkholder’s inequality that it is at most

CpE

[∣∣∣∣
∫ τ

s

∫ 1

0
H(τ − r , x, z)2v(r , z)2dzdr

∣∣∣∣
p/2

]

≤ E

[∣∣∣∣
∫ τ

s

(∫ 1

0
H(τ − r , x, z)2dz

)
‖v‖2∞,r dr

∣∣∣∣
p/2

]
. (3.11)

An application of Hölder’s inequality then gives that this is at most

(∫ τ

s

[∫ 1

0
H(τ − r , x, z)2dr

]p/(p−2)

dz

)(p−2)/2

×
∫ τ

s
E

[‖v‖p∞,r
]
dr . (3.12)

By the estimate (2) of Proposition A.4, we have that this is at most

Cp,T |τ − s|(p−4)/4
∫ τ

s
E

[‖v‖p∞,r
]
dr . (3.13)

By arguing similarly and making use of estimates (1) and (3) from Proposition A.4,
we obtain that for τ, s ∈ [0, t] and x, y ∈ [0, 1],

E
[|w(τ, x) − w(s, y)|p] ≤ Cp,T

(
|τ − s|1/2 + |x − y|

)(p−4)/2 ×
∫ t

0
E

[‖v‖p∞,r
]
dr

= Cp,T

(
|τ − s|1/2 + |x − y|

)3+ p−10
2 ×

∫ t

0
E

[‖v‖p∞,r
]
dr .

(3.14)
The result then follows by Corollary A.3 in [1]. ��

Proposition 3.12 Let (
,F ,Ft ,P) be a complete filtered probability space. Let Ẇ
be a space time white noise on this space which respects the filtration Ft . Let fi , σi
and h satisfy the conditions (I)–(IV) and suppose that v10 , v20 ∈ C0((0, 1))+. Define
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for M ≥ 0 the function hM : C0((0, 1)) × C0((0, 1)) → R such that

hM (v1, v2) := h(v1 ∧ M, v2 ∧ M).

Then for every M ≥ 0, there exists a unique pair of C0((0, 1))-valued processes v1, v2

together with η1, η2 such that

1. (v1, η1) is a global solution to the reflected SPDE

∂v1

∂t
= �v1 − hM (v1, v2)

∂

∂x
(v1 ∧ M) + f1(x, v

1) + σ1(x, v
1)Ẇ + η1 (3.15)

with Dirichlet boundary conditions v1(t, 0) = v1(t, 1) = 0 and initial data v10 .

2. (v2, η2) is a global solution to the reflected SPDE

∂v2

∂t
= �v2 + hM (v1, v2)

∂

∂x
(v2 ∧ M)+ f2(x, v

2)+ σ2(x, v
2)Ẇ− + η2 (3.16)

with Dirichlet boundary conditions v2(t, 0) = v2(t, 1) = 0 and initial data v20 .

We then call (v1, η1, v2, η2) the solution to the M-truncated problem in the relative
frame.

Proof Note that by a concatenation argument, it is sufficient to prove existence and
uniqueness on the time interval [0, T ] for any T > 0. Fix T > 0. We perform a
Picard iteration in order to obtain existence. The first approximations are given by
v1(t, x) = v10(x) and v2(t, x) = v20(x) for all time. For n ≥ 1, we let w1

n+1 solve the
SPDE

∂w1
n+1

∂t
= �w1

n+1 − hM (v1n, v
2
n)

∂

∂x
(v1n ∧ M) + f1(x, v

1
n) + σ1(x, v

1
n)Ẇ (3.17)

with Dirichlet boundary conditions w1
n+1(t, 0) = w1

n+1(t, 1) = 0 and initial data v10.
We then set v1n+1 := w1

n+1 + z1n+1, where z1n+1 solves the obstacle problem with
obstacle −w1

n+1. We similarly define v2n+1 in terms of v1n and v2n , via functions w2
n+1

and z2n+1. Writing the equation for w1
n+1 in mild form gives the expression

w1
n+1(t, x) =

∫ 1

0
H(t, x, y)v10(y)dy

−
∫ t

0

∫ 1

0

∂H

∂ y
(t − s, x, y)hM (v1n(s, ·), v2n(s, ·))

[
v1n(s, y) ∧ M

]
dyds

+
∫ t

0

∫ 1

0
H(t − s, x, y) f1(y, v

1
n(s, y))dxds

+
∫ t

0

∫ 1

0
H(t − s, x, y)σ1(y, v

1
n(s, y))W(dy, ds),

(3.18)
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where H is the Dirichlet heat kernel as in Definition 3.10. Recall that by Theorem 2.2,
we have that ‖v1n+1 − v1n‖∞,t ≤ 2‖w1

n+1 − w1
n‖∞,t almost surely. Therefore,

E
[‖v1n+1 − v1n‖p

∞,t
] ≤ 2pE

[‖w1
n+1 − w1

n‖p
∞,t

]

≤ E

[
sup

s∈[0,t]
sup

x∈[0,1]

∣∣∣∣
∫ s

0

∫ 1

0
H(s − r , x, y)

[
f1(y, v

1
n(r , y)) − f1(y, v

1
n−1(r , y)

]
dydr

∣∣p]

+ E

[
sup

s∈[0,t]
sup

x∈[0,1]

∣∣∣∣
∫ s

0

∫ 1

0
H(s − r , x, y)

[
σ1(y, v

1
n(r , y)) − σ1(y, v

1
n−1(r , y))

]
W(dy,dr)

∣∣p]

+ E

[
sup

s∈[0,t]
sup

x∈[0,1]

∣∣∣∣
∫ s

0

∫ 1

0

∂H

∂ y
(s − r , x, y)

[
hM (v1n(r , ·), v2n(r , ·))(v1n(r , y) ∧ M)

− hM (v1n−1(r , ·), v2n−1(r , ·))(v1n−1(r , y) ∧ M)
]
dydr

∣∣p]

We deal with the three terms separately. For the first, we apply Hölder’s inequality to
see that it is at most

E

[
sup

s∈[0,t]
sup

x∈[0,1]

∣∣∣∣
∫ s

0

∫ 1

0
H(s − r , x, y)

[
f1(y, v

1
n(r , y)) − f1(y, v

1
n−1(r , y)

]p
dydr

∣∣∣∣

×
∣∣∣∣
∫ s

0

∫ 1

0
H(s − r , x, y)dydr

∣∣∣∣
p/q

]

≤ CTE

[
sup

s∈[0,t]
sup

x∈[0,1]

∣∣∣∣
∫ s

0

∫ 1

0
H(s − r , x, y)

[
f1(y, v

1
n(r , y)) − f1(y, v

1
n−1(r , y)

]p
dydr

∣∣∣] . (3.19)

Making use of the Lipschitz property of the function f1, this is at most

CTE

[
sup

s∈[0,t]
sup

x∈[0,1]

∣∣∣∣
∫ s

0

∫ 1

0
H(s − r , x, y)

∣∣∣v1n(r , y) − v1n−1(r , y)
∣∣∣p dydr

∣∣∣∣
]

≤ CTE

[
sup

s∈[0,t]
sup

x∈[0,1]

∣∣∣∣
∫ s

0

(∫ 1

0
H(s − r , x, y)dy

)
‖v1n − v1n−1‖p∞,rds

∣∣∣∣
]

≤ CTE

[
sup

s∈[0,t]
sup

x∈[0,1]

∣∣∣∣
∫ s

0
‖v1n − v1n−1‖p∞,rdr

∣∣∣∣
]

. (3.20)
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For the second term, we apply Proposition 3.11 and the Lipschitz property of σ1 to
deduce that, for p > 10 and t ∈ [0, T ],

E

[
sup

s∈[0,t]
sup

x∈[0,1]

∣∣∣∣
∫ s

0

∫ 1

0
H(s − r , x, y)

×
[
σ1(y, v

1
n(r , y)) − σ1(y, v

1
n−1(r , y))

]
W(dy,dr)

∣∣∣p]

≤ Cp,T

∫ t

0
E

[
‖v1n − v1n−1‖p∞,r

]
dr .

Finally, we deal with the third term. Using that h is Lipschitz and bounded on bounded
sets, we see that the third term is at most

CME

[
sup

s∈[0,t]
sup

x∈[0,1]

∣∣∣∣
∫ s

0

∫ 1

0

∣∣∣∣∂H∂ y (s − r , x, y)

∣∣∣∣
[
‖v1n − v1n−1‖∞,r + ‖v2n − v2n−1‖∞,r

]
dydr

∣∣∣p]

= CME

[
sup

s∈[0,t]
sup

x∈[0,1]

∣∣∣∣
∫ s

0

(∫ 1

0

∣∣∣∣∂H∂ y (s − r , x, y)

∣∣∣∣ dy
)

[
‖v1n − v1n−1‖∞,r + ‖v2n − v2n−1‖∞,r

]
dr

∣∣∣p] .

(3.21)

Applying Hölder’s inequality and Proposition A.5 then gives that this is at most

CME

⎡
⎣

(
sup

x∈[0,1]

∫ t

0

[∫ 1

0

∣∣∣∣∂H∂ y (s − r , x, y)

∣∣∣∣ dy
]q

dr

)p/q

×
∫ t

0

[
‖v1n − v1n−1‖∞,r + ‖v2n − v2n−1‖∞,r

]p
dr

]

≤ CM × E

[(∫ t

0

1

(t − r)q/2 dr

)p/q

×
∫ t

0

[
‖v1n − v1n−1‖∞,r + ‖v2n − v2n−1‖∞,r

]p
dr

]

= CM × E

[(∫ t

0

1

rq/2 dr

)p/q

×
∫ t

0

[
‖v1n − v1n−1‖∞,r + ‖v2n − v2n−1‖∞,r

]p
dr

]
.

(3.22)
For p > 10 and corresponding q ∈ (1, 10

9 ), this is at most

CM,p,T ×
∫ t

0
E[

[
‖v1n − v1n−1‖∞,r + ‖v2n − v2n−1‖∞,r

]p]dr . (3.23)
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Putting this all together, we have shown that for any t ∈ [0, T ],

E

[
‖v1n+1 − v1n‖p

∞,t

]
≤ CM,p,T

∫ t

0
E

[
‖v1n − v1n−1‖p∞,s + ‖v2n − v2n−1‖p∞,s

]
ds.

We can repeat these arguments to obtain similar bounds for v2. Together, this gives

E

[
‖v1n+1 − v1n‖p

∞,T + ‖v2n+1 − v2n‖p
∞,T

]

≤ CM,p,T

∫ T

0
E

[
‖v1n − v1n−1‖p∞,s + ‖v2n − v2n−1‖p∞,s

]
ds.

We can then argue that

E

[
‖v1n+1 − v1n‖p

∞,T + ‖v2n+1 − v2n‖p
∞,T

]

≤ CM,p,T

∫ T

0
E

[
‖v1n+1 − v1n‖p∞,s + ‖v2n+1 − v2n‖p∞,s

]
ds

≤ C2
M,p,T

∫ T

0

∫ s

0
E

[
‖v1n−1 − v1n−2‖p∞,u + ‖v2n−1 − v2n−2‖p∞,u

]
du ds

= C2
M,p,T

∫ T

0

∫ T

u
E

[
‖v1n−1 − v1n−2‖p∞,u + ‖v2n−1 − v2n−2‖p∞,u

]
ds du

= C2
M,p,T

∫ T

0
E

[
‖v1n−1 − v1n−2‖p∞,u + ‖v2n−1 − v2n−2‖p∞,u

]
(T − u) du.

(3.24)

Iterating this, we obtain

E

[
‖v1n+1 − v1n‖p

∞,T + ‖v2n+1 − v2n‖p
∞,T

]

≤ Cn
M,p,T

∫ T

0
E

[
‖v11 − v10‖p∞,s + ‖v21 − v20‖p∞,s

] (T − s)n−1

(n − 1)! ds

≤ Cn
M,p,T × E

[
‖v11 − v10‖p

∞,T + ‖v21 − v20‖p
∞,T

] T n

n! .

(3.25)

Therefore, for m > n ≥ 1 we have that

E

[
‖v1m − v1n‖p

∞,T + ‖v2m − v2n‖p
∞,T

]1/p

≤
m−1∑
k=n

[
C̃k
M,p,T T

k

k!

]1/p

E

[
‖v11 − v10‖p

∞,T + ‖v21 − v20‖p
∞,T

]1/p → 0. (3.26)

asm, n → ∞. Hence, the sequence (v1n, v
2
n) is Cauchy in the space L

p(
;C([0, T ]×
[0, 1]))2 and so converges to some pair (v1, v2). We now verify that this is indeed a
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solution to our evolution equation. Let w̃1 be given by

w̃1(t, x) =
∫ 1

0
H(t, x, y)v10(y)dy

−
∫ t

0

∫ 1

0

∂H

∂ y
(t − s, x, y)hM (v1(s, ·), v2(s, ·))

[
v1(s, y) ∧ M

]
dyds

+
∫ t

0

∫ 1

0
H(t − s, x, y) f1(y, v

1(s, y))dxds

+
∫ t

0

∫ 1

0
H(t − s, x, y)σ1(y, v

1(s, y))W(dy, ds).

(3.27)
Define ṽ1 = w̃1 + z̃1, where z̃1, together with a measure η̃1, solves our obstacle
problem with obstacle −w̃1. Then, by arguing as before, we see that

E

[
‖ṽ1 − v1n‖p

∞,T

]
≤ CM,p,T

∫ T

0
E

[
‖v1 − v1n−1‖p

∞,t + ‖v2 − v2n−1‖p
∞,t

]
dt

≤ C̃M,p,TE

[
‖v1 − v1n−1‖p

∞,T + ‖v2 − v2n−1‖p
∞,T

]
→ 0.

(3.28)
It follows that ṽ1 = v1 in L p(
;C([0, T ] × [0, 1])). The same applies to v2, so it
follows that the pair (v1, v2), together with the reflection measures (η̃1, η̃2), do indeed
satisfy our problem.

Uniqueness follows by essentially the same argument. Given two solutions with
the same initial data, (v11, v

2
1) and (v12, v

2
2) (together with their reflection measures),

we argue as before to obtain that, for t ∈ [0, T ],

E

[
‖v11 − v12‖p

∞,t + ‖v21 − v22‖p
∞,t

]
≤

∫ t

0
E

[
‖v11 − v12‖p∞,s + ‖v21 − v22‖p∞,s

]
ds.

(3.29)
The equivalence then follows by Gronwall’s inequality. ��

We are now in position to prove Theorem 3.9. This essentially amounts to showing
that the solutions to our truncated problems coincide for different M . We use this to
define a candidate function, and then check the conditions for this candidate.

Proof of Theorem 3.9 For every M > 0, let (v1M , η1M , v2M , η2M ) be the solution
to the M-truncated problem. Suppose M1 ≤ M2. Then we clearly have that
(v1M2

, η1M2
, v2M2

, η2M2
) solves the M1-truncated problem in the relative frame, until

the stopping time

τ̃ = inf
{
t ≥ 0 | ‖(v1M2

, v2M2
)‖∞,t ≥ M1

}
. (3.30)

We can then argue as in the proof of Proposition 3.12 to deduce that

E

[
‖(w1

M1
, w2

M1
) − (w1

M2
, w2

M2
)‖p

∞,τ̃

]
= 0, (3.31)
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where, for i = 1, 2, (w1
Mi

, w2
Mi

) are the solutions to the unreflected equations

which correspond to (v1M1
, η1M1

, v2M1
, η2M1

) and (v1M2
, η1M2

, v2M2
, η2M2

) respectively,
as in (3.18). Therefore, by uniqueness of solutions to the obstacle problem,
(v1M1

, η1M1
, v2M1

, η2M1
) and (v1M2

, η1M2
, v2M2

, η2M2
) agree until the random time τ̃ .

This consistency allows us to define our candidate solution in the relative frame,
(v1, η1, v2, η2), by setting (v1, η1, v2, η2) = (v1M , η1M , v2M , η2M ) on [0, τM ], where

τM = inf
{
t ≥ 0 | ‖(v1M , v2M )‖∞,t ≥ M

}
. (3.32)

This defines (v1, η1, v2, η2) on the interval [0, τ ), where τ = sup
M>0

τM . As a conven-

tion, we set v1(t, x) = v2(t, x) = ∞ for x ∈ [0, 1] and t ≥ τ . It is clear from the
definition that in fact

τ = sup
M>0

[
inf

{
t ≥ 0 | ‖(v1, v2)‖∞,t ≥ M

}]
. (3.33)

Clearly, (v1, η1, v2, η2) is then amaximal solution to themoving boundary problem in
the relative frame until the explosion time τ , with localising sequence τM . In addition
τ > 0 almost surely as, by construction, vi ∈ C([0, τ ) × [0, 1]) for i = 1, 2 almost
surely. We now prove uniqueness. If (v11, η

1
1, v

2
1, η

2
1) and (v12, η

1
2, v

2
2, η

2
2) are both

maximal solutions, they both satisfy the M-truncated problem until they exceed M in
the infinity norm, and so we can once again argue as in Proposition 3.12 to obtain that
they both agree with the unique solution of the M-truncated problem until these times.
Since this holds for every M , it follows that they agree until a common explosion time.
We therefore have the result. ��

Proposition 3.13 Suppose that h is a bounded function. Then the solution to themoving
boundary problem is global.

Proof Fix T > 0. Let (v1, η1, v2, η2) be the unique maximal solution to the moving
boundary problem in the relative frame, and let τ be the blow-up time for this solution.
We consider the solutions to the corresponding truncated solutions, (v1M , v2M ), for
M > 0, with the same initial data i.e. (v1M (0, x), v2M (0, x)) = (v10(x), v

2
0(x)). Letw

1
M

solve the SPDE

∂w1
M

∂t
= �w1

M − hM (v1M , v2M )
∂

∂x
(v1M ∧ M) + f1(x, v

1
M ) + σ1(x, v

1
M )Ẇ (3.34)

with Dirichlet boundary conditions w1
M (t, 0) = w1

M (t, 1) = 0 and initial data
w1

M (0, x) = v10(x). Define w2
M similarly. Noting that ‖v1M‖∞,T ≤ 2‖w1

M‖∞,T and
making use of the mild form for w1

M , we have that
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E

[
‖v1M‖p

∞,T

]
≤ Cp sup

t∈[0,T ]
sup

x∈[0,1]

∣∣∣∣
∫ 1

0
H(t, x, y)v10(y)dy

∣∣∣∣
p

+ CpE

[
sup

t∈[0,T ]
sup

x∈[0,1]

∣∣∣∣
∫ t

0

∫ 1

0
H(t − s, x, y) f1(y, v

1
M (s, y))dyds

∣∣∣∣
p
]

+ CpE

[
sup

t∈[0,T ]
sup

x∈[0,1]

∣∣∣∣
∫ t

0

∫ 1

0
H(t − s, x, y)σ1(y, v

1
M (s, y))W(dy, ds)

∣∣∣∣
p
]

+ Cp‖h‖p∞E

[
sup

t∈[0,T ]
sup

x∈[0,1]

(∫ t

0

∫ 1

0

∣∣∣∣ ∂H∂ y (t − s, x, y)

∣∣∣∣ ‖v1M‖∞,sdyds

)p
]

By arguing as in Theorem 3.9, we obtain that for t ∈ [0, T ]

E

[
‖v1M‖p

∞,t

]
≤ Cp,T ,‖h‖∞

(
‖v10‖∞ +

∫ t

0
E

[
‖v1M‖p∞,s

]
ds

)
.

By noting thatCp,T ,‖h‖∞ and ‖v10‖ do not depend on M here, we can apply Gronwall’s
Lemma to obtain that

sup
M>0

E[‖v1M‖p
∞,T ] < ∞.

It follows that

E[‖v1‖p
∞,τ∧T ] ≤ E

[
lim inf
M→∞ ‖v1M‖p

∞,T

]
≤ lim inf

M→∞ E

[
‖v1M‖p

∞,T

]
< ∞.

Similarly,

E

[
‖v2‖p

∞,τ∧T

]
< ∞.

This can only hold if there is almost surely no blow-up before time T i.e. τ > T
almost surely. Since this holds for every T > 0, we must have that τ = ∞ almost
surely. We then also have that

E

[
‖vi‖p

∞,t

]
< ∞ (3.35)

for i = 1, 2 and every t ≥ 0. This allows us to take limits in the localising sequence,
so we can obtain that the solution is indeed global. ��

3.3 Hölder continuity of the solutions

We now prove that, as in the case of the static reflected SPDE, our equations enjoy the
expected Hölder continuity- up to 1/4-Hölder in time and up to 1/2-Hölder in space.
The details of the proof here are a simplification of those used in [3], where Hölder
continuity is proved for the equations when there is no moving boundary term.
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The following result is Lemma 3.1 in [3].

Lemma 3.14 Let V ∈ C1,2
b ([0, T ]×[0, 1]) andψ, F ∈ C([0, T ]×[0, 1])withψ ≤ 0.

Suppose that
∂V

∂t
= 1

2
V ′′ + ψV + ψF (3.36)

with Dirichlet or Neumann boundary conditions at zero, and zero initial data. Then

‖V ‖T ,∞ ≤ ‖F‖T ,∞. (3.37)

We now present a slight adaptation of Lemma 3.2 in [3].

Lemma 3.15 Suppose that D = [0, 1] or D = [0,∞). Let f : [0, T ] × D → R be
such that f ≡ 0 on ∂D and for every t, s ∈ [0, T ] and every x, y ∈ D̄

| f (t, x) − f (s, y)| ≤ K (|t − s|α + |x − y|β). (3.38)

Then there exists a smooth function f p,q : [0, T ] × D → R such that f p,q ≡ 0 on
∂D and

(i) ‖ f p,q‖∞ ≤ ‖ f ‖∞.
(ii) ‖ f p,q − f ‖∞ ≤ Cα,βK (pα + qβ).

(iii)
∥∥∥ ∂ f p,q

∂t

∥∥∥∞ ≤ Cα,βKpα−1.

(iv)
∥∥∥ ∂ f p,q

∂x

∥∥∥∞ ≤ Cα,βKqβ−1.

Proof The proof is as in [3], replacing the use of the heat kernel on R to smooth f
with the Dirichlet heat kernel on D. ��

We now present the result regarding the Hölder continuity of our solutions. In
addition to allowing for the extra term in the equation, corresponding to the moving
boundary, our proof here slightly differs from the approach used in [3] in another way.
In [3], the solution to the obstacle problem

∂u

∂t
= �u + f (x, u) + σ(x, u)Ẇ + η (3.39)

is approximated by the solutions to the solutions of the penalised SPDEs

∂uε

∂t
= �uε + f (x, uε) + σ(x, uε)Ẇ + gε(uε), (3.40)

where gε(x) = 1
ε
arctan([x ∧ 0]2). Hölder continuity of the solution to (3.39) is then

shown by uniformly controlling the Hölder continuity of the Eq. (3.40). Here, we
instead approximate u by the solutions to the equations

∂uε

∂t
= �uε + f (x, u) + σ(x, u)Ẇ + gε(uε). (3.41)
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By using u in the coefficients of our approximating SPDEs f and σ here, we limit the
problem of uniformly controlling the Hölder coefficients to studying the deterministic
obstacle problem.

Theorem 3.16 For i = 1, 2, let ui0 be such that ui0 ◦ (�i
p0)

−1 ∈ C0((0, 1))+ ∩
Cγ /2([0, 1]) for every γ ∈ (0, 1). Then, for every T > 0, M > 0 and every γ ∈ (0, 1)
the solution (v1M , v2M ) to the M-truncated problem in the relative frame with initial
data (u10 ◦(�1

p0)
−1, u20 ◦(�2

p0)
−1), described by Eqs. (3.15) and (3.16), is γ /4-Hölder

in time and γ /2-Hölder in space on [0, T ]×[0, 1]. In particular, if (u1, η1, u2, η2, p)
is the solution to our moving boundary problem with initial data (u10, u

2
0, p0), then

(u1, u2) enjoys the same Hölder regularity locally until the blow-up time, τ .

Proof We consider v1M only, since the argument for v2M is identical. Define w1
M to be

the C0((0, 1))-valued process given by

w1
M (t, x) =

∫ 1

0
H(t, x, y)u10((�

1
p0)

−1(y))dy

−
∫ t

0

∫ 1

0

∂H

∂ y
(t − s, x, y)hM (v1M (s, .), v2M (s, .))(v1M (s, y) ∧ M)dyds

+
∫ t

0

∫ 1

0
H(t − s, x, y) f1(s, v

1
M (s, y))dyds

+
∫ t

0

∫ 1

0
H(t − s, x, y)σ1(s, v

1
M (s, y))W(dy, ds).

(3.42)
Let r be such that γ = 1 − 12

r . By applying the inequalities from Propositions A.4
and A.6 together with Burkholder’s inequality, we see that

E

[
|w1

M (t, x) − w1
M (s, y)|r

]
≤ C(|t − s|1/2 + |x − y|) r

2−2. (3.43)

We note that it is Proposition A.6 which allows us to control the extra term arising
due to the moving boundary. It then follows by Corollary A.3 in [1] that there exists
a random variable X ∈ Lr such that

|w1
M (t, x) − w1

M (s, y)| ≤ X(|t − s|1/2 + |x − y|) 1
2− 6

r = X(|t − s|1/2 + |x − y|)γ /2

(3.44)
almost surely. From here, the argument follows the steps from Theorem 3.3 in [3], so
we give an outline only and refer the reader to the proof of Theorem 3.3 in [3] for
further details. For each ε > 0, let zε solve the PDE

∂zε

∂t
= �zε + gε(z

ε + w1
M ) (3.45)

on [0, 1]with Dirichlet boundary conditions and zero initial data, where we once again
define

gε(x) := 1

ε
arctan([x ∧ 0]2).
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We then have (see [8]) that zε +w1
M increases to v1M , the solution of the reflected SPDE

on [0, 1]. Let (w1
M )p,q be a smoothing of w1

M as in Proposition 3.15, with respect to
the random variable X , the Hölder coefficients γ /2 and γ /4, and the constants p, q
which are yet to be determined. Define zεp,q to be the solution of the PDE

∂zεp,q
∂t

= �zεp,q + gε

(
zεp,q + (w1

M )p,q

)
(3.46)

with Dirichlet boundary condition at zero and and zero initial data. We then have that
(see the proof of Theorem 1.4 in [8] for details)

‖zε − zεp,q‖T ,∞ ≤ ‖w1
M − (w1

M )p,q‖T ,∞. (3.47)

Define αε
p,q := ∂zεp,q

∂t and βε
p,q := ∂zεp,q

∂x . By differentiating the Eq. (3.46) in time we
obtain

∂αε
p,q

∂t
= �αε

p,q + g′
ε(z

ε
p,q + (w1

M )p,q)

[
αε
p,q + ∂(w1

M )p,q

∂t

]
, (3.48)

with zero initial data and Dirichlet boundary conditions αε
p,q(t, 0) = αε

p,q(t, 1) = 0.
Similarly, if we differentiate (3.46) in space

∂βε
p,q

∂t
= �βε

p,q + g′
ε(z

ε
p,q + (w1

M )p,q)

[
βε
p,q + ∂(w1

M )p,q

∂x

]
, (3.49)

with initial data z′0 = 0 and Neumann boundary conditions
∂βε

p,q
∂x (t, 0) = ∂βε

p,q
∂x (t, 1) =

0 . Applying Lemma 3.14 to Eqs. (3.48) and (3.49) controls the infinity norms of αε
p,q

and βε
p,q by the infinity norms of

∂(w1
M )p,q
∂t and

∂(w1
M )p,q
∂x respectively, uniformly over

ε. By using the bounds from Lemma 3.15 and choosing p = |t − s|, q = |x − y|,
we can control the γ /4-Hölder norm in time and the γ /2-Hölder norm in space of zε ,
uniformly over ε. Letting ε ↓ 0 then allows us to conclude. ��

Corollary 3.17 For every γ ∈ (0, 1), the derivative of the boundary is locally γ /4-
Hölder continuous on [0, τ ), where τ is the blow-up time.

Proof Fix γ ∈ (0, 1). Recall that p′(t) = h(v1(t, ·), v2(t, ·)), where v1(t, x) =
u1(t, p(t) − ·) and v2(t, x) = u2(t, p(t) + ·). For M > 0, define

τM = inf
{
t ≥ 0 | ‖(v1, v2)‖∞,t ≥ M

}
. (3.50)
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Note that τM ↑ τ as M → ∞. Let t, s ∈ [0, τM ]. We have, by the Lipschitz property
of h, that

|p′(t) − p′(s)| ≤ K
(
‖v1(t, ·) − v1(s, ·)‖∞ + ‖v2(t, ·) − v2(s, ·)‖∞

)

= K
(
‖v1M (t, ·) − v1M (s, ·)‖∞ + ‖v2M (t, ·) − v2M (s, ·)‖∞

)
.
(3.51)

The result then follows by Theorem 3.16. ��

4 Themoving boundary problem on semi-infinite intervals in the
relative frame

We now consider the analogous obstacle problem, where the two sides of the equation
satisfy SPDEs on the infinite halflines (−∞, p(t)] and [p(t),∞) respectively. That is

∂u1

∂t
= �u1 + f1(p(t) − x, u1(t, x)) + σ1(p(t) − x, u1(t, x))Ẇ + η1

on [0,∞) × (−∞, p(t)], and

∂u2

∂t
= �u2 + f2(x − p(t), u2(t, x)) + σ2(x − p(t), u2(t, x))Ẇ + η2,

on [0,∞) × [p(t),∞). We once again have Dirichlet conditions at the mid, p(t),
so that u1(t, p(t)) = u2(t, p(t)) = 0, with the point p(t) evolving according to the
equation

p′(t) = h(u1(t, p(t) − ·), u2(t, p(t) + ·)).
Here, W is a space–time white noise and h is a function of the two profiles of the
equation on either side of the shared boundary. As before, η1 and η2 are reflection
measures for the functions u1 and u2 respectively, keeping the profiles positive and
satisfying the conditions

(i) supp(η1) ⊂ {(t, x) | x ∈ (∞, p(t))},
(ii) supp(η2) ⊂ {(t, x) | x ∈ (p(t),∞)},
(iii)

∫ ∞
0

∫
R
u1(t, x) η1(dt, dx) = 0,

(iv)
∫ ∞
0

∫
R
u2(t, x) η2(dt, dx) = 0.

4.1 Formulation of the problem

We will be working in the spaces Cr and C T
r , defined in Sect. 2.2, throughout this

section. This presents issues when handling both the non-Lipschitz term arising due to
the moving boundary and the stochastic term. Truncating the boundary term requires
more care, as we are now trying to control the C T

r -norm of the process. We are also
unable to suitably control the supremum of the stochastic terms using our previous
arguments, as they are not well suited to unbounded domains. For this reason, we
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introduce extra decay for the growth of the volatility relative to the growth of the drift
term. Fixing r ∈ R we take, for i = 1, 2, fi and σi to be measurable mappings from
[0,∞) × R

+ → R and h : Cr × Cr → R to be a measurable function such that, for
some C, δ > 0

(I) For every x ∈ [0,∞), u, v ∈ R,

| fi (x, u) − fi (x, v)| ≤ C |u − v|.

(II) For every x ∈ [0,∞), u ∈ R,

| fi (x, u)| ≤ C(erx + |u|).

(III) For every x ∈ [0,∞), u, v ∈ R,

|σi (x, u) − σi (x, v)| ≤ Ce−δx |u − v|.

(IV) For every x ∈ [0,∞), u ∈ R,

|σi (x, u)| ≤ Re−δx (erx + |u|).

(V) h is bounded on bounded sets in Cr .
(VI) For every u1, u2, v1, v2 ∈ Cr ,

|h(u1, v1) − h(u2, v2)| ≤ K (‖u1 − u2‖Cr + ‖v1 − v2‖Cr ).

Since our notion of solution here is motivated by the same ideas as in the compact
case, wemove straight to the definitions for solutions to non-linear SPDEs andmoving
boundary problems on R.

Definition 4.1 Let (
,F ,Ft ,P) be a complete filtered probability space. Let Ẇ be
a space time white noise on this space which respects the filtration Ft . Suppose that
ṽ is a continuous Ft -adapted process taking values in Cr . Let h : Cr × Cr → R and
F : Cr → Cr be Lipschitz functions. For theFt -stopping time τ , we say that the pair
(v, η) is a local Cr -valued solution to the reflected SPDE

∂v

∂t
= �v + h(v, ṽ)

∂F(v)

∂x
+ f (x, v) + σ(x, v)Ẇ + η

withDirichlet boundary conditionv(t, 0) = 0 and initial datav0 ∈ C+
r withv0(0) = 0,

until time τ , if

(i) For every x ≥ 0 and every t ≥ 0, v(x, t) isFt - measurable.
(ii) v ≥ 0 almost surely.
(iii) v

∣∣[0,t]×[0,∞)
∈ C t

r for every t < τ almost surely.
(iv) v(t, x) = ∞ for every t ≥ τ almost surely.
(v) η is a measure on [0,∞) × [0,∞) such that
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(a) For every measurable map ψ : [0,∞) × [0,∞) → R,

∫ ∞

0

∫ ∞

0
ψ(x, s) η(dx, ds) (4.1)

isFt -measurable.
(b)

∫ ∞
0

∫ ∞
0 v(t, x) η(dx,dt) = 0.

(vi) There exists a localising sequence of stopping times τn ↑ τ almost surely, such
that for every ϕ ∈ C1,2

c ([0,∞)×[0,∞)) with ϕ(s, 0) = 0, and for every t ≥ 0,

∫ ∞

0
v(t ∧ τn, x)ϕ(t ∧ τn, x)dx =

∫ ∞

0
v(0, x)ϕ(0, x)dx

+
∫ t∧τn

0

∫ ∞

0
v(s, x)

∂ϕ

∂t
(s, x)dxds

+
∫ t∧τn

0

∫ ∞

0
v(s, x)

∂2ϕ

∂x2
(s, x)dxds

−
∫ t∧τn

0

∫ ∞

0
F(v(s, ·))(x)h(v(s, ·), ṽ(s, ·))∂ϕ

∂x
(s, x)dxds

+
∫ t∧τn

0

∫ ∞

0
f (x, v(s, x))ϕ(s, x)dxds

+
∫ t∧τn

0

∫ ∞

0
σ(x, v(s, x))ϕ(s, x)W (dx, ds)

+
∫ t∧τn

0

∫ ∞

0
ϕ(s, x) η(ds, dx).

(4.2)

almost surely.

Similarly to as in Sect. 3, we say that a local Cr -valued solution is maximal if it
cannot be extended to a Cr -valued solution on a larger stochastic interval, and we say
that a local solution is global if we can take τn = ∞ in (4.2).

Definition 4.2 Let (
,F ,Ft ,P) be a complete filtered probability space. Let Ẇ be
a space time white noise on this space which respects the filtrationFt . We say that the
quintuple (u1, η1, u2, η2, p) is a local solution to the moving boundary problem on
R with exponential growth r and initial data (u10, u

2
0, p0), where (u10 ◦ (�1

p0)
−1, u20 ◦

(�2
p0)

−1) ∈ C+
r × C+

r , up to theFt -stopping time τ if

(i) (v1, η̃1) := (u1 ◦ (θ1p)
−1, η1 ◦ (θ1p)

−1) is a Cr -valued solution to the non-linear
SPDE

∂v1

∂t
= �v1 − p′(t)∂v1

∂x
+ f1(x, v

1) + σ1(x, v
1)Ẇ + η̃1 (4.3)

with Dirichlet boundary condition v1(t, 0) = 0 and initial data v10 = u10 ◦
(�1

p0)
−1 ∈ C+

r , until time τ .
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(ii) (v2, η̃2) := (u2 ◦ (θ2p)
−1, η2 ◦ (θ2p)

−1) is a Cr -valued solution to the non-linear
SPDE

∂v2

∂t
= �v2 + p′(t)∂v2

∂x
+ f2(x, v

2) + σ2(x, v
2)Ẇ− + η̃2 (4.4)

with Dirichlet boundary condition v2(t, 0) = 0 and initial data v20 = u20 ◦
(�2

p0)
−1 ∈ C+

r , until time τ .
(iii) p(0) = p0 and p′(t) = h(v1(t, ·), v2(t, ·)).
We refer to (v1, η̃1, v2, η̃2) as the solution to the moving boundary problem in the
relative frame.

4.2 Existence and uniqueness

As in the proof of Theorem 3.9, we will use a Picard iteration in order to prove
existence and uniqueness for a truncated version of this problem. There is some extra
complexity introduced when trying to do this in the case of an infinite spatial domain.
In particular, we should be more careful in how we truncate the problem.

Theorem 4.3 Let (
,F ,Ft ,P) be a complete filtered probability space. Let Ẇ be a
space time white noise on this space which respects the filtration Ft . There exists a
unique maximal solution (u1, η1, u2, η2, p) to the moving boundary problem on R,
with the blow-up time given by

τ := sup
M>0

[
inf

{
t ≥ 0

∣∣ ‖u1‖C t
r

+ ‖u2‖C t
r

≥ M
}]

,

with τ > 0 almost surely.

The following notation will be used throughout the rest of the paper.

Definition 4.4 We define G(t, x, y) to be the Dirichlet heat kernel on [0,∞), that is

G(t, x, y) := 1√
4π t

[
exp

(
− (x − y)2

4t

)
− exp

(
− (x + y)2

4t

)]
. (4.5)

For r ∈ R, we also define the notation

Gr (t, x, y) := e−r(x−y)G(t, x, y). (4.6)

Before proving Theorem 4.3, we present here some results which will be essential
to the proof.

Lemma 4.5 Let r ∈ R. Suppose that u ∈ L1([0, T ];Lr ). Then we have that, for
t ∈ [0, T ],

sup
τ∈[0,t]

sup
x≥0

∣∣∣∣e−r x
∫ τ

0

∫ ∞

0
G(τ − s, x, y)u(s, y)dyds

∣∣∣∣ ≤ Cr ,T

∫ t

0
‖u‖s,Lr ds. (4.7)
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Proof ∣∣∣∣e−r x
∫ τ

0

∫ ∞

0
G(τ − s, x, y)u(s, y)dyds

∣∣∣∣
=

∣∣∣∣
∫ τ

0

∫ ∞

0
Gr (t − s, x, y)e−r yu(s, y)dyds

∣∣∣∣
≤

∫ τ

0

(∫ ∞

0
Gr (t, x, y)dy

)
‖u‖s,Lr ds

≤ Cr ,T

∫ t

0
‖u‖s,Lr ds.

(4.8)

��
We would like an analogous result which would allow us to control the noise term
appearing in the mild formulation. The following lemmas will enable us to obtain such
an estimate.

Proposition 4.6 Suppose that r ∈ R. Let u ∈ L p(
; L∞([0, T ];Lr )) with p > 10.
Define

w(t, x) := e−r x
∫ t

0

∫ ∞

0
G(t − s, x, z)u(s, z)W(dz, ds). (4.9)

Then w is continuous almost surely and for x, y ∈ [0,∞) and 0 ≤ s ≤ τ ≤ t ≤ T
we have that

E
[|w(τ, x) − w(s, y)|p] ≤ Cp,T ,rE

[∫ t

0
‖u‖p

s,Lr
ds

] (
|τ − s|1/4 + |x − y|1/2

)p−4
,

(4.10)

Proof We have that

E
[|w(τ, x) − w(s, y)|p]

≤ CpE

[∣∣∣∣
∫ τ

s

∫ ∞

0
Gr (τ − q, x, z)e−r zu(q, z)W(dz, dq)

∣∣∣∣
p]

+ CpE

[∣∣∣∣
∫ s

0

∫ ∞

0
[Gr (τ − q, x, z) − Gr (τ − q, y, z)] e−r zu(q, z)W(dz, dq)

∣∣∣∣
p]

+ CpE

[∣∣∣∣
∫ s

0

∫ ∞

0
[Gr (τ − q, y, z) − Gr (s − q, y, z)] e−r zu(q, z)W(dz, dq)

∣∣∣∣
p]

.

(4.11)
We bound the first term only, and note that the other terms follow similarly by the
estimates from Proposition A.1. Burkholder’s inequality gives

E

[∣∣∣∣
∫ τ

s

∫ ∞

0
Gr (τ − q, x, z)e−r zu(q, z)W(dz, dq)

∣∣∣∣
p]

≤ CpE

[∣∣∣∣
∫ τ

s

∫ ∞

0
Gr (τ − q, x, z)2e−2r zu(q, z)2dzdq

∣∣∣∣
p/2

]

≤ CpE

[∣∣∣∣
∫ τ

s

(∫ ∞

0
Gr (τ − q, x, z)2dz

)
‖u‖2q,Lr

dq

∣∣∣∣
p/2

]
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Hölder’s inequality then gives

E

[∣∣∣∣
∫ τ

s

(∫ ∞

0
Gr (τ − q, x, z)2dz

)
‖u‖2q,L r

dq

∣∣∣∣
p/2

]

≤ Cp,T

(∫ τ

s

[∫ ∞

0
Gr (τ − q, x, z)2dz

]p/(p−2)

dq

)(p−2)/2

× E

[∫ τ

s
‖u‖p

q,L r
dq

]
.

(4.12)
Applying the first bound from Proposition A.1 then gives that this is at most

Cr ,p,T |τ − s|(p−4)/4 × E

[∫ τ

s
‖u‖p

q,Lr
dq

]
.

Bymaking similar arguments, using the other bounds from Proposition A.1, we obtain
that

E
[|w(τ, x) − w(s, y)|p]

≤ Cr ,p,TE

[∫ t

0
‖u‖p

q,Lr
dq

]
×

(
|τ − s|1/4 + |x − y|1/2

)p−4
.

Continuity of w then follows by Corollary A.3 in [1]. ��
The following result follows by adapting the proof of Lemma 3.4 in [9].

Lemma 4.7 Let p, K , δ > 0. Suppose thatw : [0, T ]×[0,∞) → R is a random field
such that for every s, t ∈ [0, T ], every n and every x, y ∈ [n, n + 1],

E
[|w(t, x) − w(s, y)|p] ≤ K (|t − s| + |x − y|)2+ε . (4.13)

Then for every δ > 0, w ∈ C([0, T ];Cδ) and there exists a constant C depending
only on p, ε, T and δ, and a non-negative random variable Y such that

‖w‖C T
δ

≤ C(|w(0, 0)| + Y ), (4.14)

almost surely, where E
[
Y p

] ≤ CK.

Proposition 4.8 Let r ∈ R. Suppose that u ∈ L p(
; L∞([0, T ];Lr−ε)). Then we
have that, for t ∈ [0, T ] and p > 12,

E

[
sup

τ∈[0,t]
sup
x≥0

∣∣∣∣e−r x
∫ τ

0

∫ ∞

0
G(τ − s, x, y)u(s, y)W(dy, ds)

∣∣∣∣
p
]

≤ Cp,r ,T ,εE

[∫ t

0
‖u‖p

s,Lr−ε
ds

]
. (4.15)
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Proof Define

w(t, x) := e−(r−ε)x
∫ t

0

∫ ∞

0
G(t − s, x, z)u(s, z)W(dy, ds). (4.16)

Then Proposition 4.6 gives that for τ, s ∈ [0, t] and x, y ∈ [0,∞),

E
[|w(τ, x) − w(s, y)|p]

≤ Cp,T ,r ,εE

[∫ t

0
‖u‖p

q,L(r−ε)
dq

] (
|τ − s|1/4 + |x − y|1/2

)p−4
. (4.17)

It then follows by Lemma 4.7 that, for p > 12,

E

[
‖w‖p

t,Cε

]
≤ Cp,T ,r ,εE

[∫ t

0
‖u‖p

s,L(r−ε)
ds

]
. (4.18)

So we have the result. ��
We are now in position to prove Theorem 4.3 with a Picard iteration. Since the

ideas for the remaining arguments are similar to those in the proof of Theorem 3.9,
we give an outline of the strategy only.

Proof of Theorem 4.3 Our strategy is as follows:

1. We note that, by the definition, it is sufficient to prove existence and uniqueness
for maximal solutions to the coupled SPDEs

(a) (v1, η̃1) := (u1 ◦ (θ1p)
−1, η1 ◦ (θ1p)

−1), a Cr -valued solution to the non-linear
SPDE

∂v1

∂t
= �v1 − h(v1(t, ·), v2(t, ·))∂v1

∂x
+ f1(x, v

1)+σ1(x, v
1)Ẇ + η (4.19)

with Dirichlet boundary condition v1(0) = 0 and initial data v10 = u10 ◦
(�1

p0)
−1 ∈ C+

r .

(b) (v2, η̃2) := (u2 ◦ (θ2p)
−1, η2 ◦ (θ2p)

−1), a Cr -valued solution to the non-linear
SPDE

∂v2

∂t
= �v2+h(v1(t, ·), v2(t, ·))∂v2

∂x
+ f2(x, v

2)+σ2(x, v
2)Ẇ−+η (4.20)

with Dirichlet boundary condition v2(0) = 0 and initial data v20 = u20 ◦
(�2

p0)
−1 ∈ C+

r .

2. We once again consider a truncated version of the problem. That is, we find
(v1M , η1M , v2M , η2M ) such that
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(a) (v1M , η1M ) solves the reflected SPDE

∂v1M

∂t
= �v1M−hM,r (v

1
M , v2M )

∂

∂x
(FM,r (v

1
M ))+ f1(x, v

1
M )+σ1(x, v

1
M )Ẇ+η1M

(4.21)
with Dirichlet boundary condition v1(0) = 0 and initial data v10 = u10 ◦
(�1

p0)
−1 ∈ C+

r .
(b) (v2M , η2M ) solves the reflected SPDE

∂v2

∂t
= �v2M+hM,r (v

1
M , v2M )

∂

∂x
(FM,r (v

2
M ))+ f2(x, v

2
M )+σ2(x, v

2
M )Ẇ−+η2

(4.22)
with Dirichlet boundary condition v2(0) = 0 and initial data v20 = u20 ◦
(�2

p0)
−1 ∈ C+

r .

As in Proposition 3.12, hM,r is defined by applying h to suitably truncated inputs,
with the truncation function here being FM,r . Formalising this, we define hM,r :
Cr × Cr → R by

hM,r (v1, v2) := h(FM,r (v1), FM,r (v2)), (4.23)

with FM,r : Cr → Cr is given by

FM,r (u)(x) := erx min(e−r xu(x), M).

3. Use a Picard argument to prove global existence and uniqueness for the solution to
the truncated problem on the finite time interval [0, T ]. The first approximations
are given by v1M,n(t, x) = v10(x) and v2M,n(t, x) = v20(x) for all time. For n ≥ 1,

we let w1
M,n+1 solve the SPDE

∂w1
M,n+1

∂t
= �w1

M,n+1 − hM,r (v
1
M,n, v

2
M,n)

∂

∂x
(FM,r (v

1
M,n))

+ f1(x, v
1
M,n) + σ1(x, v

1
M,n)Ẇ (4.24)

with Dirichlet boundary conditionw1
M,n+1(t, 0) = 0 and initial dataw1

M,n+1(0, x)

= v10(x). Writing this in mild form gives the expression

w1
M,n+1(t, x) =

∫ ∞

0
G(t, x, y)v10(y)dy

−
∫ t

0

∫ ∞

0

∂G

∂ y
(t − s, x, y)hM,r (v

1
M,n(s, ·), v2M,n(s, ·))

FM,r (v
1
M,n(s, ·))(y)dyds (4.25)
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+
∫ t

0

∫ ∞

0
G(t − s, x, y) f1(y, v

1
M,n(s, y))dxds

+
∫ t

0

∫ ∞

0
G(t − s, x, y)σ1(y, v

1
M,n(s, y))W(dy, ds).

We then set v1M,n+1 := w1
M,n+1 + z1M,n+1, where z1M,n+1 solves the obstacle

problem with obstacle −w1
M,n+1. We similarly define w2

M,n+1 and v2M,n+1. Our
Lipschitz conditions on h, f and σ , together with the estimates from Lemma 4.5,
Proposition 4.8 and Proposition A.2 allow us to argue as in the proof of Propsi-
tion 3.12 to obtain that, for t ∈ [0, T ],

E

[
‖w1

M,n+1 − w1
M,n‖p

C t
r

+ ‖w2
M,n+1 − w2

M,n‖p
C t
r

]

≤ CM,p,T ,r ,δ

∫ t

0
E

[
‖v1M,n − v1M,n−1‖p

C s
r

+ ‖v2M,n − v2M,n−1‖p
C s
r

]
ds.

(4.26)

Theorem 2.6 gives that, for t ∈ [0, T ] and i = 1, 2,

‖viM,n+1 − viM,n‖C t
r

≤ Cr ,T ‖wi
M,n+1 − wi

M,n‖C t
r
. (4.27)

Plugging this into (4.26) then gives that, for t ∈ [0, T ],

E

[
‖v1M,n+1 − v1M,n‖p

C t
r

+ ‖v2M,n+1 − v2M,n‖p
C t
r

]

≤ CM,p,T ,r ,δ

∫ t

0
E

[
‖v1M,n − v1M,n−1‖p

C s
r

+ ‖v2M,n − v2M,n−1‖p
C s
r

]
ds

(4.28)

Arguing as in Proposition 3.12, we see that (v1M,n, v
2
M,n)n≥1 is Cauchy in

L p(
;C T
r )2 for large enough p, and the limit (v1M , v2M ) solves the truncated

problem given by Eqs. (4.21) and (4.22).
4. As in Proposition 3.12, uniqueness for the truncated problem can be shown by

applying the same estimates as in the proof of existence and concluding with a
Gronwall argument.

5. We note the consistency of the truncated problems different truncation values M
and use this to define a solution to the problem until the ‖.‖Cr norm blows up.

6. We observe that uniqueness of the truncated problems implies uniqueness for the
original moving boundary problem.

7. To deduce that τ > 0 almost surely, consider wi
M , the solution to the SPDE

∂w1
M

∂t
= �w1

M − hM,r (v
1
M , v2M )

∂

∂x
(FM,r (v

1
M )) + f1(x, v

1
M ) + σ1(x, v

1
M )Ẇ .

(4.29)
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By Propositions 4.8, A.1 and A.3 and Lemma 4.7, we have that wi
M ∈

C([0, T ];Cr ) almost surely. It follows that, for M large enough, ρM > 0, where

ρM = inf{t ≥ 0 | ‖w1
M‖C t

r
+ ‖w2

M‖C t
r

≥ M/2}. (4.30)

Since ‖viM‖C t
r

≤ 2‖wi
M‖C t

r
, we have that, for large enough M , τM > 0, where

τM = inf{t ≥ 0 | ‖v1M‖C t
r

+ ‖v2M‖C t
r

≥ M}. (4.31)

It follows that τ > 0.

��
Proposition 4.9 Suppose that h is bounded. Then the solution to the moving boundary
problem on R is global.

Proof We argue as in Proposition 3.13, replacing bounds on H with the corresponding
bounds on Gr (t, x, y) and Gr+δ(t, x, y). ��
Remark 4.10 We note that our uniqueness result here extends the existing theory for
uniqueness for reflected SPDEs on infinite spatial domains. Until now, uniqueness had
only been shown for equations

∂u

∂t
= �u + f (x, u) + σ(x, u)Ẇ + η (4.32)

in the case when σ is constant. This was proved in [9], where the spatial domain was
R (this makes no difference to the arguments here). Choosing h = 0 in our equations
i.e. a static boundary, we obtain uniqueness for solutions to these equations in the
spaces Cr , provided that the dependence of the volatility on the solution itself decays
exponentially, as in conditions (iii) and (iv) in the formulation of the problem.

4.3 Hölder continuity

Theorem 4.11 For i = 1, 2, let ui0 be such that vi0 := ui0 ◦ (�i
p0)

−1 ∈ C+
r , with

|e−r xvi0(x) − e−r yvi0(y)| ≤ Cγ |x − y|γ /2

for every γ ∈ (0, 1) and every x, y ∈ [0,∞). Then, for every M > 0 and every
γ ∈ (0, 1) the solution (v1M , v2M ) to the M-truncated problemwith initial data (v10, v

2
0),

described by Eqs. (4.21) and (4.22), is locally γ /4-Hölder in time and γ /2-Hölder
in space. In particular, if (u1, η1, u2, η2, p) is the solution to our moving boundary
problem with initial data (u10, u

2
0, p0), then (u1, u2) enjoys the same Hölder regularity

locally until the blow-up time, τ .

The proof of this is similar in spirit to that of Theorem 3.16. There are, however,
some intricate differences which arise due to the infinite spatial domain. We first
introduce here a modified version of Lemma 3.14 which is suitable for this context.
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Proposition 4.12 Let r > 0. Let V ∈ C1,2
b ([0, T ] × [0,∞)) and ψ, F ∈ C([0, T ] ×

[0,∞)) with ψ ≤ 0 bounded and |F(t, x)| ≤ KeRx for some K , R > 0. Suppose
that

∂V

∂t
= 1

2
V

′′ + ψV + ψF (4.33)

with Dirichlet or Neumann boundary conditions at zero, and zero initial data. Then
there exists a constant Cr ,T such that

‖V ‖C T
r

≤ Cr ,T ‖F‖C T
r

. (4.34)

Proof We will prove the result for the Neumann boundary condition- the argument
for the Dirichlet condition is essentially the same. Let (Bx

t )t≥0 be a Brownian motion
on [0,∞) with reflection at 0, started at x . Then by arguing as in Lemma 3.6 in [2],
we have that

Vt (x) = E

[∫ t

0
exp

(∫ s

0
ψt−r (B

x
r )dr

)
ψt−s(B

x
s )Ft−s(B

x
s )ds

]
. (4.35)

Therefore

e−r x Vt (x) = E

[∫ t

0
exp

(∫ s

0
ψt−r (B

x
r )dr

)
ψt−s(B

x
s )Ft−s(B

x
s )e−r Bx

s (er B
x
s −r x )ds

]
.

(4.36)
Hence

|e−r x Vt (x)| ≤ ‖F‖C T
r

× E

[
−

∫ t

0
exp

(∫ s

0
ψt−r (B

x
r )dr

)
ψt−s(B

x
s )(er B

x
s −r x )ds

]

≤ ‖F‖C T
r

× E

[
−

∫ t

0
exp

(∫ s

0
ψt−r (B

x
r )dr

)
ψt−s(B

x
s )ds

(
sup

s∈[0,t]
(er B

x
s −r x )

)]

≤ ‖F‖C T
r

× E

[(
1 − exp

(∫ t

0
ψt−r (B

x
r )dr

)) (
sup

s∈[0,t]
(er B

x
s −r x )

)]

≤ ‖F‖C T
r

× E

[
sup

s∈[0,t]
(er B

x
s −r x )

]
≤ ‖F‖C T

r
× E

[
sup

s∈[0,T ]
(er B

x
s −r x )

]

= ‖F‖C T
r

× e−r x × E

[
sup

s∈[0,T ]
er B

x
s

]
. (4.37)

We note that the law of Bx is simply the law of |Wx |, whereW is a standard Brownian
motion (no reflection) started from x . Therefore

e−r x
E

[
sup

s∈[0,T ]
er B

x
s

]
= e−r x

E

[
sup

s∈[0,T ]

(
erW

x
s 1{Wx

s ≥0} + e−rW x
s 1{−Wx

s ≥0}
)]

.

(4.38)
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By the symmetry of Brownian motion, this is at most

2e−r x
E

[
sup

s∈[0,T ]
erW

x
s

]
= 2E

[
sup

s∈[0,T ]
erW

0
s

]
≤ 2eTr

2/2 × E

[
sup

s∈[0,T ]
erW

0
s −sr2/2

]
.

(4.39)
Since erW

0
t −tr2/2 is a square integrable martingale, we apply Cauchy-Schwarz and

Doob’s L2 inequality to get

2E

[
sup

s∈[0,T ]
erW

0
s −sr2/2

]
≤ 2E

[
sup

s∈[0,T ]
e2rW

0
s −sr2

] 1
2

≤ 4E
[
e2rW

0
T −Tr2

] 1
2 = 4eTr

2/2

(4.40)
Therefore, we have that

e−r x
E

[
sup

s∈[0,T ]
er B

x
s

]
≤ 4eTr

2
. (4.41)

Plugging this into (4.37), we obtain that

‖V ‖C T
r

≤ 4eTr
2‖F‖C T

r
. (4.42)

So we have the result. ��

Proof of Theorem 4.11 The argument broadly follows the steps in the proof of The-
orem 3.16 and consequently those in [1]. Fix some T > 0. Let (v1M , v2M ) solve the
M-truncated problem. Define w1

M so that

w1
M (t, x) =

∫ ∞

0
G(t, x, y)v10(y)dy

−
∫ t

0

∫ ∞

0

∂G

∂ y
(t−s, x, y)hM,r (v

1
M (s, ·), v2M (s, ·))FM,r (v

1
M (s, ·))(y)dyds

+
∫ t

0

∫ ∞

0
G(t − s, x, y) f1(y, v

1
M (s, y))dyds

+
∫ t

0

∫ ∞

0
G(t − s, x, y)σ1(y, v

1
M (s, y))W(dy, ds).

(4.43)
Let p be such that γ = 1 − 12

p . By applying the inequalities from Propositions A.1
and A.3, together with Burkholder’s inequality, we see that

E

[
|e−r xw1

M (t, x) − e−r yw1
M (s, y)|p

]
≤ C(|t − s|1/2 + |x − y|) p

2 −2. (4.44)
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ApplyingCorollaryA.3 from[1],wefind randomvariablesψm such that sup
m∈N

E[(ψm)p]
< ∞, and for t, s ∈ [0, T ], x, y ∈ [m,m + 1]

|e−r xw1
M (t, x) − e−r yw1

M (s, y)| ≤ ψm(|t − s| γ
4 + |x − y| γ

2 ). (4.45)

Let μ > 0. We note that, for x, y ∈ [m,m + 1] and s, t ∈ [0, T ],

|e−(r+μ)xw1
M (t, x) − e−(r+μ)yw1

M (s, y)| ≤ e−mμ|e−r xw1
M (t, x) − e−r yw1

M (s, y)|
+ |e−r xw1

M (t, x)||e−yμ − e−xμ|.
(4.46)

By considering the derivative of e−μx we see that

|e−yμ − e−xμ| ≤ μ|x − y|e−mμ. (4.47)

Therefore

|e−(r+μ)xw1
M (t, x) − e−(r+μ)yw1

M (s, y)| ≤ e−mμ|e−r xw1
M (t, x) − e−r yw1

M (s, y)|
+ μ|x − y|e−mμ|e−r xw1

M (t, x)|.
(4.48)

Define the random variable

Z := μ‖w1
M‖C T

r
.

Then we know that for p ≥ 1, E
[
Z p

]
< ∞. Setting Ym := ψm + Z we have that

R := sup
m≥0

E[Y p
m ] < ∞. Therefore, for any t, s ∈ [0, T ] and x, y ≥ 0 we have that

|e−(r+μ)xw1
M (t, x) − e−(r+μ)yw1

M (s, y)|

≤
( ∞∑
m=0

Yme
−mμ

)
× (|t − s| γ

4 + |x − y| γ
2 ). (4.49)

Define

X :=
∞∑

m=0

Yme
−mμ.

Then

E
[
X p] = E

[( ∞∑
m=0

Yme
−mμ

)p ]
≤ E

[ ∞∑
m=0

Y p
me

−mμp/2

]
×

( ∞∑
m=0

e−mμq/2

) p
q

= Cr ,p,μ

∞∑
m=0

E[Y p
m ]e−mpμ/2 = Cr ,p,μ,R < ∞.

(4.50)
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Now let zε solve the PDE

∂zε

∂t
= �zε + gε(z

ε + w1
M ) (4.51)

on [0,∞) with Dirichlet boundary condition at zero, and zero initial data, where we
define

gε(x) := 1

ε
arctan([x ∧ 0]2).

Then by Proposition B.3, zε +w1
M increases to v1M , the solution of the reflected SPDE

on [0,∞). Let (e−(r+μ)xw1
M )α,β be a smoothingof e−(r+μ)xw1

M as inProposition 3.15,
with respect to the Hölder coefficients γ /2 and γ /4. Define zε,α,β to be the solution
of the PDE

∂zε,α,β

∂t
= �zε,α,β + gε(z

ε,α,β + e(r+μ)x (e−(r+μ)xw1
M )α,β) (4.52)

withDirichlet boundary condition at zero and and zero initial data. By Proposition B.2,
we obtain that

‖zε‖C T
r+μ

≤ Cr ,T ‖w1
M‖C T

r+μ
, (4.53)

and
‖zε,α,β‖C T

r+μ
≤ ‖(e−(r+μ)xw1

M )α,β‖T ,∞. (4.54)

Differentiating (4.52) with respect to t , we see that qε,α,β := ∂zε,α,β

∂t solves

∂qε,α,β

∂t
= �qε,α,β + g′

ε(z
ε,α,β + e(r+μ)x (e−(r+μ)xw1

M )α,β)

×
[
qε,α,β + e(r+μ)x ∂(e−(r+μ)xw1

M )α,β

∂t

]
. (4.55)

The boundary condition is Dirichlet, since z does not change at 0, which means the
time derivative is zero there. The initial data is z′′0 = 0, since z0 is identically zero.
Note that g′

ε is negative, so we can use Proposition 4.12 to deduce that

‖qε,α,β‖C T
r+μ

≤ Cr+μ,T

∥∥∥∥∥
∂(e−(r+μ)xw1

M )α,β

∂t

∥∥∥∥∥∞,T

. (4.56)
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Differentiating (4.52) with respect to x , we obtain, that yε,α,β := ∂zε,α,β

∂x satisfies

∂ yε,α,β

∂x
=�yε,α,β + g′

ε(z
ε,α,β + e(r+μ)x (e−(r+μ)xw1

M )α,β)

[
yε,α,β

+e(r+μ)x ∂(e−(r+μ)xw1
M )α,β

∂x
+ (r + μ)e(r+μ)x (e−(r+μ)xw1

M )α,β

]
.

(4.57)
with initial data z′0 = 0 and Neumann boundary condition at zero. Proposition 4.12
then gives

‖yε,α,β‖C T
r+μ

≤ Cr+μ,T

(∥∥∥∥∥
∂(e−(r+μ)xw1

M )α,β

∂x

∥∥∥∥∥∞,T

+ ‖(e−(r+μ)xw1
M )α,β‖∞,T

)
.

(4.58)
Another application of Proposition B.2 gives

‖zε − zε,α,β‖C T
r+μ

≤ Cr ,T ‖e−(r+μ)xw1
M − (e−(r+μ)xw1

M )α,β‖∞,T . (4.59)

We clearly have that

|e−(r+μ)x zε(t, x) − e−(r+μ)yzε(s, y)| ≤ 2‖e−(r+μ)x zε − e−(r+μ)x zε,α,β‖∞,T

+ |e−(r+μ)x zε,α,β(t, x) − e−(r+μ)x zε,α,β(s, x)|
+ |e−(r+μ)x zε,α,β(s, x) − e−(r+μ)y zε,α,β(s, y)|.

(4.60)
By the estimates deduced above, we can bound this by

2Cr+μ,T ‖e−(r+μ)xw1
M − (e−(r+μ)xw1

M )α,β‖∞,T + |t − s| ∥∥∂zε,α,β/∂t
∥∥
C T
r+μ

+|x − y|
∥∥∥∂(e−(r+μ)x zε,α,β)/∂x

∥∥∥∞,T
. (4.61)

This is at most

2‖e−(r+μ)xw1
M − (e−(r+μ)xw1

M )α,β‖∞,T + Cr+μ,T |t − s|
∥∥∥∥∥
∂(e−(r+μ)xw1

M )α,β

∂t

∥∥∥∥∥∞,T

+ |x − y|
(∥∥∥∥∂zε,α,β

∂x

∥∥∥∥
C T
r+μ

+ ‖(r + μ)zε,α,β‖C T
r+μ

)

≤ 2‖e−(r+μ)xw1
M − (e−(r+μ)xw1

M )α,β‖∞ + Cr+μ,T |t − s|
∥∥∥∥∥
∂(e−(r+μ)xw1

M )α,β

∂t

∥∥∥∥∥∞,T

+ Cr+μ,T |x − y|
(∥∥∥∥∥

∂(e−(r+μ)xw1
M )α,β

∂x

∥∥∥∥∥∞,T

+ ‖w1
M‖C T

r+μ

)
.
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Making the choices α = |t − s| and β = |x − y|, this is at most

Cγ,T ,r+μ

(
X |t − s|γ /4 + X |x − y|γ /2 + |x − y|‖w1

M‖C T
r+μ

)
. (4.62)

Since X and ‖w1
M‖C T

r+μ
are in L p, they are finite almost surely. Letting ε ↓ 0 and

noting the inequality (4.49) gives that, for every x, y ≥ 0 and every s, t ∈ [0, T ]

|e−(r+μ)xv1M (t, x) − e−(r+μ)yv1M (s, y)|
≤ Cγ,T ,r+μ

(
X |t − s|γ /4 + X |x − y|γ /2 + |x − y|‖w1

M‖C T
r+μ

)
(4.63)

almost surely. Since we know that ‖v1M‖C T
r+μ

< ∞ almost surely, it follows that v1M
is locally γ /4 Hölder in time and γ /2 Hölder in space almost surely. ��
Corollary 4.13 Suppose that there existsμ > 0 such that for every u1, u2, v1, v2 ∈ Cr ,

|h(u1, v1) − h(u2, v2)| ≤ K (‖u1 − u2‖Cr+μ
+ ‖v1 − v2‖Cr+μ

). (4.64)

Then, for every γ ∈ (0, 1), the derivative of the boundary is locally γ /4-Hölder
continuous on [0, τ ), where

τ := inf
{
t ≥ 0

∣∣ ‖u1‖Cr + ‖u2‖Cr = ∞
}

. (4.65)

Proof Fix γ ∈ (0, 1). Recall that p′(t) = h(v1(t, ·), v2(t, ·)), where v1(t, x) =
u1(t, p(t) − ·) and v2(t, x) = u2(t, p(t) + ·). For M > 0, define

τM := inf
{
t ≥ 0

∣∣ ‖u1‖Cr + ‖u2‖Cr > M
}

(4.66)

Note that τM ↑ τ as M → ∞. Let t, s ∈ [0, τM ]. We have, by the Lipschitz property
of h, that

|p′(t)− p′(s)| ≤ K
(
‖v1(t, ·) − v1(s, ·)‖Cr+μ

+ ‖v2(t, ·) − v2(s, ·)‖Cr+μ

)
. (4.67)

By Eq. (4.63) in the proof of Theorem 4.11, there exists an almost surely finite random
variable CM such that this is at most KCM |t − s|γ /4, which gives the result. ��
Remark 4.14 Choosing h = 0, we see that in particular the solutions to the reflected
SPDEs

∂u

∂t
= �u + f (x, u) + σ(x, u)Ẇ + η (4.68)

on [0,∞)×[0,∞) (or [0,∞)×R by the same arguments) are locally up to 1/4-Hölder
continuous in time and 1/2-Hölder continuous in space.
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A Heat kernel estimates

We present here some of the simple estimates for the heat kernels on [0, 1] and [0,∞)

which were used throughout, and details of their proofs.

A.1 Heat kernel on [0,∞)

Recall that the Dirichlet heat kernels on [0,∞) is given by

G(t, x, y) := 1√
4π t

[
exp

(
− (x − y)2

4t

)
− exp

(
− (x + y)2

4t

)]
, (A.1)

and that Gr (t, x, y) := e−r(x−y)G(t, x, y). We define the functions

F1(t, x, y) := 1√
4π t

exp

(
− (x − y)2

4t

)
,

and

F2(t, x, y) := 1√
4π t

exp

(
− (x + y)2

4t

)
.

In this section, the proofs focus on the F1 component of G. The arguments for the F2
components are similar.

Proposition A.1 Fix r ∈ R, T > 0. Then, for p > 4, we have that

1. For every t, s ∈ [0, T ],

sup
x≥0

(∫ t

s

[∫ ∞

0
Gr (t − u, x, z)2dz

]p/(p−2)

du

) p−2
2

≤ Cp,r ,T |t − s|(p−4)/4.

2. For every t, s ∈ [0, T ],

sup
x≥0

(∫ s

0

[∫ ∞

0
|Gr (t − u, x, z) − Gr (s − u, x, z)|2 dz

]p/(p−2)

du

) p−2
2

≤ Cp,r ,T |t − s|(p−4)/4.
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3. For every x, y ∈ [0,∞)

sup
s∈[0,T ]

(∫ s

0

[∫ ∞

0
|Gr (s − u, x, z) − Gr (s − u, y, z)|2 dz

]p/(p−2)

du

) p−2
2

≤ Cp,r ,T |x − y|(p−4)/2.

Proof of 1 Note that

e−r(x−z)F1(t, x, z) = er
2t F1(t, x + 2r t, z) = er

2t F1(t, x, z − 2r t). (A.2)

Therefore,

∫ t

s

[∫ ∞

0

∣∣∣e−r(x−z)F1(t − u, x, z)
∣∣∣2 dz

] p
p−2

du

≤ Cp,r ,T

∫ t

s

[∫
R

|F1(u, x, z)|2 dz
]p/(p−2)

du

= Cp,r ,T

∫ t

s

[∫
R

1

4πu
exp

(
− (x − z)2

4u

)
dz

]p/(p−2)

du

≤ Cp,r ,T

∫ t

s
u− p

2(p−2) du.

(A.3)

If p > 4, we have that − p
2(p−2) > −1, and so this is equal to

Cp,r ,T |t − s| p−4
2(p−2) . (A.4)

The result follows. ��
Proof of 2 We again make use of Eq. (A.2). This gives that∣∣∣e−r(x−z)F1(t, x, z) − e−r(x−z)F1(s, x, z)

∣∣∣
≤ eTr

2 |F1(t, x, z − 2r t) − F1(s, x, z − 2r t)|
+ F1(s, x, z − 2r t)|er2t − er

2s |
≤ eTr

2 |F1(t, x, z − 2r t) − F1(s, x, z − 2r t)|
+ eTr

2
F1(s, x, z − 2r t)|t − s|.

(A.5)

Therefore,

(∫ s

0

[∫ ∞

0
e−r(x−z)|F1(t − u, x, z) − F1(s − u, x, z)|2dz

]p/(p−2)

du

) p−2
2
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≤ Cp,r ,T

(∫ s

0

[∫ ∞

0
|F1(t − u, x, z) − F1(s − u, x, z)|2dz

]p/(p−2)

du

) p−2
2

+Cp,r ,T |t − s|p
(∫ s

0

[∫ ∞

0
|F1(s − u, x, z − 2r t)|2dz

]p/(p−2)

du

) p−2
2

≤ Cp,r ,T

(∫ s

0

[∫ ∞

0
|F1(t − u, x, z) − F1(s − u, x, z)|2dz

]p/(p−2)

du

) p−2
2

+Cp,r ,T |t − s|p
(∫ s

0

[∫
R

|F1(s − u, x, z)|2dz
]p/(p−2)

du

) p−2
2

. (A.6)

The integral in the second term is integrable if p > 4. Therefore, the second
term is equal to Cp,r ,T |t − s|p for p > 4. For the first term, we have that it is
equal to

Cp,r ,T

∫ s

0

[ ∫ ∞

0

∣∣∣∣ 1√
(t − s) + (s − u)

e−(x−z)2/4((t−s)+(s−u))

− 1√
s − u

e−(x−z)2/4(s−u)

∣∣∣∣
2

dz

]p/(p−2)

du

= Cp,r ,T

∫ s

0

[∫ ∞

0

∣∣∣∣ 1√
(t − s) + u

e−(x−z)2/4((t−s)+u) − 1√
u
e−(x−z)2/4u

∣∣∣∣
2

dz

]p/(p−2)

du.

(A.7)

By making the substitution v = u
|t−s| , we see that this integral is at most

|t − s|
∫ ∞

0

[∫
R

∣∣∣∣ 1√
(t − s)(1 + v)

e−z2/4((t−s)(1+v))

− 1√
(t − s)v

e−z2/4(t−s)v
∣∣∣∣
2

dz

]p/(p−2)

dv. (A.8)

The substitution z̃ = z√
t−s

then gives that this is equal to

|t − s| p−4
2(p−2)

∫ ∞

0

[∫
R

∣∣∣∣ 1√
1 + v

e−z̃2/4(1+v) − 1√
v
e−z̃2/4v

∣∣∣∣
2

dz̃

]p/(p−2)

dv. (A.9)
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The integral in (A.9) converges provided that p > 4, giving the result. ��

Proof of 3 By (A.2), we have that

∫ s

0

[∫ ∞

0
|e−r(x−z)F1(s − u, x, z) − e−r(y−z)F1(s − u, y, z)|2dz

]p/(p−2)

du

≤ Cp,r ,T

∫ s

0

[∫ ∞

0
|F1(s − u, x, z − 2r t) − F1(s − u, y, z − 2r t)|2dz

]p/(p−2)

du

≤ Cp,r ,T

∫ s

0

[∫
R

|F1(s − u, x, z) − F1(s − u, y, z)|2dz
]p/(p−2)

du

= Cp,r ,T

∫ s

0

[∫
R

1

u

[
exp

(
− ((x − y) − (z − y))2

4u

)

− exp

(
− (z − y)2

4u

)]2
dz

]p/(p−2)

du

≤ Cp,r ,T

∫ ∞

0

[∫
R

1

u

[
exp

(
− ((x − y) − h)2

4u

)
− exp

(
− h2

4u

)]2
dh

]p/(p−2)

du.

(A.10)
Making the change of variables w = h

|x−y| and v = u
(x−y)2

, we see that this is equal
to

Cp.r ,T |x − y| p−4
p−2

∫ ∞

0

[∫
R

1

v

∣∣∣e−(1+w)2/4v − e−w2/4v
∣∣∣2 dw

]p/(p−2)

dv. (A.11)

The integral here converges provided that p > 4, and only depends on p. We therefore
have the result. ��

Proposition A.2 Let r ∈ R. Then for t ∈ [0, T ],

sup
x≥0

(∫ ∞

0
e−r(x−y)

∣∣∣∣∂G∂ y (t, x, y)

∣∣∣∣ dy
)

≤ Cr ,T√
t

. (A.12)

Proof It is sufficient to prove the result for F1 and F2 separately. Calculating gives
that

e−r(x−y) ∂F1
∂ y

(t, x, y) = (x − y)

8t3/2
exp

(
− (x − y + 2r t)2

4t

)
exp

(
r2t

)

≤ (x − y)

8t3/2
exp

(
− (x − y + 2r t)2

4t

)
exp

(
r2T

)
.

(A.13)
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Therefore

∫ ∞

0
e−r(x−y)

∣∣∣∣∂F1∂ y
(t, x, y)

∣∣∣∣ dy ≤ Cr ,T

∫ ∞

0

(x − y)

t3/2
exp

(
− (x − y + 2r t)2

4t

)
dy

≤ Cr ,T

∫ ∞

0

(x − y + 2r t)

t3/2
exp

(
− (x − y + 2r t)2

4t

)
dy

≤ Cr ,T

∫
R

y

t3/2
exp

(
− y2

4t

)
dy = Cr ,T√

t
.

(A.14)
The proof for the F2 part of the heat kernel is similar. By noting that

e−r(x−y) ∂F2
∂ y

(t, x, y) = x + y

8t3/2
exp

(
− (x + y − 2r t)2

4t

)
exp

(
r2t − 2r x

)
(A.15)

and arguing as before, we obtain the result. ��

Proposition A.3 Let δ ∈ R. Then for every t, s ∈ [0, T ] and every x, y ∈ [0,∞), and
every p > 4, we have that

1.

[∫ s
0

(∫ ∞
0

∣∣∣e−δ(x−z) ∂G
∂z (r , x, z) − e−δ(y−z) ∂G

∂z (r , y, z)
∣∣∣ dz)p/(p−2)

dr

](p−2)/p

≤ Cp,T ,δ|x − y|(p−4)/2p,

2.
[∫ s

0

(∫ ∞
0

∣∣∣e−δ(x−z) ∂G
∂z (t − r , x, z) − e−δ(x−z) ∂G

∂z (s−r , x, z)
∣∣∣ dz)p/(p−2)

dr

](p−2)/p

≤ Cp,T ,δ|t−s|(p−4)/4p,

3.

[∫ t
s

(∫ ∞
0

∣∣∣e−δ(x−z) ∂G
∂z (t − r , x, z)

∣∣∣ dz)p/(p−2)
dr

](p−2)/p

≤ Cp,T ,δ|t−s|(p−4)/4p.

Proof of 1 First note that

e−δ(x−z) ∂F1
∂z

(r , x, z) = (x − z + 2δr)

8r3/2
exp

(
− (x − z + 2δr)2

4r

)
exp

(
δ2r

)

− δ

4
√
r
exp

(
− (x − z + 2δr)2

4r

)
exp

(
δ2r

)
.

(A.16)
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We bound the terms corresponding to these two components separately. Let q =
p/(p − 2). Then, by applying Hölder’s inequality, we have that

∫ s

0

(∫ ∞

0

∣∣∣∣ (x − z + 2δr)

8r3/2
exp

(
− (x − z + 2δr)2

4r

)

− (y − z + 2δr)

8r3/2
exp

(
− (y − z + 2δr)2

4r

)∣∣∣∣ dz
)q

dr

≤
∫ s

0

(∫
R

∣∣∣∣ (x − y + h)

8r3/2
exp

(
− (x − y + h)2

4r

)
− h

8r3/2
exp

(
−h2

4r

)∣∣∣∣ dz
)q

dr

≤
∫ ∞

0

(∫
R

∣∣∣∣ (x − y + h)

8r3/2
exp

(
− (x − y + h)2

4r

)
− h

8r3/2
exp

(
−h2

4r

)∣∣∣∣ dz
)q

dr .

(A.17)
We split the time integral into two parts- the integral on [0, |x − y|] and the integral
on (|x − y|,∞). For the first of these domains, we have

∫ |x−y|

0

(∫
R

∣∣∣∣ (x − y + h)

8r3/2
exp

(
− (x − y + h)2

4r

)
− h

8r3/2
exp

(
−h2

4r

)∣∣∣∣ dz
)q

dr .

(A.18)
Letting h = |x − y|u, we obtain

∫ |x−y|

0

(∫
R

|x − y|2
∣∣∣∣ (u + 1)

8r3/2
exp

(
− (u + 1)2(x − y)2

4r

)

− u

8r3/2
exp

(
−u2(x − y)2

4r

)∣∣∣∣ dz
)q

dr

≤ Cp|x − y|p/(2p−4)
∫ |x−y|

0

(
1√

r(x − y)2

)q

dr

= Cp

∫ |x−y|

0
r−p/(2p−4)dr = Cp|x − y|(p−4)/(2p−4).

(A.19)

To bound on (|x − y|,∞), we note that

d

dx
(xe−x2/r ) = e−x2/r − 2x2

r
e−x2/r ≤ Ce−x2/2r . (A.20)

Therefore, outside the region u ∈ [−1, 0], we have that
∣∣∣∣ (u + 1)

8r3/2
exp

(
− (u + 1)2(x − y)2

4r

)
− u

8r3/2
exp

(
−u2(x − y)2

4r

)∣∣∣∣
≤ C

r3/2
max{e−u2(x−y)2/4r , e−(u+1)2(x−y)2/4r }

(A.21)
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In the region u ∈ [−1, 0], we have that

∣∣∣∣ (u + 1)

8r3/2
exp

(
− (u + 1)2(x − y)2

4r

)
− u

8r3/2
exp

(
−u2(x − y)2

4r

)∣∣∣∣ ≤ C
1

r3/2
.

(A.22)
It follows that

∫ ∞

|x−y|

(∫
R

|x − y|2
∣∣∣∣ (u + 1)

8r3/2
exp

(
− (u + 1)2(x − y)2

4r

)

− u

8r3/2
exp

(
−u2(x − y)2

4r

)∣∣∣∣ dz
)q

dr

≤ Cp

∫ ∞

|x−y|

[ |x − y|2
r3/2

(
1 +

∫
R

e−u2(x−y)2/4rdu

)]q
dr

≤ Cp|x − y|2q
∫ ∞

|x−y|
r−3q/2 + (r |x − y|)−qdr

= Cp|x − y|2q(|x − y|−(3q−2)/2 + |x − y|(1−2q))

(A.23)

Since |x−y| ≤ 1, this is atmostCp|x−y| ≤ Cp|x−y|(p−4)/(2p−4).Wehave therefore
deduced inequality (1) for the first component on the right hand side of expression
(A.16). For the second component of (A.16), we have that that

∫ ∞

0

∣∣∣∣ 1√
r
exp

(
− (x − z + 2δr)2

4r

)
exp

(
δ2r

)

− 1√
r
exp

(
− (y − z + 2δr)2

4r

)
exp

(
δ2r

)∣∣∣∣ dz
≤

∫
R

∣∣∣∣ 1√
r
exp

(
− (x − y + h)2

4r

)
exp

(
δ2r

)

− 1√
r
exp

(
−h2

4r

)
exp

(
δ2r

)∣∣∣∣ dh. (A.24)
∣∣∣∣ d

dx
(e−x2/4r )

∣∣∣∣ ≤ C√
r
e−x2/8r . (A.25)

We therefore have that, for h /∈ [−|x − y|, 0],

∣∣∣∣exp
(

− (x − y + h)2

4r

)
− exp

(
−h2

4r

)∣∣∣∣
≤ C√

r
|x − y|max{e−h2/8r , e−(x−y+h)2/8r }. (A.26)
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For h ∈ [−|x − y, 0], we use the simple bound

∣∣∣∣exp
(

− (x − y + h)2

4r

)
− exp

(
−h2

4r

)∣∣∣∣ ≤ 2. (A.27)

Putting this together, we obtain that

∫
R

∣∣∣∣ 1√
r
exp

(
− (x − y + h)2

4r

)
exp

(
δ2r

)
− 1√

r
exp

(
−h2

4r

)
exp

(
δ2r

)∣∣∣∣ dh
≤ 2

|x − y|√
r

+ C |x − y|
∫
R

1

r
e−h2/4rdr = C

|x − y|√
r

.

(A.28)
It follows that

∫ s

0

[∫ ∞

0

∣∣∣∣ 1√
r
exp

(
− (x − z + 2δr)2

4r

)
exp

(
δ2r

)

− 1√
r
exp

(
− (y − z + 2δr)2

4r

)
exp

(
δ2r

)∣∣∣∣ dz
]p/(p−2)

dr

≤ CT ,δ,p|x − y|p/(p−2).

(A.29)

Inequality (1) for the second component of (A.16) is then a simple consequence of
this. The manipulations required to prove inequalities (2) and (3) are similar, and we
therefore omit these lengthy calculations. ��

A.2 Heat kernel on [0, 1]

Recall that

H(t, x, y) := 1√
4π t

∞∑
n=−∞

[
exp

(
− (x − y + 2n)2

4t

)
− exp

(
− (x + y + 2n)2

4t

)]
.

(A.30)
We make the observation here that this expression can be written as

H(t, x, y) = G(t, x, y) − 1√
4π t

exp

(
− (x + y − 2)2

4t

)
+ L(t, x, y), (A.31)

where L is a smooth function of t, x, y which vanishes at t = 0. Consequently, we are
able to prove the estimates for H in this section in analogous ways to how we proved
the corresponding results for G. We therefore omit the proofs here.

Proposition A.4 Fix T > 0. Then, for p > 4, we have that
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1. For every t, s ∈ [0, T ],

sup
x∈[0,1]

(∫ t

s

[∫ 1

0
H(t − r , x, z)2dr

]p/(p−2)

dz

) p−2
2

≤ Cp|t − s|(p−4)/4.

2. For every t, s ∈ [0, T ],

sup
x∈[0,1]

(∫ s

0

[∫ 1

0
(H(t − r , x, z) − H(s − r , x, z))2 ds

]p/(p−2)

dz

) p−2
2

≤ Cp|t − s|(p−4)/4.

3. For every x, y ∈ [0, 1],
(∫ s

0

[∫ 1

0
(H(s − r , x, z) − H(s − r , y, z))2 dz

]p/(p−2)

dr

) p−2
2

≤ Cp|x − y|(p−4)/2.

Proposition A.5 For t ∈ [0, T ],

sup
x≥0

(∫ ∞

0

∣∣∣∣∂H∂ y (t, x, y)

∣∣∣∣ dy
)

≤ Cδ,T√
t

. (A.32)

Proposition A.6 For t, s ∈ [0, T ], x, y ∈ [0, 1] and p > 4, we have that

1.

[∫ s
0

(∫ 1
0

∣∣∣ ∂H
∂z (t − r , x, z) − ∂H

∂z (s − r , x, z)
∣∣∣ dz)p/(p−2)

dr

](p−2)/p

≤ C |t − s|(p−4)/4p,

2.

[∫ s
0

(∫ 1
0

∣∣∣ ∂H
∂z (s − r , x, z) − ∂H

∂z (s − r , y, z)
∣∣∣ dz)p/(p−2)

dr

](p−2)/p

≤ C |x − y|(p−4)/2p,

3.

[∫ t
s

(∫ 1
0

∣∣∣ ∂H
∂z (t − r , x, z)

∣∣∣ dz)p/(p−2)
dr

](p−2)/p

≤ C |t − s|(p−4)/4p.

B Proof of Theorem 2.6

In this section, we will prove a series of Propositions which together constitute a proof
of Theorem 2.6.

Proposition B.1 Let r > 0 and v ∈ C T
r such that v(t, 0) = 0. For ε > 0, let zε be the

solution to the PDE
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∂zε

∂t
= �zε + 1

ε
arctan(((zε + v) ∧ 0)2). (B.1)

Then zε increases as ε ↓ 0.

Proof Let 0 < ε2 ≤ ε1. Fix some δ > 0 and set y(t, x) := e−δx (zε1(t, x)− zε2(t, x)).
We have that y satisfies

∂ y

∂t
= �y+2δ

∂ y

∂x
+δ2y+ e−δx

ε1
arctan(((zε1+v)∧0)2)− e−δx

ε2
arctan(((zε2+v)∧0)2).

(B.2)
We know that

‖y‖T ,C−δ
= ‖zε1 − zε2‖T ,∞ < ∞.

Testing our equation for y with the positive part of y, we obtain that

‖y+
T ‖2L2 = −

∫ T

0

∥∥∥∥∂ y+
t

∂x

∥∥∥∥
2

L2
dt + δ

∫ T

0

∫ ∞

0

∂((y+)2)

∂x
(s, x)dxds

+ δ2
∫ T

0
‖y+

t ‖2L2dt + Negative Part.

(B.3)

We note that testing against the last two terms gives a negative contribution, since
when y ≥ 0, we have that zε1 ≥ zε2 and so ((zε1 + v) ∧ 0)2 ≤ ((zε2 + v) ∧ 0)2, from
which it follows that

e−δx

ε1
arctan(((zε1 + v) ∧ 0)2) − e−δx

ε2
arctan(((zε2 + v) ∧ 0)2 ≤ 0.

Putting this together, we see that

‖y+
T ‖2L2 ≤ δ2

∫ T

0
‖y+

t ‖2L2dt . (B.4)

Gronwall’s inequality then gives that y+
T = 0 i.e. that zε1 ≤ zε2 . ��

The following bound will allow us to control solutions of our obstacle problems by
the obstacles themselves.

Proposition B.2 Let r ∈ R and v1,v2 ∈ C T
r such that v1(t, 0) = v2(t, 0) = 0. Fix

ε > 0. For i = 1, 2, let zεi be the solution to the PDE

∂zεi
∂t

= �zεi + 1

ε
arctan(((zεi + vi ) ∧ 0)2) (B.5)

with boundary condition zi (t, 0) = 0 and zero initial data. Then there exists a constant
Cr ,T such that

‖zε1 − zε2‖C T
r

≤ Cr ,T ‖v1 − v2‖C T
r

. (B.6)
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Proof Let w be given by

w(t, x) = erx+r2tφ(t), (B.7)

where we define φ(t) := ‖v1 − v2‖C t
r
. Then we have that

∂w

∂t
= �w + erx+r2t dφ

dt
. (B.8)

We note here that φ is positive and increasing, and that we interpret dφ
dt in a weak

sense in the equation above. From the definition of w we see that w ≥ v2 − v1. Let
δ > max(0,−r) and define

z̃(t, x) := e−(δ+r)x (zε1(t, x) − zε2(t, x) − w(t, x)).

Then z̃ solves the equation

∂ z̃

∂t
= �z̃ + 2(δ + r)

∂ z̃

∂x
+ (δ + r)2 z̃ + e−(δ+r)x

ε
arctan(((zε1 + v1) ∧ 0)2)

− e−(δ+r)x

ε
arctan(((zεi + vi ) ∧ 0)2) − e−δx+r2t dφ

dt
,

(B.9)

with zero initial data and boundary condition z̃(t, 0) = −er
2tφ(t). Note that when

z̃ ≥ 0, we have zε1 − zε2 ≥ v2 − v1, and so

e−(δ+r)x

ε
arctan(((zε1 + v1) ∧ 0)2) − e−(δ+r)x

ε
arctan(((zε2 + v2) ∧ 0)2) ≤ 0.

Note also that the last term on the right hand side of (B.9) is negative. Therefore,
testing the equation with z̃+ we obtain that for t ∈ [0, T ]

∫ t

0

∫ ∞

0

∂ z̃

∂t
(s, x)z̃+(s, x)dxds ≤

∫ t

0

∫ ∞

0
�z̃(s, x)z̃+(s, x)dxds

+ 2(δ + r)
∫ t

0

∫ ∞

0

∂ z̃

∂x
(s, x)z̃+(s, x)dxds

+ (δ + r)2
∫ ∞

0
z̃(s, x)z̃+(s, x)dxds.

(B.10)
By integrating by parts and noting that z̃+ is zero at time t = 0 and vanishes at x = 0
and x = ∞, we obtain that

1

2
‖z̃+t ‖2L2 ≤ (δ + r)2

∫ t

0
‖z̃+s ‖L2ds. (B.11)
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It follows by an application of Gronwall’s inequality that z+t = 0. Therefore, we have
that

zε1(t, x) − zε2(t, x) ≤ w(t, x).

Interchanging zε1 and zε2, we also have that

zε2(t, x) − zε1(t, x) ≤ w(t, x).

It follows that

‖zε1 − zε2‖C T
r

≤ ‖w‖C T
r

= er
2Tφ(T ).

We therefore obtain that

‖zε1 − zε2‖C T
r

≤ Cr ,T ‖v1 − v2‖C T
r

. (B.12)

��
We are now in position to argue existence for the obstacle problem on [0,∞).

Proposition B.3 Let r ∈ R and v ∈ C T
r , with v(0, ·) ≤ 0. Then there exists (z, η)

solving the heat equation with obstacle v and exponential growth r .

Proof Proposition B.1 gives that the solutions zε to the Eq. (B.5) are increasing as
ε ↓ 0. For x ≥ 0 and t ∈ [0, T ], let

z(t, x) := lim
ε↓0 z

ε(t, x). (B.13)

By Proposition B.2, we have that

‖zε‖C T
r

≤ Cr ,T ‖v‖C T
r

. (B.14)

Letting ε ↓ 0, it follows that

sup
t∈[0,T ]

sup
x∈[0,1]

|e−r x z(t, x)| ≤ Cr ,T ‖v‖C T
r

. (B.15)

We also have that z is continuous. The argument for this is as follows. Let wn ∈
C∞
c ([0, T ] × (0,∞)) such that

sup
t∈[0,T ]

sup
x≥0

|wn(t, x) − e−(r+δ)xv(t, x)| → 0. (B.16)

Let vn(t, x) := e(r+δ)xwn(t, x), so we have that

‖v − vn‖C T
r+δ

→ 0. (B.17)
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As we did in order to construct z, we define the functions zεn to be the solutions to the
equations

∂zεn
∂t

= �zεn + 1

ε
arctan(((zεn − vn) ∧ 0)2). (B.18)

We can then argue as in the proof of Theorem 4.11, differentiating the equation in
space and time respectively, and applying Proposition 4.12 to see that

∥∥∥∥∂zεn
∂x

∥∥∥∥
C T
r+δ

≤ Cr+δ,T

∥∥∥∥∂vn

∂x

∥∥∥∥
C T
r+δ

,

and ∥∥∥∥∂zεn
∂t

∥∥∥∥
C T
r+δ

≤ Cr+δ,T

∥∥∥∥∂vn

∂t

∥∥∥∥
C T
r+δ

Note that we use the condition that v(0, ·) ≤ 0 for this step, in order to ensure that the
initial data for ∂zεn

∂t is zero. Therefore, ∂zεn
∂x and ∂zεn

∂t are uniformly bounded over ε on
compact subsets of [0, T ] × [0,∞). We can now argue that z is continuous. We have
that, for M > 0 and (t, x), (s, y) ∈ [0, T ] × [0, M]

|z(t, x) − z(s, y)| = lim
ε↓0 |zε(t, x) − zε(s, y)|

≤ lim inf
ε↓0

[
|zεn(t, x) − zεn(s, y)| + 2 sup

t∈[0,T ]
sup

x∈[0,M]
∣∣zε(t, x) − zεn(t, x)

∣∣
]

.

We know that

sup
t∈[0,T ]

sup
x∈[0,M]

∣∣zε(t, x) − zεn(t, x)
∣∣ ≤ e(r+δ)M‖zε

−zεn‖Cr+δ
≤ e(r+δ)M‖v − vn‖Cr+δ

→ 0

as n → ∞, using the bound from Proposition B.2. We also have that

|zεn(t, x) − zεn(s, y)| ≤ e(r+δ)M

[∥∥∥∥∂zεn
∂x

∥∥∥∥
C T
r+δ

+
∥∥∥∥∂zεn

∂t

∥∥∥∥
C T
r+δ

]
(|t − s| + |x − y|)

≤ CM,r+δ,T

[∥∥∥∥∂vn

∂x

∥∥∥∥
C T
r+δ

+
∥∥∥∥∂vn

∂t

∥∥∥∥
C T
r+δ

]
(|t − s| + |x − y|) → 0

as (s, y) → (t, x). It follows that

|z(t, x) − z(s, y)| → 0

as (s, y) → (t, x), and so z is continuous. Therefore, z ∈ C T
r . We now want to verify

that z solves the obstacle problem. Clearly, z(t, 0) = 0 and z(0, x) = 0 for all x . Let
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ϕ ∈ C∞
c ([0, T ] × [0,∞)) with ϕ(t, 0) = 0 for every t . Testing the equation for zε

with ϕ, we see that

∫ ∞

0
zε(T , x)ϕ(T , x)dx =

∫ T

0

∫ ∞

0
zε(t, x)

∂ϕ

∂t
(t, x)dxdt

+
∫ T

0

∫ ∞

0
zε(t, x)

∂2ϕ

∂x2
(t, x)dxdt

+
∫ T

0

∫ ∞

0
ϕ(t, x)

1

ε
arctan(((zε(t, x) − v(t, x)) ∧ 0)2)dxds.

(B.19)

Define

ηε(dt, dx) := 1

ε
arctan(((zε − v) ∧ 0)2)dxdt.

Letting ε → 0, we see that ηε → η in distribution on [0, T ]×(0,∞), to some positive
distribution η. It follows from it’s positivity that η is a measure, and we have that for
every ϕ ∈ C∞

c ([0, T ] × [0,∞)) with ϕ(t, 0) = 0 for every t ,

∫ ∞

0
z(T , x)ϕ(T , x)dx =

∫ T

0

∫ ∞

0
z(t, x)

∂ϕ

∂t
(t, x)dxdt

+
∫ T

0

∫ ∞

0
z(t, x)

∂2ϕ

∂x2
(t, x)dxdt

+
∫ T

0

∫ ∞

0
ϕ(t, x)η(dt, dx).

(B.20)

It is left to check that z − v ≥ 0 and that the integral of z − v against the measure η is
zero (i.e. the reflection measure is supported on the set where z hits the obstacle, v).
Multiplying (B.19) by ε, we obtain that

∫ T

0

∫ ∞

0
ϕ(s, x) arctan(e−r x ((zε − v) ∧ 0)2)dxds = o(ε). (B.21)

Letting ε → 0, we see that

∫ T

0

∫ ∞

0
ϕ(s, x) arctan(e−r x ((z − v) ∧ 0)2)dxds = 0. (B.22)

It follows that we must have z − v ≥ 0. Finally, we want to have that

∫ T

0

∫ ∞

0
(z(t, x) − v(t, x)) η(dx,dt) = 0.

Since zε is increasing as ε decreases, we see that supp(η) ⊂ supp(ηε) for every
ε > 0. Also, we have that zε − v ≤ 0 on the support of ηε , and so on the support of
η. Therefore, for ϕ ∈ C∞

c ([0, T ] × (0,∞)) with ϕ ≥ 0, we have that
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− ∞ <

∫ T

0

∫ ∞

0
ϕ(t, x)(zε(t, x) − v(t, x)) η(dt, dx) ≤ 0 (B.23)

almost surely. By applying the DCT, noting that η assigns finite mass to compact sets
in (0,∞) almost surely, we obtain that

∫ T

0

∫ ∞

0
ϕ(t, x)(z(t, x) − v(t, x)) η(dt, dx) ≤ 0.

Since z − v ≥ 0, this integral must be zero. So we have the result, and (z, η) is a
solution to the obstacle problem. ��

We now turn to the problem of uniqueness. The following lemma is an adaptation
of the result from Section 2.3 in [8].

Lemma B.4 Let (z1, η1) and (z2, η2) be two solutions to the obstacle problem with
obstacle v ∈ C T

r . Set ψ(t, x) := z1(t, x) − z2(t, x). Then, for φ ∈ C∞
c ([0,∞)) with

φ(0) = 0, and t ∈ [0, T ], we have that
∫ ∞

0
ψ2(t, x)φ2(x)dx ≤

∫ t

0

∫ ∞

0
ψ(s, x)2(φ2)′′(y)dxds.

Proof Fix some t < T and φ ∈ C∞
c ((0,∞)). The result would follow if we could test

the equation for ψ with the function ψ(t, x)φ2(x). Since this isn’t possible, as ψ isn’t
regular enough, we must test with a smooth approximation of this function and take
a limit. Let ε be a non-negative function supported on [−1, 1] which is symmetric,
smooth, positive definite and so that

∫ 1

−1
ε(x)dx = 1.

We then obtain approximations of the identity, given by εn(x) := nε(nx). We now
define the function of two variables, εn,m to be

εn,m(t, x) := εn(t)εm(x). (B.24)

Define the function dn,m to be given by

dn,m := ((ψφ) ∗ εn,m)φ, (B.25)

where ∗ here denotes the convolution on R
2. That is, we define

dn,m(t, x) =
(∫ ∞

0

∫ ∞

0
ψ(s, y)φ(y)εn(t − s)εm(x − y)dyds

)
φ(x)

=
(∫ (t+1/n)

(t−1/n)+

∫ ∞

0
ψ(s, y)φ(y)εn(t − s)εm(x − y)dyds

)
φ(x).

(B.26)
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The function dn,m is now a smooth approximation of ψ(t, x)φ(x)2, so we can test the
equation for ψ against this function. Doing so gives

∫ ∞

0
dn,m(t, x)ψ(t, x) dx =

∫ t

0

∫ ∞

0

∂(dn,m)

∂t
(s, x)ψ(s, x) dxds

+
∫ t

0

∫ ∞

0
ψ(s, x)

∂2dn,m

∂x2
(s, x)dxds

+
∫ t

0

∫ ∞

0
dn,m(s, x) η1(dx,dt)

−
∫ t

0

∫ ∞

0
dn,m(s, x) η2(dx,dt).

(B.27)

We take the limit for each term separately. The first term is

∫ ∞

0
dn,m(t, x)ψ(t, x) dx . (B.28)

As n,m → ∞, we can apply the DCT to see that this converges to

∫ ∞

0
dn,m(t, x)ψ(t, x) dx →

∫ ∞

0
ψ2(t, x)φ2(x)dx . (B.29)

For the second term, we have that

∫ t

0

∫ ∞

0

∂(dn,m)

∂t
(s, x)ψ(s, x) dxds

=
∫ t

0

∫ s+1/n

s−1/n
ε′
n(s − r)

×
(∫ ∞

0

∫ ∞

0
ψ(r , y)φ(y)εm(x − y)φ(x)ψ(s, x)dxdy

)
drds. (B.30)

Define

�m(r , s) :=
∫ ∞

0

∫ ∞

0
ψ(r , y)φ(y)εm(x − y)φ(x)ψ(s, x)dxdy.

Then, since� is symmetric in r , s and that ε′(r) = −ε′(−r), we see that by symmetry,
(B.30) is equal to ∫ t

t− 1
n

∫ s+ 1
n

t
ε′
n(s − r)�m(r , s)drds. (B.31)

Let An := {(r , s) | s ∈ [t − 1/n, t], r ∈ [t, s + 1/n]}. We can choose ε so that
it’s derivative is approximately equal to 1 on the interval [−1, 0], and therefore the
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derivative of εn is approximately n2 on [−1/n, 0]. We also have that �m(r , s) is equal
to ∫ ∞

0
ψ2(t, x)φ2(x)dx + Rm,n

on An , where Rn,m → 0 as n,m → ∞. It follows from these calculations, and the
fact that μLeb(A) = n2/2 that (B.31) converges to

1

2

∫ ∞

0
ψ2(t, x)φ2(x)dx (B.32)

as n,m → ∞. The limit of the combination of the reflection terms is at most zero,
since

lim
n,m→∞

[∫ t

0

∫ ∞

0
dn,m(t, x) (η1(dt, dx) − η2(dt, dx))

]

=
∫ ∞

0
ψ(t, x)φ(x)2 (η1(dt, dx) − η2(dt, dx)) . (B.33)

Since zi + v is zero on the support of ηi , this is equal to

−
∫ t

0

∫ ∞

0
(z2(s, x) + v(s, x))φ(x)2η1(ds, dx)

−
∫ t

0

∫ ∞

0
(z1(s, x) + v(s, x))φ(x)2η2(ds, dx) ≤ 0. (B.34)

Finally, we deal with the second derivative term,

∫ t

0

∫ ∞

0
ψ(s, x)

∂2dn,m

∂x2
(s, x)dxds. (B.35)

Letting n → ∞, we have that this converges to

∫ t

0

∫ ∞

0
ψ(s, x)

∂2dm
∂x2

(s, x)dxds (B.36)

where

dm(t, x) =
(∫ ∞

0
ψ(t, y)φ(y)εm(x − y)dy

)
φ(x).

In order to bound (B.36), we first suppose that ψ is smooth. Integrating by parts
and making use of the positive definiteness of ε, we obtain that (using angle bracket
notation to indicate integration over [0,∞))
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〈
∂2

∂x2
dm(t, ·), ψ(t, ·)

〉
=

〈
∂2

∂x2
(((ψ(t, ·)φ(·)) ∗ εm)φ(·)), ψ(t, ·)

〉

= −
〈

∂

∂x
(((ψ(t, ·)φ(·)) ∗ εm)φ(·)), ∂

∂x
ψ(t, ·)

〉

= −
〈
(

∂

∂x
(ψ(t, ·)φ(·)) ∗ εm)φ(·), ∂

∂x
ψ(t, ·)

〉

−
〈
((ψ(t, ·)φ(·)) ∗ εm)

∂

∂x
φ(·), ∂

∂x
ψ(t, ·)

〉

= −
〈
(

∂

∂x
ψ(t, ·)φ(·)) ∗ εm, φ(·) ∂

∂x
ψ(t, ·)

〉

−
〈
(ψ(t, ·) ∂

∂x
φ(·)) ∗ εm, φ(·) ∂

∂x
ψ(t, ·)

〉

−
〈
((ψ(t, ·)φ(·)) ∗ εm),

∂

∂x
φ(·) ∂

∂x
ψ(t, ·)

〉
.

(B.37)

We bound this last expression. Positive definiteness of ε ensures that the first term is
negative. We split the last term into two, using that

∂φ

∂x

∂ψ

∂x
= ∂

∂x

(
∂φ

∂x
ψ

)
− ∂2φ

∂x2
ψ,

Simple manipulations then give that (B.37) is at most

〈
(ψ(t, ·)φ(·)) ∗ εm,

∂2φ

∂x2
(·)ψ(t, ·)

〉
+

〈
(ψ(t, ·)∂φ

∂x
(·)) ∗ εm,

∂φ

∂x
(·)ψ(t, ·)

〉
.

(B.38)

So we have shown that, if ψ were smooth, then

〈
∂2dm
∂x

(t, ·), ψ(t, ·)
〉

≤
〈
(ψ(t, ·)φ(·)) ∗ εm,

∂2φ

∂x2
(·)ψ(t, ·)

〉

+
〈
(ψ(t, ·)∂φ

∂x
(·)) ∗ εm,

∂φ

∂x
(·)ψ(t, ·)

〉
. (B.39)

By taking a sequence of smooth functions which approximate ψ in the infinity norm
on the support of φ, we obtain (making use of the compact support of φ in order to
pass to the limit for the integrals) that this formula holds for our original choice of ψ ,
ψ = z1 − z2. Taking the lim sup of both sides gives that
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lim sup
m→∞

〈
∂2dm
∂x

(t, ·), ψ(t, ·)
〉

≤
〈
ψ(t, ·)φ(·), ∂2φ

∂x2
(·)ψ(t, ·)

〉

+
〈
ψ(t, ·)∂φ

∂x
(·), ∂φ

∂x
(·)ψ(t, ·)

〉

≤
〈
ψ2(t, ·), ∂

∂x
(φ

∂φ

∂x
)

〉
= 1

2

〈
ψ2(t, ·), ∂2(φ2)

∂x2

〉
.

(B.40)
By the reverse Fatou Lemma, we then obtain that

lim sup
m→∞

∫ t

0

∫ ∞

0
ψ(s, x)

∂2dm
∂x2

(s, x)dxds ≤ 1

2

∫ t

0

∫ ∞

0
ψ2(s, x)(φ2)′′(x)dx .

(B.41)
Altogether, we have shown that

∫ ∞

0
ψ2(t, x)φ2(x)dx ≤ 1

2

∫ ∞

0
ψ2(t, x)φ2(x)dx + 1

2

∫ t

0

∫ ∞

0
ψ2(s, x)(φ2)′′(x)dx .

(B.42)
A simple rearrangement of this gives the result for t < T . The result for t = T then
follows by a simple application of the MCT. ��

Wewant for this inequality to hold when we test with functions which are non-zero
at zero. This will produce an extra boundary term on the right hand side, but this will
be negative, so the previous inequality will still hold.

Corollary B.5 Let (z1, η1) and (z2, η2) be two solutions to the obstacle problem with
obstacle v ∈ C T

r . Set ψ(t, x) := z1(t, x) − z2(t, x). Then, for φ ∈ C∞
c ([0,∞)), we

have that

∫ ∞

0
ψ2(t, x)φ2(x)dx ≤

∫ t

0

∫ ∞

0
ψ2(s, x)(φ2)′′(x)dxds.

Proof We take an approximating sequence for φ, using φn ∈ C∞
c ((0,∞)). Doing so

carefully, we are able to see that (φ2)′′ gives an extra negative contribution in the limit,
of

− lim
ε→0

1

ε

∫ t

0
ψ2(s, ε)ds.

In particular, the inequality still holds when testing with such φ. ��
Proposition B.6 Let r > 0. The parabolic obstacle problem with exponential growth
r has a unique solution.

Proof The ideas for this proof borrow from those in Theorem 5.3 of [9]. Once again,
ψ = z1 − z2 where (z1, η1) and (z2, η2) are two solutions to the obstacle problem
with exponential growth r . Let δ > 0. We want to apply the prevous lemma to the
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function e−(r+δ)x . Let φn be a sequence of functions inC∞
c ([0,∞)) such that φn → φ

in H2,2((0,∞)), where φ(x) = e−δx . We then have that

∣∣∣∣
∫ ∞
0

ψ2(t, x)e−2r x
(
φ2(x) − φ2

n(x)
)
dx

∣∣∣∣ ≤ sup
t∈[0,T ]

sup
x≥0

[
ψ2(t, x)e−2r x

]

×
∫ ∞
0

(φ2(x) − φ2
n(x))dx . (B.43)

This converges to zero as n → ∞. Note that for a C2 function ϕ, we have that

((e−r yϕ)2)′′(y) = e−2r y
(
4r2ϕ2(y) − 8rϕ(y)ϕ′(y) + 2ϕ′′(y)ϕ(y) + 2(ϕ′(y))2

)
(B.44)

Since
sup

t∈[0,T ]
sup
x≥0

[
ψ2(t, x)e−2r x

]
< ∞ (B.45)

almost surely and φn → φ in H2,2((0,∞)), we have that

∫ T

0

∫ ∞

0
ψ2(s, y)e−2r y

×
(
4r2φ2

n(y) − 8rφn(y)φ
′
n(y) + 2φ′′

n (y)φn(y) + 2(φ′
n(y))

2
)
dsdy

→
∫ T

0

∫ ∞

0
ψ2(s, y)e−2r y

×
(
4r2φ2(y) − 8rφ(y)φ′(y) + 2φ′′(y)φ(y) + 2(φ′(y))2

)
dsdy. (B.46)

Hence, the inequality from Lemma 2 still holds with φ(x) = e−(r+δ)x . Applying the
result with this function, we obtain that, for t ∈ [0, T ],

∫ ∞

0
ψ2(t, x)e−2(r+δ)xdx ≤ Cr ,δ

∫ t

0

∫ ∞

0
ψ2(s, x)e−2(r+δ)xdxds. (B.47)

By Gronwall, we see that
∫ ∞
0 ψ2(t, x)e−2(r+δ)x dx = 0 for all t ∈ [0, T ]. Therefore,

ψ = 0, so we have uniqueness for our problem. ��
Proof of Theorem 2.6 By Proposition B.3 and Proposition B.6, we have existence and
uniqueness of a solution. Suppose now that v1, v2 ∈ C T

r and z1, z2 are solutions to the
associated obstacle problems. Then, as in the proof of Proposition B.3 and applying
the estimate from Proposition B.2, we have for ε > 0 functions zε1 and zε2 such that
for i = 1, 2

zi (t, x) = lim
ε↓0 z

ε
i (t, x) (B.48)

and
‖zε1 − zε2‖C T

r
≤ Cr ,T ‖v1 − v2‖C T

r
. (B.49)
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Letting ε ↓ 0, we obtain that

‖z1 − z2‖C T
r

≤ Cr ,T ‖v1 − v2‖C T
r

. (B.50)

This concludes the proof. ��

References

1. Dalang, Robert C., Khoshnevisan, Davar, Nualart, Eulalia: Hitting probabilities for systems of non-
linear stochastic heat equations with additive noise. ALEA Lat. Am. J. Probab. Math. Stat. 3, 231–271
(2007)

2. Dalang, Robert C., Mueller, C., Zambotti, L.: Hitting properties of parabolic SPDEs with reflection.
Ann. Probab. 34(4), 1423–1450 (2006)

3. Dalang, Robert, Zhang, Tusheng: Hölder continuity of solutions of SPDEs with reflection. Commun.
Math. Stat. 1(2), 133142 (2013)

4. Donati-Martin, C., Pardoux, E.: White noise driven SPDEs with reflection. Probab. Theory Relat.
Fields 95, 1–24 (1993)

5. Keller-Ressel, Martin, Müller, Marvin S.: Stefan-type stochastic moving boundary problem. Stoch.
Partial Differ. Equ. Anal. Comput. 4, 746–790 (2015)

6. Kim, Kunwoo, Zheng, Zhi, Sowers, Richard B.: A stochastic Stefan problem. J. Theor. Probab. 25(4),
1040–1080 (2012)

7. Müller, M.S.: A stochastic stefan-type problem under first order boundary conditions. Ann. Appl.
Probab. 28(4), 2335–2369 (2018)

8. Nualart, D., Pardoux, E.: White noise driven quasilinear SPDEs with reflection. Probab. Theory Relat.
Fields 93, 77–89 (1992)

9. Otobe, Y.: Stochastic reaction diffusion equations on an infinite interval with reflection. Stoch. Stoch.
Rep. 74, 489–516 (2002)

10. Xu, T., Zhang, T.: White noise driven SPDEs with reflection: existence, uniqueness and large deviation
principles. Stoch. Process. Appl. 119(10), 3453–3470 (2009)

11. Zheng, Z.: Stochastic Stefan Problems: Existence, Uniqueness and Modeling of Market Limit Orders.
Ph.D. thesis, Graduate College of the University of Illinois at Urbana-Champaign (2012)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	A reflected moving boundary problem driven by space–time white noise
	Abstract
	1 Introduction
	1.1 Reflected SPDE and SPDEs with moving boundaries in the literature
	1.2 Main results and contributions
	1.3 An application: limit order books
	2 A deterministic parabolic obstacle problem
	2.1 The deterministic obstacle problem on [0,1]
	2.2 The deterministic obstacle problem on [0,infty)

	3 The moving boundary problem on finite intervals in the relative frame
	3.1 Formulation of the moving boundary problem
	3.2 Existence and uniqueness
	3.3 Hölder continuity of the solutions


	4 The moving boundary problem on semi-infinite intervals in the relative frame
	4.1 Formulation of the problem
	4.2 Existence and uniqueness
	4.3 Hölder continuity

	Acknowledgements
	A Heat kernel estimates
	A.1 Heat kernel on [0,infty)
	A.2 Heat kernel on [0,1]
	B Proof of Theorem 2.6
	References






