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Abstract
Higher order numerical schemes for stochastic partial differential equations that do not
possess commutative noise require the simulationof iterated stochastic integrals. In this
work, we extend the algorithms derived byKloeden et al. (StochAnal Appl 10(4):431–
441, 1992. https://doi.org/10.1080/07362999208809281) and by Wiktorsson (Ann
Appl Probab 11(2):470–487, 2001. https://doi.org/10.1214/aoap/1015345301) for
the approximation of two-times iterated stochastic integrals involved in numerical
schemes for finite dimensional stochastic ordinary differential equations to an infinite
dimensional setting. These methods clear the way for new types of approximation
schemes for SPDEs without commutative noise. Precisely, we analyze two algorithms
to approximate two-times iterated integrals with respect to an infinite dimensional
Q-Wiener process in case of a trace class operator Q given the increments of the Q-
Wiener process. Error estimates in the mean-square sense are derived and discussed
for both methods. In contrast to the finite dimensional setting, which is contained as
a special case, the optimal approximation algorithm cannot be uniquely determined
but is dependent on the covariance operator Q. This difference arises as the stochastic
process is of infinite dimension.
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1 Introduction

In order to obtain higher convergence rates for numerical schemes for stochastic dif-
ferential equations, in general, we need to incorporate the information contained in
iterated integrals. However, usually these integrals cannot be simulated directly. There-
fore,we need to replace these terms by an approximation.We illustrate this statement in
a finite dimensional setting first, although, we are concerned about the approximation
of iterated Itô integrals in infinite dimensions in this work.
The numerical approximation of stochastic ordinary differential equations (SDEs)
that do not possess commutative noise requires the simulation of iterated stochastic
integrals to achieve a high order of convergence, see [3,5,9]. One example of such a
higher order scheme is the Milstein scheme developed in [7], which we present below
to illustrate the issue. For some fixed d, K ∈ N, we consider a d-dimensional SDE of
type

dXt = a(Xt ) dt +
K∑

j=1

b j (Xt ) dβ
j
t (1)

with functions a : R
d → R

d , b j = (b1, j , . . . , bd, j )T : R
d → R

d , j ∈ {1, . . . , K }
for all t ≥ 0 and initial value X0 = x0 ∈ R

d . Moreover, (β
j
t )t≥0, j ∈ {1, . . . , K }

denote independent real-valued Brownian motions. For some T > 0, we divide the
time interval [0, T ] into M ∈ N equal time steps h = T

M and denote tm = mh for m ∈
{0, . . . , M}. The increments of the Brownian motion are given as Δβ

j
m = β

j
tm+1

−β
j
tm

for all j ∈ {1, . . . , K } and m ∈ {0, . . . , M − 1}. Then, the Milstein scheme [7] reads
as Y0 = x0 and

Ym+1 = Ym + a(Ym)h +
K∑

j=1

b j (Ym)Δβ
j
m

+
K∑

i, j=1

(∂bl,i

∂xk
(Ym)

)

1≤l,k≤d
b j (Ym)

∫ tm+1

tm

∫ s

tm
dβ i

r dβ
j
s

for m ∈ {0, . . . , M − 1} using the notation Ym = Ytm . Under suitable assumptions,
the following error estimate holds

(
E
[|XT − YM |2]) 12 ≤ Ch, (2)

see [3]. If SDE (1) does not possess commutative noise, see [3] for details, the Mil-
stein scheme cannot be simplified and one has to approximate the iterated stochastic
integrals involved in the method. We denote these iterated Itô integrals by

I(i, j)(h) = I(i, j)(t, t + h) :=
∫ t+h

t

∫ s

t
dβ i

r dβ
j
s
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for some t ≥ 0, h > 0, and for all i, j ∈ {1, . . . , K }, where K ∈ N is the number of
independent Brownian motions driving the SDE. The research by Kloeden, Platen and
Wright [4] and by Wiktorsson [9] suggests different methods for an approximation
of these integrals; the main ideas are outlined in Sect. 2. We denote by Ī (D)

(i, j)(h) the
approximation of I(i, j)(h) with the algorithm derived in [4] for i, j ∈ {1, . . . , K },
D, K ∈ N, h > 0. In [4], the authors proved that for all i, j ∈ {1, . . . , K } and h > 0,
it holds

E
[∣∣I(i, j)(h) − Ī (D)

(i, j)(h)
∣∣2
]

≤ C
h2

D
, (3)

where D ∈ N denotes the index of the summand at which the series representation
of the stochastic double integral is truncated to obtain the approximation Ī (D)

(i, j)(h). If
we use the algorithm derived in [9] instead, we denote the approximation of I(i, j)(h)

by Î (D)
(i, j)(h) for all i, j ∈ {1, . . . , K }, h > 0. This scheme employs the same series

representation as proposed in [4] but incorporates an approximation of the truncated
term additionally. The error resulting from this scheme is estimated as

K∑

i, j=1
i< j

E
[∣∣I(i, j)(h) − Î (D)

(i, j)(h)
∣∣2
]

≤ 5h2

24π2D2 K
2(K − 1), (4)

where D is again the index of the summand at which the series is truncated to obtain
the approximation and K is the number of independent Brownian motions, see [9].
Let h and K be fixed, then both approximations converge in the mean-square sense as
D goes to infinity—with a different order of convergence, however. For the numerical
approximation of SDEs, the integer D is determined such that the overall order of
convergence in the time step is not distorted. For the Milstein scheme, for example,
error estimate (2) is considered, that is, a strong order of convergence of 1 can be
achieved. Therefore, D ≥ C

h is chosen for the method derived in [4], whereas D ≥√
5K 2(K−1)√
24π2h

is selected for the algorithm developed in [9], see also [3, Cor. 10.6.5].
This shows that if we decrease the step size h, the value for D has to increase faster
for the scheme developed in [4]. Note that the error estimate (4) depends on the
number of Brownian motions K as well. As this number is fixed in the setting of
finite dimensional SDEs, this factor is not crucial but simply a constant. Therefore,
the algorithm proposed byWiktorsson [9] is superior to the one derived in [4] in terms
of the computational effort when a given order of convergence in the step size h is to
be achieved.
The same issue arises in the context of higher order numerical schemes designed for
infinite dimensional stochastic differential equations that need not have commuta-
tive noise—we also have to approximate the involved iterated stochastic integrals in
order to implement the scheme. This time, however, the stochastic process is infinite
dimensional, in general. In this work, we aim at devising numerical algorithms for the
simulation of iterated integrals which arise, for example, in the approximation of the
mild solution of stochastic partial differential equations (SPDEs) of type
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dXt = (AXt + F(Xt )
)
dt + B(Xt ) dWt , t ∈ (0, T ], X0 = ξ, (5)

where the commutativity condition from [2]

B ′(y)
(
B(y)u, v

) = B ′(y)
(
B(y)v, u

)
(6)

for all y ∈ Hβ , u, v ∈ U0 is not assumed to hold. Here, Hβ = D((−A)β) denotes the
domain of the operator (−A)β which is a separable Hilbert space for some β ∈ [0, 1).
The operators A, F , B, and the initial value ξ are assumed to fulfill the conditions
imposed for the existence of a unique mild solution, see [1], and are not specified
further. The spaces are introduced in Sect. 2 and (Wt )t≥0 denotes a Q-Wiener process
taking values in some separable Hilbert space U for some trace class operator Q.
In order to approximate the mild solution of SPDEs of type (5) with a higher order
scheme, we need to simulate iterated stochastic integrals of the form

∫ t+h

t
Ψ

(∫ s

t
Φ dWr

)
dWs (7)

for t ≥ 0, h > 0, and some operators Ψ , Φ specified in Sect. 2. These terms arise
if condition (6) is not fulfilled, for example, in the Milstein scheme for SPDEs [2].
In the Milstein scheme, it holds Ψ = B ′(Yt ) and Φ = B(Yt ) for some B : H →
LHS(U0, H) and an approximation Yt ∈ Hβ with t ≥ 0 and β ∈ [0, 1), where
LHS(U0, H) denotes the space of Hilbert–Schmidt operators fromU0 to H . For more
details, we refer to [2].
We want to emphasize that the algorithms developed for the approximation of iterated
stochastic integrals in the setting of SDEs are designed for some fixed finite number
K of driving Brownian motions and that the approximation error (4) even involves
this number K as a constant. In contrast, when approximating the solution of SPDEs
driven by an infinite dimensional Q-Wiener process, this number corresponds to the
dimension of the finite-dimensional approximation subspace ontowhich the Q-Wiener
process is projected. Thus, the dimension K of the approximation subspace has to
increase, in general, to attain higher accuracy, i.e., K is not constant anymore; see the
error estimate of the Milstein scheme for SPDEs in [2], for example. Therefore, this
aspect has to be taken into account in order to identify an appropriate approximation
algorithm. In the following, we derive two algorithms for the approximation of iterated
integrals of type (7) based on the methods developed for the finite dimensional setting
by Kloeden, Platen, and Wright [4] and by Wiktorsson [9] as well as on [5] for
the infinite dimensional case. These algorithms allow for the first time to implement
higher order schemes for SPDEs that do not possess commutative noise and include the
algorithms that can be used for finite dimensional SDEs as a special case.We show that
the method that is superior in the setting of an infinite dimensional Q-Wiener process
cannot be uniquely determined in general but is dependent on the covariance operator
Q. In the analysis of the approximation error, we need to incorporate the eigenvalues
of the covariance operator Q. For the algorithm based on the approach by Kloeden,
Platen, andWright [4], we obtain a similar estimate as in (3) in the mean-square sense,
see Corollary 1. For the method derived in the work of Wiktorsson [9], we can prove
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two differing error estimates for the case of infinite dimensional Q-Wiener processes
by different means. One is the same, apart from constants, as estimate (4). Moreover,
the fact that we integrate with respect to a Q-Wiener process with a trace class operator
Q allows for an alternative proof to the one given in [9]. The result indicates a possibly
superior convergence in K—this depends on the rate of decay of the eigenvalues of
Q. Details can be found in Theorem 3 and Theorem 4.

2 Approximation of iterated stochastic integrals

Throughout this work, we fix the following setting and notation. Let H and U be
separable real-valued Hilbert spaces. In the following, let (Ω,F , P, (Ft )t≥0) be a
probability space, let (Wt )t≥0 denote a U -valued Q-Wiener process with respect to
(Ft )t≥0 where Q is a trace class covariance operator, and let U0 := Q1/2U . Let
L(U , H) denote the space of linear and bounded operators mapping fromU to H . We
define L(U , H)U0 := {T |U0 : T ∈ L(U , H)} which is a dense subset of the space of
Hilbert–Schmidt operators LHS(U0, H) [8]. Moreover, we assume that the operators
Φ and Ψ in (7) fulfill

(A1) Φ ∈ L(U , H)U0 with ‖ΦQ−α‖LHS(U0,H) < C ,
(A2) Ψ ∈ L(H , L(Q−αU , H)U0)

for some α ∈ (0,∞). The parameter α determines the rate of convergence for the
approximation of the Q-Wiener process, see Theorems 1 or 3. Note that assumption
(A1), needed to prove the convergence of the approximation algorithms for iterated
integrals in Theorems 1, 3, and 4, is less restrictive than the condition imposed on the
operator B in SPDE (5) to obtain the error estimate for some numerical scheme to
approximate its mild solution, e.g., in [6]. However, for the Milstein scheme in [2],
assumption (A2) does not need to be fulfilled for the error analysis of the Milstein
scheme to hold true.

If we are interested in the approximation of the mild solution of (5), a combina-
tion of the error estimate for a numerical scheme to obtain this process and the error
from the approximation of the iterated integrals has to be analyzed. In this case, we
impose the following assumptions instead

(B1) Φ ∈ L(U , H)U0 ,
(B2) Ψ ∈ L(H , L(U , H)U0).

For the convergence results in this case, we refer to Corollary 1 and 2, which have
to be combined with estimates on the respective numerical scheme. These weaker
conditions are sufficient as in the proof the Q-Wiener process is approximated first
and then the iterated integral is compared to the approximation.
Let Q ∈ L(U ) be a nonnegative and symmetric trace class operator with eigenvalues
η j and corresponding eigenfunctions ẽ j for j ∈ J where J is some countable index
set. The eigenfunctions {ẽ j : j ∈ J } constitute an orthonormal basis ofU , see [8, Prop.
2.1.5]. Then, for the Q-Wiener process (Wt )t≥0, the following series representation
holds, see [8, Prop. 2.1.10],
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Wt =
∑

j∈J
〈Wt , ẽ j 〉U ẽ j , t ≥ 0. (8)

As the Q-Wiener process (Wt )t≥0 is an infinite dimensional stochastic process, it has
to be projected to some finite dimensional subspace by truncating the series (8) such
that it can be simulated in a numerical scheme. For K ∈ N, we denote by (WK

t )t≥0
the projected Q-Wiener process, which is defined as

WK
t =

∑

j∈JK

〈Wt , ẽ j 〉U ẽ j , t ≥ 0, (9)

for some finite index set JK ⊂ J with |JK | = K . This expression allows to write
the iterated integral with respect to the projected Q-Wiener process (WK

t )t≥0 for any
t ≥ 0 and h > 0 as

∫ t+h

t
Ψ

(∫ s

t
Φ dWK

r

)
dWK

s =
∑

i, j∈JK

∫ t+h

t
Ψ

(∫ s

t
Φ〈dWr , ẽi 〉U ẽi

)
〈dWs, ẽ j 〉U ẽ j

=
∑

i, j∈JK

I Q(i, j)(t, t + h) Ψ
(
Φ ẽi , ẽ j

)

with

I Q(i, j)(t, t + h) :=
∫ t+h

t

∫ s

t
〈dWr , ẽi 〉U 〈dWs, ẽ j 〉U

for i, j ∈ JK . Therefore, we aim at devising a method to approximate the iterated
stochastic integrals I Q(i, j)(t, t + h) for all i, j ∈ JK . Below, we introduce two such
algorithms and analyze as well as discuss their convergence properties. For simplicity
of notation, we assume, without loss of generality, JK = {1, . . . , K } with η j = 0 for

j ∈ JK and denote I Q(i, j)(h) = I Q(i, j)(t, t + h).

2.1 Algorithm 1

In the following, we mainly adapt the method introduced by Kloeden, Platen, and
Wright [4] to the setting of infinite dimensional stochastic processes. Here, we addi-
tionally have to take into account the error arising from the projection of the Q-Wiener
process to a finite dimensional subspace.
For some t ≥ 0, the coefficients of the Q-Wiener process w

j
t := 〈Wt , ẽ j 〉U are

independent real-valued random variables that are N (0, η j t) distributed for j ∈ J .

Thus, the increments Δw
j
h := 〈Wt+h − Wt , ẽ j 〉U can be easily simulated since Δw

j
h

is N (0, η j h) distributed for j ∈ J and h ≥ 0. Our goal is to obtain an approximation

of the iterated integrals I Q(i, j)(h) for all i, j ∈ JK , K ∈ N, h > 0 given the realizations

of the increments Δw
j
h for j ∈ JK . The following derivation of the approximation

method follows the representation in [4] closely. Below, let K ∈ N be arbitrarily fixed
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and let us introduce the scaled Brownian bridge process (w
j
s − s

hw
j
h)0≤s≤h for j ∈ JK

and some h ∈ (0, T ]. We consider its series expansion

w
j
s − s

h
w

j
h = 1

2
a j
0 +

∞∑

r=1

(
a j
r cos

(2rπs
h

)
+ b j

r sin
(2rπs

h

))
(10)

which converges in L2(Ω). The coefficients are given by the following expressions

a j
r = 2

h

∫ h

0
(w

j
u − u

h
w

j
h) cos

(2rπu
h

)
du,

b j
r = 2

h

∫ h

0
(w

j
u − u

h
w

j
h) sin

(2rπu
h

)
du

for all j ∈ JK , r ∈ N0, and all 0 ≤ s ≤ h ≤ T , see also [4]. All coefficients a j
r and

b j
r are independent and N (0,

η j h
2π2r2

) distributed for r ∈ N and j ∈ JK and it holds

a j
0 = −2

∑∞
r=1 a

j
r . In contrast to [4], the distributions of the coefficients additionally

depend on the eigenvalues η j of the covariance operator Q. In order to obtain an

approximation of the scaled Brownian motion (w
j
s )0≤s≤h for some h ∈ (0, T ], we

truncate expression (10) at some integer R ∈ N and define

w
j
s
(R) = s

h
w

j
h + 1

2
a j
0 +

R∑

r=1

(
a j
r cos

(2rπs
h

)
+ b j

r sin
(2rπs

h

))
. (11)

In fact, we are interested in the integration with respect to this process. According
to Wong and Zakai [10,11], or [3, Ch. 6.1], an integral with respect to process (11)
converges to a Stratonovich integral J (h) as R → ∞. We are, however, interested
in the Itô stochastic integral. Following [3, p. 174], the Stratonovich integral J Q

(i, j)(h)

can be converted to an Itô integral I Q(i, j)(h), i, j ∈ JK according to

I Q(i, j)(h) = J Q
(i, j)(h) − 1

2
h ηi 1i= j .

That is, I Q(i, j)(h) = J Q
(i, j)(h) for all i, j ∈ JK with i = j . Moreover, we compute

I Q(i,i)(h) =
(
Δwi

h)
2 − ηi h

2

directly for i ∈ JK , see [3, p. 171]. This implies that we only have to approximate
I Q(i, j)(h) for i, j ∈ JK with i = j . Thus, we obtain the desired approximation of
the Itô stochastic integral directly by integrating with respect to process (11). Without
loss of generality, let t = 0. By (10) and the fact that

∫ h
0 f (u) dw j

u = f (h)w
j
h −∫ h

0 f ′(u)w
j
u du for a continuously differentiable function f : [0, h] → R, h > 0, see
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[3, p. 89], we obtain the following expression for the iterated stochastic integrals for
all i, j ∈ JK , i = j , and h > 0

I Q(i, j)(h) =
∫ h

0
wi
u dw

j
u

=
∫ h

0

(
u

h
wi
h + 1

2
ai0 +

∞∑

r=1

(
air cos

(2rπu
h

)
+ bir sin

(2rπu
h

)))
dw j

u

= wi
h

h

(
hw

j
h −

∫ h

0
w

j
u du

)
+ 1

2
ai0w

j
h

+
∞∑

r=1

(
air
(
w

j
h +

∫ h

0

2rπ

h
sin
(2rπu

h

)
w

j
u du

)

− bir

∫ h

0

2rπ

h
cos
(2rπu

h

)
w

j
u du

)
.

The expression a j
0 = 2

h

∫ h
0 w

j
u du − w

j
h and the definition of a j

r , b
j
r , r ∈ N as well as

in the last step a j
0 = −2

∑∞
r=1 a

j
r , j ∈ JK yield

I Q(i, j)(h) = 1

2
wi
hw

j
h − 1

2
(a j

0w
i
h − ai0w

j
h)

+
∞∑

r=1

(
air
(
w

j
h + rπ

(
b j
r − w

j
h

rπ

))
− rπbira

j
r

)

= 1

2
wi
hw

j
h − 1

2
(a j

0w
i
h − ai0w

j
h) + π

∞∑

r=1

r(air b
j
r − bir a

j
r )

= 1

2
Δwi

hΔw
j
h+π

∞∑

r=1

r
(
air
(
b j
r − 1

πr
Δw

j
h

)
−
(
bir − 1

πr
Δwi

h

)
a j
r

)
(12)

for all i, j ∈ JK , i = j , and h > 0. Expression (12) involves some scaled Lévy
stochastic area integrals which are defined as

AQ
(i, j)(h) := π

∞∑

r=1

r
(
air
(
b j
r − 1

πr
Δw

j
h

)
−
(
bir − 1

πr
Δwi

h

)
a j
r

)
(13)

for all i, j ∈ JK , i = j , h > 0. We approximate these terms instead of the iterated
stochastic integrals, as proposed in [4] and [9]. Due to the relations

I Q(i, j)(h) = Δwi
h Δw

j
h − h ηi 1i= j

2
+ AQ

(i, j)(h) (14)

AQ
( j,i)(h) = −AQ

(i, j)(h) (15)

AQ
(i,i)(h) = 0 (16)
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P-a.s. for all i, j ∈ JK , h > 0, see [9], it is sufficient to simulate AQ
(i, j)(h) for

i, j ∈ JK with i < j . By the distributional properties of air and bir for r ∈ N0,
i ∈ JK , we write

AQ
(i, j)(h) = h

2π

∞∑

r=1

1

r

(
UQ
ri

(
ZQ
r j −

√
2

h
Δw

j
h

)
−UQ

r j

(
ZQ
ri −

√
2

h
Δwi

h

))

for all i, j ∈ JK , i = j , h > 0 and AQ(h) = (AQ
(i, j)(h)

)
1≤i, j≤K in order to relate to

the derivation in [9]. This representation entails the random variablesUQ
ri ∼ N (0, ηi ),

ZQ
ri ∼ N (0, ηi ), and Δwi

h ∼ N (0, ηi h) that are all independent for i ∈ JK , r ∈ N.

As described above, we only need to approximate AQ
(i, j)(h), h > 0 for i, j ∈ JK with

i < j , that is, we want to simulate

ÃQ(h) = (AQ
1,2(h), . . . , AQ

1,K (h), AQ
2,3(h), . . . , AQ

2,K (h), . . . , AQ
l,l+1(h), . . . ,

AQ
l,K (h), . . . , AQ

K−1,K (h)).

Therefore, we write

vec(AQ(h)T ) = (AQ
1,1(h), . . . , AQ

1,K (h), . . . , AQ
K ,1(h), . . . , AQ

K ,K (h))T

and introduce the selection matrix

HK =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

0K−1×1 IK−1 0K−1×K (K−1)
0K−2×K+2 IK−2 0K−2×K (K−2)

...
...

...

0K−l×(l−1)K+l IK−l 0K−l×K (K−l)
...

...
...

01×(K−2)K+K−1 1 01×K

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

(17)

which defines the integrals that have to be computed, compare to [9]. Note that IK
represents the identity matrix of size K × K . Further, we define the matrix

QK := diag(η1, . . . , ηK ).

This allows to express the vector ÃQ(h) as

ÃQ(h) = HK vec(A
Q(h)T )

= h

2π

∞∑

r=1

1

r
HK

(
UQ
r ⊗

(
ZQ
r −

√
2

h
Δw

Q
h

)
−
(
ZQ
r −

√
2

h
Δw

Q
h

)
⊗UQ

r

)

(18)
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with Δw
Q
h = (Δw1

h, . . . , ΔwK
h )T and the random vectors UQ

r = (UQ
r1, . . . ,U

Q
rK )T

and ZQ
r = (ZQ

r1, . . . , Z
Q
rK )T that are independent and identically N (0K , QK ) dis-

tributed for all r ∈ N. As expression (18) contains an infinite sum, we need to truncate
it in order to compute this vector. For some D ∈ N, this approximation is denoted as

ÃQ,(D)(h) := h

2π

D∑

r=1

1

r
HK

(
UQ
r ⊗

(
ZQ
r −

√
2

h
Δw

Q
h

)
−
(
ZQ
r −

√
2

h
Δw

Q
h

)
⊗UQ

r

)

(19)
and we specify the remainder

R̃Q,(D)(h) := h

2π

∞∑

r=D+1

1

r
HK

(
UQ
r ⊗

(
ZQ
r −

√
2

h
Δw

Q
h

)
−
(
ZQ
r −

√
2

h
Δw

Q
h

)
⊗UQ

r

)
.

(20)
Let AI (h) = Q−1/2

K AQ(h)Q−1/2
K denote the matrix containing the standard Lévy

stochastic area integrals that correspond to the case that QK = IK , i.e., η j = 1 for all
j ∈ JK . Therewith, we obtain the relationship

ÃQ(h) = HK vec(A
Q(h)T )

= HK
(
Q1/2

K ⊗ Q1/2
K

)
vec(AI (h)T )

= HK
(
Q1/2

K ⊗ Q1/2
K

)
HT
K HK vec(A

I (h)T )

= HK
(
Q1/2

K ⊗ Q1/2
K

)
HT
K ÃI (h),

where ÃI (h) := HK vec(AI (h)T ) and where we employed

HT
K HK = diag(0, 1TK−1, 0, 0, 1

T
K−2, . . . , 0

T
l , 1TK−l , . . . , 0

T
K−1, 1, 0

T
K ) ∈ R

K 2×K 2

and the fact that we are interested in indices i, j ∈ JK with i < j only. We denote

Q̃K := HK
(
Q1/2

K ⊗ Q1/2
K

)
HT
K ,

which is of size L × L with L = K (K−1)
2 , such that the vector of interest is given by

ÃQ(h) = Q̃K ÃI (h).

Now, we can represent the approximation ÃQ,(D)(h) of ÃQ(h) as

ÃQ,(D)(h) = Q̃K ÃI ,(D)(h)

and the vector of truncation errors by R̃Q,(D)(h) = Q̃K R̃ I ,(D)(h) where ÃI ,(D)(h)

and R̃ I ,(D)(h) denote, in analogy to (19) and (20), the truncated part of ÃI (h) and its
truncation error, respectively. Note that ÃI (h) and especially ÃI ,(D)(h) correspond to
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the case where η j = 1 for all j ∈ JK , i.e., QK = IK in (18) and (19), respectively.
This also relates to the setting in [4] if J is finite.
We summarize the representation above to formulate Algorithm 1 for some h > 0,
t, t + h ∈ [0, T ], and D, K ∈ N:

1. For j ∈ JK , simulate the Fourier coefficients Δw
j
h = 〈Wt+h −Wt , ẽ j 〉U of the

incrementWt+h − Wt with Δw
Q
h = (Δw1

h, . . . , ΔwK
h

)T as

Δw
Q
h = √

h Q1/2
K V ,

where V ∼ N (0K , IK ).
2. Approximate ÃQ(h) as

ÃQ,(D)(h) =HK
(
Q1/2

K ⊗ Q1/2
K

)
HT
K

× h

2π

D∑

r=1

1

r
HK

(
Ur ⊗

(
Zr − √

2V
)

−
(
Zr − √

2V
)

⊗Ur

)
,

whereUr , Zr ∼ N (0K , IK ) are independent.
2. Compute the approximation vec(( Ī Q,(D)(h))T ) of vec((I Q(h)T ) as

vec(( Ī Q,(D)(h))T ) = Δw
Q
h ⊗ Δw

Q
h − vec(h QK )

2
+ (IK 2 − SK )HT

K ÃQ,(D)(h)

with SK :=∑K
i=1 e

T
i ⊗ (IK ⊗ ei ), where ei denotes the i -th unit vector.

We obtain the following error estimate for this approximation method; the mean-
square error converges with order 1/2 in D while the convergence in K is determined
by the operator Q. The first term results from the approximation of the Q-Wiener
process by (WK

t )t≥0, whereas the second term is due to the approximation of the
iterated integral with respect to this truncated process by Algorithm 1.

Theorem 1 (Convergence result for Algorithm 1) Assume that the trace class oper-
ator Q ∈ L(U ) is nonnegative and symmetric with eigenvalues {η j : j ∈ J }.
Further, let Φ ∈ L(U , H)U0 with ‖ΦQ−α‖LHS(U0,H) < C for some C > 0, let
Ψ ∈ L(H , L(Q−αU , H)U0) for some α ∈ (0,∞), i.e., (A1) and (A2) are fulfilled,
and let (Wt )t≥0 be a Q-Wiener process. Then, it holds

(
E

[∥∥∥
∫ t+h

t
Ψ
( ∫ s

t
Φ dWr

)
dWs −

∑

i, j∈JK

Ī Q,(D)
(i, j) (h) Ψ

(
Φ ẽi , ẽ j

)∥∥∥
2

H

]) 1
2

≤ C
(
h
(

sup
j∈J \JK

η j

)α + tr Q
h

π
√
D

)

for some C > 0 and all h > 0, t, t + h ∈ [0, T ], D, K ∈ N, and JK ⊂ J with
|JK | = K.

Proof For a proof, we refer to Sect. 3. ��
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Note that in the convergence analysis of numerical schemes for SPDEs,we compare the
approximation of the iterated stochastic integrals to integrals with respect to (WK

t )t≥0,
K ∈ N, see the proofs in [2] and [6], for example. In this case, the analysis involves
the error estimate stated in Corollary 1 below.We want to emphasize that this estimate
is independent of the integer K .

Corollary 1 Assume that Q is a nonnegative and symmetric trace class operator
and (Wt )t≥0 is a Q-Wiener process. Furthermore, let Φ ∈ L(U , H)U0 and Ψ ∈
L(H , L(U , H)U0), i.e., assumptions (B1) and (B2) are fulfilled. Then, it holds

(
E

[∥∥∥
∫ t+h

t
Ψ
( ∫ s

t
Φ dWK

r

)
dWK

s −
∑

i, j∈JK

Ī Q,(D)
(i, j) (h) Ψ

(
Φ ẽi , ẽ j

)∥∥∥
2

H

]) 1
2

≤ C tr Q
h

π
√
D

for some C > 0 and all h > 0, t, t + h ∈ [0, T ], D, K ∈ N, and JK ⊂ J with
|JK | = K.

Proof If we set ηi = 0 for all i ∈ J \JK , the result follows directly from Theorem 1.
��

Next, we outline an alternative algorithm to approximate integrals of type (7). In con-
trast to the method presented above, the vector of tail sum R̃Q,(D)(h) is approximated
and included in the computation.

2.2 Algorithm 2

The following derivation is based on the scheme developed by Wiktorsson [9] for
SDEs. In the finite dimensional setting, the error estimate (4) depends on the number
of Brownian motions K additionally to the time step size h. This suggests that the
computational cost involved in the simulation of the stochastic double integrals is
much larger in the setting of SPDEs as the number of independent Brownian motions
is, in general, not finite, see also expression (8). The eigenvalues of the Q-Wiener
process are, however, not incorporated in the error estimate (4). For example, if we
assume η j = O( j−ρQ ), j ∈ J ⊂ N, we obtain for ρQ ∈ (1, 3) an improved error
estimate which depends on the rate of decay of the eigenvalues instead of some fixed
exponent of K . This results from the fact that we integrate with respect to a Q-Wiener
process in our setting, where Q is a nonnegative, symmetric trace class operator. For
ρQ ≥ 3, we can show that the exponent of K is bounded by 3.
As before, we truncate the series (18) at some integer D ∈ N and obtain the approx-
imation ÃQ,(D)(h) in (19). The vector of tail sum R̃Q,(D)(h) in (20), however, is
not discarded but approximated by a multivariate normally distributed random vector
instead, as described in [9] for QK = IK and |J | = K . First, we determine the
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distribution of the tail sum; for r ∈ N, we compute the covariance matrix of

V Q
r := UQ

r ⊗
(
ZQ
r −

√
2

h
Δw

Q
h

)
−
(
ZQ
r −

√
2

h
Δw

Q
h

)
⊗UQ

r

= (SK − IK 2)
((

ZQ
r −

√
2

h
Δw

Q
h

)
⊗UQ

r

)

conditional on ZQ
r and Δw

Q
h with SK = ∑K

i=1 e
T
i ⊗ (IK ⊗ ei ), where ei denotes

the i-th unit vector. Note that SK (x ⊗ y) = y ⊗ x for any vectors x, y ∈ R
K [9].

Considering that UQ
r is a standard normally distributed vector, the covariance matrix

results in

ΣQ(V Q
r )|ZQ

r ,Δw
Q
h

= E
[
V Q
r V Q

r
T |ZQ

r ,Δw
Q
h

]

− E
[
V Q
r |ZQ

r ,Δw
Q
h

]
E
[
V Q
r |ZQ

r ,Δw
Q
h

]T

= (SK − IK 2)
((

ZQ
r −

√
2

h
Δw

Q
h

)(
ZQ
r −

√
2

h
Δw

Q
h

)T ⊗ QK

)

× (SK − IK 2). (21)

This expression can be reformulated without using the operator SK by taking into
account that

E
[
UQ
r

(
ZQ
r −

√
2

h
Δw

Q
h

)T ⊗
(
ZQ
r −

√
2

h
Δw

Q
h

)
UQ
r

T
∣∣∣ZQ

r ,Δw
Q
h

]

=
(
IK ⊗ diag

(
ZQ
r −

√
2

h
Δw

Q
h

))(
1TK ⊗ (QK ⊗ 1K )

)

×
(
diag

(
ZQ
r −

√
2

h
Δw

Q
h

)
⊗ IK

)

=
(
Q1/2

K ⊗ diag
(
ZQ
r −

√
2

h
Δw

Q
h

))((
ZQ
r −

√
2

h
Δw

Q
h

)T ⊗ (Q1/2
K ⊗ 1K )

)

as

ΣQ(V Q
r )|ZQ

r ,Δw
Q
h

= QK ⊗
(
ZQ
r −

√
2

h
Δw

Q
h

)(
ZQ
r −

√
2

h
Δw

Q
h

)T

+
(
ZQ
r −

√
2

h
Δw

Q
h

)(
ZQ
r −

√
2

h
Δw

Q
h

)T ⊗ QK

−
(
Q1/2

K ⊗ diag
(
ZQ
r −

√
2

h
Δw

Q
h

))((
ZQ
r −

√
2

h
Δw

Q
h

)T ⊗ (Q1/2
K ⊗ 1K )

)
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−
((

ZQ
r −

√
2

h
Δw

Q
h

)
⊗ (Q1/2

K ⊗ 1TK )
)(

Q1/2
K ⊗ diag

(
ZQ
r −

√
2

h
Δw

Q
h

))
.

(22)

Analogously to [9], by taking the expectation, we define

ΣQ∞ := E
[
HKΣQ(V Q

1 )|ZQ
1 ,Δw

Q
h
HT
K

∣∣∣Δw
Q
h

]

= 2HK (QK ⊗ QK )HT
K

+ 2

h
HK (IK 2 − SK )

(
QK ⊗ (Δw

Q
h Δw

Q
h
T ))

(IK 2 − SK )HT
K . (23)

Taking into consideration that

E
[(

IK ⊗ diag
(
ZQ
r −

√
2

h
Δw

Q
h

))(
1TK ⊗ (QK ⊗ 1K )

)

×
(
diag

(
ZQ
r −

√
2

h
Δw

Q
h

)
⊗ IK

)∣∣∣Δw
Q
h

]

= 2

h

(
IK ⊗ diag

(
Δw

Q
h

))(
1TK ⊗ (QK ⊗ 1K )

)(
diag

(
Δw

Q
h

)⊗ IK
)

+
K∑

i=1

(
Q1/2

K ei
)T ⊗ (IK ⊗ Q1/2

K ei
)

and that HK
(∑K

i=1

(
Q1/2

K ei
)T ⊗ (IK ⊗ Q1/2

K ei
))
HT
K = 0, it follows that expression

(23) can be rewritten as

ΣQ∞ = 2HK (QK ⊗ QK )HT
K + 2

h
HK

(
QK ⊗ Δw

Q
h Δw

Q
h
T + Δw

Q
h Δw

Q
h
T ⊗ QK

− (Q1/2
K ⊗ diag(Δw

Q
h )
)(

Δw
Q
h
T ⊗ (Q1/2

K ⊗ 1K )
)

− (Δw
Q
h ⊗ (Q1/2

K ⊗ 1TK )
)(
Q1/2

K ⊗ diag(Δw
Q
h )
))

HT
K . (24)

The definitions above imply that, given ZQ = (ZQ
r )r∈N and Δw

Q
h , the vector of tail

sum R̃Q,(D)(h) is conditionally Gaussian distributed with the following parameters

R̃Q,(D)(h)|ZQ ,Δw
Q
h

∼ N
(
0L ,
( h

2π

)2 ∞∑

r=D+1

1

r2
HKΣQ(V Q

r )|ZQ
r ,Δw

Q
h
HT
K

)

for D ∈ N. Hence, given ZQ and Δw
Q
h , we can approximate the tail sum by simulat-

ing a conditionally standard Gaussian random vector Υ Q,(D)
|ZQ ,Δw

Q
h

∼ N (0L , IL)
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defined as

Υ Q,(D) = 2π

h

( ∞∑

r=D+1

1

r2
HKΣQ(V Q

r )|ZQ
r ,Δw

Q
h
HT
K

)− 1
2

R̃Q,(D)(h)

and, therewith, obtain the vector of tail sum

R̃Q,(D)(h) = h

2π

( ∞∑

r=D+1

1

r2
HKΣQ(V Q

r )|ZQ
r ,Δw

Q
h
HT
K

) 1
2

Υ Q,(D). (25)

It remains to examine how the covariance matrix evolves as D → ∞. For D ∈ N, we
define the matrix

ΣQ,(D) :=
( ∞∑

r=D+1

1

r2

)−1 ∞∑

r=D+1

HKΣQ(V Q
r )|ZQ

r ,Δw
Q
h
HT
K

r2
. (26)

By the proof of Theorem 3 below, we get convergence in the following sense

lim
D→∞E

[∥∥ΣQ,(D) − ΣQ∞
∥∥2
F

]
= 0,

where ‖ · ‖F denotes the Frobenius norm. Thus, it follows

2π

h

( ∞∑

r=D+1

1

r2

)− 1
2

R̃Q,(D)(h)
d−→ ξ ∼ N

(
0L ,ΣQ∞

)

as D → ∞, see also [9].
Combining the above, we obtain an algorithm very similar to the one in [9], where
steps 1, 2, and 4 equal Algorithm 1. Additionally, we approximate the vector of tail
sum in step 3. For some h > 0, t, t + h ∈ [0, T ], and D, K ∈ N, Algorithm 2 is
defined as follows:

1. For j ∈ JK , simulate the Fourier coefficients Δw
j
h = 〈Wt+h − Wt , ẽ j 〉U of the

incrementWt+h − Wt with Δw
Q
h = (Δw1

h, . . . , ΔwK
h

)T as

Δw
Q
h = √

h Q1/2
K V ,

where V ∼ N (0K , IK ).
2. Approximate ÃQ(h) as

ÃQ,(D)(h) = HK
(
Q1/2

K ⊗ Q1/2
K

)
HT
K

× h

2π

D∑

r=1

1

r
HK

(
Ur ⊗

(
Zr − √

2V
)

−
(
Zr − √

2V
)

⊗Ur

)
,
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whereUr , Zr ∼ N (0K , IK ) are independent.
3. Simulate Υ Q,(D) ∼ N (0L , IL) and compute

ÂQ,(D)(h) = ÃQ,(D)(h) + h

2π

( ∞∑

r=D+1

1

r2

) 1
2
√

Σ
Q∞Υ Q,(D). (27)

4. Compute the approximation vec(( Î Q,(D)(h))T ) of vec((I Q(h)T ) as

vec(( Î Q,(D)(h))T ) = Δw
Q
h ⊗ Δw

Q
h − vec(hQK )

2
+ (IK 2 − SK )HT

K ÂQ,(D)(h)

with SK =∑K
i=1 e

T
i ⊗ (IK ⊗ ei ).

Note that the matrix
√

Σ
Q∞ in step 3 may be calculated by a Cholesky decomposition.

However, the square root of Σ
Q∞ can be obtained in closed form and does not have to

be computed numerically.

Theorem 2 Let Σ
Q∞ be defined as in (23) with Δw

Q
h = √

h Q1/2
K V and let Σ I∞ be

defined by (23) with QK = IK . Then, it holds

√
Σ

Q∞ = Q̃K
Σ I∞ + 2

√
1 + V T V IL√

2
(
1 + √

1 + V T V
) .

Proof For a proof, we refer to Sect. 3. ��
Now, we analyze the error resulting from Algorithm 2. In the following theorem, the
first term is the same as in the error estimate of Algorithm 1, see Theorem 1. Due to
the second term, the approximation converges with order 1 in D, which is twice the
order that Algorithm 1 attains. However, this expression is dependent on K as well.
Note that max j∈JK η j ≤ max j∈J η j ≤ tr Q < ∞. Below, we state an alternative
estimate—there, the exponent of K is not fixed but dependent on the eigenvalues η j ,
j ∈ JK , see Theorem 4. The algorithm that is superior can only be determined in
dependence on the operator Q.

Theorem 3 (Convergence result for Algorithm 2) Assume that the trace class opera-
tor Q is nonnegative and symmetric and (Wt )t≥0 is a Q-Wiener process. Further,
let Φ ∈ L(U , H)U0 with ‖ΦQ−α‖LHS(U0,H) < C for some C > 0, let Ψ ∈
L(H , L(Q−αU , H)U0) for some α ∈ (0,∞), i.e., assumptions (A1) and (A2) are
fulfilled. Then, it holds

(
E

[∥∥∥
∫ t+h

t
Ψ
( ∫ s

t
Φ dWr

)
dWs −

∑

i, j∈JK

Î Q,(D)
(i, j) (h) Ψ

(
Φ ẽi , ẽ j

)∥∥∥
2

H

]) 1
2

≤ C
(
h
(

sup
j∈J \JK

η j

)α + max
j∈JK

η j

√
K 2(K − 1)

h

D

)
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for some C > 0 and all h > 0, t, t + h ∈ [0, T ], D, K ∈ N, and JK ⊂ J with
|JK | = K.

Proof For a proof, we refer to Sect. 3. ��
For completeness, we state the following error estimate. Again, this is the estimate
that we consider when incorporating the approximation of the iterated integrals into a
numerical scheme; see also the notes on Corollary 1.

Corollary 2 Assume that Q is a nonnegative and symmetric trace class operator
and (Wt )t≥0 is a Q-Wiener process. Furthermore, let Φ ∈ L(U , H)U0 , Ψ ∈
L(H , L(U , H)U0), i.e., conditions (B1) and (B2) are fulfilled. Then, it holds

(
E

[∥∥∥
∫ t+h

t
Ψ
( ∫ s

t
Φ dWK

r

)
dWK

s −
∑

i, j∈JK

Î Q,(D)
(i, j) (h) Ψ

(
Φ ẽi , ẽ j

)∥∥∥
2

H

]) 1
2

≤ C max
j∈JK

η j

√
K 2(K − 1)

h

D

for some C > 0 and all h > 0, t, t + h ∈ [0, T ], D, K ∈ N, and JK ⊂ J with
|JK | = K.

Proof The proof of this corollary is detailed in the proof of Theorem 3. ��
If we assume, e.g., η j ≤ C j−ρQ for C > 0, ρQ > 1, and all j ∈ J ⊂ N, we can
improve the result in Theorem 3 in the case ρQ < 3. Precisely, we obtain an error term

that involves the factor K
ρQ
2 . The main difference is that the alternative proof works

with the entries of the covariance matrices explicitly. A statement along the lines of
Corollary 2 can be obtained analogously.

Theorem 4 (Convergence result for Algorithm 2) Assume that the trace class oper-
ator Q is nonnegative and symmetric and (Wt )t≥0 is a Q-Wiener process. Let
Φ ∈ L(U , H)U0 with ‖ΦQ−α‖LHS(U0,H) < C and Ψ ∈ L(H , L(Q−αU , H)U0)

for some α ∈ (0,∞), i.e., assumptions (A1) and (A2) are fulfilled. Then, it holds

(
E

[∥∥∥
∫ t+h

t
Ψ
( ∫ s

t
Φ dWr

)
dWs −

∑

i, j∈JK

Î Q,(D)
(i, j) (h) Ψ

(
Φ ẽi , ẽ j

)∥∥∥
2

H

]) 1
2

≤ C
(
h
(

sup
j∈J \JK

η j

)α +
(
max
j∈JK

η j

) 1
2
(tr Q)

3
2

(
min
j∈JK

η j

)− 1
2 h

D

)

for some C > 0 and all h > 0, t, t + h ∈ [0, T ], D, K ∈ N, and JK ⊂ J with
|JK | = K.

Proof For a proof, we again refer to Sect. 3. ��
Remark 1 Note that if (Wt )t≥0 is a cylindricalWiener process,weget the sameestimate
(4) as in the finite dimensional case.
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2.3 Comparison and concluding remarks

For some fixed interval of length h = T
M and a given projected Q-Wiener pro-

cess (WK
t )t≥0, that is, some fixed values M, K ∈ N, we obtain convergence as

D → ∞ for both algorithms that we proposed in the last sections with differing
orders, respectively. However, if the approximation of the iterated integrals is incor-
porated in a numerical scheme to compute the solution of a given SPDE, then the
interval length h has to decrease and the number K , which defines the approxima-
tion of the Q-Wiener process, has to increase in order to approximate the solution
with increasing accuracy. Algorithm 1 provides convergence as K , M → ∞ if we
choose D ≥ h2−2θ for some θ > 0 with order O(M−θ ) where the choice of D
does not depend on K . For Algorithm 2, we require D ≥ (min j∈JK η j )

− 1
2 h1−θ or,

respectively, D ≥ √
K 2(K − 1)h1−θ for some θ > 0 to get convergence with order

O(M−θ ). In order to maintain the global rate of convergence in the mean-square
sense in h = T

M for a given numerical scheme, we need an even more careful choice
of D. The error estimates for the iterated integrals depend on the values M , D, and,
for Algorithm 2, on the value K . Moreover, for the approximation of the solution
of an SPDE, we have to include an approximation of the infinite dimensional solu-
tion space, see [2], for example. All these error terms, i.e., in time, in space, the
truncation of the Q-Wiener process and the truncation of the Fouries series for the
iterated integrals, have to be balanced such that an optimal overall order of con-
vergence for a given numerical scheme can be observed. The full treatment of this
optimization is beyond the scope of this work as it, e.g., depends on the numerical
scheme and the specific SPDE. We restrict our discussion to the clarification of the
relation of the value D to the number of time steps and the approximation of the Q-
Wiener process which characterizes the main difference between the two algorithms
that we proposed. However, this already shows that, dependent on the desired order
of convergence in h and on the operator Q (which are determined by the SPDE to
be solved and the numerical scheme employed for the discretization of time), either
Algorithm 1 or Algorithm 2 is the optimal choice in terms of lower computational
cost.

3 Proofs

3.1 Convergence analysis for Algorithm 1

Proof of Theorem 1 We determine the error resulting from the approximation of the
iterated stochastic integral (7) by Algorithm 1 which also contains the projection of
the Q-Wiener process in (9). Below, we employ error estimates of the following form
several times, see also the proof in [2]. It holds
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E

[∥∥∥
∫ t+h

t
Φ d(Ws − WK

s )

∥∥∥
2

H

]
= E

[∥∥∥
∑

j∈J \JK

∫ t+h

t
Φ ẽ j 〈dWs , ẽ j 〉U

∥∥∥
2

H

]

=
∑

j∈J \JK

η j

∫ t+h

t
E
[∥∥ΦQ−αQα ẽ j

∥∥2
H

]
ds

=
∑

j∈J \JK

η2α+1
j

∫ t+h

t
E
[∥∥ΦQ−α ẽ j

∥∥2
H

]
ds

≤
(

sup
j∈J \JK

η j

)2α ∫ t+h

t
E
[ ∑

j∈J
η j
∥∥ΦQ−α ẽ j

∥∥2
H

]
ds

=
(

sup
j∈J \JK

η j

)2α ∫ t+h

t
E
[∥∥ΦQ−α

∥∥2
LHS(U0,H)

]
ds,

(28)
where we used the expression

d(Ws − WK
s ) =

∑

j∈J \JK

ẽ j 〈dWs, ẽ j 〉U

for all s ∈ [0, T ], K ∈ N in the first step.Wefix some arbitrary h > 0, t, t+h ∈ [0, T ],
and K ∈ N throughout the proof and decompose the error into several parts

E

[∥∥∥
∫ t+h

t
Ψ
( ∫ s

t
Φ dWr

)
dWs −

∑

i, j∈JK

Ī Q,(D)
(i, j) (h) Ψ

(
Φ ẽi , ẽ j

)∥∥∥
2

H

]

≤ C

(
E

[∥∥∥
∫ t+h

t
Ψ
( ∫ s

t
Φ dWr

)
dWs −

∫ t+h

t
Ψ
( ∫ s

t
Φ dWK

r

)
dWs

∥∥∥
2

H

]

+ E

[∥∥∥
∫ t+h

t
Ψ
( ∫ s

t
Φ dWK

r

)
dWs −

∫ t+h

t
Ψ
( ∫ s

t
Φ dWK

r

)
dWK

s

∥∥∥
2

H

]

+ E

[∥∥∥
∫ t+h

t
Ψ
( ∫ s

t
Φ dWK

r

)
dWK

s −
∑

i, j∈JK

Ī Q,(D)
(i, j) (h) Ψ

(
Φ ẽi , ẽ j

)∥∥∥
2

H

])
.

(29)
For now, we neglect the last term in (29) and estimate the other parts. By Itô’s isometry,
the properties (A1) and (A2) of the operators Φ, Ψ , and estimate (28), we get

E

[∥∥∥
∫ t+h

t
Ψ
( ∫ s

t
Φ dWr

)
dWs −

∫ t+h

t
Ψ
( ∫ s

t
Φ dWK

r

)
dWs

∥∥∥
2

H

]

+ E

[∥∥∥
∫ t+h

t
Ψ
( ∫ s

t
Φ dWK

r

)
dWs −

∫ t+h

t
Ψ
( ∫ s

t
Φ dWK

r

)
dWK

s

∥∥∥
2

H

]

≤
∫ t+h

t
E

[∥∥∥Ψ
( ∫ s

t
Φ d
(
Wr − WK

r

))∥∥∥
2

LHS(U0,H)

]
ds

123



228 Stoch PDE: Anal Comp (2019) 7:209–239

+
(

sup
j∈J \JK

η j

)2α ∫ t+h

t
E

[∥∥∥Ψ
( ∫ s

t
Φ dWK

r

)
Q−α

∥∥∥
2

LHS(U0,H)

]
ds

≤ C
∫ t+h

t
E

[∥∥∥
∫ s

t
Φ d
(
Wr − WK

r

)∥∥∥
2

H

]
ds

+ C
(

sup
j∈J \JK

η j

)2α ∫ t+h

t
E

[∥∥∥
∫ s

t
Φ dWK

r

∥∥∥
2

H

]
ds

≤ C
(

sup
j∈J \JK

η j

)2α ∫ t+h

t

∫ s

t
E
[∥∥ΦQ−α

∥∥2
LHS(U0,H)

]
dr ds

+ C
(

sup
j∈J \JK

η j

)2α ∫ t+h

t

∫ s

t
dr ds.

Finally, assumption (A1) yields

E

[∥∥∥
∫ t+h

t
Ψ
( ∫ s

t
Φ dWr

)
dWs −

∫ t+h

t
Ψ
( ∫ s

t
Φ dWK

r

)
dWs

∥∥∥
2

H

]

+ E

[∥∥∥
∫ t+h

t
Ψ
( ∫ s

t
Φ dWK

r

)
dWs −

∫ t+h

t
Ψ
( ∫ s

t
Φ dWK

r

)
dWK

s

∥∥∥
2

H

]

≤ C
(

sup
j∈J \JK

η j

)2α
h2. (30)

Now, we concentrate on the last term in (29); this part also proves Corollary 1. We get

E

[∥∥∥
∫ t+h

t
Ψ
( ∫ s

t
Φ dWK

r

)
dWK

s −
∑

i, j∈JK

Ī Q,(D)
(i, j) (h) Ψ

(
Φ ẽi , ẽ j

)∥∥∥
2

H

]

= E

[∥∥∥
∑

i, j∈JK

I Q(i, j)(h) Ψ
(
Φ ẽi , ẽ j

)−
∑

i, j∈JK

Ī Q,(D)
(i, j) (h) Ψ

(
Φ ẽi , ẽ j

)∥∥∥
2

H

]

=
∑

i, j∈JK

E
[(
I Q(i, j)(h) − Ī Q,(D)

(i, j) (h)
)2]∥∥Ψ

(
Φ ẽi , ẽ j

)∥∥2
H

as E
[(
I Q(i, j)(h) − Ī Q,(D)

(i, j) (h)
)(
I Q(k,l)(h) − Ī Q,(D)

(k,l) (h)
)] = 0 for all i, j, k, l ∈ JK with

(i, j) = (k, l), K ∈ N, see [3]. By assumptions (B1) and (B2), we obtain

E

[∥∥∥
∫ t+h

t
Ψ
( ∫ s

t
Φ dWK

r

)
dWK

s −
∑

i, j∈JK

Ī Q,(D)
(i, j) (h) Ψ

(
Φ ẽi , ẽ j

)∥∥∥
2

H

]

≤
∑

i, j∈JK

E
[(
I Q(i, j)(h) − Ī Q,(D)

(i, j) (h)
)2]∥∥Ψ

∥∥2
L(H ,L(U ,H))

∥∥Φ
∥∥2
L(U ,H)

≤ C
∑

i, j∈JK

E
[(
I Q(i, j)(h) − Ī Q,(D)

(i, j) (h)
)2]

.
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Due to the relations (14)–(16), it is enough to examine ÃQ(h) and ÃQ,(D)(h) which
implies

E

[∥∥∥
∫ t+h

t
Ψ
( ∫ s

t
Φ dWK

r

)
dWK

s −
∑

i, j∈JK

Ī Q,(D)
(i, j) (h) Ψ

(
Φ ẽi , ẽ j

)∥∥∥
2

H

]

≤ 2C
L∑

i=1

E
[(
ÃQ

(i)(h) − ÃQ,(D)
(i) (h)

)2]
. (31)

By (12), (13), and the properties of a j
r , b

j
r for r ∈ N0, j ∈ JK , K ∈ N, we obtain

E

[∥∥∥
∫ t+h

t
Ψ
( ∫ s

t
Φ dWK

r

)
dWK

s −
∑

i, j∈JK

Ī Q,(D)
(i, j) (h) Ψ

(
Φ ẽi , ẽ j

)∥∥∥
2

H

]

≤ 2C
∑

i, j∈JK
i< j

E

[(
π

∞∑

r=D+1

r
(
air
(
b j
r − 1

πr
Δw

j
h

)
−
(
bir − 1

πr
Δwi

h

)
a j
r

))2]

= 2Cπ2
∑

i, j∈JK
i< j

∞∑

r=D+1

r2 E
[(

air b
j
r − air

1

πr
Δw

j
h

)2 +
(
bir a

j
r − 1

πr
Δwi

ha
j
r

)2]

= 3C
h2

π2

∑

i, j∈JK
i< j

ηiη j

∞∑

r=D+1

1

r2

≤ 3C
h2

π2 (tr Q)2
∞∑

r=D+1

1

r2

for all D ∈ N. As in [4], we finally estimate

∞∑

r=D+1

1

r2
≤
∫ ∞

D

1

s2
ds = 1

D

and, in total, we obtain for this part

E

[∥∥∥
∫ t+h

t
Ψ
( ∫ s

t
Φ dWK

r

)
dWK

s −
∑

i, j∈JK

Ī Q,(D)
(i, j) (h) Ψ

(
Φ ẽi , ẽ j

)∥∥∥
2

H

]

≤ 3C (tr Q)2
h2

Dπ2 (32)

for all h > 0, t, t + h ∈ [0, T ], D, K ∈ N. ��
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3.2 Square root of the covariancematrix

Proof of Theorem 2 It holdsΣ
Q∞ = Q̃KΣ I∞ Q̃T

K , whereΣ I∞ is given by (23) for QK =
IK , and Δw I

h = Q−1/2
K Δw

Q
h = √

hV . We assume that

√
Σ

Q∞ = Q̃K
Σ I∞ + 2

√
1 + V T V IL√

2
(
1 + √

1 + V T V
) = Q̃K

Σ I∞ + 2
√
1 + 1

hΔw I
h
T
Δw I

h IL
√
2
(
1 +

√
1 + 1

hΔw I
h
T
Δw I

h

)

holds and compute for a :=
√
1 + 1

hΔw I
h
T
Δw I

h the expression

√
Σ

Q∞
√

Σ
Q∞
T

= Q̃KΣ I∞
(
Σ I∞

)T
Q̃T

K + 2aQ̃KΣ I∞ Q̃T
K + 2aQ̃K

(
Σ I∞

)T
Q̃T

K + 4a2 Q̃K Q̃T
K

2(1 + a)2

= Q̃KΣ I∞
(
Σ I∞

)T
Q̃T

K − (2 + 2a2)Q̃KΣ I∞ Q̃T
K + 4a2 Q̃K Q̃T

K

2(1 + a)2

+ 2 + 4a + 2a2

2(1 + a)2
Q̃KΣ I∞ Q̃T

K

= Q̃KΣ I∞
(
Σ I∞

)T
Q̃T

K − (2 + 2a2)Q̃KΣ I∞ Q̃T
K + 4a2 Q̃K Q̃T

K

2(1 + a)2
+ ΣQ∞.

The idea in [9] is to show that the first term, which slightly differs in [9], is zero, i.e.,

Q̃K
(
Σ I∞

(
Σ I∞

)T − (2 + 2a2)Σ I∞ + 4a2 IL
)
Q̃T

K = 0L×L

⇔ Σ I∞
(
Σ I∞

)T − (2 + 2a2)Σ I∞ + 4a2 IL = 0L×L ,

which proves that the expression for
√

Σ
Q∞ is correct. In the proof of Theorem 4.1 in

[9], the author shows

Σ I∞
(
Σ I∞

)T − (2 + 2a2)Σ I∞ + 4a2 IL = 0L×L ,

arguing by the eigenvalues of the minimal polynomial of this equation. We do not
repeat this ideas here but refer to [9] for further details. ��

3.3 Convergence analysis for Algorithm 2

Proof of Theorem 3 We split the error term as in the proof of Theorem 1, see Eq. (29),
and obtain the same expression (30) from the approximation of the Q-Wiener process
by (WK

t )t≥0, K ∈ N. Further, we get as in Eq. (31)
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E

[∥∥∥
∫ t+h

t
Ψ
( ∫ s

t
Φ dWK

r

)
dWK

s −
∑

i, j∈JK

Î Q,(D)
(i, j) (h) Ψ

(
Φ ẽi , ẽ j

)∥∥∥
2

H

]

≤ 2C
L∑

i=1

E
[(
ÃQ

(i)(h) − ÂQ,(D)
(i) (h)

)2]

for all h > 0, t, t + h ∈ [0, T ], K ∈ N. The following part also proves Corollary 2.
Let ‖ · ‖F denote the Frobenius norm. With the expressions for R̃Q,(D)(h) in (25),
with ΣQ,(D) = Q̃KΣ I ,(D) Q̃T

K , Σ
Q∞ = Q̃KΣ I∞ Q̃T

K where Σ I ,(D), Σ I∞ are given by
(26) and (23) for QK = IK , respectively, and the definition of the algorithm (27), we
obtain

E

[∥∥∥
∫ t+h

t
Ψ
( ∫ s

t
Φ dWK

r

)
dWK

s −
∑

i, j∈JK

Î Q,(D)
(i, j) (h) Ψ

(
Φ ẽi , ẽ j

)∥∥∥
2

H

]

≤ 2C
L∑
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E
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R̃Q,(D)(h) − h

2π

( ∞∑

r=D+1

1
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) 1
2
√

Σ
Q∞Υ Q,(D)

)

(i)

)2]

= 2C
L∑

i=1

E

[(( h

2π

( ∞∑

r=D+1

1

r2
HKΣQ(V Q

r )|ZQ
r ,Δw

Q
h
HT
K

) 1
2
Υ Q,(D)

− h

2π

( ∞∑

r=D+1

1

r2

) 1
2
Q̃K

√
Σ I∞Υ Q,(D)

)

(i)

)2]

= Ch2

2π2

( ∞∑

r=D+1

1

r2

) L∑

i=1

E

[(((( ∞∑

r=D+1

1

r2

)− 1
2

× Q̃K

( ∞∑

r=D+1

1

r2
HKΣ I (V I

r )|Z I
r ,Δw I

h
HT
K

) 1
2 − Q̃K

√
Σ I∞

)
Υ Q,(D)

)

(i)

)2]

= C
h2

2π2

( ∞∑

r=D+1

1

r2

) L∑

i=1

E
[(((

Q̃K
(√

Σ I ,(D) −
√

Σ I∞
))

Υ Q,(D)
)

(i)

)2]

= C
h2

2π2

( ∞∑

r=D+1

1

r2

)

×
L∑

i=1

E

[
E
[(((

Q̃K
(√

Σ I ,(D) −
√

Σ I∞
))

Υ Q,(D)
)

(i)

)2∣∣∣ZQ,Δw
Q
h

]]

= C
h2

2π2

( ∞∑

r=D+1

1

r2

)
E
[∥∥Q̃K

(√
Σ I ,(D) −

√
Σ I∞

)∥∥2
F

]
(33)

for all h > 0, t, t + h ∈ [0, T ], D, K ∈ N. Here, we used that Υ Q,(D)
|ZQ ,Δw

Q
h

∼
N (0L , IL) for h > 0, D, L ∈ N and that Q̃K is a diagonal matrix. Precisely, for
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G := √
Σ I ,(D) −√Σ I∞ with G := (gi j )1≤i, j≤L and Υ Q,(D) = (Υ

Q,(D)
j )1≤ j≤L , we

compute

L∑

i=1

E

[
E
[(((

Q̃K
(√

Σ I ,(D) −
√

Σ I∞
))

Υ Q,(D)
)

(i)

)2∣∣∣ZQ,Δw
Q
h

]]

=
L∑

i=1

E

[
E
[((

Q̃KGΥ Q,(D)
)
(i)

)2∣∣∣ZQ,Δw
Q
h

]]

=
L∑

i=1

E

[
E
[( L∑

j=1

(Q̃K )i i gi j Υ
Q,(D)
j

)2∣∣∣ZQ,Δw
Q
h

]]

=
L∑

i, j=1

E
[
(Q̃K )2i i g

2
i j

]

= E
[∥∥Q̃KG

∥∥2
F

]

= E
[∥∥Q̃K

(√
Σ I ,(D) −

√
Σ I∞

)∥∥2
F

]
.

In order to relate to the proof in [9], we write

E
[∥∥Q̃K

(√
Σ I ,(D) −

√
Σ I∞

)∥∥2
F

]
= E

[ L∑

i, j=1

(Q̃K )2i i g
2
i j

]

≤ max
j∈JK

η2j E
[ L∑

i, j=1

g2i j

]

≤ max
j∈JK

η2j E
[∥∥
√

Σ I ,(D) −
√

Σ I∞
∥∥2
F

]
.

In total, we obtain

E

[∥∥∥
∫ t+h

t
Ψ
( ∫ s

t
Φ dWK

r

)
dWK

s −
∑

i, j∈JK

Î Q,(D)
(i, j) (h) Ψ

(
Φ ẽi , ẽ j

)∥∥∥
2

H

]

≤ C max
j∈JK

η2j
h2

2π2

( ∞∑

r=D+1

1

r2

)
E
[∥∥
√

Σ I ,(D) −
√

Σ I∞
∥∥2
F

]
.

Now, we can insert the results obtained in the proofs of [9, Theorem 4.1, Theorem 4.2,
Theorem 4.3]; this yields
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E

[∥∥∥
∫ t+h

t
Ψ
( ∫ s

t
Φ dWK

r

)
dWK

s −
∑

i, j∈JK

Î Q,(D)
(i, j) (h) Ψ

(
Φ ẽi , ẽ j

)∥∥∥
2

H

]

≤ C max
j∈JK
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h2K (K − 1)

(
K + 4E

[
V T V
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12π2D2

≤ C max
j∈JK

η2j
5h2K 2(K − 1)

12π2D2

for all h > 0, t, t + h ∈ [0, T ], D, K ∈ N where V = h−1/2Q−1/2
K Δw

Q
h . ��

Proof of Theorem 4 We split the error term as in the proof of Theorems 1 and 3, see Eq.
(29), and obtain the same expression (30) from the approximation of the Q-Wiener
process by (WK

t )t≥0, K ∈ N. Moreover, as in the previous proof, we get from (33)
that

E

[∥∥∥
∫ t+h

t
Ψ
( ∫ s

t
Φ dWK

r

)
dWK

s −
∑

i, j∈JK

Î Q,(D)
(i, j) (h) Ψ

(
Φ ẽi , ẽ j

)∥∥∥
2

H

]

≤ C
h2

2π2

( ∞∑

r=D+1

1

r2

)
E
[∥∥
√

ΣQ,(D) −
√

Σ
Q∞
∥∥2
F

]
(34)

for all h > 0, t, t + h ∈ [0, T ], D, K ∈ N. In this alternative proof, we consider the
elements of the matricesΣQ,(D) andΣ

Q∞ explicitly. Therefore, we define the index set
of interest as IA = ((1, 2), . . . , (1, K ), . . . , (l, l+1), . . . , (l, K ), . . . , (K −1, K )) =
(I1, . . . , IL)which selects the same entries of somematrix as thematrix transformation
by HK given in (17). The L × L-matrix HKΣQ(V Q

1 )|ZQ
1 ,Δw

Q
h
HT
K has entries of type

E
[(
UQ
1i (Z

Q
1 j −

√
2

h
Δw

j
h) − (ZQ

1i −
√
2

h
Δwi

h)U
Q
1 j

)

× (UQ
1m(ZQ

1n −
√
2

h
Δwn

h) − (ZQ
1m −

√
2

h
Δwm

h )UQ
1n

)∣∣∣ZQ
1 ,Δw

Q
h

]

for some i, j,m, n ∈ {1, . . . , K } with i < j and m < n. Especially, its diagonal
entries are of type

ηi

(
ZQ
1 j −

√
2

h
Δw

j
h

)2 + η j

(
ZQ
1i −

√
2

h
Δwi

h

)2
(35)

with (i, j) ∈ IA and i = j . The off-diagonal entries of HKΣQ(V Q
1 )|ZQ

1 ,Δw
Q
h
HT
K are

of the form
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E
[(
UQ
1i (Z
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√
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√
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√
2

h
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1m −

√
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h
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h )UQ
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)∣∣∣ZQ
1 ,Δw

Q
h

]

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, i, j /∈ {m, n}
ηi
(
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√
2
hΔw

j
h

)(
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√
2
hΔwn

h

)
, i = m, j = n

−ηi
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√
2
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j
h

)(
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1m −

√
2
hΔwm

h

)
, i = n, j = m

−η j
(
ZQ
1i −

√
2
hΔwi

h

)(
ZQ
1n −

√
2
hΔwn

h

)
, j = m, i = n

η j
(
ZQ
1i −

√
2
hΔwi

h

)(
ZQ
1m −

√
2
hΔwm

h

)
, j = n, i = m

(36)

with i, j,m, n ∈ {1, . . . , K }, i < j and m < n. Therewith, it is easy to see that for

Σ
Q∞ = E

[
HKΣQ(V Q

1 )|ZQ
1 ,Δw

Q
h
HT
K

∣∣∣Δw
Q
h

]
, we get

(
ΣQ∞

)
(k,k) = 2ηiη j + 2

h
ηi (Δw

j
h)

2 + 2

h
η j (Δwi

h)
2 (37)

and for the off-diagonal entries, it holds

(
ΣQ∞

)
(k,l) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0, i, j /∈ {m, n}
2
h ηiΔw

j
hΔwn

h , i = m, j = n

− 2
h ηiΔw

j
hΔwm

h , i = n, j = m
− 2

h η jΔwi
hΔwn

h , j = m, i = n
2
h η jΔwi

hΔwm
h , j = n, i = m

(38)

with k, l ∈ {1, . . . , L}, l = k, i, j,m, n ∈ {1, . . . , K }, i < j and m < n. Next, we
employ the following lemma from [9] in order to rewrite (34).

Lemma 1 Let A and G be symmetric positive definite matrices and denote the smallest
eigenvalue of matrix G by λmin. Then, it holds

‖A 1
2 − G

1
2 ‖2F ≤ 1√

λmin
‖A − G‖2F .

Proof of Lemma 1 A proof can be found in [9, Lemma 4.1]. ��

For simplicity, we assume η1 ≥ η2 ≥ . . . ≥ ηK for all K ∈ N. We decompose Σ
Q∞ as

ΣQ∞ = 2ηK−1ηK IL +̂
Σ

Q∞

to determine its smallest eigenvalue. The matrix̂
Σ

Q∞ is defined as follows: For the
diagonal elements, we get values
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(̂
Σ

Q∞
)
(k,k) = (ΣQ∞

)
(k,k) − 2ηK−1ηK

= 2(ηiη j − ηK−1ηK ) + 2

h
ηi (Δw

j
h)

2 + 2

h
η j (Δwi

h)
2 ≥ 0

with k ∈ {1, . . . , L}, (i, j) ∈ IA, and h > 0. For the off-diagonal elements, we

get
(̂
Σ

Q∞
)
(k,l) = (

Σ
Q∞
)
(k,l) for all k, l ∈ {1, . . . , L}, k = l. As the matrix ̂

Σ
Q∞ is

symmetric and positive semi-definite, the smallest eigenvalue λmin of Σ
Q∞ fulfills

λmin ≥ 2ηK−1 ηK ≥ 2η2K .
Below, we use the notation cD =∑∞

r=D+1
1
r2

for legibility. The matrices ΣQ,(D) and

Σ
Q∞ are symmetric positive definite. By Lemma 1 and the definitions of ΣQ,(D), ΣQ∞

in (26) and (23), respectively, we obtain from (34)

E
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Q
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K
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h

]

r2

)∥∥∥
2

F

]

= Ch2c−1
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2
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[
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[( ∞∑
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(k,l)
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Q
h

]]

for h > 0, t, t + h ∈ [0, T ], D, K ∈ N. Following ideas from [9], we get

E

[∥∥∥
∫ t+h

t
Ψ
( ∫ s

t
Φ dWK

r
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dWK

s −
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i, j∈JK
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(i, j) (h) Ψ

(
Φ ẽi , ẽ j

)∥∥∥
2

H

]

≤ C
h2

2
√
2ηKπ2

( ∞∑
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1
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)−1
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×
L∑

k,l=1
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1
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HKΣQ(V Q

r )|ZQ
r ,Δw

Q
h
HT
K

)

(k,l)

∣∣∣Δw
Q
h

)]

= C
h2

2
√
2ηKπ2

( ∞∑

r=D+1

1

r2

)−1

×
L∑

k,l=1

∞∑

r=D+1

1

r4
E
[
Var

((
HKΣQ(V Q

r )|ZQ
r ,Δw

Q
h
HT
K

)

(k,l)

∣∣∣Δw
Q
h

)]
.

Next, we compute the conditional expectation involved in this estimate. We split the
sum into diagonal entries and off-diagonal elements of the matrix, that is,

L∑
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∞∑
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1

r4
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[
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.

Then, we insert the expressions detailed above for HKΣQ(V Q
r )|ZQ

r ,Δw
Q
h
HT
K , r ∈ N

and Σ
Q∞, see (35)–(38). This yields for h > 0, t, t + h ∈ [0, T ], D, L ∈ N
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. (39)

We compute the terms in (39) separately and obtain
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for all i, j,m, n ∈ JK with i < j and m < n. For the other terms of this type, we get
similar results. Moreover, we compute bounds for the following expressions

∞∑
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1

r4
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ds = 1

3D3 ,

∞∑
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for all D ∈ N. A combination of these estimates yields
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1

r4
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1

r2

)−1 ≤ D + 1

3D3 ≤ 2

3D2

for all D ∈ N. At this point, the main difference to Algorithm 1 arises—we obtain a
higher order of convergence in D. In total, we get
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Finally, this implies for all h > 0, t, t + h ∈ [0, T ], D, K ∈ N
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Φ ẽi , ẽ j
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that is, more generally,
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The statement of the theorem follows by combing this estimate with (30). ��
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