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Abstract We construct renormalised models of regularity structures by using a recur-
sive formulation for the structure group and for the renormalisation group. This
construction covers all the examples of singular SPDEs which have been treated so far
with the theory of regularity structures and improves the renormalisation procedure
based on Hopf algebras given in Bruned–Hairer–Zambotti (Algebraic renormalisation
of regularity structures, 2016. arXiv:1610.08468).

1 Introduction

During the last years, the theory of regularity structures introduced by Martin Hairer
in [10] has proven to be an essential tool for solving singular SPDEs of the form:

(∂t ui − �ui ) =
M∑

j=1

F j
i (u,∇u)ξ j , 1 ≤ i ≤ N , 1 ≤ j ≤ M, (1)

where the ξ j are space-time noises and the F j
i are non-linearities depending on the

solution and its spacial derivatives. A complete black box has been set up in the series
of papers [1,3,5,10] covering all the equations treated so far including the generalised
KPZ equation, describing the most natural evolution on loop space see [11].

Let us briefly summarise the content of this theory. Since [16], the rough path
approach is a way to study SDEs driven by non-smooth paths with an enhancement of
the underlying path which allows to recover continuity of the solution map. In the case
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of SPDEs the enhancement is represented by a model (�,�), to which is associated
a space of local Taylor expansions of the solution with new monomials, coded by an
abstract space Tof decorated trees. These expansions can be viewed as an extension
of the controlled rough paths introduced in [8] which are quite efficient for solving
singular SDEs. The main idea is to have a local control of the behaviour of the solution
at some base point. For that, one needs a recentering procedure and a way to act on
the coefficients when we change the base point. This action is performed by elements
of the structure group G+ introduced in [10].

Then the resolution procedure of 1 works as follows. One first mollifies the noises
ξ

(ε)
j and constructs canonically its mollified model (�(ε), �(ε)). In most situations

this mollified model fails to converge because of the potentially ill-defined products
appearing in the right hand side of the equation 1. Therefore one needs to modify the
model to obtain convergence. This is where renormalisation enters the picture. The
renormalisation group for the space of models has been originaly described in [10]
but its construction is rather implicit and some parts have to be achieved by hand. This
formulation has been used in the different works [10,12–15,17].

In [3], the authors have constructed an explicit subgroup G− with Hopf algebra
techniques. This group gives an explicit formula for the renormalised model and paves
the way for the general convergence result obtained in [5] for a certain class of models
called BPHZ models.

The main aim of this paper is to provide the reader with a direct and an easy con-
struction of the renormalisation model without using all the Hopf algebra machinery.
For that purpose, we give a recursive description of the renormalised map M acting
on a class of decorated trees: M = M◦R. The map R performs a local renormalisa-
tion whereas the map M◦ propagates R inside the decorated tree. In order to obtain
a nice expression of the renormalised model in [3], the authors use a co-interaction
property, described in the context of B-series in [4,6,7], between the Hopf algebra
for the structure group and the one for the renormalisation group. This co-interaction
gives powerful results but one has to work with extended decorations see [3] for the
definitions. In that context, the renormalised model is given in [3, Thm 6.15] by:

�M
x = �x M, �M

xy =
(
id ⊗ γ M

xy

)
�+, γ M

xy = γxyM, (2)

where γxy ∈ G+ and �+ is the coproduct associated to the Hopf algebra describing
G+. If we want to define a renormalised model with a map of the form M = M◦R a
new algebraic property is needed. The main assumption is that R commutes with the
structure group which is not true in general for M . Gathering other properties on R,
this allows us to define a renormalised model with an explicit recursive expression on
trees. This expression is given by:

�M
x = �M◦

x R, �M◦
x τ τ̄ = �M◦

x τ �M◦
x τ̄ , τ, τ̄ ∈ T, (3)

and the rest of the definition of the maps �M
x and �M◦

x is the same as the one given in
[10] for admissible models. The identities 3 mean that R is needed as an intermediary
step before recovering the multiplicativity of the model. By not using the extended
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decoration, we are not able to give a nice expression of the action of M on the structure
group like in 2. We circumvent this difficulty by providing a relation between �xy and
�x which works for smooth models. Thus it is enough to know �M

x in order to define
�M
xy . We also prove that this construction is more general than the one given by the

Hopf algebra which means that all the examples treated so far are under the scope of
this new formulation. For proving this fact, we use a factorisation of the coproducts
describing the renormalisation. The main idea is to separate the renormalisation hap-
pening at the root from the ones happening inside the tree following the steps of3. This
representation allows us to derive a recursive definition of the coproduct extending the
one giving in [10] and covering the two coproducts used for G+ and G−. This approach
of decomposing complex coproducts into elementary steps echoes the use of pre-Lie
structures through grafting operators in [1,2]. In both cases, the caracterisation of the
adjoint M∗ of M as a morphism for the grafting operator appears to be a nice way for
describing the renormalised equation.

Finally, let us give a short review of the content of this paper. In Sect. 2, we present
the main notations needed for the rest of the paper and we give a recursive construction
of the structure group. We start with the recursive formula given in [10] as a definition
and we carry all the construction of the group by using it. In Sect. 3, we do the same for
the renormalisation group by introducing the new recursive definition described above.
We then present the construction of the renormalised model. In Sect. 4, we show that
the group given in [3] is a particular case of Sect. 3 and we derive a recursive formula
for the coproducts. In Sect. 5, we illustrate the construction through some classical
singular SPDEs and we rank these equations according to their complexity by looking
at some properties the renormalised model does or does not satisfy. In the appendix,
we show that some of the coassiociativity proofs given in [3] can be recovered by
using the recursive formula for the coproducts.

2 Structure group

In this section, after presenting the correspondence between trees and symbols we
provide an alternative construction of the structure group using recursive formulae
and we prove that this construction coincides with the one described in [10, Sec. 8].

2.1 Decorated trees and symbolic notation

In this subsection, we recall mainly the notations on decorated trees introduced in [3].
Let fix a finite set L of types and d ≥ 0 be the space dimension. We consider T the
space of decorated trees such that every T n

e ∈ T is formed of:

• an underlying rooted tree T with node set NT , edge set ET and root 
T . To each
edge e ∈ ET , we associate a type t(e) ∈ L through a map t : ET → L.

• a node decoration n : NT → Nd+1 and an edge decoration e : ET → Nd+1.

Let fix B◦ ⊂ T a family of decorated trees and we denote by T its linear span. Let
s ∈ Nd+1 a space-time scaling and a degree assignment | · |s : L → R\{0}. We then
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associate to each decorated tree a degree | · |s. For T n
e we have:

|T n
e |s =

∑

e∈ET

(|t(e)|s − |e(e)|s) +
∑

x∈NT

|n(x)|s,

where for k ∈ Nd+1, |k|s = ∑d
i=0 si ki and for v ∈ Z(L), |v|s = ∑

t∈L vt|t|s . We
now introduce the symbolic notation following [3, Sec 4.3]:

1. An edge of type l such that |l|s < 0 is a noise and if it has a zero edge decoration
is denoted by �l. We assume that the elements of B◦ contain noise edges with a
decoration equal to zero.

2. An edge of type t such that |t|s > 0 with decoration k ∈ Nd+1 is an abstract
integrator and is denoted by It

k . The symbol It
k is also viewed as the operation

that grafts a tree onto a new root via a new edge with edge decoration k and type t.
3. A factor Xk encodes the decorated tree •k with k ∈ Nd+1 which is the tree

composed of a single node and a node decoration equal to k. We write Xi for
i ∈ {0, . . . , d} as a shorthand notation for Xei where the ei form the canonical
basis of Nd+1. The element X0 is denoted by 1.

The degree | · |s creates a splitting among L = L+ � L− where L+ is the set of
abstract integrators and L− is the set of noises. The decorated trees Xk and �l can
be viewed as linear operators on T through the tree product. This product is defined
for two decorated trees T n

e , T̃
ñ
ẽ by T̄ n̄

ē = T n
e T̃ ñ

ẽ where T̄ = T T̃ is the tree obtained
by identifying 
T and 
T̃ , n̄ is equal to n on NT \{
T } and to ñ on NT̃ \{
T̃ } with
n̄(
T̄ ) = n(
T ) + ñ(
T̃ ), the edge decoration ē coincides with e on ET and with ẽ on
ET̃ .

We suppose that the family B◦ is strongly conforming to a normal complete rule
R see [3, Sec 5.1] which is subcritical as defined in [3, Def. 5.14]. As a consequence
the set Bα = {τ ∈ B◦ : |τ |s = α} is finite for every α ∈ R see [3, Prop. 5.15]. We
denote by Tα the linear span of Bα .

For the sequel, we introduce another family of decorated trees B+ which conforms
to the rule R. This means that B◦ ⊂ B+ and we have no constraints on the product at
the root. Therefore, B+ is stable under the tree product. Then, we consider a disjoint
copy B̄+ of B+ such that B◦ � B̄+ and we denote by T̂+ its linear span. Elements
of B̄+ are denoted by (T, 2)ne where T n

e ∈ B+. Another way to distinguish the two
spaces is to use colours as in [3]. The 2 in the notation means that the root of the tree
has the colour 2 and the other nodes are coloured by 0. If the root is not coloured
by 2, we denote the decorated tree as (T, 0)ne = T n

e . The product on T̂+ is the tree
product in the sense that the product between (T, 2)ne and (T̃ , 2)ñẽ is given by (T̄ , 2)n̄ē .

We use a different symbol for the edge incident to a root in T̂+ having the type t and
the decoration k: Ĵt

k which can be viewed as an operator from T to T̂+ . The space

on which we will define a group in the next subsection is T+ = T̂+/J− where J−
is the ideal of T̂+ generated by {Ĵt

k (τ ), τ ∈ B◦ : |Ĵt
k (τ )|s ≤ 0}. We denote by

�+ : T̂+ → T+ the canonical projection and Jt
k the operator from T to T+ coming

from Ĵt
k .
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Wewant a one-to-one correspondence between decorated trees and certain algebraic
expressions. For a decorated tree T n

e , we give a mapping to the symbolic notation in
the sense that every tree can be obtained as products, compositions of the symbols
It
k , X

k and �l defined above. We first decompose T n
e into a product of planted trees

which are trees of the form It
k (τ ) or �l. Planted trees of B◦ are denoted by B̂◦. The

tree T n
e has a unique factorisation of the form:

T n
e = •nτ1τ2 · · · τm, (4)

where each τi is planted. Then, we define a multiplicative map for the tree product
Symb given inductively by:

Symb(•n) = Xn, Symb(�l) = �l, Symb(It
k (τ )) = It

k (Symb(τ )) .

For an element (T, 2)ne ∈ T+ , we have the same decomposition (4) but now each of
the τi must be of positive degree which imply that they are of the form It

k (τ ). Then
we define another multiplicative map Symb+ by:

Symb+(•n) = Xn, Symb+(Jt
k (τ )) = Jt

k (Symb(τ )) ,

where we have identified (•, 2)n with •n . With this map, a decorated tree (T, 2)ne ∈ T+
is of the form

XnJ
t1
k1

(T1) · · ·Jtm
km

(Tm), Ti ∈ B◦, |Iti
ki

(Ti )|s > 0.

Until the Sect. 4, we will use only the symbolic notation in order to construct the
regularity structures and the canonical model associated to it.

2.2 Recursive formulation

In [3, Prop. 5.39], Tgenerated by a subcritical and normal complete rule R gives a
regularity structure TR. We first recall its definition from [10, Def. 2.1].

Definition 2.1 A triple T = (A, H,G) is called a regularity structure with model
space H and structure group G if

• A ⊂ R is bounded from below without accumulation points.
• The vector space H = ⊕

α∈A Hα is graded by A such that each Hα is a Banach
space.

• The group G is a group of continuous operators on H such that, for every α ∈ A,
every � ∈ G and every τ ∈ Hα , one has

�τ − τ ∈
⊕

β<α

Hβ.

123



530 Stoch PDE: Anal Comp (2018) 6:525–564

For TR, we get

A = {|τ |s : τ ∈ B◦}, H= T, Hα = Tα.

Concerning the structure group, the aim of the rest of this section is to provide a
recursive construction using the symbolic notation. Let denote by G+:

G+ := {g ∈ T∗+ : g(τ1τ2) = g(τ1)g(τ2), ∀ τ1, τ2 ∈ T+}.

For any g ∈ G+ we define a linear operator �g : T → Tby

⎧
⎪⎪⎨

⎪⎪⎩

�g1 = 1, �g�l = �l, �g Xi = Xi + g(Xi ), �g(τ τ̄ ) = (�gτ)(�g τ̄ ),

�gI
t
k (τ ) = It

k (�gτ) +
∑

�∈Nd+1

X�

�! g
(
Jt
k+�(τ )

)
,

and we extend it multiplicatively to T.

Remark 2.2 The map �g is well defined for every g ∈ G+ as a map from T into
itself because of the fact that the rule R is normal see [3, Def. 5.7] which implies
that for every

∏n
i=1 τi ∈ T one has

∏
i∈J τi ∈ Twhere J is a subset of {1, . . . , n}.

Such operation arises in the definition of �g on some product
∏

i I
ti
ki

(τi ) where one

can replace any I
ti
ki

(τi ) by a polynomial
∑

�∈Nd+1
X�

�! g(J
ti
ki+�(τi )). Then we use an

inductive argument to conclude that Iti
ki

(�gτi ) ∈ Twhen τi ∈ T.

We define the product ◦ : G+ × G+ → G+ recursively by:

⎧
⎪⎪⎨

⎪⎪⎩

(g1 ◦ g2)(Xi )=g1(Xi )+g2(Xi ), (g1 ◦ g2)(τ1τ2)=(g1 ◦ g2)(τ1)(g1 ◦ g2)(τ2),

(g1 ◦ g2)
(
Jt
k (τ )

) = g1
(
Jt
k (�g2τ)

) +
∑

�∈Nd+1

(g1(X))�

�! g2
(
Jt
k+�(τ )

)
,

wherewehavemade the following abuseof notation (g1(X))� insteadof
∏d

i=0 g1(Xi )
�i .

We will also write (X + g(X))� instead of
∏d

i=0 (Xi + g(Xi ))
�i .

Proposition 2.3 1. For every g ∈ G+, α ∈ A, τ ∈ Tα and multiindex k, we have
�gτ − τ ∈ ⊕

β<|τ |s Tβ and �gI
t
k (τ ) − It

k (�gτ) is a polynomial.
2. The set (�g, g ∈ G+) forms a group under the composition of linear operators

from T to T. Moreover, this definition coincides with that of [10, (8.17)].
3. For all g, ḡ ∈ G+, one has �g�ḡ = �g◦ḡ . (G+, ◦) is a group and each element g

has a unique inverse g−1 given by the recursive formula

⎧
⎪⎪⎨

⎪⎪⎩

g−1(Xi ) = −g(Xi ), g−1(τ1τ2) = g−1(τ1)g
−1(τ2),

g−1 (
Jt
k (τ )

) = −
∑

�∈Nd+1

(−g(X))�

�! g
(
Jt
k+�(�g−1τ)

)
.

(5)
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The product ◦ coincides with that defined in [10, Def. 8.18].

Proof We prove the first property by induction on the construction of T. Let g ∈ G+.
The proof is obvious for τ ∈ {1, Xi , �l}. Let τ = τ1τ2 then we have

�gτ1τ2 = �gτ1
(
�gτ2 − τ2

) + (
�gτ1 − τ1

)
τ2 + τ1τ2.

We apply the induction hypothesis on τ1 and τ2. Let τ = It
k (τ ′) then the recursive

definition of �g gives:

�gI
t
k (τ ′) = It

k (�gτ
′ − τ ′) + It

k (τ ′) +
∑

�∈Nd+1

X�

�! g
(
Jt
k+�(τ

′)
)
.

We apply the induction hypothesis on τ ′.
Let g, ḡ ∈ G+, h = g ◦ ḡ ∈ G+. Simple computations show that

�h1 = 1, �h�l = �g�ḡ�l, �h Xi = �g�ḡ Xi , �h(τ τ̄ ) = �g�ḡ(τ τ̄ ).

We need to check that �g�ḡI
t
k (τ ) = �hI

t
k (τ ):

�g�ḡI
t
k (τ ) = �g

⎛

⎝It
k (�ḡτ) +

∑

�∈Nd+1

X�

�! ḡ
(
Jt
k+�(τ )

)
⎞

⎠

= It
k (�g�ḡτ) +

∑

�∈Nd+1

X�

�! g
(
Jt
k+�(�ḡτ)

) +
∑

�∈Nd+1

(X + g(X))�

�! ḡ
(
Jt
k+�(τ )

)
,

while

�hI
t
k (τ ) = It

k (�hτ) +
∑

�∈Nd+1

X�

�! h
(
Jt
k+�(τ )

)

= It
k (�g�ḡτ) +

∑

�∈Nd+1

X�

�!

⎛

⎝g
(
Jt
k+�(�ḡτ)

)
+

∑

j∈Nd+1

(g(X)) j

j ! ḡ
(
Jt
k+�+ j (τ )

)
⎞

⎠

= It
k (�g�ḡτ) +

∑

�∈Nd+1

X�

�! g
(
Jt
k+�(�ḡτ)

)
+

∑

�∈Nd+1

(X + g(X))�

�! ḡ
(
Jt
k+�(τ )

)
.

By comparing the two formulae, we obtain that �g�ḡ = �g◦ḡ .
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Let us show that ◦ is associative on G+, namely that g1 ◦ (g2 ◦ g3) = (g1 ◦ g2) ◦ g3;
this is obvious if tested on X and on τ τ̄ ; it remains to check this formula on It

k (τ ):

g1 ◦ (g2 ◦ g3)
(
Jt
k (τ )

) = g1
(
Jt
k (�g2◦g3τ)

) +
∑

�∈Nd+1

(g1(X))�

�! g2 ◦ g3
(
Jt
k+�(τ )

)

= g1
(
Jt
k (�g2◦g3τ)

) +
∑

�∈Nd+1

(g1(X))�

�! g2
(
Jt
k+�(�g3τ)

)

+
∑

�∈Nd+1

(g1(X) + g2(X))�

�! g3
(
Jt
k+�(τ )

)
,

while

(g1 ◦ g2) ◦ g3
(
Jt
k (τ )

) = g1 ◦ g2
(
Jt
k (�g3τ)

) +
∑

�∈Nd+1

(g1 ◦ g2(X))�

�! g3
(
Jt
k+�(τ )

)

= g1
(
Jt
k (�g2�g3τ)

) +
∑

�∈Nd+1

(g1(X))�

�! g2
(
Jt
k+�(�g3τ)

)

+
∑

�∈Nd+1

(g1(X) + g2(X))�

�! g3
(
Jt
k+�(τ )

)

and again by comparing the two formulae we obtain the claim.
Let us shownow that (5) defines the correct inverse in (G+, ◦). First of all, the neutral

element in G+ is clearly 1∗(τ ) := 1(τ=1). As usual, the only non-trivial property is
that g ◦ g−1

(
It
k (τ )

) = g−1 ◦ g
(
It
k (τ )

) = 1∗ (
It
k (τ )

) = 0. We have

g ◦ g−1(Jt
k+�(τ )) = g

(
Jk+�(�g−1τ)

) + ∑

m∈Nd+1

(g(X))m

m! g−1
(
Jt
k+�+m(τ )

)

= g
(
Jt
k+�(�g−1τ)

) − ∑

m,�∈Nd+1

(g(X))m

m!
(−g(X))�

�! g
(
Jt
k+�+m(�g−1τ)

) = 0

and

g−1 ◦ g
(
Jt
k (τ )

) = g−1 (
Jt
k (�gτ)

) +
∑

�∈Nd+1

(g−1(X))�

�! g
(
Jt
k+�(τ )

)

= g−1 (
Jt
k (�gτ)

) +
∑

�∈Nd+1

(−g(X))�

�! g
(
Jt
k+�(τ )

)

= −
∑

�∈Nd+1

(−g(X))�

�! g
(
Jt
k+�(�g−1◦gτ)

)

+
∑

�∈Nd+1

(−g(X))�

�! g
(
Jt
k+�(τ )

)
,
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where we have used a recurrence assumption in the identification �g−1◦gτ = τ . Since
�1∗ is the identity in T, we obtain that (�g, g ∈ G+) also forms a group.

We show now that these objects coincide with those defined in [10, section 8]. In
[3,10], the action of G+ on T is defined through the following co-action � : T →
T⊗ T+,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

�1 = 1 ⊗ 1, �Xi = Xi ⊗ 1 + 1 ⊗ Xi ,

��l = �l ⊗ 1, �(τ τ̄ ) = (�τ)(�τ̄ ),

�It
k (τ ) = (It

k ⊗ id)�τ +
∑

�∈Nd+1

X�

�! ⊗ Jt
k+�(τ ).

We claim that
�gτ = (id ⊗ g)�τ, ∀ g ∈ G+, τ ∈ T. (6)

First, (6) is easily checked on 1, Xi , �l and τ τ̄ ∈ T. We check the formula onIt
k (τ ):

�gI
t
k (τ ) = It

k (�gτ) +
∑

�∈Nd+1

(g(X))�

�! g
(
Jt
k+�(τ )

)

= (id ⊗ g)

⎡

⎣(It
k ⊗ id)�τ +

∑

�∈Nd+1

X�

�! ⊗ Jt
k+�(τ )

⎤

⎦ = (id ⊗ g)�It
k (τ ).

In [3,10], another coproduct �+ : T+ → T+ ⊗ T+ is defined as follows:

⎧
⎪⎪⎨

⎪⎪⎩

�+1 = 1 ⊗ 1, �+Xi = Xi ⊗ 1 + 1 ⊗ Xi , �+(τ τ̄ ) = (�+τ)(�+τ̄ ),

�+Jt
k (τ ) = (Jt

k ⊗ id)�τ +
∑

�∈Nd+1

X�

�! ⊗ Jt
k+�(τ ).

In order to prove that the product ◦ is the same as in [10], we need to check that for
every g1, g2 ∈ G+ we have:

(g1 ◦ g2) (τ ) = (g1 ⊗ g2)�+τ, ∀ τ ∈ T+.

As usual, this formula is easily checked on 1, Xi and on products τ τ̄ ∈ T+. We check
the formula on Jt

k (τ ):

(g1 ◦ g2)
(
Jt
k (τ )

) = g1
(
Jt
k (�g2τ)

) +
∑

�∈Nd+1

(g1(X))�

�! g2
(
Jt
k+�(τ )

)

= (g1 ⊗ id)(Jt
k ⊗ g2)�τ + (g1 ⊗ g2)

∑

�∈Nd+1

(
X�

�! ⊗ Jt
k+�(τ )

)

= (g1 ⊗ g2) �+τ. ��
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3 Renormalised models

We start the section by a general recursive formulation of the renormalisation group
without coproduct. Then we use this formulation to construct the renormalised model.
During this section, elements of the model space T are described with the symbolic
notation.

3.1 A recursive formulation

Before giving the recursive definition of the renormalisation map, we precise some
notations. We denote by ‖τ‖ the number of times the symbols �l appear in τ . We
extend the definitions of | · |s and ‖ · ‖ to any linear combination τ = ∑

i αiτi of
canonical basis vectors τi with αi �= 0 by

|τ |s := min
i

|τi |s, ‖τ‖ := max
i

‖τi‖, (7)

which suggests the natural conventions |0|s = +∞ and ‖0‖ = −∞. We also define
a partial order <T on Tby setting:

τ1 <T τ2 if ‖τ1‖ < ‖τ2‖ or (‖τ1‖ = ‖τ2‖ and |τ1|s < |τ2|s). (8)

Definition 3.1 A symbol τ is an elementary symbol if it has the following form: �l,
Xi and It

k (σ ) where σ is a symbol.

Proposition 3.2 Let τ = ∏
i τi such that the τi are elementary symbols and such that

τ is not an elementary symbol then τi <T τ .

Proof We consider τ = ∏
i τi and let τ j an elementary symbol appearing in the

previous decomposition. We define τ̄ j = ∏
i �= j τi . If the product τ̄ j contains a term

of the form It
k (σ ) with σ having at least one noise or a term of the form �l then

‖τ̄ j‖ > 0 and ‖τ j‖ < ‖τ̄ j‖ + ‖τ j‖ = ‖τ‖. Otherwise ‖τ j‖ = ‖τ‖ but |τ̄ j |s > 0
which gives |τ j |s < |τ j |s + |τ̄ j |s = |τ |s. Finally, we obtain τi <T τ . ��

Given a regularity structure (A, T,G), we consider the spaceL(T) of linear maps
on T. For our recursive formulation, we choose a subset of L(T):

Definition 3.3 A map R ∈ L(T) is admissible if

1. For every elementary symbol τ , Rτ = τ .
2. For every multiindex k and any symbol τ , R(Xkτ) = Xk Rτ .
3. For each τ ∈ T, ‖Rτ − τ‖ < ‖τ‖.
4. For each τ ∈ T, |Rτ − τ |s > |τ |s.
5. It commutes with G: R� = �R for every � ∈ G.
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We denote by Lad(T) the set of admissible maps. For R ∈ Lad(T), we define a
renormalisation map M = MR by:

⎧
⎪⎨

⎪⎩

M◦1 = 1, M◦Xi = Xi , M◦�l = �l,

M◦τ τ̄ = (
M◦τ

) (
M◦τ̄

)
, Mτ = M◦Rτ,

M◦It
k (τ ) = It

k (Mτ).

(9)

The space of maps M constructed in this way is denoted by Rad [T ]. The main idea
behind this definition is that R computes the interaction between several elements of
the product

∏
i τi . In [10,13], elements of the renormalisation group are described

by an exponential: M = exp(
∑

i Ci Li ) where (Li )i ⊂ L(T). When the exponential
happens to be just equal to id + ∑

i Ci Li then the link with the space Rad [T ] is
straightforward. But when several iterations of the Li are needed even in the case
of the Li being commutative the link becomes quite unclear and hard to see. It is
also unclear when M is described with a coproduct as in (24). The main difficulty
occurs when one has to face nasty divergences. The recursive construction is more
convenient for several purposes: it gives an explicit and a canonical way of computing
the diverging constant we have to subtract. Moreover, the proof of the construction of
the renormalised model is simpler than the one given in [3,10].

Remark 3.4 The Definitions 7 as well as the convention that follows are designed
in such a way that if the third and the fourth conditions of Definition 3.3 hold for
canonical basis vectors τ , then they automatically hold for every τ ∈ T.

Remark 3.5 The first two conditions of Definition 3.3 guarantee that M commutes
with the abstract integrator map. The third condition is crucial for the definition of
M : the recursion (9) stops after a finite number of iterations since it decreases strictly
the quantity ‖ · ‖ and thus the partial order <T. Moreover, this condition guarantees
that R = id + L where L is a nilpotent map and therefore R is invertible. The fourth
condition allows us to treat the analytical bounds in the definition of the model and
the last condition is needed for the algebraic identities.

Remark 3.6 Note that M = MR does not always commute with the structure group G
even if R does ; we will see a counterexample with the group of the generalised KPZ
equation in Sect. 5.3.

Proposition 3.7 Let R ∈ Lad(T), then MR is well-defined.

Proof We proceed by induction using the order <T. If τ ∈ {1, �l, Xi } then Mτ =
M◦Rτ = M◦τ = τ . If τ = It

k (τ ′) then

MIt
k (τ ′) = M◦RIt

k (τ ′) = M◦It
k (τ ′) = It

k (Mτ ′).

We conclude by applying the induction hypothesis on τ ′ because we have |τ ′|s < |τ |s.
Let τ = ∏

i τi ∈ Ta product of elementary symbols with at least two symbols in the
product, we can write
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Mτ = M◦(Rτ − τ) + M◦τ.

We apply the induction hypothesis on Rτ − τ <T τ because ‖Rτ − τ‖ < ‖τ‖. For
M◦τ , we have

M◦τ =
∏

i

M◦Rτi =
∏

i

Mτi .

We know from Proposition 8 that for every i , τi <T τ . Therefore, we apply the
induction hypothesis on the τi . ��

Remark 3.8 In the sequel, we use the order <T for all the proofs by induction on the
symbols. It is possible to choose other well-order on the symbols for these proofs. One
minimal condition in order to have MR well defined is the following on R: for each
τ ∈ T, there exist �l j , I

ti
ki

(σi ) and k ∈ Rd+1 such that

Rτ = Xk
∏

j

�l j

∏

i

I
ti
ki

(σi ), σi <T τ.

Then by definition of MR , we get:

M◦Rτ = Xk
∏

j

�l j

∏

i

I
ti
ki

(Mσi ),

which allows us to use an inductive argument on the Mσi .

Remark 3.9 There is an alternative definition of the map M . We denote by ML the
representation of M given by:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

M1 = 1, MXi = Xi , M�l = �l,

M
∏

i

τi =
∏

i

Mτi − ML
∏

i

τi ,

MIt
k (τ ) = It

k (Mτ),

(10)

where the τi are elementary and the map L needs to satisfy the following properties:

1. For every elementary symbol τ , Lτ = 0 and for every multiindex k and symbol
τ̄ , LXk τ̄ = XkL τ̄ .

2. For each τ ∈ T, ‖Lτ‖ < ‖τ‖ and |Lτ |s > |τ |s.
3. It commutes with G: L� = �L for every � ∈ G.

This properties are very similar to those of R. Noticing that the map L is nilpotent,
one can check that R = (id + L)−1 and M◦ = M(id + L).
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3.2 Construction of the renormalised Model

We first define a metric ds on Rd+1 associated to the scaling s by:

ds(x, y) = ‖x − y‖s =
d∑

i=0

|xi − yi |1/si .

We recall the definition of a smooth model in [10, Def. 2.17]:

Definition 3.10 A smooth model for a regularity structure T = (A, H,G) consists
of maps:

� : Rd+1 → L(H, C∞(Rd+1)) � : Rd+1 × Rd+1 → G

x → �x (x, y) → �xy

such that �xy�yz = �xz and �x�xy = �y . Moreover, for every α ∈ A and every
compact set K ⊂ Rd+1 there exists a constant Cα,K such that the bounds

|(�xτ)(y)| ≤ Cα,K‖x − y‖α
s‖τ‖α, ‖�xyτ‖β ≤ Cα,K‖x − y‖α−β

s ‖τ‖α,

hold uniformly over all (x, y) ∈ K, all β ∈ A with β ≤ α and all τ ∈ Hα .

In the previous definition, for τ ∈ H, ‖τ‖α denotes the norm of the component
of τ in the Banach space Hα . We suppose given a collection of kernels {Kt}t∈L+ ,
Kt : Rd+1\0 → R satisfying the condition [10,Ass. 5.1]withβ = |t|s and a collection
of noises {ξl}t∈L− such that ξl ∈ C∞(Rd+1). We use the notation Dk = ∏d

i=0
∂ki

∂y
ki
i

for k ∈ Rd+1. Until the end of the section, R is an admissible map and M is a
renormalisation map built from R.

As in [10], we want a renormalised model (�M
x , �M

xy) constructed from a map �

satisfying the following property:

�Mτ = �Mτ. (11)

We define the linear map �M by:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(�M◦
1)(y) = 1, (�M◦

Xi )(y) = yi , (�M◦
�l)(y) = ξl(y),

(�M◦
It
k τ)(y) =

∫
DkKt(y − z)(�Mτ)(z)dz,

(�M◦
τ τ̄ )(y) = (�M◦

τ)(y)(�M◦
τ̄ )(y), (�Mτ)(y) = (�M◦

Rτ)(y),

(12)

where the recursive definition is the same as for M . The definition of �M is really
close to the definition of�. The main difference is that�M is no longer multiplicative
because we have to renormalise some ill-defined products by subtracting diverging
terms which is performed by the action of R.
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Remark 3.11 We have chosen the definition (12) for �M instead of (11) because it
contains the definition of � when R = id. Moreover, the recursive formula for the
product is really close to the definition of �M

x and this fact is useful for the proofs.

Proposition 3.12 We have the following identities: �Mτ = �Mτ and �M◦
τ =

�M◦τ .

Proof We proceed again by induction. It’s obvious for 1, Xi and �l. For τ = It
k (τ ′),

by the induction hypothesis the claim holds for τ ′ because ‖It
k (τ ′)‖ = ‖τ ′‖ and

|It
k (τ ′)|s > |τ ′|s. We have:

(
�MIt

k (τ ′)
)

(y) =
∫

DkKt(y − z)(�Mτ ′)(z)dz =
∫

DkKt(y − z)(�Mτ ′)(z)dz

= (
�It

k (Mτ ′)
)
(y) = (

�MIt
k (τ ′)

)
(y).

For τ = ∏
i τi product of elementary symbols, we obtain by applying the induction

hypothesis on Rτ − τ and the τi :

(�M◦
τ)(y) =

∏

i

(�M◦
τi )(y) =

∏

i

(�M◦τi )(y) = (�M◦τ)(y)

and

(�Mτ)(y) = (�M◦
(Rτ − τ))(y) + (�M◦

τ)(y)

= (�M◦(Rτ − τ))(y) + (�M◦τ)(y) = (�Mτ)(y),

which conclude the proof. ��
The renormalised model (�M , �M ) associated to M = MR is given by

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(
�M◦

x 1
)

(y) = 1,
(
�M◦

x �l

)
(y) = ξl(y),

(
�M◦

x Xi

)
(y) = yi − xi ,

(
�M◦

x It
k τ

)
(y) =

∫
DkKt(y − z)�M

x (τ )(z)dz −
∑

�∈Nd+1

(y − x)�

�! f Mx
(
Jt
k+�(τ )

)
,

(
�M

x τ
)

(y) =
(
�M◦

x Rτ
)

(y),
(
�M◦

x τ τ̄
)

(y) =
(
�M◦

x τ
)

(y)
(
�M◦

x τ̄
)

(y),

where f Mx ∈ T∗+ is defined by

⎧
⎨

⎩

f Mx (Xi ) = xi , f Mx (τ τ̄ ) = f Mx (τ ) f Mx (τ̄ ),

f Mx
(
Jt
k (τ )

) = 1(|It
k (τ )|s>0)

∫
DkKt(x − z)

(
�M

x τ
)

(z)dz.
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We also define

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�M
xy Xi = Xi + (xi − yi ), �M

xy�l = �l, �M
xy(τ τ̄ ) =

(
�M
xyτ

) (
�M
xy τ̄

)
,

�M
xyI

t
k (τ ) = It

k

(
�M
xyτ

)
−

∑

�∈Nd+1

(X + x − y)�

�! f My
(
Jt
k+�(τ )

) +
∑

�∈Nd+1

X�

�! f Mx
(
Jt
k+�(�xyτ)

)
.

and
⎧
⎪⎪⎨

⎪⎪⎩

gMx (Xi ) = −xi , gMx (τ τ̄ ) = gMx (τ )gMx (τ̄ ),

gMx
(
Jt
k (τ )

) = −
∑

�∈Nd+1

(−x)�

�! f Mx
(
Jt
k+�(τ )

)
.

Proposition 3.13 The �M operator is also given by:

�M
xy =

(
FM
x

)−1 ◦ FM
y

where FM
x = �gMx

. Moreover, another equivalent recursive definition is:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�M
xy Xi = Xi + (xi − yi ), �M

xy�l = �l, �M
xy(τ τ̄ ) =

(
�M
xyτ

) (
�M
xy τ̄

)

�M
xyI

t
k (τ ) = It

k

(
�M
xyτ

)
−

∑

|�|s<|It
k (τ )|s

(
�M

x It
k+�

(
�M
xyτ

))
(y)

(X + x − y)�

�! .

(13)

Proof We have

(
gMx

)−1 (
Jt
k (τ )

) = −
∑

�∈Nd+1

(−gMx (X)
)�

�! gMx
(
Jt
k+�(�(gMx )−1τ)

)

= −
∑

�,m∈Nd+1

(x)�

�!
(−x)m

m! f Mx
(
Jt
k+�+m(�(gMx )−1τ)

)

= − f Mx
(
Jt
k

(
�(gMx )−1τ

))
.

Since by definition

�gI
t
k (τ ) = It

k (�gτ) +
∑

�∈Nd+1

X�

�! g
(
Jt
k+�(τ )

)
,

then

�gMy
It
k (τ ) = It

k

(
�gMy

τ
)

−
∑

�∈Nd+1

(X − y)�

�! f My
(
Jt
k+�(τ )

)
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and

�(gMx )−1It
k (τ ) = It

k

(
�
(gMx )

−1τ
)

+
∑

�∈Nd+1

X�

�! (gMx )−1 (
Jt
k+�(τ )

)

= It
k

(
�(gMx )−1τ

)
−

∑

�∈Nd+1

X�

�! f Mx
(
Jt
k+l(�(gMx )−1τ)

)
,

so that

�(gMx )−1�gMy
It
k (τ ) =It

k

(
�(gMx )−1�gMy

τ
)

−
∑

�∈Nd+1

X�

�! f Mx
(
Jt
k+l

(
�(gMx )−1�gMy

τ
))

+
∑

�∈Nd+1

(X + x − y)�

�! f My
(
Jt
k+�(τ )

)
.

Therefore, �(gMx )−1�gMy
satisfies the same recursive property as �M

xy .
Finally, we need to prove (13). We have

�M
xyI

t
k (τ ) = It

k

(
�M
xyτ

)
+

∑

�∈Nd+1

(X + x − y)�

�! AM
y,x,k,�,

where

AM
y,x,k,� = f My

(
Jt
k+�(τ )

) −
∑

m∈Nd+1

(y − x)m

m! f Mx
(
Jt
k+�+m(�M

xyτ)
)

.

We write �M
xyτ = ∑

i τi with |τi |s ≤ |τ |s; note that �M
y τ = �M

x �M
xyτ = ∑

i �
M
x τi ,

and AM
y,x,k,� is zero unless |Jt

k+�(τ )|s > 0, and if this condition is satisfied then

AM
x,y,k,� =

∫
Dk+�Kt(y − z)

(
�M

y τ
)

(z)dz −
∑

i

∑

m∈Nd+1

(y − x)m

m! f Mx
(
Jt
k+�+m(τi )

)

=
∑

i

⎡

⎣
∫

Dk+�Kt(y − z)
(
�M

x τi

)
(z)dz −

∑

m∈Nd+1

(y − x)m

m! f Mx
(
Jt
k+�+m(τi )

)
⎤

⎦

=
∑

i

�M
x

(
It
k+�(τi )

)
(y) = �M

x

(
It
k+�

(
�M
xyτ

))
(y).

This allows us to conclude. ��
Remark 3.14 The interest of the previous formula for�M is to show a strong link with
the definition of �M

x . Moreover it simplifies the proof of the analytical bounds of the
model. Indeed, analytical bounds on �M

x give the bounds for �M .
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Proposition 3.15 The following identities hold: �M
x = �MFM

x and �M◦
x =

�M◦
FM
x .

Proof We proceed by induction. The proof is obvious for τ ∈ {1, �l, Xi }. For τ =
It
k (τ ′), we apply the induction hypothesis on τ ′, it follows:

(
�M◦

x τ
)

(y) =
∫

DkKt(y − z)
(
�M

x τ ′) (z)dz −
∑

�∈Nd+1

(y − x)�

�! f Mx
(
Jt
k+�(τ

′)
)

=
∫

DkKt(y − z)
(
�MFM

x τ ′) (z)dz −
∑

�∈Nd+1

(y − x)�

�! f Mx
(
Jt
k+�(τ

′)
)

=
(
�MFM

x It
k (τ ′)

)
(y).

It remains to check the identity on a product τ = ∏
i τi where each τi is elementary.

We have

�MFM
x τ = �M◦

RFM
x τ = �M◦

FM
x Rτ,

since by definition FM
x = �gMx

∈ G and R commutes with G. Then by applying the
induction hypothesis on Rτ − τ and the τi , we have

�M◦
FM
x τ =

∏

i

�M◦
FM
x τi =

∏

i

�M◦
x τi = �M◦

x τ

and

�M◦
FM
x Rτ = �M◦

FM
x (Rτ − τ) + �M◦

FM
x τ

= �M◦
x (Rτ − τ) + �M◦

x τ = �M◦
x Rτ = �M

x τ. ��
Proposition 3.16 If R is an admissible map then (�M , �M ) is a model.

Proof The algebraic relations are given by the previous proposition. It just remains to
check the analytical bounds. For τ = �l or τ = It

k (τ ′), the proof is the same as in
[10, Prop. 8.27]. For τ = ∏

i τi a product of elementary symbols, we have

�M
x τ = �M◦

x (Rτ − τ) + �M◦
x τ.

We apply the induction hypothesis on the τi and Rτ − τ :

∣∣∣
(
�M◦

x τ
)

(y)
∣∣∣ =

∏

i

∣∣∣
(
�M◦

x τi

)
(y)

∣∣∣ �
∏

i

‖x − y‖|τi |s
s = ‖x − y‖|τ |s

s ,

∣∣∣
(
�M◦

x (Rτ − τ)
)

(y)
∣∣∣ � ‖x − y‖|Rτ−τ |s

s � ‖x − y‖|τ |s
s .
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It just remains the analytical bound for �M . We proceed by induction. For τ = �l

or τ = Xi , the bound is obvious. Let τ = ∏
i τi where the τi are elementary symbols.

For β < |τ |s, we have

‖�M
xyτ‖β =

∑
∑

i αi=β
αi<|τi |s

∏

i

‖�M
xyτi‖αi

�
∑

∑
i αi=β

αi<|τi |s

∏

i

‖x − y‖|τi |s−αi
s ‖τ‖ � ‖x − y‖α−β

s .

For τ ′ = It
k (τ ), the recursive definition (13) gives:

�M
xyI

t
k (τ ) = It

k

(
�M
xyτ

)
−

∑

|�|s<|It
k (τ )|s

(
�M

x It
k+�

(
�M
xyτ

))
(y)

(X + x − y)�

�! .

Let α < |It
k (τ )|s. If α ∈ R\N, let us write �M

xyτ = τ + ∑
i τ

i
xy with

|τ ixy |s = αi < |τ |s, ‖τ ixy‖αi � ‖x − y‖|τ |s−αi
s ;

then if

‖�M
xyτ

′‖α = ‖It
k

(
�M
xyτ

)
‖α �

∑

i

1(αi+|t|s−|k|s=α)‖x − y‖|τ |s−αi
s

� ‖x − y‖|τ |s+|t|s−|k|s−α
s .

Now, if α ∈ N and α < |It
k (τ )|s then

‖�M
xyI

t
k (τ )‖α =

∣∣∣∣∣∣

∑

α≤|�|s<|t|s+|τ |s−|k|s

(X + x − y)�

�!
(
�M

x It
k+�(�

M
xyτ)

)
(y)

∣∣∣∣∣∣

�
∑

α≤|�|s<|t|s+|τ |s−|k|s

‖x − y‖|�|s−α
s

�!
∑

γ≤|τ |s
‖x − y‖|t|s+γ−|k|s−|�|s

s ‖�M
xyτ‖|t|s+γ−|k|s

�
∑

α≤|�|s<|t|s+|τ |s−|k|s

‖x − y‖|�|s−α
s

�!
∑

γ≤|τ |s
‖x − y‖|t|s+γ−|k|s−|�|s

s ‖x − y‖|τ |s−|t|s−γ+|k|s
s

� ‖x − y‖|τ |s−α.
s

��
Proposition 3.17 We suppose that for every τ = Ik(τ

′) ∈ T such that |τ |s < 0,
we have (�M

x τ)(x) = (�x Mτ)(x). Then the following identities hold: (�M
x τ)(x) =

(�x Mτ)(x) and (�M◦
x τ)(x) = (�x M◦τ)(x) for every τ ∈ T.
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Proof We proceed by induction. For τ ∈ {1, �l, Xi }, we have

(�M
x τ)(x) = (�xτ)(x) = (�x Mτ)(x).

For τ = It
k (τ ′) , if |τ |s > 0 then the recursive definition of �M

x gives

(�M
x It

k τ ′)(x) = 0

(�x MIt
k τ ′)(x) = (�xI

t
k Mτ ′)(x) = 0.

For the second identity, we have used the fact that |Mτ ′|s ≥ |τ ′|s. Otherwise, if |τ |s <

0 then the hypothesis allows us to conclude. For an elementary product τ = ∏
i τi , it

follows by using the induction hypothesis

(�M◦
x τ)(x) =

∏

i

(�M◦
x τi )(x) =

∏

i

(�x M
◦τi )(x) = (�x M

◦τ)(x),

(�M
x τ)(x) = (�M◦

x (Rτ − τ))(x) + (�M◦
x τ)(x)

= (�x M
◦(Rτ − τ))(x) + (�x M

◦τ)(x) = (�x Mτ)(x).
��

Remark 3.18 Proposition 3.17 is crucial for deriving the renormalised equation
in many examples. Indeed, the reconstruction map RM associated to the model
(�M , �M ) is given for every τ ∈ Tby:

(RMτ)(x) =
(
�M

x τ
)

(x) = (�x Mτ)(x),

because for every τ ∈ T, �xτ is a function. The result of Proposition 3.17 has just
been checked on examples [10,13] and [14] but not in a general setting. In general for
y �= x , (�M

x τ)(y) is not necessarily equal to (�x Mτ)(y) as mentioned in [10]. But if
you carry more information on the decorated tree with an extended decoration, then
this identity turns to be true see [3, Thm. 6.15].

We finish this section by establishing a link between the renormalisation maps
introduced in [10] andRad [T ]. From [10, Lem. 8.43, Thm 8.44] and [14, Thm B.1],
R ⊂ L(T) is the set of maps M such that

• One has It
k Mτ = MIt

k τ and MXkτ = XkMτ for all t ∈ L+, k ∈ Nd+1, and
τ ∈ T.

• Consider the (unique) linear operators �M : T → T⊗ T+ and M̂ : T+ → T+
such that M̂ is an algebra morphism, M̂ Xk = Xk for all k, and such that, for every
τ, σ ∈ Tand k ∈ Nd+1 with |Jt

k (σ )|s > 0,

M̂J̃t
k (σ ) = M+(J̃t

k ⊗id)�Mσ, (14)

(id ⊗ M+)(� ⊗ id)�Mτ = (M ⊗ M̂)�τ, (15)
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where J̃t
k : T→ T+ is defined for every τ ∈ Tby J̃t

k (τ ) = ∑
�∈Nd+1

(−X)�

�! Jt
k+�(τ )

and M+ : T+ ⊗ T+ → T+ is the product on T+, M+(τ1 ⊗ τ2) = τ1τ2. Then, for
all τ ∈ T, one can write �Mτ = ∑

τ (1) ⊗ τ (2) with |τ (1)|s ≥ |τ |s. Having this
latest property, �M is called an upper triangular map.

Let M ∈ Rad [T ], we build two linear maps �M and �M◦
by setting

�M◦
1 = 1 ⊗ 1, �M◦

Xi = Xi ⊗ 1, �M◦
�l = �l ⊗ 1,

and then recursively

�M◦
τ τ̄ = (

�M◦
τ
)(

�M◦
τ̄
)
, �Mτ = �M◦

Rτ, (16)

as well as

�M◦
It
k (τ ) = (It

k ⊗ id)�Mτ −
∑

|�|s≥|It
k τ |s

X�

�! ⊗ M+
(
J̃t
k+� ⊗ id

)
�Mτ . (17)

We claim that if �M◦
and �M are defined in this way, then provided that one defines

M̂ by (14), the identity (15) holds.

Proposition 3.19 If M ∈ Rad [T ], �M is defined as above and M̂ is defined by (14),
then the identity (15) holds and M belongs to R.

Before giving the proof of Proposition 3.19, we need to rewrite (15). Indeed, the
identity (15) is equivalent to

�M = (id ⊗ M+)
(
(id ⊗ A+)�M ⊗ M̂

)
�, (18)

where A+ : T+ → T+ is the antipode associated to �+ defined by:

M+ (id ⊗ A+) �+ = 1∗1 = M+ (A+ ⊗ id)�+.

The identity (18) is the consequence of the following lemma:

Lemma 3.20 Let D : T⊗ T+ → T⊗ T+ given by

D = (id ⊗ M+)(� ⊗ id),

then D is invertible and D−1 is given by

D−1 = (id ⊗ M+)(id ⊗ A+ ⊗ id)(� ⊗ id).
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Proof We have by using the fact that (�⊗ id)� = (id⊗�+)� andM+(id⊗M+) =
M+(M+ ⊗ id)

D−1D = (id ⊗ M+)(id ⊗ A+ ⊗ id)(id ⊗ id ⊗ M+)((� ⊗ id)� ⊗ id)

= (id ⊗ M+ (A+ ⊗ M+))((id ⊗ �+)� ⊗ id)

= (id ⊗ M+)(id ⊗ M+ (A+ ⊗ id) ⊗ id)((id ⊗ �+)� ⊗ id)

= (id ⊗ M+)((id ⊗ M+ (A+ ⊗ id)�+)� ⊗ id).

Now it followswith the identitiesM+ (A+ ⊗ id)�+ = 1∗1 and (id⊗1∗)�τ = (τ⊗1)

D−1D = (id ⊗ M+)((id ⊗ 1∗)� ⊗ id) = id ⊗ id.

Using the same properties, we prove that DD−1 = id ⊗ id. ��
Remark 3.21 The previous lemma gives an explicit expression of the inverse of D. It
is a refinement of [10, Proposition 8.38] which proves the fact that D is invertible.

Remark 3.22 The equivalence between (18) and (15) is in the strong sense that (18)
holds for any given symbol τ if and only if (15) holds for the same symbol τ .

Before giving the proof of Proposition 3.19, we provide some identities concerning
the antipode A+. Regarding the antipode A+, one has the recursive definition

A+1 = 1, A+Xi = −Xi , A+(τ1τ2) = A+(τ1)A+(τ2),

M+ (id ⊗ A+) �+Jt
k τ = 0,

which gives

∑

�∈Nd+1

X�

�! A+Jt
k+�(τ ) = −M+

(
Jt
k ⊗ A+

)
�τ . (19)

As a consequence of this, one has the identity

M+
(
A+Jt

k ⊗ id
)
�τ = −J̃t

k (τ ) . (20)

To see this, simply apply on both sides in (19) the antipode A+.

Proof Proposition 3.19 Since (14) holds by definition and it is straightforward to ver-
ify that �M is upper triangular (just proceed by induction using (17) and (16)), we
only need to verify that (15), or equivalently (18), holds. For this, we first note that
since �M = �M◦

R, M = M◦R, R commutes with �, and since R is invertible by
assumption, (18) is equivalent to the identity

�M◦ = (id ⊗ M+)
(
(id ⊗ A+)�M◦ ⊗ M̂

)
�, (21)
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and it is this identity that we proceed to prove now. Both sides in (21) are morphisms
so that, by induction, it is sufficient to show that if (21) holds for some element τ , then
it also holds for It

k (τ ). (The fact that it holds for 1, Xi and �l is easy to verify.)
Starting from (17), we first use (14) and the fact that�M and�M◦

agree on elements
of the form It

k (τ ) to rewrite �M◦
It
k (τ ) as

�M◦
It
k (τ ) = (Ik ⊗ id)�Mτ +

∑

�∈Nd+1

X�

�! ⊗ (
M̂J̃t

k+�(τ ) − M+(J̃t
k+� ⊗ id)�Mτ

)
,

(22)

where the sum runs over all multiindices � (but only finitely many terms in the sum
are non-zero). By (20), we have

M+(J̃t
k+� ⊗ id)�Mτ = −M+

(
M+(A+Jt

k+� ⊗ id)� ⊗ id
)
�Mτ

= −M+
(
A+Jt

k+� ⊗ id
)(
id ⊗ M+

)(
� ⊗ id

)
�Mτ.

Recall that by Remark 3.22, the induction hypothesis implies that (15) holds, so that
we finally conclude that

M+(J̃t
k+� ⊗ id)�Mτ = −M+

(
A+Jt

k+�M ⊗ M̂
)
�τ .

Using again the induction hypothesis, but this time in its form (18), we thus obtain
from (22) the identity

�M◦
It
k (τ ) = (id ⊗ M+)

(
(It

k ⊗ A+)�M ⊗ M̂
)
�τ +

∑

�∈Nd+1

X�

�! ⊗ M̂J̃t
k+�(τ )

+
∑

�∈Nd+1

X�

�! ⊗ M+
(
A+Jt

k+�M ⊗ M̂
)
�τ .

At this stage, we see that we can use the definition of � to combine the first and the
last term, yielding

�M◦
It
k (τ ) = (id ⊗ M+)

(
(id ⊗ A+)�It

k M ⊗ M̂
)
�τ +

∑

�∈Nd+1

X�

�! ⊗ M̂J̃t
k+�(τ )

= (id ⊗ M+)
(
(id ⊗ A+)�M◦ ⊗ M̂

)
(It

k ⊗ id)�τ +
∑

�∈Nd+1

X�

�! ⊗ M̂J̃t
k+�(τ ) .
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We now rewrite the last term

∑

�∈Nd+1

X�

�! ⊗ M̂J̃t
k+�(τ ) =

∑

m,�∈Nd+1

(id ⊗ M+)
( X�

�! ⊗ (−X)m

m! ⊗ M̂Jt
k+�+m(τ )

)

=
∑

�∈Nd+1

(id ⊗ M+)
(
(id ⊗ A+)�M◦ X�

�! ⊗ M̂Jt
k+�(τ )

)

=
∑

�∈Nd+1

(id ⊗ M+)
(
(id ⊗ A+)�M◦ ⊗ M̂

)( X�

�! ⊗ Jt
k+�(τ )

)
.

Inserting this into the above expression and using the definition of � finally yields
(21) as required, thus concluding the proof.

4 Link with the renormalisation group

In this section, we establish a link between the renormalisation group R[T ] defined
in [3] and the maps M constructed from admissible maps R.

Theorem 4.1 One has R[T ] ⊂ Rad [T ].
The outline of this section is the following. We first start by recalling the definition
ofR[T ] and then we show that these maps are of the form M◦R. Then we prove the
commutative property with the structure group and we give a proof of Theorem 4.1.
Finally, we derive a recursive formula.

4.1 The renormalisation group

Before giving the definition of R[T ], we need to introduce some notations. Let T̂−
the free commutative algebra generated by B◦. We denote by · the forest product
associated to this algebra. Elements of T̂− are of the form (F, n, e) where F is now a
forest. Then for the forest product we have:

(F, n, e) · (G, n̄, ē) = (F · G, n̄ + n, ē + e),

where the sums n̄ + n and ē + e mean that decorations defined on one of the forests
are extended to the disjoint union by setting them to vanish on the other forest. Then
we set T− = T̂−/J+ where J+ is the ideal of T̂− generated by {τ ∈ B◦ : |τ |s ≥ 0}.
Then the map �− : T→ T− ⊗ Tdefined in [3] is given for T n

e ∈ Tby:

�−T n
e =

∑

A∈A(T )

∑

eA,nA

1

eA!
(
n

nA

)
(A, nA + πeA, e�EA)

⊗(RAT, [n − nA]A, e + eA), (23)
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where

• For C ⊂ D and f : D → Nd+1, let f �C the restriction of f to C .
• The first sum runs over A(T ), all subgraphs A of T , A may be empty. The second
sum runs over all nA : NA → Nd+1 and eA : ∂(A, T ) → Nd+1 where ∂(A, F)

denotes the edges in ET \EA that are adjacent to NA.
• We write RAT for the tree obtained by contracting the connected components of

A. Then we have an action on the decorations in the sense that for f : NT → Nd+1

such that A ⊂ T one has: [ f ]A(x) = ∑
x∼A y f (y)where x is an equivalence class

of ∼A and x ∼A y means that x and y are connected in A. For g : ET → Nd+1,
we define for every x ∈ NT , (πg)(x) = ∑

e=(x,y)∈ET
g(x).

Then one can turn this map into a coproduct �− : T− → T− ⊗ T− and obtain a
Hopf algebra for T− endowed with this coproduct and the forest product see [3, Prop.
5.35]. Themain difference here is that we do not consider extended decorations but the
results for the Hopf algebra are the same as in [3]. This allows us to consider the group
of character of this Hopf algebra denoted by G− which is the set of multiplicative
elements of T∗− the dual of T− endowed with the convolution product ◦ described
below:

� ◦ �̄ = (
� ⊗ �̄

)
�−, �−1 = �(A−·), �, �̄ ∈ G−,

where A− is the antipode for �−. In comparison to [3], we add the assumptions on
G− that every � ∈ G− is zero on B̂◦ ∩ B−◦ and on every T n

e ∈ B−◦ such that n(
T ) �= 0
where B̂◦ are the planted trees of B◦ and B−◦ are the elements of B◦ with negative
degree. Actually it is easy to check that these assumptions define a subgroup of G−.
Then the renormalisation group R[T ] is given by:

R[T ] = {M� = (� ⊗ id)�−, � ∈ G−}. (24)

In order to rewrite these maps M� in terms of some M◦ and R, we need to derive a
factorisation of the map �−. We denote the forest product by · and the empty forest
by 11.

Definition 4.2 For all trees T we denote by A◦(T ) the family of all (possibly empty)
A ∈ A(T ) such that if A = {S1, . . . , Sk} then 
Si �= 
T for all i = 1, . . . , k. For all
forests F with F = T1 · T2 · · · Tn we set

A◦(F) := {A ∈ A(F) : A = A1 � · · · � Am, Ai ∈ A◦(Ti ), i = 1, . . . ,m},

andA◦(1) := ∅. We also defineAr (T ) containing the empty forest and the non-empty
forests A such that A = {S} and 
S = 
T .

We define the maps �−◦ (resp. �−
r ) as the same as �− by replacing A(T ) in (23) by

A◦(T )(resp. Ar (T )).
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Proposition 4.3 The map �−◦ is multiplicative on T, i.e. �−◦ (τ1τ2) = (�−◦ τ1)(�
−◦ τ2)

for all τ1, τ2 ∈ T, where we consider on T− ⊗ T the product

(φ1, τ1) ⊗ (φ2, τ2) → (φ1 · φ2, τ1τ2).

Proof We introduce �̂ : B̂◦ → B◦ the map which associates to a planted decorated
tree T n

e a decorated tree obtained by erasing the only edge e = (
, y) incident to the
root 
 in T and setting the root to be y.

Since all decorated trees are products of elementary trees, it is enough to prove
that for τ1, . . . , τm ∈ B̂◦ such that τ1 . . . τm ∈ B◦ we have �◦(τ1 · · · τm) =
(�◦τ1) · · · (�◦τm). It is easy to see that for all T n

e ∈ B̂◦

A◦(T n
e ) = A(�̂T n

e ), �−◦T n
e = (id ⊗ Xn(
)I

t(e)
e(e) )�

−�̂T n
e , (25)

where as above 
 is the root of T n
e and e = (
, y) is the only edge incident to 
.

Now if T n
e = τ1 · · · τm ∈ B◦ with τ1, . . . , τm ∈ B̂◦, then we have a canonical

bijection betweenA◦(T n
e ) andA(�̂τ1)×· · ·×A(�̂τm) and the numerical coefficients

factorise nicely, so that

�−◦ (τ1 · · · τm) =
m∏

i=1

∑

Ai∈A(�̂τi )

∑

eAi ,nAi

1

eAi !
(

n

nAi

)
(Ai , nAi + πeAi , e�EAi )

⊗Xn(
i )I
t(ei )
e(ei )

(RAi �̂τi , [n − nAi ]Ai , e + eAi )

=
m∏

i=1

(id ⊗ Xn(
i )I
t(ei )
e(ei )

)�−�̂τi =
m∏

i=1

�−◦ τi .

��

Proposition 4.4 Let M− : T− ⊗ T− → T−, φ ⊗ φ̄ → φ · φ̄. Then

(M− ⊗ id)(id ⊗ �−◦ )�−
r = �−

holds on T̂−.

Proof By multiplicativity on T̂−, it is enough to prove the equality on all T n
e ∈ B◦.

Note that

(id ⊗ �−◦ )�−
r T

n
e =

∑

A∈Ar (T )

∑

eA,nA

1

eA!
(
n

nA

) ∑

B∈A◦(RAT )

∑

eB ,nB

1

eB !
([n − nA]A

nB

)
·

· ((A, nA + πeA, e�A) · (B, nB + πeB, e + eA�B))

⊗(RBRAT, [[n − nA − nB]A]B, e + eA + eB)
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and therefore

(M− ⊗ id)(id ⊗ �−◦ )�−
r

=
∑

A∈Ar (T )

∑

eA,nA

1

eA!
(
n

nA

) ∑

B∈A◦(RAT )

∑

eB ,nB

1

eB !
([n − nA]A

nB

)
·

·(A, nA + πeA, e�A) ⊗ (B, nB + πeB, e + eA�B)

⊗(RBRAT, [[n − nA − nB]A]B, e + eA + eB)

At this point, we note that since B ∈ A◦(RAT ), eA and eB have disjoint support so
that eA!eB ! = (eA + eB)!. Similarly, thanks to the fact that nB has support away from
the root of RAT , one has

([n − nA]A
nB

)
=

(
n − nA

nB

)
,

so that
(
n

nA

)([n − nA]A
nB

)
= n!(n − nA)!

nA!(n − nA)!nB !(n − nA − nB)!
= n!

(nA + nB)!(n − nA − nB)! =
(

n

nA + nB

)
.

We note also that the map (A, B) → C = A ∪ B is a bijection between {(A, B) :
A ∈ Ar (T ), B ∈ A◦(RAT )} and A(T ), since every C ∈ A(T ) is either in A◦(T ) (if
none of the subtrees touches the root of T ), or of the form {S} ∪ B, where 
S = 
T

and B ∈ A◦(RAT ). Moreover setting, eC = eA + eB and nC = nA + nB , the above
sum can also be rewritten as

∑

C∈A(T )

∑

nC ,eC

1

eC !
(
n

nC

)
(C, nC + πeC , e�C)

⊗(RCT, [n − nC ]C , e + eC ) = �−T n
e .

This concludes the proof. ��
Corollary 4.5 Let � ∈ G−, R�

def= (� ⊗ id)�−
r and M◦

�

def= (� ⊗ id)�−◦ . Then M� =
M◦

� R�.

Proof Note that

M◦
� R� = (� ⊗ id)�−◦ (� ⊗ id)�−

r = (� ⊗ � ⊗ id)
(
id ⊗ �−◦

)
�−

r .

Now, since � : T− → R is multiplicative, we obtain

M◦
� R� = (� ⊗ id)(M− ⊗ id)(id ⊗ �−◦ )�−

r = (� ⊗ id)�− = M�.

��
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Through the next tree T , we illustrate the Proposition 4.4 by considering A =
{S1, S2, S3} ∈ A(T ):

T =

S3

�1

�5 �6

�3�2


S1

�4

�7 �8 �9


S2

�10

−→ A =

S1

�4

�3


S2

�8 �9


S3

�6�5

.

We have {S3} ∈ Ar (T ) and {S1 , S2} ∈ A◦(RS3T ).
In order to be able to prove the next proposition, we recall the definition of �2

given in [3]. The map �2 : T→ T⊗ T̂+ is given for T n
e ∈ Tby:

�2T
n
e =

∑

A∈A+(T )

∑

eA,nA

1

eA!
(
n

nA

)
(A, nA + πeA, e�EA)

⊗(RAT, 2, [n − nA]A, e + eA), (26)

where A+(T ) is the set of subtrees A of T such that 
A = 
T . Then one obtains �+
by applying �+: �+ = (id ⊗ �+)�2.

Proposition 4.6 We have

(id ⊗ �+)�−
r = (�−

r ⊗ id)�+.

Moreover for all � ∈ G−, R� commutes with G.

Proof The result follows from the identity:

(id ⊗ �2)�
−
r = (�−

r ⊗ id)�2. (27)

Indeed, one has �+ = (id ⊗ �+)�2 which gives:

(
id ⊗ �+)

�−
r = (id ⊗ (id ⊗ �+)�2) �−

r

= (
�−

r ⊗ �+
)
�2 = (

�−
r ⊗ id

)
�+.

So it remains to prove (27). We first notice the next identity between �−
r and �2:

�−
r =

(
�− ◦ �̃ ⊗ R2

)
�2, (28)

whereR2 is themapwhich sends (T, 2)ne to T
n
e or which removes the colour two at the

root and �̃ : T→ T̂− is the projection which maps single node without decoration to
the empty forest, any other tree is identified with the forest containing only this tree.
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The map �̃ is extended multiplicatively to the space T̂−. Then (27) follows from the
co-associativity of �2 proved in [3]. Indeed by setting �̃− = �− ◦ �̃, we have

(id ⊗ �2)�
−
r = (�̃− ⊗ �2R2)�2 = (�̃− ⊗ (R2 ⊗ id)�2)�2

=
(
(�̃− ⊗ R2)�2 ⊗ id

)
�2 = (�−

r ⊗ id)�2.

Now for all � ∈ G− and g ∈ G+

R��g = (� ⊗ id ⊗ g)(�−
r ⊗ id)�+ = (� ⊗ id ⊗ g)(id ⊗ �+)�−

r = �g R�.

��
We finish this subsection by the proof of the Theorem 4.1:

Proof Theorem 4.1 Let M ∈ R[T ], there exists � ∈ G− such that

M = M� = (� ⊗ id)�−.

From Corollary 4.5, we know that M� = M◦
� R� where

M◦
� = (� ⊗ id) �−◦ , R� = (� ⊗ id)�−

r .

We need to check that R� ∈ Lad(T) and that M◦
� satisfies the recursive definition

(9). For M◦
� , this property comes from Proposition 4.3 and from (25) which gives for

every XnIt
k (T n

e ) ∈ T:

�−◦ XnIt
k (T n

e ) = (id ⊗ XnIt
k )�−T n

e .

For R�, we first notice that for every τ ∈ T,�−
r τ is of the form 11⊗τ +∑

i τ
(1)
i ⊗τ

(2)
i

where |τ |s = |τ (1)
i |s+|τ (2)

i |s and ||τ || = ||τ (1)
i ||+||τ (2)

i ||, ||τ (2)
i || < ||τ ||. The tree τ

(1)
i

is of negative degree thus |τ |s ≥ |τ (2)
i |s and we get the following properties:‖R�τ −

τ‖ < ‖τ‖ and |R�τ − τ |s < |τ |s. Let It
k (τ ) ∈ B̂◦, then by definition of Ar (It

k (τ ))

we get Ar (It
k (τ ))\(B̂◦ ∩ Ar (It

k (τ ))) = ∅ which yields:

R�I
t
k (τ ) = (� ⊗ id)�−

r I
t
k (τ ) = (� ⊗ id)

(
11 ⊗ It

k (τ )
) = It

k (τ ).

As the same any power of X at the root is killed by the character � which proves
the identity R�Xkτ = Xk R�τ for every τ ∈ T. The fact that R� commutes with the
structure group proceeds from Proposition 4.6. From all these properties, we have
M� ∈ Rad [T ] which concludes the proof. ��

4.2 Recursive formula for the renormalisation group

We want to derive a recursive formula for �− by using the symbolic notation. The
recursive formulation is based on the tree product and the inductive definition of
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the trees. The main difficulty at this point is that one can derive easily a recursive
formula for �+ which is multiplicative for the tree product but not for �−. In order
to recover this multiplicativity, we define a slight modification �̂1 of �− by adding
more information. The main idea is to distinguish a tree in a forest. This formulation
allows to have a recursive definition for the two coproducts �− and �+.

Definition 4.7 We define F
 the space of (F, n, e, 
) = (Fn
e , 
) such that F is non-

empty and such that 
 is the root of one connected component T
 of F . The space F


can be viewed as the non-empty decorated forests where we distinguish one tree. We
endow this space with a product � defined as follows:

(F, n, e, 
) � (F̄, n̄, ē, 
̄) = (Fc

 � F̄c


̄ � {T
 T̄
̄}, n + n̄, e + ē, 
̃),

where Fc

 = F\{T
}. We have also identified the two roots 
 and 
̄ with 
̃ which

means that n(
̃) = n(
) + n̄(
̄). We denote by T
 the forests (Fn
e , 
) ∈ F
 such that

Fc

 is empty. Then we define a canonical injection ι
 : T → T
, ι
(T n

e ) = (T n
e , 
T )

and we denote by �
 its left inverse which is defined by:

�
 : F
 → F, �
((F, n, e, 
)) = (F, n, e).

Definition 4.8 WedefineA(F, 
) as the family of all (A, 
) ∈ F
 such that A ∈ A(F)

and A contains all the nodes of the forest F .

Remark 4.9 In the Definition 4.8, we extract all the nodes because we want to derive
a recursive formula for �− which means that one is not able to decide immediately
during the recursive procedure in (31) if one node will belong to a tree extracted by
�−.

We define �̂1 : F
 → F
 ⊗ F
 in the following way:

�̂1(F, n, e, 
) =
∑

(A,
)∈A(F,
)

∑

eA,nA

1

eA!
(
n

nA

)
(A, nA + πeA, e�EA, 
)

⊗(RAF, [n − nA]A, e + eA, 
) . (29)

The infinite sum makes sense as the same as in [3] by using the bigraded structure of
F
 and the fact that �̂1 is a triangular map.

Proposition 4.10 The map �̂1 is multiplicative for � and one has on F
:

(id ⊗ �̂1)�̂1 = (�̂1 ⊗ id)�̂1. (30)

Proof The multiplicativity comes from the fact that

A(F, 
) � A(F̄, 
̄) = A((F, 
) � (F, 
̄)).

The rest of the proof can be seen as a consequence of the co-associativity results
obtained in [3] see Remark 4.11. In order to avoid the introduction of too much
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notations, we provide a direct proof in the appendix using the formula (31) with the
symbolic notation. ��
Remark 4.11 One can define A(F, 
) using the formalism of the colours developed
in [3] by A1(F, F̂, 
) where in this case F̂−1(1) = NF and with the difference that
we need to carry more information by keeping track of the root of one tree in F . This
means that elements of F
 have all their nodes coloured by the colour 1. Then for the
definition of the coproduct, all the nodes are extracted. We can then apply [3, Prop.
3.9] without the extended decoration in order to recover the Proposition 4.10.

Remark 4.12 This coproduct �̂1 contains at the same time the Connes-Kreimer
coproduct and the extraction-contraction coproduct. In the sense that if we forget
the root 
, we obtain a variant of the extraction-contraction coproduct where each
node needs to be in one extracted subtree. On the other hand, if we quotient by the
elements (F, 
) such that F contains a tree with a root different from 
, we have the
Connes-Kreimer coproduct. Wemake this statement more precise in Proposition 4.15.

FromCorollary 29, we can derive a general recursive formula by using the symbolic
notation. Before giving it, we need to encode (Fn

e , 
). For that, we introduce the new
symbol C which is a map from F
 into itself. Now ({T
, T1, . . . , Tn}, 
) is given
by T


∏n
i=1 C (Ti ) where T
 is the tree with root 
. Let (Fn

e , 
̃), (F̄ n̄
ē , 
̄) ∈ F
, the

product � is given by:

(
Fn
e , 
̃

)
�

(
F̄ n̄
e , 
̄

)
= T
̃ T̄
̄

∏

T∈Fc

̃

C (T )
∏

T̄∈F̄c

̄

C (T̄ ).

Then the properties of the symbol C are:

1. The product C (T )C (T̄ ) is associative and commutative as the product on the
forests. Moreover, the map C is multiplicative for the product of forests, C (F �
F̄) = C (F)C (F̄).

2. The symbolC is also defined as an operator on (Fn
e , 
) in the sense thatC ((Fn

e , 
))

is the forest (Fn
e �{•}, •). Using only the symbolic notation, this can be expressed

as:

C (T
C (Fc

 )) = C (T
)C (Fc


 ).

3. The operator It
k is extended by acting only on the tree with the root 
 in (Fn

e , 
):

It
k (T
C (Fc


 )) = It
k (T
)C (Fc


 ).

With these properties, we define the map �̂1:

�̂11 = 1 ⊗ 1, �̂1Xi = Xi ⊗ 1 + 1 ⊗ Xi ,

�̂1C (τ ) = (C ⊗ C ) �̂1τ,

�̂1I
t
k (τ ) =

(
It
k ⊗ id + ∑

�∈Nd+1
X�

�! C ⊗ It
k+�

)
�̂1τ, (31)
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where 1 corresponds here to ({•}, •). We make an abuse of notations by identifying
(T, 
T ) and T when T is a tree.

The previous recursive construction and the properties of the map C can be
explained graphically. We concentrate ourself on the shape and we omit the deco-
rations. If we look at one term τ1 ⊗ τ2 appearing in the decomposition of �̂1τ for
some tree τ then τ1 is of the form τ̄

∏
j C (τ̄ j ). We colour trees of the form C (τ̄ j ) in

red and leave τ̄ in black in the next example:

(It
k ⊗ id + C ⊗ It

k )

⎛

⎜⎝ ⊗ τ2

⎞

⎟⎠ =

⊗ τ2 + ⊗ It
k (τ2).

In the next proposition, we prove the equivalence between the recursive definition
on the symbols and the definition (29) .

Proposition 4.13 The definitions (29) and (31) coincide.

Proof The fact that �̂11 = 1 ⊗ 1 follows immediately from the definitions. The
element Xk is encoded by the tree consisting of just a root, but with label k: ({•k}, •).
One then has A = {•} and eA = 0, while nA runs over all possible decorations for the
root. This shows that (29) yields in this case

�̂1X
k =

∑

�≤k

(
k

�

)
Xk−� ⊗ X�,

which is as required. It now remains to verify that the recursive identities hold as well.
The coproduct �̂1 is multiplicative for �. Thus we can restrict ourselves to �̂1C (T n

e )

and �̂1I
t
k (T n

e ) where T n
e is a decorated tree. For the first, we just notice that:

�̂1({T n
e } � {
}, 
) = ((id, 
) ⊗ (id, 
)) �̂1({T n

e }, 
T ),

where 
 is different from the root 
T of T and (id, 
) replaces the root by 
 and
adds 
 to the forest. The operator (id, 
) is identified with C. It remains to consider
�̂1I

t
k (T n

e ). It follows from the definitions that by denoting 
 the root of It(T )

A(It(T ), 
) = It(A(T, 
T )) � {(A � {
}, 
) : (A, 
T ) ∈ A(T, 
T )}.

This decomposition translates the belonging or not of the edge e
 = It to (A, 
) ∈
A(It(T ), 
). Given (A, 
T ) ∈ A(T, 
T ), since the root-decoration ofIt

k (T ) is 0, the
set of all possible node-labels nA forIt

k (T ) appearing in (29) for �̂1I
t
k (T n

e ) coincides
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with those appearing in the expression for �̂1T n
e . Furthermore, it follows from the

definitions that for any such A one has

RAI
t(T ) = It(RAT ),

so that we have the identity

�̂1I
t
k (T n

e ) = (It
k ⊗ id)�̂1T

n
e +

∑

e
,n


1

e
!
(
n

n


)
({
}, n
 + πe
, 
) � (id, 
)

⊗({
}, n(
) − n
, 
) � It
k+e
(e
) �̂1T

n
e

= (It
k ⊗ id)�̂1T

n
e +

⎛

⎝
∑

e


1

e
! X
πe
C ⊗ It

k+e
(e
)

⎞

⎠ �̂1T
n
e ,

because n(
) = 0 so that n
 is a zero ( n(
) − n
 ≥ 0 ) . Note now that e
 consists
of a single decoration (say �), supported on e
. As a consequence, we can rewrite the
above as

�̂1I
t
k (T n

e ) =
⎛

⎝It
k ⊗ id +

∑

�∈Nd+1

X�

�! C ⊗ It
k+�

⎞

⎠ �̂1T
n
e .

��
Remark 4.14 We can derive a recursive formula for �̂1 with the extended decorations
introduced in [3]:

�̂11o = 1o ⊗ 1o, �̂1Xi = Xi ⊗ 1ei + 1 ⊗ Xi ,

�̂1C (τ ) = (C ⊗ C ) �̂1τ,

�̂1I
t
k (τ ) =

⎛

⎝It
k ⊗ 1t−k +

∑

�∈Nd+1

X�

�! C ⊗ 1�I
t
k+�

⎞

⎠ �̂1τ,

where 1o is the tree with one node having the extended decoration o ∈ Zd+1 ⊕Z(L).

Before making the link between �̂1 and the maps �−, �+, we introduce some
notations. We denote by C2 the map acting on trees by sending T n

e to (T, 2)ne or
equivalently by colouring the root with the colour 2. Then we define the map �T :
F
 → T
 by sending (F, 
) to (T
, 
) when F = T
 · • · · · · · • and zero otherwise.
In the next proposition, we also use the map �̃ : T̂− → T̂− defined for the identity
(28). This map allows to remove the isolated nodes.

Proposition 4.15 One has on T:

�− = (�− ◦ �̃ ◦ �
 ⊗ �
)�̂1ι
, �+ = (�
 ◦ �T ⊗ �+ ◦ C2 ◦ �
)�̂1ι
.
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Proof The proof follows from the expressions of �−, �+ and �̂1 respectively given
in (23), (26) and (29). Indeed, we have a bijection between elements ofA(F, 
)which
are of the form (T
 · • · · · · · •, 
) and A+(T ). We also have a bijection between the
A ∈ A(T ) which don’t have any isolated nodes and A(F, 
). These bijections come
from the fact that all the nodes are extracted in the definition of A(F, 
). ��

5 Examples of renormalised models

For the examples of this section, we define the renormalisation map MR by using
an admissible map R� = (� ⊗ id)�−

r with � ∈ G−. Moreover for each example, we
describe the structure and we look at the following properties which a model could
verify or not:

(a) The map M commutes with G .
(b) For every symbol τ , �M

x τ = �x Mτ .
(c) For every symbol τ , (�M

x τ)(x) = (�x Mτ)(x).

Remark 5.1 In this section, we will give examples which do not verify the first two
properties. But the last one is verified by all the examples. In the framework of the
extended structure, we directly have the second property see [3, Thm 6.15].

We start with a toymodel on theWick renormalisation thenwemove on to examples
in singular SPDEs.

5.1 Hermite polynomials

We look at a very simple example: the powers of a standard Gaussian random variable
ξ with zero mean and covariance c2, which can be interpreted as a white noise on a
singleton {x}. The space T is given as the linear span of {�n : n ∈ N} and G = {id} .
Given the natural definition

� �n = ξn,

we want to find M such that the renormalised n-th power of ξ is the Wick product:

�M�n = ξ�n = Hn(ξ, c)

where Hn are generalised Hermite polynomials: H0 = 1, Hn+1(x, c) = xHn(x, c) −
c2H ′

n(x, c). One natural way of definingM isM = exp(−R�)where R� = (�⊗id)�−
r

and �(�n) = c21(n=2). The map �−
r is defined on �n by:

�−
r �n =

n∑

k=0

(
n

k

)
�k ⊗ �n−k .

This map can be expressed in our general setting with the same subset Ar (T ). But in
that case, we do not have any decorations. In the next example, we will encode �n
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with a set of n leaves. A rooted subtree is identified with a subset of leaves. We present
one term in the decomposition of �−

r �8 which is in the support of �:

�4�3�2�1 �5 �6 �7 �8 −→ �3 �7 ⊗ �4�2�1 �5 �6 �8 .

We have removed the set {�3, �7} from the term �8. Then �M is given by:

�M�n = �M�n .

By definition, this example verifies all the three properties (a), (b) and (c). We are
able to provide a description of M :

Proposition 5.2 The map M is given by:

M = M�wick = (�wick ⊗ id)�−
r

where

�wick = 1∗ +
∑

k≥1

(−1)k
(2k − 1)!

2k−1(k − 1)!c
2k1{�2k }.

Proof We use the following lemma: ��

Lemma 5.3 For every k ∈ N∗ Rk

k! = ( fk ⊗ id)�−
r , where

fk = (2k − 1)!
2k−1(k − 1)!c

2k1{�2k }.

Proof We proceed by recurrence. It is obvious for k = 1. Let k ∈ N∗, we suppose the
property true for this integer. We have for every n ∈ N

Rk+1

(k + 1)!�
n = 1

k + 1
R( fk ⊗ id)�−

r �n

= 1

k + 1
( fk ⊗ � ⊗ id)(id ⊗ �−

r )

n∑

m=0

(
n

m

)
�m ⊗ �n−m

= 1

k + 1
( fk ⊗ � ⊗ id)

n∑

m=0

n−m∑

�=0

(
n

m

)(
n − m

�

)
�m ⊗ �l ⊗ �n−m−�

= 1{n≥2k+2}
1

k + 1

(2k − 1)!
2k−1(k − 1)!c

2k+2
(
n

2k

)(
n − 2k

2

)

= 1{n≥2k+2}
(2k + 1)!

2kk! c2k+2.
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From the previous lemma, we deduce that �wick = 1∗ + ∑
k≥1(−1)k fk which con-

cludes the proof. ��
Remark 5.4 In this particular case, we look at a recursive formulation of M = M◦R,
R turns out to be equal to M because M◦ is the identity on T. This is also the reason
why �wick has a complicate expression in comparison to �.

5.2 The KPZ equation

The KPZ equation is given on R by

∂t u = ∂2x u + (∂xu)2 + ξ

where ξ is the space-time white noise. In this equation, there is only one noise denoted
by � in the symbolic notation. Moreover, we denote by I the abstract integrator
associated to the heat kernel K . The scaling s is the parabolic scaling (2, 1). In the
sequel, we make the following abuse of notation I(0,1) = I1. The renormalisation
group for the KPZ equation has been introduced in [9] and it has been given in the
setting of regularity structure in [10]. We first present the normal and complete rule
Rkpz used for building Tkpz following [3, Sec. 5.4]:

Rkpz(�) = {()}, Rkpz(I) = {(), (�), (I1), (I1,I1)}.

The admissible map R = Rkpz associated to the map M is given by Rkpz = (�kpz ⊗
id)�−

r where �kpz is non zero for:

τ ∈ {I1(�)2,I1(I1(�)2)2,I1(�)I1(I1(�)I1(I1(�)2))}.

For the next Proposition 5.5, we need to work with a different rule:

R̄kpz(�) = {()}, R̄kpz(I) = {(�), (I1), (I1,I1)}.

We consider a new space T̄generated by this rule such that the symbol I(τ ) is zero
whenever τ is a polynomial. This space was used in [10]. In practice for the expansion
of the solution, we work with a truncated version of it by considering only the symbols
below a certain degree. It is the same for T̄+. Then only a finite number of polynomials
appears when we apply the structure group on T̄. We make the same assumption as
in [10] that the kernel K associated to Iannihilates polynomials up to a certain order
bigger than the order of the truncation.

Proposition 5.5 The map M = MRkpz satisfies the properties (a), (b) and (c).

Proof For proving the first two properties (a) and (b), we need the following lemma:
��

Lemma 5.6 For every symbol τ , M◦τ = τ and there exists a polynomial Pτ such
that: Mτ = τ + Pτ (X).
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Proof We proceed by induction. It is obvious for Xi and �. For τ = I1(τ
′), we apply

the induction hypothesis on τ ′ which gives

M◦I1(τ
′) = I1(Mτ ′) = I1(τ

′ + Pτ ′(X)) = I1(τ
′).

Let τ = ∏
i τi a product of elementary symbols. From the induction hypothesis on

the τi , it follows

M
∏

i

τi = M◦(Rτ − τ) +
∏

i

M◦τi = M◦(Rτ − τ) + τ.

Then Rτ − τ is non zero if one element in the support of �kpz is a subtree of τ .
Necessarily, τ should be of the form

• τ1I1(�τ2)I1(�τ3),
• τ1I1(�τ2)I1(τ3I1(�τ4)I1(τ5I1(τ6�)I1(τ7�))),
• τ1I1 (τ2I1(τ3�)I1(τ4�))I1 (τ5I1(τ6�)I1(τ7�)),

where the τi belong to Tkpz . By looking, at the rule available in Rkpz , we deduce that
the τi should be monomials of the form Xk . Therefore, Rτ − τ is a polynomial which
allows us to conclude.
For the property (a), we proceed by induction and we also prove that M◦ commutes
with G . Let � ∈ G, the proof is obvious for Xi and �. Let τ = I1(τ

′), it happens

M�I1(τ
′) = M

(
�I1(τ

′) − I1(�τ ′) + I1(�τ ′)
)

= �I1(τ
′) − I1(�τ ′) + I1(�Mτ ′).

On the other hand, we have

�MI1(τ
′) = �I1(Mτ ′) − I1(�Mτ ′) + I1(�Mτ ′).

Using the previous lemma, it follows I1(Mτ ′) = I1(τ
′) and I1(�Mτ ′) = I1(�τ ′)

which give the result. The same proof works for M◦.
Let τ = ∏

i τi a product of elementary symbols, we have

M�τ = M◦R�τ = M◦�Rτ = M◦�(Rτ − τ) +
∏

i

M◦�τi

= �M◦(Rτ − τ) +
∏

i

�M◦τi = �Mτ,

where we have used the fact that M commutes with � on the τi and Rτ which comes
from the induction hypothesis and the fact that R commutes with G . For the property
(b), we proceed as the same by induction. The only difficult point is for τ = I1(τ

′).
We have by applying the induction hypothesis, the previous lemma on τ ′ and using
the fact that K integrates to zero against polynomials
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(
�M

x I1τ
′) (y) =

∫
D(0,1)K (y − z)

(
�M

x τ ′) (z)dz

−
∑

�

(y − x)�

�! 1|τ ′|s+1−�>0

∫
D(0,1)+�K (x − z)

(
�M

x τ ′) (z)dz

=
∫

D(0,1)K (y − z)
(
�xτ

′) (z)dz

−
∑

�

(y − x)�

�! 1|τ ′|s+1−�>0

∫
D(0,1)+�K (x − z)

(
�xτ

′) (z)dz,

which allow us to conclude. ��

5.3 The generalised KPZ

The equation contains the previous equation and it is given by:

∂t u = ∂2x u + g(u) (∂xu)2 + h(u)∂xu + k(u) + f (u)ξ.

The rule Rgkpz for building Tgkpz is given by:

Rgkpz(�) = {()},
Rgkpz(I) = {(), ([J]�), ([J]�,J1), ([J]�,J1,J1), ([J]�, �), � ∈ N},

where [J]� is a shorthand notation for J, . . . ,J where J is repeated � times. The
admissible map Rgkpz associated to the generalised KPZ is defined by Rgkpz =
(�gkpz ⊗ id)�−

r where �gkpz is non zero on trees with negative degree which do not
contain any X .

Proposition 5.7 The map M = Mgkpz satisfies only the property (c).

Proof One counterexample, for the properties (a) and (b) is given by: τ =
I(I(I(�)�)�), we have

�gMgkpzτ = �gτ − C1�gI(I(�))

Mgkpz�gτ = �gτ − C1I(�gI(�)),

where C1 = �gkpz(I(�)�). Now �gI(I(�))−I(�gI(�)) is a polynomial differ-
ent from zero. Similarly, one can check that �M

x τ �= �x Mτ . For the property (c), we
use the Proposition 3.17. We need to check that property on every I(τ ) ∈ Tgkpz with
negative degree. Such terms do not exist. Then

{I1(τ ) : τ ∈ Tgkpz and |I1(τ )|s < 0} = {I1(�), I1(I1(�)2), I1(I(�)�)},

and �M
x I1(τ )(x) = (�x MI1(τ ))(x) for τ ∈ {�, I1(�)2, I(�)�}. ��
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5.4 The stochastic quantization

The stochastic quantization is given in dimension 3 by:

∂t u = �u + u3 + ξ,

and has been studied in [10]. The rule Rqua for building Tqua is:

Rqua(�) = {()}, Rqua(I) = {(), (�), (I), (I,I), (I,I,I)}.

The admissible map Rqua associated to the stochastic quantization is defined by
Rqua = (�qua ⊗ id)�−

r where �qua is non zero for:

τ ∈ {I(�)2,I(�)2I(I(�)2)}.

Proposition 5.8 The map M = Mqua satisfies only the property (c).

Proof For the properties (a) and (b), a good counterexample is τ = I(I(�)3). For
the property (c), {I(τ ) : τ ∈ Tqua and |I(τ )|s < 0} = {I(�)}. Then it is obvious
that �M

x I(�) = �x MI(�) . ��
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A Alternative recursive proof

Proof of Proposition 4.10 We want to prove on F
 that:

(id ⊗ �̂1)�̂1 = (�̂1 ⊗ id)�̂1.

Since both maps are multiplicative for the product � and the identity obviously holds
when applied to 1, Xi or �l, it suffices to verify that it also holds for elements of the
form It

k (τ ). For this, note first that �̂1 has the following properties. For στ ∈ F


where τ ∈ T and σ = ∏
i C(τi ), τi ∈ T, one has by definition

�̂1C (στ) = �̂1σC (τ )1 = �̂1(σC (τ ))

= (�̂1σ)(C ⊗ C )�̂1τ = (C ⊗ C )�̂1(στ) .
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Furthermore, one has the identity

�̂1I
t
k (στ) = �̂1σI

t
k (τ ) = (�̂1σ)�̂1I

t
k (τ )

= (�̂1σ)

⎛

⎝It
k ⊗ id +

∑

�∈Nd+1

X�

�! C ⊗ It
k+�

⎞

⎠ �̂1τ

=
⎛

⎝It
k ⊗ id +

∑

�∈Nd+1

X�

�! C ⊗ It
k+�

⎞

⎠ (�̂1σ�̂1τ)

=
⎛

⎝It
k ⊗ id +

∑

�∈Nd+1

X�

�! C ⊗ It
k+�

⎞

⎠ (�̂1στ) .

It follows that for any τ ∈ T one has the identity

(�̂1 ⊗ id)�̂1I
t
k (τ ) =

⎛

⎝�̂1I
t
k ⊗ id + �̂1

∑

�∈Nd+1

X�

�! C ⊗ It
k+�

⎞

⎠ �̂1τ

=
⎛

⎝

⎛

⎝It
k ⊗ id +

∑

�∈Nd+1

X�

�! C ⊗ It
k+�

⎞

⎠ �̂1 ⊗ id

+
∑

�,m∈Nd+1

(
X�

�! C ⊗ Xm

m! C
)

�̂1 ⊗ It
k+�+m

⎞

⎠ �̂1τ

=
⎛

⎝It
k ⊗ id ⊗ id +

∑

�∈Nd+1

X�

�! C ⊗ It
k+� ⊗ id

+
∑

�,m∈Nd+1

X�

�! C ⊗ Xm

m! C ⊗ It
k+�+m

⎞

⎠ (�̂1 ⊗ id)�̂1τ .

On the other hand, we have

(id ⊗ �̂1)�̂1I
t
k (τ ) =

⎛

⎝It
k ⊗ id ⊗ id +

∑

�∈Nd+1

X�

�! C ⊗ It
k+� ⊗ id

+
∑

�,m∈Nd+1

X�

�! C ⊗ Xm

m! C ⊗ It
k+�+m

⎞

⎠ (id ⊗ �̂1)�̂1τ,

the claim follows by induction. ��
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