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Abstract In this paper, we deal with the convergence of an iterative scheme for the 2-D
stochastic Navier–Stokes equations on the torus suggested by the Lie–Trotter product
formulas for stochastic differential equations of parabolic type. The stochastic system
is split into two problems which are simpler for numerical computations. An estimate
of the approximation error is given for periodic boundary conditions. In particular,
we prove that the strong speed of the convergence in probability is almost 1/2. This
is shown by means of an L2(�, P) convergence localized on a set of arbitrary large
probability. The assumptions on the diffusion coefficient depend on the fact that some
multiple of the Laplace operator is present or not with the multiplicative stochastic
term. Note that if one of the splitting steps only contains the stochastic integral, then
the diffusion coefficient may not contain any gradient of the solution.
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1 Introduction

Assume that D is a regular bounded open domain of R
2 with boundary ∂ D and let n

denote the external normal field to the boundary. Let us consider the Navier–Stokes
equations with, for concreteness, the Dirichlet boundary conditions:

∂u(t, x)

∂t
− ν�u(t, x) + (u(t, x) · ∇)u(t, x) + ∇ p(t, x) = G(t, u(t, x))Ẇ (t, x),

(1.1)

t ∈ [0, T ], x ∈ D, with the incompressibility condition

∇ · u(t, x) = 0, t ∈ [0, T ], x ∈ D, (1.2)

the boundary condition

u = 0 on ∂ D (1.3)

and the initial condition

u(0, x) = u0(x) x ∈ D. (1.4)

Here, u is the velocity, p is the pressure, ν is the viscosity coefficient, W is a
cylindrical Brownian motion and G is an operator valued function acting on divergence
free vector fields. Details will be given in the next sections.

Our main results from Sects. 4 and 5 are valid only for the stochastic Navier–Stokes
equations with the periodic boundary conditions. Our results from Sect. 3 are valid for
the stochastic Navier–Stokes equations with both the periodic and Dirichlet boundary
conditions, see Sect. 4 for details.

The well-posedness of the system (1.1)–(1.2) has been extensively investigated.
Under very general conditions on the operator G we refer to [13] for martingale
stationary solutions; the uniqueness of the 2-dimensional case has been investigated
in [20]. For the strong solutions and more general models in hydrodynamic we refer
to [9]. For a comprehensive setting and higher dimension, we refer to [12] and the
references therein.

In this paper, we deal with the convergence of some iterative schemes suggested by
the Lie-Trotter product formulas for the stochastic differential equations of parabolic
type. The stochastic system is split into two problems which are simpler for numerical
computations. Other numerical schemes have been used in the literature. This method
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has been used for purely theoretical purposes of proving the existence of solutions of
stochastic geometric heat equation in [14]. Let us mention two recent papers on the
topic of numerical approximations to 2D stochastic Navier–Stokes equations.

Carelli and Prohl [7] studied the strong speed of convergence of some fully and
implicit semi-discrete Euler time and finite element based space-time discretization
schemes. As in [19] for the stochastic Burgers equation, they proved the L2(�, P)

convergence of the error term localized by a set (depending on the discretization),
whose probability converges to 1 as the time mesh decreases to 0. They assume that
the initial condition u0 ∈ L8(�, V ), and that the diffusion coefficient of the multi-
plicative noise may contain some gradient of the solution. These authors studied the
speed of convergence in probability (introduced by Printemps in [19]) of the fully
implicit scheme to the solution in two different spaces C([0, T ]; H) ∩ L2(0, T ; V )

and C([0, T ]; V ′) ∩ L2(0, T ; H) (here V and H are the usual functional spaces used
for the Navier–Stokes equations, they will be defined later on). They showed that
these are equal respectively to 1/4 − α and 1/2 − α for some positive α. Finally, they
showed that the difference between the fully and the semi-implicit schemes converges
to 0 in probability in C([0, T ]; V ′) ∩ L2(0, T ; H) with the speed 1/2 − α. The speed
of convergence of some space-time discretization was also investigated. Note that in
[7], no projection on divergence-free fields is made and the pressure term is part of
the discretized process.

Using the semi-group and cubature techniques, Dörsek [10] studied the weak speed
of convergence of a certain Strang time-splitting scheme combined with a Galerkin
approximation in the space variable for the SNSEs with an additive noise. Two equa-
tions were solved alternatively on each time interval of the subdivision to approximate
the Galerkin approximation: one deterministic equation only contains the bilinear term
and the other one is the stochastic heat equation. The weak speed of convergence of this
approximation was given in terms of the largest eigenvalue N of the space of eigen-
vectors of the Stokes operator where the projection is done: if a function ϕ belongs to
C6(L2(D)) with some exponential control of its derivatives of order up to 6, then the
speed of convergence of the error term between the Strang time splitting vN

n with time
mesh T/n of the Galerkin approximation uN , that is

∣
∣E[ϕ(uN (t))] − E[ϕ(uN

n (t))]∣∣
is estimated from above in terms of N and n. Finally, let us note that in that paper
the noise is both additive and finite-dimensional and that the initial condition again
belongs to the space V .

One of the aims of the current paper is to show that a certain splitting up method for
the stochastic Navier–Stokes equations with multiplicative noise is convergent. Our
splitting method is implemented using on each time interval two consecutive steps.
In the first step, the deterministic Navier–Stokes equations (with modified viscosity)
is solved. The corresponding solution is denoted by un . In the second step the linear
parabolic Stokes equation (again with a modified viscosity) with a stochastic pertur-
bation is solved. The corresponding solution is denoted by yn . The goal of the paper
is twofold. On one hand, we establish the “strong” speed of convergence in L2(D)

uniformly on the time grid after the two steps have been performed, that is for the
difference |yn(t−k )−u(tk)|. We furthermore prove that the same speed of convergence
holds in L2(0, T ; V ) for un − u and yn − u. The regularity assumptions on the diffu-
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sion coefficient and on the initial condition are similar to that in [7]. For instance we
assume E‖u0‖8

V < ∞, but either the topology we use is sharper for a similar speed
of convergence or the speed of convergence is doubled in the same topological space.
While the first step consists in solving the deterministic Navier–Stokes equations, the
next step consists in only computing the stochastic integral (with no smoothing Stokes
operator), no gradient is allowed in the diffusion coefficient and in that case the reg-
ularity of the corresponding process yn is weaker than that of the terminal process.
Following the definition introduced in [19], we deduce that the speed of convergence
in probability (in the above functional spaces) of this splitting scheme is almost 1/2.
When the second step of the splitting contains some part of the viscosity together with
the stochastic integral, due to the smoothing effect of the Stokes operator, the diffusion
coefficient may contain some gradient terms provided that the stochastic parabolicity
condition holds. In fact the convergence of the scheme requires a stronger control
of the gradient part in the diffusion coefficient. The main result states an L2(�, P)

convergence of the error term localized on a set which depends on the solution and
whose probability can be made as close to 1 as required. Furthermore, for technical
reasons, the speed of convergence is obtained for zn−u in L∞(0, T ; H)∩L2(0, T ; V ),
where zn is a theoretical process which is defined in terms of un and yn and such that
zn(tk) = yn(t−k ) = un(t+k+1).

In Sect. 7 of a paper [5] by the second named authour with Carelli and Prohl, the
convergence of the finite element approximation for the 2-D stochastic Navier–Stokes
Equations by using the local monotonicity trick of Barbu was proved. The use of
the Barbu trick allowed the authours to identify the strong solution without using a
compactness method. In this respect that paper is similar to ours. However, the time-
splitting approximation we use in the current paper as well as the proofs are completely
different.

The strong convergence of the splitting method has already been studied in a series
of papers by Gyöngy and Krylov [15,16] but for parabolic stochastic PDEs with some
degenerate stochastic parabolicity condition. However, the linear setting used in these
papers does not cover the hydrodynamical models used in the present one. The splitting
method was also studied in [6] for SPDEs including the stochastic linear Schrödinger
equations and in [17] for parabolic non linear SPDEs with monotone operators.

Section 2 describes the properties on the hydrodynamical models, the noise, the
assumptions on the diffusion coefficients ensuring well-posedeness of the solution
in various functional spaces. It also describes both splitting schemes, depending on
the fact that some multiple of the Stokes operator is kept with the stochastic inte-
gral or not. Section 3 proves several a priori bounds such as the control of the norms
of the approximating processes independently of the time mesh, as well as the con-
trol of the difference of both processes introduced in the steps of the algorithm in
terms of the time mesh. Note that the abstract properties of the operators needed to
prove the results in Sect. 2 and 3 are satisfied not only by the stochastic 2D Navier–
Stokes equations, but also by various hydrodynamical models, such as the Boussinesq,
magneto-hydrodynamical and Bénard models; the framework also contains the shell
and dyadic models of turbulence (see e.g. [9]). Sections 4 and 5 focuse on the 2D
Navier–Stokes equations on the torus ; they require some further properties involving
the Stokes operator and the non linearity, more regularity on the initial condition and
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additional properties on the “diffusion” coefficient G. Section 4 provides further a
priori bounds “shifting” the spatial regularity. Section 5 proves the L2(�, P) con-
vergence of a localized version of both algorithms with some explicit control on the
constant used in the localization. This enables us to deduce the speed of convergence
in probability.

As usual, we denote by C [resp. C(T )] a positive constant (resp. a positive constant
depending on T ) which may change from line to line, but does not depend on n.

2 Preliminaries and assumptions

2.1 Functional setting

We at first describe the functional setting and the operators of the 2D Navier–Stokes
equations. As in [23] we denote by V the space of infinitely differentiable divergence
free and compactly supported vector fields u on D.

Let the Hilbert space (H, | · |) be the closure of V in the L
2 = L2(D, R

2) space.
Let also E be the Hilbert space consisting of all u ∈ L

2 such that div u ∈ L2(D).
It is known, see [23, Theorem I.1.2], that there exists a unique bounded linear map

γn : E → H− 1
2 (δD), where H− 1

2 (∂ D) is the dual space of H1/2(∂ D) [and equal to
the image in L2(∂ D) of the trace operator γ0 : H1,2(D) → L2(∂ D)] such that

γn(u) = the restriction of u · n to ∂ D, if u ∈ C∞(D). (2.1)

Then, it is known that H is equal to the space of all vector fields u ∈ E such that
γn(u) = 0. Let us denote by V the separable Hilbert space which is equal to the closure
in the space H

1,2 = H1,2(D, R
2) of the space V equipped with the inner product

inherited from H
1,2 and with corresponding norm denoted by ‖ · ‖. Identifying H

with its dual space H ′, and H ′ with the corresponding natural subspace of the dual
space V ′, we have the standard Gelfand triple V ⊂ H ⊂ V ′ with continuous dense
embeddings. Let us note that the duality pairing between V and V ′ agrees with the
inner product of H .

Moreover, we set D(A) = H
2,2 ∩ V and we define the linear operator A : D(A) ⊂

H −→ H as Au = −P�u, where P : L
2 → H is the orthogonal projection called

the Leray–Helmholtz projection. It is known, see [8], that A is self-adjoint, positive
and has a compact inverse.

The fractional powers of the operator A will be denoted by Aα , α ∈ R. It is known
that V coincides with D(A1/2) with equivalent norms and in what follow we can use

on V the norm ‖u‖ = |A1/2u| =
√
∫

D |∇u(x)|2 dx .

Let b(·, ·, ·) : V × V × V −→ R be the continuous trilinear form defined by

b(u, v, z) =
∫

D

(u · ∇v) · z,
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which, by the incompressibility condition satisfies

b(u, v, v) = 0, u, v ∈ V .

By the Riesz Lemma there exists a continuous bilinear map B : V × V −→ V ′ such
that

〈B(u, v), z〉 = b(u, v, z), for all u, v, z ∈ V, (2.2)

which also satisfies

〈B(u, v), z〉 = −〈B(u, z), v〉 and 〈B(u, v), v〉 = 0 u, v, z ∈ V . (2.3)

Moreover, as it has been pointed out by V. Barbu [1] and proved in [21, Proposition
2.2] the following Assumption is satisfied with the space X = L

4(D).

Assumption 2.1 (1) There exists a Banach space X such that V ⊂ X ⊂ H continu-
ously and densely and there exists a constant C > 0 such that

|u|2X ≤ C |u|‖u‖, u ∈ V . (2.4)

(2) For η > 0, there exists a constant Cη > 0 such that for all ui ∈ V , i = 1, 2, 3,

|〈B(u1, u2), u3〉| ≤ C |u1|X|u2|X‖u3‖. (2.5)

Remark 2.2 It is easy to see the Assumption 2.1 (2) implies that for any η > 0 there
exists Cη > 0 such that for all ui ∈ V , i = 1, 2, 3,

|〈B(u1, u2), u3〉| ≤ η‖u3‖2 + Cη|u1|2X|u2|2X. (2.6)

Moreover, the last property together with (2.3) implies that for all (ui )
3
i=1 ∈ V ,

|〈B(u1, u1) − B(u2, u2), u1 − u2〉| ≤ η‖u1 − u2‖2 + Cη|u1 − u2|2|u1|4X. (2.7)

Note that this abstract setting (where one only assumes that the operators A and B
satisfy the conditions in sections (2.3)–(2.7)) includes several classical hydrodynami-
cal settings subject to random perturbations, such as the 2D Navier–Stokes equations,
the 2D Boussinesq model for Bénard convection, the 2D Magneto-Hydrodynamics
equations, the 2D magnetic Bénard problem, the 3D Leray α-model for Navier–Stokes
equations, the GOY and Sabra shell models of turbulence, and dyadic models; see [9]
for more details. To be precise we assume that

(i) (H, |.|) is a Hilbert space,
(ii) A is a linear positive unbounded operator in H ,

(iii) V = D(A1/2) endowed with the norm ‖ · ‖ is a Hilbert space,
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(iv) a bilinear map B : V × V → V ′ satisfies (2.3)
(v) Assumption 2.1 holds for some Banach space X.

In the sequel, we will work in this abstract framework containing the above example
of the 2D Navier–Stokes equations.

We assume that K is a separable Hilbert space, (�,F , (Ft )t≥0, P) is a filtered
probability space and W = (W (t))t≥0 is a K -cylindrical Wiener process on that
probability space.

Hence, the stochastic hydrodynamical systems (including the stochastic 2D Navier–
Stokes equations) are rewritten in the abstract form

{

du + (Au + B(u, u) − f )dt = G(u)dW,

u(0) = u0.

For simplicity we will assume that f = 0.
We also introduce a Coriolis type of term R : [0, T ] × H −→ H , for example

R(t, (u1, u2)) = c0(−u2, u1) (precise assumptions are given below), and set for t ∈
[0, T ] and u ∈ V :

F(t, u) = Au + B(u, u) + R(t, u)

and consider the evolution equation.

du(t) + F(t, u(t))dt = G(u(t)) dW (t), u(0) = u0. (2.8)

2.2 Assumptions and results on the stochastic NSEs in H

Through the paper, we will assume that u0 ∈ H (or u0 ∈ L2(�,F0, H)). Let us
denote by T2(K , H) the space of Hilbert–Schmidt operators from K to H .

Assumption (G1): Let us assume that G is a continuous mapping G : [0, T ] ×
V �−→ T2(K , H), (resp. G : [0, T ]× H �−→ T2(K , H) for ε = 0) and that there exist
positive constants (Ki )

3
i=0 and (Li )

2
i=1, such that for any t ∈ [0, T ], u, u1, u2 ∈ V ,

|G(t, u)|2T2(K ,H) ≤ K0 + K1|u|2 + ε K2‖u‖2, (2.9)

|G(t, u2) − G(t, u1)|2T2(K ,H) ≤ L1|u2 − u1|2 + ε L2‖u2 − u1‖2. (2.10)

Assumption (R1): Let us assume that R is a continuous mapping R : [0, T ] ×
H −→ H such that for some positive constants R0 and R1

|R(t, 0)| ≤ R0, |R(t, u) − R(t, v)| ≤ R1|u − v|, u, v ∈ H. (2.11)

There is huge literature for the well posedness of 2D Stochastic Navier–Sokes
equations. The following result is similar to that proved in [7] for the 2D Navier–Stokes
equations. We refer to [9] for the result given below. Indeed, the a priori estimates
in Proposition A.2 of [9] imply that the sequence un,h of Galerkin approximations
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satisfies supn suph∈AM
E
(

supt∈[0,T ] |un,h(t)|2p
)

< ∞ and the subsequence used in
Step 1 of the proof of Theorem 2.4 in [9] can be supposed to be weak-star convergent
to uh in L2p(�, L∞(0, T ; H)). In our case, there is no random control, that is h = 0.

Theorem 2.3 Let us assume that assumptions (G1) and (R1) are satisfied with K2 ≤
L2 < 2. Then, for any T > 0 and any F0-measurable H-valued random variable
such that E|u0|4 < ∞, there exists a unique adapted process u such that

u ∈ C([0, T ]; H) ∩ L2(0, T ; V ) ∩ L4(0, T ; X) a.s.

and P-a.s., u is solution of the equation (2.8), that is in the weak formulation, for all
t ∈ [0, T ] and φ ∈ D(A):

〈u(t), φ〉 +
t∫

0

〈u(s), Aφ〉 ds +
t∫

0

〈B(u(s), u(s)), φ〉 ds +
t∫

0

〈R(s, u(s)), φ〉 ds

= 〈u0, φ〉 +
t∫

0

〈G(s, u(s))dW (s), φ〉, (2.12)

Moreover, if q ∈ [2, 1 + 2
K2

), then there exists a positive constant C = Cq(T ) such
that if E|u0|q < ∞,

E

⎛

⎝ sup
t∈[0,T ]

|u(t)|q +
T∫

0

‖u(s)‖2(1 + |u(s)|q−2) ds

⎞

⎠ ≤ C(1 + E|u0|q). (2.13)

Finally, if K2 < 2
3 , then

E

T∫

0

|u(s)|4X ds ≤ C(1 + E|u0|4). (2.14)

2.3 Description of the scheme

Let 
 = {0 = t0 < t1 < · · · < tn = T } be a finite partition of a given interval [0, T ]
with constant mesh h = T/n. We will consider the following splitting scheme similar
to one introduced in [3] for deterministic NSEs. Let ε ∈ [0, 1) and let Fε : [0, T ] ×
V → V ′ be defined by:

Fε(t, u) = (1 − ε)Au + B(u, u) + R(t, u). (2.15)

Note that F0 = F .
Set t−1 = − T

n . For t ∈ [t−1, 0) set yn(t) = un(t) = u0 and Ft = F0.
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The scheme (yn, un) is defined by induction as follows. Let i = 0, · · · n − 1
and suppose we have defined processes un(t) and yn(t) for t ∈ [ti−1, ti ) such that
yn(t−i ) is an H -valued Fti -measurable function. This clearly holds for i = 0. Then
we define un(t), t ∈ [ti , ti+1) as the unique solution of the (deterministic) prob-
lem with positive viscosity 1 − ε and with “initial” condition yn(t−i ) at time ti ,
that is :

d

dt
un(t) + Fε(t, un(t)) = 0, t ∈ [ti , ti+1), un(ti ) = un(t+i ) = yn(t−i ). (2.16)

Note that un(t−i+1) is a well defined H -valued Fti measurable random variable. Thus
we can define yn(t), t ∈ [ti , ti+1) as the unique solution of the (random) problem
with “initial” condition the Fti -measurable random variable un(t−i+1) at time ti :

dyn(t) + ε Ayn(t)dt = G(t, yn(t)) dW (t), t ∈ [ti , ti+1),

yn(ti ) = yn(t+i ) = un(t−i+1). (2.17)

Note that both processes un and yn are a.s. right-continuous. Indeed, if ε > 0,
it is classical that, provided that the stochastic parabolicity condition holds (that is
ε K2, ε L2 are small enough), there exists a unique right-continuous weak solution to
(2.17), see e.g. [17]. If ε = 0, the smoothing effect of A does not act anymore, but
the coefficient G satisfies the usual growth and Lipschitz conditions for the H -norm.
Therefore, in both cases yn(t−i+1) is a well defined H -valued Fti+1 measurable random
variable.

Finally, let un(T +) = yn(T −).

Remark 2.4 As in [3], we notice that the processes un and yn are not continuous.

In order to prove the convergence of the above scheme, we will need to establish a
priori estimates on un and yn . They will be different if ε = 0 and ε ∈ (0, 1). We at
first introduce some notation. Recall that 
 = {0 = t0 < t1 < · · · < tn = T }. Set

{

dn(t) := ti , d∗
n (t) := ti+1 for t ∈ [ti , ti+1), i = 0, 1, . . . , n − 2,

dn(t) := tn−1 d∗
n (t) := tn for t ∈ [tn−1, tn].

With the above notations, the processes un and yn can be rewritten as follows: For
every t ∈ [0, T ] we have:

un(t) = u0 −
t∫

0

Fε(s, un(s))ds +
dn(t)∫

0

[−ε Ayn(s)ds + G(s, yn(s))dW (s)
]

,

(2.18)

yn(t) = u0 −
d∗

n (t)
∫

0

Fε(s, un(s))ds +
t∫

0

[−ε Ayn(s)ds + G(s, yn(s))dW (s)
]

.

(2.19)
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3 A priori estimates for the initial data in H and general stochastic
hydrodynamical systems

We at first suppose that the conditions (G1) and (R1) are satisfied.

Lemma 3.1 Let u0 be F0-measurable and such that E|u0|2 < ∞, and fix ε ∈ [0, 1).
Let Assumptions (G1) and (R1) be satisfied with K2 ≤ L2 < 2. Then there exists a
positive constant C, depending on E|u0|2, ε , T and the constants Ri and Ki such
that for every integer n ≥ 1:

sup
t∈[0,T ]

E

(

|yn(t)|2 + sup
s∈[dn(t),d∗

n (t))
|un(s)|2

)

+ E

T∫

0

‖un(s)‖2ds ≤ C. (3.1)

Furthermore, if ε ∈ (0, 1) we can choose the constant C such that:

sup
n∈N

E

T∫

0

‖yn(s)‖2ds ≤ C. (3.2)

Proof Let α = 2R0 + K0 and a = 2(R0 + R1) + K1. We use an induction argument
to prove that for l = −1, · · · , n − 1,

E

(

sup
t∈[tl ,tl+1)

|un(t)|2
)

+ sup
t∈[tl ,tl+1)

E|yn(t)|2 ≤ E|u0|2e
(l+1)aT

n + αT

n

l+1
∑

j=1

e
jaT
n ,

(3.3)

where we use the convention
∑q

j=p e
jaT
n = 0 if p > q. Note that (3.3) clearly holds

for l = −1. Assume that (3.3) holds for l = −1, 0, · · · , i − 1. Take the scalar product
of (2.16) by un and integrate over (ti , t] for t ∈ [ti , ti+1); the anti-symmetry property
of B and Assumption (R1) yield

|un(t)|2 + 2(1 − ε)

t∫

ti

‖un(s)‖2 ds = |yn(t−i )|2

− 2

t∫

ti

〈B(un(s), un(s)), un(s)〉 ds + 2

t∫

ti

〈R(s, un(s)), un(s)〉 ds

≤ |yn(t−i )|2 + 2R0
T

n
+ 2

t∫

ti

(R0 + R1)|un(s)|2 ds. (3.4)
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The Itô Lemma yields for t ∈ [ti , ti+1):

E|yn(t)|2 + 2 ε E

t∫

ti

‖yn(s)‖2 ds = E|un(t−i+1)|2 + 2E

t∫

ti

|G(s, yn(s))|2T2(K ,H)ds

≤ E|un(t−i+1)|2 + K0T

n
+ K1

t∫

ti

E|yn(s)|2ds + ε K2E

t∫

ti

‖yn(s)‖2 ds. (3.5)

Since K2 < 2 we may neglect the integrals of the V -norm in both inequalities (3.4) and
(3.5). Taking expected values in (3.4), using the Gronwall Lemma and the induction
hypothesis, we obtain:

E

(

sup
ti ≤t<ti+1

|un(t)|2
)

≤
(

E|yn(t−i )|2 + 2R0T

n

)

e
2(R0+R1)T

n

≤ E|u0|2e
aiT

n + 2(R0+R1)T
n + 2R0T

n
e

2(R0+R1)T
n + αT

n

i
∑

j=1

e
jaT
n + 2(R0+R1)T

n ,

and

sup
ti ≤t<ti+1

E|yn(t)|2 ≤ (

E|un(ti+1)|2 + K0T

n

)

e
K1T

n

≤ E|u0|2e
iaT +aT

n + 2R0T

n
e

aT
n + K0T

n
e

K1T
n + αT

n
e

aT
n

i
∑

j=1

e
jaT
n .

Since α ≥ 2R0 and a ≥ 2(R0 + R1), we deduce that the induction hypothesis (3.3)
holds true for l = i + 1. Hence we deduce that

sup
0≤t<T

E

(

sup
dn(t)≤s<d∗

n (t)
|un(s)|2

)

∨
(

sup
0≤t<T

E|yn(t)|2
)

≤ |u0|2e
naT

n + αT

n

n
∑

j=1

e
jaT
n

≤ E|u0|2eaT + αT

n
e

aT
n

eaT − 1

e
aT
n − 1

≤ E|u0|2eaT + α

a
e2aT .

This proves part of (3.1). Using this last inequality in (3.5), and in (3.4) after taking
expected values, yields for every i = 0, · · · , n − 1:

E|un(t−i+1)|2 + 2(1 − ε)E

ti+1∫

ti

‖un(s)‖2 ds ≤ E|yn(t−i )|2 + CT

n
,
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E|yn(t−i+1)|2 + (2 − K2)ε E

ti+1∫

ti

‖yn(s)‖2 ds ≤ E|un(t−i+1)|2 + CT

n
.

Adding all these inequalities from i = 0 to i = n − 1 concludes the proof of (3.1)
and proves (3.2) when ε > 0. ��

As usual, we can use higher moments of the H -norms and deduce the following.

Lemma 3.2 Fix ε ∈ [0, 1) and let Assumptions (G1) and (R1) be satisfied with
L2 < 2 and K2 < 2

2p−1 for some real number p ≥ 2. Then there exists a positive
constant C := C(ε , T ) such that for every integer n ≥ 1:

sup
t∈[0,T ]

[

E
(

sup
s∈[dn(t),d∗

n (t))
|un(s)|2p) + E|yn(t)|2p

]

+ E

T∫

0

‖un(s)‖2|un(s)|2(p−1)ds ≤ C. (3.6)

Furthermore, if ε ∈ (0, 1) then C can be chosen such that:

sup
n≥1

E

T∫

0

‖yn(s)‖2|yn(s)|2(p−1)ds ≤ C. (3.7)

Proof By repeating an argument similar to that used in the proof of Lemma 3.1 that
we can find in [23] (Lemma 1.2), that is:

d

dt
|un(t)|2 = 2〈(un(t)

)′
, un(t)〉,

and using the chain rule, we have that for t ∈ [ti , ti+1), i = 0, · · · , n − 1:

d

dt
|un(t)|2p = p

(|un(t)|2)p−1 d

dt
|un(t)|2 = 2p|un(t)|2(p−1)〈(un(t)

)′
, un(t)〉.

Hence, we get that for i = 0, . . . , n − 1 and for all t ∈ [ti , ti+1)

|un(t)|2p + 2p(1 − ε)

t∫

ti

|un(s)|2(p−1)‖un(s)‖2 ds = |yn(t−i )|2p

− 2p

t∫

ti

[〈B(un(s), un(s)), un(s)〉 + 〈R(s, un(s)), un(s)〉]|un(s)|2(p−1) ds

≤ |yn(t−i )|2p + 2p
R0T

n
+ 2p(R0 + R1)

t∫

ti

|un(s)|2pds. (3.8)

123



Stoch PDE: Anal Comp (2014) 2:433–470 445

Thus, the Gronwall Lemma implies

E sup
ti ≤t<ti+1

|un(t)|2p ≤
[

E|yn(t−i )|2p + 2p
R0T

n

]

e2p(R0+R1)
T
n .

On the other hand, for fixed i = 0, . . . , n − 1, the Itô Lemma yields for t ∈ [ti , ti+1)

|yn(t)|2p + 2p ε

t∫

ti

|yn(s)|2(p−1)‖yn(s)‖2 ds = |un(t−i+1)|2p

+p

t∫

ti

〈G(s, yn(s))dW (s), yn(s)〉|yn(s)|2(p−1)

+p

t∫

ti

(|G(s, yn(s))|2T2(K ,H)|yn(s)|2(p−1)

+ 2(p − 1)|G∗(s, yn(s))yn(s)|2K |yn(s)|2(p−2)
)

ds.

Using assumption (G1), we deduce:

E|yn(t)|2p + 2p ε

t∫

ti

E‖yn(s)‖2|yn(s)|2(p−1) ds ≤ E|un(t−i+1)|2p

+ p(2p − 1)

⎡

⎣
K0T

n
+ (K0 + K1)

t∫

ti

E|yn(s)|2pds

+ K2 ε

t∫

ti

E|yn(s)|2(p−1)‖yn(s)‖2 ds

⎤

⎦ . (3.9)

Since K2 < 2
2p−1 , in inequality (3.9) we may neglect the integrals containing the

V -norms of u(t) and by applying the Gronwall Lemma we then infer that

sup
ti ≤t<ti+1

E|yn(t)|2p ≤ (

E|un(t−i+1)|2p + 2p(p − 1)K0T

n

)

e
2p(p−1)(K0+K1)T

n .

Let us put

b := 2p(R0 + R1) + p(2p − 1)(K0 + K1) and β := 2pR0 + p(2p − 1)K1;

then by a mathematical induction argument (see the proof of Lemma 3.1 for a similar
one), we infer that for i = 0, . . . , n − 1,
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E

(

sup
ti ≤t<ti+1

|un(t)|2p
)

∨
(

sup
ti ≤t<ti+1

E|yn(t)|2p
)

≤ E|u0|2pe(i+1) T
n b+ βT

n

i+1
∑

j=1

e( jb) T
n .

Hence we deduce:

(

sup
0≤t<T

E

[

sup
s∈[dn(t),d∗

n (t))
|un(s)|2p

])

∨
(

sup
0≤t<T

E|yn(t)|2p
)

≤ E|u0|2pebT + β

b
e2bT .

(3.10)

Adding (3.8) and (3.9) for i = 1, . . . , n − 1 and using (3.10), we deduce that

E|yn(T −)|2p + p[2 − (2p − 1)K2] ε

T∫

0

E|yn(s)|2(p−1)‖yn(s)‖2ds

+ 2p(1 − ε)

T∫

0

E|un(s)|2(p−1)‖un(s)‖2ds ≤ E|u0|2p(1 + bT ebT )

+βT (1 + e2bT ).

This completes the proof using once more the fact that (2p − 1)K2 < 2 when ε > 0.
��

Finally we will prove an upper estimate of the H norm of the difference of both
processes un and yn .

Proposition 3.3 Let us assume that u0 is F0-measurable such that E|u0|4 < ∞ and
that the Assumptions (G1) and (R1) hold with K2 < 2

3 and L2 < 2. Then for any
ε ∈ [0, 1), there exists a positive constant C such that for any n ∈ N

E

T∫

0

|un(t) − yn(t)|2dt ≤ CT

n
. (3.11)

Proof Case 1: Let ε = 0; then (2.17) and Assumption (G1) prove that for any
t ∈ [0, T ),

E|yn(t) − un(d∗
n (t))|2 = E

t∫

dn(t)

‖G(s, yn(s))‖2
T2(K ,H) ds

≤ E

t∫

dn(t)

[K0 + K1|yn(s)|2] ds.
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Therefore, Fubini’s theorem and (3.1) yield

E

T∫

0

|yn(t) − un(d∗
n (t))|2dt ≤ CE

T∫

0

ds[1 + |yn(s)|2]
d∗

n (s)
∫

s

dt ≤ C
T

n
. (3.12)

We next prove that for any ε ∈ [0, 1), we have

E

T∫

0

|un(d∗
n (t)−) − un(t)|2dt ≤ CT

n
. (3.13)

This estimate together with (3.12) concludes the proof of (3.11) when ε = 0. The
evolution Eq. (2.18) shows that

|un(d∗
n (t)−) − un(t)|2 = 2

d∗
n (t)
∫

t

〈un(s) − un(t), dun(s)〉 =
3

∑

i=1

Ti (t),

where

T1(t) = −2(1 − ε)

d∗
n (t)
∫

t

〈Aun(s), un(s) − un(t)〉 ds,

T2(t) = −2

d∗
n (t)
∫

t

〈B(un(s), un(s)), un(s) − un(t)〉 ds,

T3(t) = −2

d∗
n (t)
∫

t

〈R(s, un(s)), un(s) − un(t)〉 ds.

Using Lemma 3.1 and the Young inequality, we deduce that

∣
∣E

T∫

0

T1(t)dt
∣
∣ = ∣

∣(1 − ε)E

T∫

0

dt

d∗
n (t)
∫

t

[ − 2‖un(s)‖2 + 2‖un(s)‖‖un(t)‖]ds
∣
∣

≤ ∣
∣(1 − ε)E

T∫

0

dt

d∗
n (t)
∫

t

[

−2‖un(s)‖2 + 2‖un(s)‖2 + 1

2
‖un(t)‖2

]

ds
∣
∣

≤ 1 − ε

2
E

T∫

0

dt‖un(t)‖2

d∗
n (t)
∫

t

ds ≤ CT

n
.
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Furthermore, using the upper estimate (2.5), the Cauchy–Schwarz inequality, the
Fubini Theorem, Lemmas 3.1 and 3.2, and (2.4), we deduce

∣
∣
∣E

T∫

0

T2(t)dt
∣
∣
∣ ≤ 2E

T∫

0

dt

d∗
n (t)
∫

t

|un(s)|2X‖un(t)‖ ds

≤ 2

⎛

⎝E

T∫

0

‖un(t)‖2dt

⎞

⎠

1/2 ⎛

⎜
⎝E

T∫

0

dt

⎡

⎢
⎣

d∗
n (t)
∫

t

|un(s)|2Xds

⎤

⎥
⎦

2⎞

⎟
⎠

1/2

≤ C

⎛

⎜
⎝E

T∫

0

dt
T

n

d∗
n (t)
∫

t

|un(s)|4Xds

⎞

⎟
⎠

1/2

≤ C

⎛

⎜
⎝

T

n
E

T∫

0

ds|un(s)|4X
s∫

dn(s)

dt

⎞

⎟
⎠

1/2

≤ CT

n
.

Using Assumption (R1), the Cauchy–Schwarz inequality, the Fubini Theorem and
(3.1), we have:

∣
∣
∣E

T∫

0

T3(t)dt
∣
∣
∣ ≤ CE

T∫

0

dt

d∗
n (t)
∫

t

[

1 + |un(s)|2
]

ds

+ C

⎛

⎝E

T∫

0

|un(t)|2dt

⎞

⎠

1/2 ⎛

⎜
⎝E

T∫

0

dt

⎡

⎢
⎣

d∗
n (t)
∫

t

(1 + |un(s)|)ds

⎤

⎥
⎦

2⎞

⎟
⎠

1/2

≤ E

T∫

0

ds[1 + |un(s)|2]
s∫

dn(s)

dt + C

⎛

⎜
⎝E

T∫

0

dt
T

n

d∗
n (t)
∫

t

(1 + |un(s)|)2ds

⎞

⎟
⎠

1/2

≤ CT

n
+ C

⎛

⎜
⎝

T

n
E

T∫

0

ds(1 + |un(s)|)2

s∫

dn(s)

dt

⎞

⎟
⎠

1/2

≤ CT

n
.

This concludes the proof of (3.13) and hence of (3.11) when ε = 0.
Case 2: Suppose that ε ∈ (0, 1). Then for t ∈ (0, T ] we have

yn(t) − un(t) = −
d∗

n (t)
∫

t

Fε(s, un(s)) ds − ε

t∫

dn(t)

Ayn(s) ds +
t∫

dn(t)

G(s, yn(s))dW (s).
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Therefore, the Itô Lemma implies that

E

T∫

0

|yn(t) − un(t)|2dt =
5

∑

i=1

T̄i ,

where

T̄1 = 2(1 − ε)E

T∫

0

dt

d∗
n (t)
∫

t

〈Aun(s), yn(s) − un(s)〉 ds,

T̄2 = 2E

T∫

0

dt

d∗
n (t)
∫

t

〈B(un(s), un(s)), yn(s) − un(s)〉 ds,

T̄3 = 2E

T∫

0

dt

d∗
n (t)
∫

t

〈R(s, un(s)), yn(s) − un(s)〉 ds,

T̄4 = −2ε E

T∫

0

dt

t∫

dn(t)

〈Ayn(s), yn(s) − un(s)〉 ds,

T̄5 = E

T∫

0

dt

t∫

dn(t)

‖G(s, yn(s))‖2
T2(K ,H) ds.

Let us note that since A = A∗ is non negative, we have, for all y, u ∈ D(A):

〈Au, y − u〉 = 〈A(u − y), y − u〉 + 〈Ay, y − u〉 ≤ 〈Ay, y − u〉, (3.14)

2〈Au, y − u〉 ≤ 〈Au, y − u〉 + 〈Ay, y − u〉 = 〈A(y + u), y − u〉
= 〈Ay, y〉 − 〈Au, u〉 ≤ 〈Ay, y〉 = ‖y‖2. (3.15)

Therefore, the Fubini Theorem, the Cauchy–Schwarz inequality, and the estimate
(3.2) yield

T̄1 ≤ (1 − ε)E

T∫

0

ds ‖yn(s)‖2

s∫

dn(s)

dt ≤ C
1 − ε

n
.

Similarly, the Cauchy–Schwarz inequality and the upper estimates (3.1) and (3.2) yield

T̄4 ≤ 2 ε E

T∫

0

ds
[

2 ‖yn(s)2 + ‖un(s)‖2]
s∫

dn(s)

dt ≤ C
ε

n
.
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The Fubini Theorem and the upper estimates (2.6) with η = 1, (3.1), (3.2), (3.6), (2.5)
and (2.4) yield

T̄2 ≤ CE

T∫

0

ds
[ ‖yn(s) − un(s)‖2 + C1|un(s)|4X

]

s∫

dn(s)

dt ≤ C
T

n
.

Using Assumption (R1), the Fubini Theorem and (3.1), we deduce that

T̄3 ≤ CE

T∫

0

ds [1 + |un(s)|2]
s∫

dn(s)

dt ≤ C
T

n
.

Finally, Assumption (G1), (3.2) and the Fubini Theorem yield

T̄5 ≤ E

T∫

0

ds [K0 + K1|yn(s)|2 + ε K2‖yn(s)‖2]
s∫

dn(s)

dt ≤ C
T

n
.

This concludes the proof of (3.11) when ε ∈ (0, 1). ��
In Sect. 5 we will prove that the scheme un converges to the true solution u of

equation (2.12) in probability in H , with rate of convergence almost equal to 1/2.
However, in order to prove this convergence, we have to obtain estimates similar to that
proved in Sect. 3, shifting regularity; this will be done in Sect. 4. Note that the results
proved so far hold for a general hydrodynamical models with more general boundary
conditions, while the results obtained in Sects. 4 and 5 require more smoothness on
the coefficients and the initial condition, as well as periodic boundary conditions on
some specific domain D.

4 Stochastic Navier–Stokes equations with periodic boundary conditions

In this section we will discuss the stochastic NSEs with periodic (in space) boundary
conditions, or as it is usually called, on a 2-D torus. The difference between the periodic
boundary conditions and the Dirichlet ones investigated in the previous section is that
in addition to the properties satisfied for both cases, the periodic case has also one
additional (4.1), see below. This assumption allows one not only to solve the problem
with the initial datum u0 belonging to V but also to get a priori bounds similar to that
of (2.13) for the solution and to that of Lemmas 3.1 and 3.2 for the scheme, shifting
regularity by one level.

All what we have discussed throughout the paper until now applies to the case when
the Dirichlet boundary conditions are replaced by the periodic boundary conditions.
In the latter case it is customary to study our problem in the 2-dimensional torus T

2 (of
fixed dimensions L ×L), instead of a regular bounded domain D. All the mathematical

123



Stoch PDE: Anal Comp (2014) 2:433–470 451

background can be found in the small book [22] by Temam. In particular, the space H
is equal to

H = {u ∈ L
2
0 : div (u) = 0 and γn(u)|� j+2 = −γn(u)|� j , j = 1, 2},

where γn is defined in (2.1) and L
2
0 = L2

0(T
2, R

2) is the Hilbert space consisting of
those u ∈ L2(T2, R

2) which satisfy
∫

T2

u(x) dx = 0 and � j , j = 1, · · · , 4 are the four

(not disjoint) parts of the boundary of ∂(T2) defined by

� j = {x = (x1, x2) ∈ [0, L]2 : x j = 0}, � j+2 = {x = (x1, x2) ∈ [0, L]2 : x j = L},
j = 1, 2.

Similarly, the space V is equal to

V = {u ∈ L
2
0 ∩ H1,2(T2, R

2) : div u = 0 and u|∂(T2) = 0}.

The Stokes operator A can be defined in a natural way and it satisfies all the
properties known in the bounded domain case. In particular A is positive and the
following identity involving the Stokes operator A and the nonlinear term B holds:

〈Au, B(u, u)〉H = 0, u ∈ D(A); (4.1)

see [22, Lemma 3.1] for a proof.
We will also need to strengthen the assumptions on the initial condition u0 and on

the coefficients G and R to obtain a uniform control of the V -norm of the solution.
This is done in the following section.

4.1 A priori estimates for the initial data in V for the Stochastic NSEs on a torus

Given u ∈ V , recall that we define curl u = ∂x1u2 − ∂x2 u1. The following results are
classical; see e.g. [24], or [4] where they are used in a stochastic framework.

|�u|2 = |∇curl u|2, for u ∈ Dom(A), (4.2)

|∇u|L2 ≤ C | curl u|L2 , for u ∈ V, (4.3)

〈 curl B(u, u), v〉 = 〈B(u, curl u), v〉, for u, v ∈ Dom(A). (4.4)

To ease notations, we denote by |curl u| the L2-norm of the one-dimensional function
curl u.

Suppose that the coefficients G and R satisfy the following assumptions:
Assumption (G2): G : [0, T ] × D(A) → T2(K , V ) (resp. G : [0, T ] × V →

T2(K , H) if ε = 0), and there exist positive constants Ki , i = 0, 1, 2 and Li , i = 1, 2

123



452 Stoch PDE: Anal Comp (2014) 2:433–470

such that for every t ∈ [0, T ], and u, v ∈ D(A) (resp. u, v ∈ V ):

| curl G(t, u)|2T2(K ,V ) ≤ K0 + K1|curl u|2 + ε K2|Au|2, (4.5)

| curl G(t, u) − curl G(t, v)|2T2(K ,V ) ≤ L1|curl (u − v)|2+εL2|Au− Av|2. (4.6)

Assumption (R2): Let us assume that R is a measurable mapping R : [0, T ] ×
V −→ V such that for some positive constants R0 and R1

| curl R(t, u)|L2 ≤ R0, | curl [R(t, u)−R(t, v)]|L2 ≤ R1| curl (u−v)|L2 , u, v∈V .

(4.7)

Let us put ξ(t) = curl u(t) where u is the solution to (2.8). Then ξ solves the
following equation on [0, T ] with initial condition ξ(0) = curl u0:

dξ(t) + [

Aξ(t) + curl B(u(t), u(t)) + curl R(t, u(t))
]

dt = curl G(u(t)) dW (t).

An easy modification of the arguments in the proof of Proposition 2.2 in [4] proves
the following.

Theorem 4.1 Let us assume that u0 is a V -valued, F0-measurable random vari-
able with E‖u0‖2p < ∞ for some real number p ≥ 2. Assume that assumptions
(G1) and (G2) are satisfied with K2 < 2

2p−1 and L2 < 2, and that the assump-
tions (R1) and (R2) hold true. Then the process u solution of (2.8) is such that
u ∈ C([0, T ]; V )

⋂
L2(0, T ; D(A)) a.s. Moreover, there exists a positive constant C

such that

E

⎛

⎝ sup
t∈[0,T ]

‖u(t)‖2p +
T∫

0

|Au(s)|2
(

1 + ‖u(s)‖2(p−1)
)

ds

⎞

⎠ ≤ C(1 + E‖u0‖2p).

(4.8)

In the rest of this section we suppose that the coefficients G (resp. R) satisfy both
Assumptions (G1), (G2) (resp. (R1) and (R2)). This will enable us to upper estimate
the V -norm of the difference yn − un , and hence to strengthen the inequality (3.11).

For every t ∈ [0, T ) let ξn(t) = curl un(t) and ηn(t) = curl yn(t). Equations (2.16)
and (2.17) imply that ξn(t) = ηn(t) = curl u0 for t ∈ [t−1, t0) and for i = 0, · · · , n−1
and t ∈ [ti , ti+1), we have

dξn(t) + [

(1 − ε)Aξn(t) + curl B(un(t), un(t)) + curl R(t, un(t))
]

dt = 0,

ξn(t+i ) = ηn(t−i ), (4.9)

and

dηn(t) + ε Aηn(t)dt = curl G(t, yn(t)) dW (t),

ηn(t+i ) = ξn(t−i+1). (4.10)
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The processes (ξn(t), ti ≤ t < ti+1) (resp. (ηn(t), ti ≤ t < ti+1)) are well-defined
processes which are Fti -measurable (resp. (Ft )-adapted). Furthermore, these equa-
tions can be reformulated as follows for t ∈ [0, T ]:

ξn(t) = curl u0 −
t∫

0

curl Fε(s, un(s))ds

+
dn(t)∫

0

[−ε Aηn(s)ds + curl G(s, yn(s))dW (s)
]

, (4.11)

ηn(t) = curl u0 −
d∗

n (t)
∫

0

curl Fε(s, un(s))ds

+
t∫

0

[−ε Aηn(s)ds + curl G(s, yn(s))dW (s)
]

. (4.12)

We at first prove the following analog of Lemmas 3.1 and 3.2.

Lemma 4.2 Assume that p is a integer such that p ≥ 2. Assume that G satisfies
Assumptions (G1) and (G2) with K2 < 2

2p−1 and L2 < 2, and R satisfies Assumptions
(R1) and (R2). Let u0 be an F0-measurable, V -valued random variable such that
E‖u0‖2p < ∞. Then for ε ∈ [0, 1), there exists a positive constant C such that for
every integer n ≥ 1

sup
t∈[0,T ]

E
(‖un(t)‖2p + ‖yn(t)‖2p) + E

T∫

0

(

1 + ‖un(t)‖2(p−1)
)|Aun(t)|2dt ≤ C.

(4.13)

Furthermore, if ε ∈ (0, 1), there exists a positive constant C such that for every
integer n ≥ 1

E

T∫

0

(

1 + ‖yn(t)‖2(p−1))|Ayn(t)|2dt ≤ C. (4.14)

Proof We briefly sketch the proof, which is similar to that of Lemmas 3.1 and 3.2.
Let us fix n ∈ N. First note that, using Lemmas 3.1 and 3.2, (4.2) and (4.3), it is easy
to see that the upper estimates (4.13) and (4.14) can be deduced from similar upper
estimates where ‖un‖, ‖yn‖, |Aun| and |Ayn| are replaced by |ξn|, |ηn|, ‖ξn‖ and
‖ηn‖ respectively. We prove by induction that for l ∈ {−1, 0, · · · , n − 1},
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[

E

(

sup
t∈[tl ,tl+1)

|ξn(t)|2
)

∨
(

sup
t∈[tl ,tl+1)

E|ηn(t)|2
)]

≤ E|curl u0|2e
(l+1)aT

n + αT

n

l+1
∑

j=1

e
jaT
n , (4.15)

[

E

(

sup
t∈[tl ,tl+1)

|ξn(t)|2p

)

∨
(

sup
t∈[tl ,tl+1)

E|ηn(t)|2p

)]

≤ E|curl u0|2pe
(l+1)bT

n + βT

n

l+1
∑

j=1

e
jbT
n , (4.16)

where a := 2(R0+R1)+K1, α := 2R0+K0, b := 2p(R0+R1)+ p(2p−1)(K0+K1)

and β := 2pR0 + p(2p − 1)K1. Indeed, these inequalities hold for l = −1. Suppose
that they hold for l ≤ i − 1, i < n − 1; we prove them for l = i .

We at first prove (4.15) for l = i . The identities (4.9), (4.4) and Assumption (R2)
imply that for t ∈ [ti , ti+1), we have

|ξn(t)|2 + 2(1 − ε)

t∫

ti

‖ξn(s)‖2 ds = |ηn(t−i )|2 − 2

t∫

ti

〈curl R(s, un(s)), ξn(s)〉 ds

≤ |ηn(t−i )|2 + 2
R0T

n
+ 2(R0 + R1)

t∫

ti

|ξn(s)|2 ds,

while the identities (4.10) and (4.2), the Itô Lemma and Assumption (G2) imply

E|ηn(t)|2 + 2ε E

t∫

ti

‖ηn(s)‖2 ds

= E|ξn(t−i+1)|2 + E

t∫

ti

‖curl G(s, yn(s))‖2
T2(K ,H) ds

≤ E|ξn(t−i+1)|2 + K0T

n
+ K1E

t∫

ti

|ηn(s)|2 ds + ε K2E

t∫

ti

‖ηn(s)‖2] ds.

Then arguments similar to that used in the proof of Lemma 3.1 yield (4.15) and then
for every ε ∈ [0, 1) and C independent of n

sup
t∈[0,T )

E
(‖un(t)‖2 + ‖yn(t)‖2) + sup

n∈N

E

T∫

0

|Aun(t)|2dt ≤ C.
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Furthermore, for ε ∈ (0, 1) we have

E

T∫

0

|Ayn(t)|2dt ≤ C.

We then prove (4.16) for l = i . Using once more (4.4) and Assumption (R2), we
deduce that for t ∈ [ti , ti+1), we have

|ξn(t)|2p + 2p(1 − ε)

t∫

ti

‖ξn(s)‖2|ξn(s)|2(p−1) ds

= |ηn(t−i )|2p − 2p

t∫

ti

〈curl R(s, un(s)), ξn(s)〉|ξn(s)|2(p−1) ds

≤ |ηn(t−i )|2p + 2p
R0T

n
+ 2p(R0 + R1)

t∫

ti

|ξn(s)|2p ds.

Similarly, (4.10), the Itô Lemma and Assumption (G2) imply that for t ∈ [ti , ti+1),
we have

E|ηn(t)|2p + 2pε E

t∫

ti

‖ηn(s)‖2|ηn(s)|2(p−1) ds

= E|ξn(t−i+1)|2p + 2p(p − 1)E

t∫

ti

‖curl G(s, yn(s))‖2
T2(K ,H)|ηn(s)|2(p−1) ds

≤ E|ξn(t−i+1)|2p + 2p(p − 1)
K0T

n
+ 2p(p − 1)(K0 + K1)E

t∫

ti

|ηn(s)|2p ds

+ 2p(p − 1)ε K2E

t∫

ti

‖ηn(s)‖2|ηn(s)|2(p−1) ds.

Then arguments similar to those used in Lemmas 3.1 and 3.2 yield (4.16), and then
(4.13) and (4.14). This concludes the proof of the proposition since (2p − 1)K2 < 2
when ε > 0. ��

We finally find an estimate from above on the V norm of the difference of un and
yn . This estimate will be used to obtain the speed of convergence of the scheme.

Proposition 4.3 Assume that u0 is F0-measurable with E‖u0‖4 < ∞; let T > 0 and
ε ∈ [0, 1). Assume that Assumptions (G1) and (G2) are satisfied with K2 < 2/3
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and L2 < 2, and that Assumptions (R1) and (R2) hold. Then there exists a positive
constant C := C(T ), such that for every integer n ≥ 1

E

T∫

0

‖yn(t) − un(t)‖2dt ≤ C

n
. (4.17)

Proof Using (3.11) and (4.3), we see that the proof of (4.17) reduces to check that

E

T∫

0

|ηn(t) − ξn(t)|2dt ≤ C

n
. (4.18)

We only prove this inequality when ε ∈ (0, 1). The proof in the case ε = 0 can be
done by adapting the arguments in the proof of Proposition 3.3. So let us assume that
ε ∈ (0, 1). Then the Itô Lemma, (4.13) and (4.14) imply that for any t ∈ (0, T ):

E|ηn(t) − ξn(t)|2 = −2 E

d∗
n (t)
∫

t

[

(1 − ε)〈Aξn(s), ηn(s) − ξn(s)〉

+ 〈B(un(s), ξn(s)), ηn(s) − ξn(s)〉 + 〈curl R(s, un(s)), ηn(s) − ξn(s)〉
]

ds

−2ε E

t∫

dn(t)

〈Aηn(s), ηn(s) − ξn(s)〉 + E

t∫

dn(t)

‖curl G(s, yn(s))‖2
T2(K ,H) ds

Integrating on [0, T ], using (2.6) with η = 1, Assumptions (R2) and (G2), the Fubini
Theorem and Lemma 4.2, we obtain

E

T∫

0

|ηn(t) − ξn(t)|2dt

≤ 2E

T∫

0

ds
[

(1 − ε)|Aun(s)||A(yn(s) − un(s))| + |A(un(s) − yn(s))|2

+ C1|un(s)|2X|ξn(s)|2X
]

s∫

dn(s)

dt + 2ε E

T∫

0

ds(|Aun(s)|2 + |Ayn(s)|2)
d∗

n (s)
∫

s

dt

+ E

T∫

0

ds[K0 + K1|ηn(s)|2 + K2ε |Ayn(s)|2]
d∗

n (s)
∫

s

dt
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≤ CT

n
E

T∫

0

(|Aun(s)|2+|Ayn(s)|2+‖un(s)‖4 + |un(s)|4 + |ξn(s)|2|Aun(s)|2) ds

≤ CT

n
,

where the last inequality can be deduced from Lemmas 3.2 and 4.2. This concludes
the proof. ��

4.2 A priori estimates for the process zn

For technical reasons, let us consider the process (zn(t), t ∈ [0, T ]) defined by

zn(t) = u0 −
t∫

0

Fε(s, un(s)) ds − ε

dn(t)∫

0

Ayn(s) ds +
t∫

0

G(s, yn(s))dW (s).

(4.19)

Note that for any ε ∈ [0, 1) the process zn(t) coincides with un(t+) and yn(t−) on
the time grid, i.e.,

zn(tk) = yn(t−k ) = un(t+k ) for k = 0, 1, · · · , n. (4.20)

The following lemma gives upper estimates of the differences zn − un and zn − yn in
various topologies.

Lemma 4.4 Let ε ∈ [0, 1) and let u0 be F0-measurable.

(i) Assume that u0 is H-valued with E|u0|2p < ∞ for some integer p ≥ 2. Suppose
that Assumption (G1) holds with K2 < 2

2p−1 and L2 < 2 and that Assumption
(R1) is satisfied. Then there exists a positive constant C := C(T, ε) such that for
every integer n ≥ 1,

sup
t∈[0,T ]

E|zn(t) − un(t)|2p ≤ C

n p
. (4.21)

(ii) Assume that u0 is V -valued with E‖u0‖4 < ∞, let Assumptions (G1) and (G2)
hold with K2 < 2

3 and L2 < 2 and let Assumptions (R1) and (R2) be satisfied.
Then there exists a positive constant C := C(T, ε) such that for every integer
n ≥ 1,

E

T∫

0

(‖zn(t) − un(t)‖2 + ‖zn(t) − yn(t)‖2)dt ≤ C

n
. (4.22)
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Proof For t ∈ [0, T ], we have

zn(t) − un(t) =
t∫

dn(t)

G(s, yn(s))dW (s).

Let the assumptions of (i) be satisfied. Since E|u0|2p < ∞ and K2 < 2
2p−1 , the

Burkholder–Davies–Gundy and Hölder inequalities together with Assumption (G1)
and Lemma 3.2 imply that for any t ∈ [0, T ],

E|zn(t) − un(t)|2p ≤ C pE

∣
∣
∣

t∫

dn(t)

‖G(s, yn(s)‖2
T2(K ,H) ds

∣
∣
∣

p

≤ C p

(
T

n

)p−1

E

t∫

dn(t)

∣
∣
∣K0 + K1|yn(s)|2 + ε K2‖yn(s)‖2

∣
∣
∣

p
ds

≤ C p(T )

n p−1

[

K p
0 +K p

1 sup
t∈[0,T ]

E|yn(t)|2p+ε p K p
2 sup

t∈[0,T ]
E‖yn(t)‖2p

]

T

n
≤ C p(T )

n p
.

Let the assumptions of (ii) hold true and let ζ n(t) = curl zn(t); then

ζ n(t) = curl u0 −
t∫

0

[

(1 − ε)Aζ n(s) + curl B(un(s), un(s)) + curl R(s, un(s))
]

ds

− ε

dn(t)∫

0

Aηn(s) ds +
t∫

0

curl G(s, yn(s))dW (s).

Therefore, ζ n(t) − ξn(t) = ∫ t
dn(t) curl G(s, yn(s))dW (s); the Itô Lemma, the Fubini

Theorem and Assumption (G2) imply that

T∫

0

E|ζ n(t) − ξn(t)|2 ds =
T∫

0

E

t∫

dn(t)

∣
∣curl G(s, yn(s))

∣
∣2
T2(K ,H)

dsdt

≤
T∫

0

[

K0 + K1|ηn(s)|2 + ε K2|Ayn(s)|2
]

⎛

⎜
⎝

d∗
n (s)
∫

s

dt

⎞

⎟
⎠ ds

≤ T

n

⎡

⎣K0T + E

T∫

0

(

K1|ηn(t)|2 + ε K2|Ayn(t)|2
)

dt

⎤

⎦ .
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Hence, Lemma 4.2 and (4.21) applied with p = 1 yield

T∫

0

E‖zn(t) − un(t)‖2dt ≤ C(T )

n
.

This upper estimate and Proposition 4.3 conclude the proof of (4.22). ��

5 Speed of convergence for the scheme in the case of the Stochastic NSEs on a
2D torus

In this entire section we consider the Stochastic NSEs on a 2D torus. Thus, we suppose
that u0 is F0-measurable such that E‖u0‖8 < ∞ and fix some T > 0. We also assume
that Assumptions (G1) and (G2) are satisfied with K2 < 2

7 and L2 < 2, and that
the Assumptions (R1) and (R2) hold true. Our aim is to prove the convergence of the
scheme in the H norm uniformly on the time grid and in L2(0, T ; V ).

The non linearity of the Navier–Stokes equations requires to impose a localization in
order to obtain an L2(�, P) convergence. However, the probability of this localization
set converges to 1, which yields the order of convergence in probability as defined by
Printems in [19]; the order of convergence in probability of un to u in H is γ > 0 if

lim
C→∞ P

(

sup
k=0,··· ,n

|un(tk) − u(tk)| ≥ C

nγ

)

= 0.

First, we prove that when properly localized, the schemes un and yn converge to u
in L2(�) for various topologies. Thus, for every M > 0, t ∈ [0, T ] and any integer
n ≥ 1, let

�n
M (t) :=

⎧

⎨

⎩
ω ∈ � :

t∫

0

(

|u(s, ω)|4X + |un(s, ω)|4X
)

ds ≤ M

⎫

⎬

⎭
. (5.1)

This definition shows that �n
M (t) ⊂ �n

M (s) for s ≤ t and that �n
M (t) ∈ Ft for any

t ∈ [0, T ]. Furthermore, Lemma 3.1 shows that supn≥1 P(�n
M (T )c) → 0 as M → ∞.

Let τ n
M = inf{t ≥ 0 :

t∫

0

(|u(s, ω)|4X + |un(s, ω)|4X
)

ds ≥ M} ∧ T ; we clearly have

τ n
M = T on the set �n

M (T ).
The following proposition proves that, localized on the set �n

M (T ), the strong
speed of convergence of zn to u (resp. of un and yn to u) in L∞(0, T ; H) (resp. in
L2(0, T ; V )) is 1/2.

Proposition 5.1 Let ε ∈ [0, 1), u0 be F0-measurable such that E‖u0‖8 < ∞.
Suppose that the Assumptions (G1), (G2), (R1) and (R2) hold with K2 < 2

7 , L2 < 2
with ε L2 strictly smaller than 2(1 − ε). Then there exist positive constants C(T ) and
C̃2 such that for every for every M > 0 and n ∈ N, we have:
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E

⎛

⎜
⎝ sup

t∈[0,τ n
M ]

|zn(t) − u(t)|2 +
τ n

M∫

0

[

‖un(t) − u(t)‖2 + ‖yn(t) − u(t)‖2
]

dt

⎞

⎟
⎠

≤ K (T, M)

n
, (5.2)

where zn is defined by (4.19), u is the solution to (2.8) and

K (M, T ) = C(T ) exp
(

C(T )eC̃2 M
)

.

Proof First of all let us observe that in view of Proposition 4.3 we only have to prove
inequality (5.2) for the first two terms on the left hand side. For this aim let us fix
M > 0 and a natural number n ≥ 1. To ease notation we put τ := τ n

M . Then we have

zn(t ∧ τ)−u(t ∧ τ) = −
t∧τ∫

0

[Fε(s, un(s))−F(s, u(s))] ds−ε

dn(t∧τ)∫

0

Ayn(s) ds

+
t∧τ∫

0

[G(s, yn(s))−G(s, u(s))]dW (s), for any t ∈ [0, T ].

(5.3)

The Itô Lemma yields that

|zn(t ∧ τ) − u(t ∧ τ)|2 =
4

∑

i=1

Ti (t) + I (t), for t ∈ [0, T ],

where, also for t ∈ [0, T ],

I (t) = 2

t∧τ∫

0

〈[G(s, yn(s)) − G(s, u(s))] dW (s) , zn(s) − u(s)〉, (5.4)

T1(t) = −2

t∧τ∫

0

〈Fε(s, un(s)) − Fε(s, u(s)) , zn(s) − u(s)〉 ds,

T2(t) = −2ε

dn(t∧τ)∫

0

〈Ayn(s) − Au(s) , zn(s) − u(s)〉 ds,

T3(t) = −2ε

t∧τ∫

dn(t∧τ)

〈Au(s) , zn(s) − u(s)〉 ds,
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T4(t) =
t∧τ∫

0

|G(s, yn(s)) − G(s, u(s))|2T2(K ,H) ds. (5.5)

We at first upper estimate the above term T1(t) as follows: T1(t) ≤ ∑5
i=1 T1,i (t),

where

T1,1(t) = −2(1 − ε)

t∧τ∫

0

〈Aun(s) − Au(s) , un(s) − u(s)〉 ds,

T1,2(t) = −2(1 − ε)

t∧τ∫

0

〈Aun(s) − Au(s) , zn(s) − un(s)〉 ds,

T1,3(t) = −2

t∧τ∫

0

〈B(un(s), un(s)) − B(u(s), u(s)) , un(s) − u(s)〉 ds,

T1,4(t) = −2

t∧τ∫

0

〈[

B(un(s)−u(s), un(s))+B(u(s), un(s)−u(s)), zn(s)−un(s)
〉

ds,

T1,5(t) = −2(1 − ε)

t∧τ∫

0

〈R(s, un(s)) − R(s, u(s)) , zn(s) − u(s)〉 ds. (5.6)

The definition of the V -norm implies that

T1,1(t) = −2(1 − ε)

t∧τ∫

0

‖un(s) − u(s)‖2 ds, (5.7)

while the Cauchy–Schwarz and Young inequalities yield that for any η > 0:

T1,2(t) ≤ 2(1 − ε)

t∧τ∫

0

‖un(s) − u(s)‖ ‖zn(s) − un(s)‖ ds

≤ η(1 − ε )

t∧τ∫

0

‖un(s) − u(s)‖2 ds + 1 − ε

η

t∧τ∫

0

‖zn(s) − un(s)‖2 ds.

(5.8)
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Using (2.7) we deduce that for any η > 0 we have:

T1,3(t) ≤ 2η

t∧τ∫

0

‖un(s) − u(s)‖2 ds + 2Cη

t∧τ∫

0

|un(s) − u(s)|2|u(s)|4X ds

≤ 2η

t∧τ∫

0

‖un(s) − u(s)‖2 ds + 4Cη

t∧τ∫

0

|zn(s) − u(s)|2|u(s)|4X ds

+ 4Cη

t∧τ∫

0

|zn(s) − un(s)|2|u(s)|4X ds. (5.9)

Furthermore, condition (2.6) on B, property (2.4) of the space X and the Cauchy–
Schwarz and Young inequalities yield for any η > 0:

T1,4(t) ≤ 2

t∧τ∫

0

[

2η‖zn(s) − un(s)‖2 + Cη|un(s) − u(s)|2X
(

|un(s)|2X + |u(s)|2X
)]

ds

≤ 8η

t∧τ∫

0

‖un(s) − u(s)‖2ds + 8η

t∧τ∫

0

‖zn(s) − u(s)‖2ds

+ 2CCη

⎛

⎝

t∧τ∫

0

‖un(s) − u(s)‖2ds

⎞

⎠

1/2 ⎛

⎝

t∧τ∫

0

|un(s) − zn(s)|4ds

⎞

⎠

1/4

×
⎛

⎝

t∧τ∫

0

[

|un(s)|8X + |u(s)|8X
]

ds

⎞

⎠

1/4

+ 2CCη

⎛

⎝

t∧τ∫

0

‖un(s) − u(s)‖2ds

⎞

⎠

1/2 ⎛

⎝

t∧τ∫

0

|zn(s) − u(s)|2
[

|u(s)|4X

+ |un(s)|4X
]

ds
)1/2

≤ 10η

t∧τ∫

0

‖un(s) − u(s)‖2ds + 8η

t∧τ∫

0

‖zn(s) − u(s)‖2ds

+ C
Cη

η

⎛

⎝

t∧τ∫

0

|un(s) − zn(s)|4ds

⎞

⎠

1/2 ⎛

⎝

t∧τ∫

0

[

|u(s)|8X + |un(s)|8X
]

ds

⎞

⎠

1/2

+ C
Cη

η

t∧τ∫

0

|zn(s) − u(s)|2
[

|u(s)|4X + |un(s)|4X
]

ds. (5.10)
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Finally, Assumption (R1) and the triangular and Cauchy–Schwarz inequalities
imply

T1,5(t) ≤ 2R1

t∧τ∫

0

|un(s) − u(s)| |zn(s) − u(s)| ds

≤ 3R1

t∧τ∫

0

|zn(s) − u(s)|2 ds + R1

t∧τ∫

0

|zn(s) − un(s)|2 ds. (5.11)

First note that T2 = −2ε
∫ t∧τ

0 〈∇(yn(s) − u(s)) , ∇(zn(s) − u(s))〉ds. Replacing
u by un , and using the Cauchy–Schwarz and Young inequalities we deduce

T2(t) ≤ −2ε

dn(t∧τ)∫

0

‖un(s) − u(s)‖2 ds

+ 2ε

dn(t∧τ)∫

0

‖yn(s) − un(s)‖‖zn(s) − un(s)‖ ds

+ 2ε

dn(t∧τ)∫

0

‖un(s) − u(s)‖ [‖yn(s) − un(s)‖ + ‖zn(s) − un(s)‖] ds

≤ 2ε

dn(t∧τ)∫

0

‖yn(s) − un(s)‖‖zn(s) − un(s)‖ ds. (5.12)

The Cauchy–Schwarz and Young inequality imply that for every η > 0, we have

T3(t) ≤ 2ε

t∧τ∫

dn(t∧τ)

‖u(s)‖ (‖zn(s) − un(s)‖ + ‖un(s) − u(s)‖) ds

≤ ε η

t∧τ∫

dn(t∧τ)

‖un(s) − u(s)‖2 ds

+ ε

η

⎛

⎜
⎝

t∧τ∫

dn(t∧τ)

‖u(s)‖2 ds

⎞

⎟
⎠

1/2 ⎛

⎜
⎝

t∧τ∫

dn(t∧τ)

‖zn(s)−un(s)‖2 ds

⎞

⎟
⎠

1/2

. (5.13)

Finally, since ε L2 < 2(1 − ε) we can choose α > 0 such that ε L2 < 2(1 − ε) −
(2 + L2)α; thus the Assumption (G1) yields
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T4(t) ≤ L1

t∧τ∫

0

[|yn(s) − u(s)|2 + ε L2‖yn(s) − u(s)‖2] ds

≤ 2L1

t∧τ∫

0

|zn(s) − u(s)|2 ds + ε L2(1 + α)

t∧τ∫

0

‖un(s) − u(s)‖2 ds

+ 2L1

t∧τ∫

0

|yn(s) − zn(s)|2 ds + ε L2

(

1 + 1

α

)
t∧τ∫

0

‖yn(s) − un(s)‖2 ds.

(5.14)

Fix η > 0 such that 13η < α. Put

X (t) := sup
s∈[0,t∧τ ]

|zn(s) − u(s)|2 , Y (t) :=
t∧τ∫

0

‖un(s) − u(s)‖2 ds, for t ∈ [0, T ].

Then inequalities (5.3)–(5.14) imply that

X (t) + αY (t) ≤
t∧τ∫

0

ϕ(s)X (s) ds + sup
s∈[0,t∧τ ]

|I (s)| + Z(t), for t ∈ [0, T ],

where I (t) is defined by (5.4), while the processes ϕ and Z are defined as follows:

ϕ(s) = 4Cη|u(s)|4X + C
Cη

η

(

|u(s)|4X + |un(s)|4X
)

+ 3R1 + 2L1,

Z(t) =
t∧τ∫

0

[(
1 − ε

η
+ 2ε + 4L1

)

‖zn(s) − un(s)‖2

+ |zn(s) − un(s)|2
(

R1 + 4Cη|u(s)|4X
)

+
[

ε L2

(

1 + 1

α

)

+ 2ε + 4L1

]

‖yn(s) − un(s)‖2
]

ds

+ Cη

η
C

⎛

⎝

t∧τ∫

0

|un(s) − zn(s)|4 ds

⎞

⎠

1/2 ⎛

⎝

t∧τ∫

0

[|un(s)|8X + |u(s)|8X] ds

⎞

⎠

1/2

+ ε

η

⎛

⎜
⎝

t∧τ∫

dn(t∧τ)

‖u(s)‖2 ds

⎞

⎟
⎠

1/2 ⎛

⎜
⎝

t∧τ∫

dn(t∧τ)

‖zn(s) − un(s)‖2 ds

⎞

⎟
⎠

1/2

.

The definition of the stopping time τ implies the existence of constants C1 and C2
larger than 1 and independent of n such that:
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τ∫

0

ϕ(s) ds ≤ (3R1 + 2L1)T + M
(

4Cη + C
Cη

η

) = C1T + C2 M := C(ϕ).

Since V ⊂ X, using Propositions 3.3, 4.3 and Lemma 4.4, we deduce the existence of
a constant C(T ) depending on T (and not on n) such that

E[Z(T )] ≤
[

1 − ε

η
+ R1 + 4ε + 8L1 + ε L2

(

1 + 1

α

)]
C

n

+ 4Cη

⎛

⎝E

T∫

0

|zn(s) − un(s)|4 ds

⎞

⎠

1/2 ⎛

⎝E

T∫

0

‖u(s)‖8 ds

⎞

⎠

1/2

+ C
Cη

η

⎛

⎝E

T ∧τ∫

0

|un(s) − zn(s)|4 ds

⎞

⎠

1/2

×
⎛

⎝E

T ∧τ∫

0

(

‖un(s)‖8 + ‖u(s)‖8
)

ds

⎞

⎠

1/2

+ ε

η

(

T

n
sup

s∈[0,T ]
E‖u(s)‖2

)1/2
⎛

⎝E

T∫

0

‖zn(s)−un(s)‖2ds

⎞

⎠

1/2

≤ C(T )

n
.

(5.15)

Furthermore, Assumption (G1), the Burkholder–Davies–Gundy, the Cauchy–Schwarz
and the Young inequalities imply that for any β > 0:

E

(

sup
s≤t∧τ

|I (s)|
)

≤ 12E

⎛

⎝

t∧τ∫

0

‖G(s, yn(s))−G(s, u(s))‖2
T2(K ,H)|zn(s)−u(s)|2 ds

⎞

⎠

1/2

≤ βE

(

sup
s≤t∧τ

|zn(s) − u(s)|
)

+ 36

β
E

t∧τ∫

0

[

L1|yn(s) − u(s)|2 + ε L2‖yn(s) − u(s)‖2] ds

≤ βEX (t) + 36L1(1 + δ1)

β

t∫

0

EX (s) ds

+ 36ε L2(1 + δ2)

β
EY (t) + C̃

n
, (5.16)
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where C̃ = C
(

36L1
β(1+δ1)

+ 36ε L2
β(1+δ2)

)

. Choose β > 0 such that 2β
(

1 + C(ϕ)eC(ϕ)
) = 1.

Then suppose that ε L2 is small enough to ensure that

72(1 + δ2)ε
1

β
L2

(

1 + C(ϕ)eC(ϕ)
) ≤ α.

Using the argument similar to that used in the proof of Lemma 3.9 in [11] we deduce
that

X (t) + αY (t) ≤
[

Z + sup
s≤t∧τ

|I (s)|
] (

1 + C(ϕ)eC(ϕ)
)

.

Then taking expectation, using (5.16), the Gronwall lemma and (5.15), we deduce

EX (T ) + αEY (T )

≤ 2
(

1 + C(ϕ)eC(ϕ)
)
[

E(Z) + C̃

n

]

exp

[

144L1(1 + δ1)
(

1 + C(ϕ)eC(ϕ)
)2

]

≤ C(T ) + C̃

n
exp

[

C(T )e3C2 M
]

for some positive constant C(T ) which does not depend on n. This completes the
proof of (5.2) ��

The following theorem proves that, properly localized, the sequences un and yn

converge strongly to u in L2(�, P) for various topologies, and that the “localized”
speed of convergence of these processes is 1/2.

Theorem 5.2 Let ε ∈ [0, 1); suppose that Assumptions (R1), (R2), (G1) and (G2)
hold with L2 small enough and K2 < 2

7 , and let u0 be F0-measurable with E‖u0‖8 <

∞. Then the processes un and yn defined in Sect. 2.3 converge to the solution u to the
stochastic Navier–Stokes equations (2.8) on a 2-D torus. More precisely, given any
M > 0 there exist positive constants C(T ) and C̃2, which do not depend on n and M,
such that for any integer n = 1, · · · we have

E

[

1�n
M (T ) sup

k=0,··· ,n−1

(

sup
s∈[tk ,tk+1)

(

|un(s+) − u(s)|2 + |yn(s+) − u(s)|2
)
)]

≤ K (M, T )

n
(5.17)

E

[

1�n
M (t)

t∫

0

[‖un(s) − u(s)‖2 + ‖yn(s) − u(s)‖2]ds
)]

≤ K (M, T )

n
, (5.18)
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where K (M, T ) := C(T ) exp
[

C(T )eC̃2 M
]

, and

�n
M (t) =

{

ω :
t∫

0

(|u(s)(ω)|4X + |un(s)(ω)|4X
)

ds ≤ M
}

for t ∈ [0, T ].

Proof First note that on �n
M (t) we have τ n

M ≥ t . Hence using Propositions 5.1, we
deduce that (5.18) holds true. Furthermore, the Cauchy–Schwarz inequality and (4.14)
prove that

E

(

sup
k=1,··· ,n

|zn(tk) − yn(t−k )|2
)

= E

(

sup
k=1,··· ,n

ε2
∣
∣
∣

tk+1∫

tk

Ayn(s) ds
∣
∣
∣

2)

≤ ε2 T

n
E

(

sup
k=1,··· ,n

tk+1∫

tk

∣
∣Ayn(s)

∣
∣
2

ds
)

≤ C(T )ε2

n
.

Therefore, since zn(tk) = un(t+k ) = yn(t−k ), Proposition 5.1 yields

E

[

1�n
M (T ) sup

k=0,··· ,n

(

|un(t+k ) − u(tk)|2 + |yn(t−k ) − u(tk)|2
)
]

≤ K (M, T )

n
.

(5.19)

Finally, using Assumption (G1), Young’s inequality and Lemma 4.2, we obtain that
for any k = 0, · · · , n − 1:

E

(

sup
t∈(tk ,tk+1)

|yn(t) − yn(t+k )|2
)

≤ E

⎡

⎣

tk+1∫

tk

(ε

2
‖yn(t−k )‖2 +

[

K0 + K1|yn(s)|2 + ε K2‖yn(s‖2
])

ds

+
⎛

⎝

tk+1∫

tk

|yn(s) − yn(t+k )|2
[

K0 + K1|yn(s)|2 + K2 ε ‖yn(s)‖2
]

ds

⎞

⎠

1/2⎤

⎥
⎦

≤ 1

2
E

(

sup
t∈(tk ,tk+1)

|yn(t) − yn(t+k )|2
)

+ C
T

n
sup

s∈[0,T ]
E‖yn(s)‖2,

so that

E

(

sup
t∈(tk ,tk+1)

|yn(t) − yn(t+k )|2
)

≤ C(T )

n
. (5.20)
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Using the Itô Lemma, the inequalities (2.5) and (4.8), the Schwarz and Young inequal-
ity, the Assumptions (G1) and the Burkholder Davies Gundy inequality, we deduce
that

E

(

sup
t∈(tk ,tk+1)

|u(t) − u(t+k )|2
)

≤ E

⎛

⎝ sup
t∈(tk ,tk+1)

t∫

tk

[

−2‖u(s)‖2 + 2‖u(s)‖‖u(t+k )‖

+ |u(s)|2X‖u(s) − u(t+k )‖2 + (R0 + R1|u(s)|) |u(s) − u(t+k )|
+

(

K0 + K1|u(s)|2 + ε K2‖u(s)‖2
)]

ds
)

+ E

⎛

⎝

tk+1∫

tk

|u(s) − u(t+k )|2
[

K0 + K1|u(s)|2 + ε K2‖u(s)‖2
]

ds

⎞

⎠

1/2

≤ 1

2
E

(

sup
t∈(tk ,tk+1)

|u(t) − u(t+k )|2
)

+ C

n

(

1 + sup
t∈[0,T ]

E‖u(s)‖2

)

,

and hence

E

(

sup
t∈(tk ,tk+1)

|u(t) − u(t+k )|2
)

≤ C(T )

n
. (5.21)

A similar simpler argument using the inequalities (2.5) and (4.13) yields

E

(

sup
t∈(tk ,tk+1)

|un(t) − un(t+k )|2
)

≤ C

n

(

1 + sup
t∈[0,T ]

E[‖un(t)‖4 + ‖yn(t)‖4]
)

≤ C(T )

n
. (5.22)

The inequalities (5.20)–(5.22) and (5.19) conclude the proof of (5.17). ��
Corollary 5.3 Let ε ∈ [0, 1); assume that the assumptions of Theorem 5.2 are satis-
fied. For any integer n ≥ 1 let ẽn(T ) denote the error term defined by

ẽn(T ) = sup
k=1,··· ,n

[|un(t+k ) − u(tk)| + |yn(t+k ) − u(tk)|
]+

⎛

⎝

T∫

0

‖un(s) − u(s)‖2 ds

⎞

⎠

1/2

+
⎛

⎝

T∫

0

‖yn(s) − u(s)‖2 ds

⎞

⎠

1/2

.
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Then ẽn(T ) converges to 0 in probability with the speed almost 1/2. To be precise, for
any sequence

(

z(n)
)∞

n=1 converging to ∞,

lim
n→∞ P

(

ẽn(T ) ≥ z(n)√
n

)

= 0. (5.23)

Therefore, since the schemes un and yn are right-continuous, they converge to u in
probability in H with rate almost 1/2.

Proof Let z(n) → ∞ and let M(n) := ln(ln(ln(z(n)))); then M(n) → ∞. Thus,
using (2.13) and (4.13) for p = 2 and the Markov inequality, we deduce that

P(� \ �n
M(n)(T )) → 0. Finally, note that C(T )

(

ln(ln z(n))
)C̃2 − 2 ln

(

z(n)
) → −∞

as n → ∞ for any positive constant C(T ). Therefore, using the inequalities (5.17) and
(5.18), the explicit forms of K (T, M(n)), the choice of M(n) and Markov’s inequality,
we deduce that

P

(

ẽn(T ) ≥ z(n)√
n

)

≤ P

(

� \ �n
M(n)(T )

)

+ n

z(n)2 E
(

1�M(n)(T )ẽn(T )2)

≤ P

(

�n
M(n)(T )

)

+ C(T )
n

z(n)2

1

n
exp[C(T )(ln(ln(z(n))))C̃2 ] → 0

as n → ∞; this concludes the proof. ��
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