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Abstract While solvability of a single stochastic hyperbolic or parabolic equation
is well known, the problem remains mostly open for stochastic evolution systems.
The paper investigates well-posedness and stability in Sobolev spaces on R

d of the
initial value problem for systems of stochastic evolution equations with constant coef-
ficients and multiplicative time-only Gaussian white noise. A general criterion for
well-posedness is derived in terms of sums of certain Kronecker products of the system
matrices, and a stochastic analogue of the Petrowski parabolicity condition is proposed.
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1 Introduction

What is a natural extension of the Petrowski1 parabolicity condition to stochastic
systems? Can we solve a system if it is neither hyperbolic nor parabolic? The answers
are non-trivial even for simple examples.

As an example of a parabolic system, consider

du = uxx dt; dv = 2vxx dt + σux dw(t), t > 0, x ∈ R, σ > 0. (1.1)

1 We follow the spelling from [7].
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On the one hand, if u0, v0 ∈ L2(R), then standard results for parabolic equations
imply that u ∈ L2(�× (0, T ); H1), so that σux ∈ L2(�× (0, T )×R), and therefore
v ∈ L2(�× (0, T ); H1), that is, the system is reasonable to call parabolic for every
σ > 0. On the other hand, if we ignore the lower-triangular structure of the system
and try to estimate |ux |2 + |vx |2 using the Itô formula and integration by parts, then
the usual parabolic-type estimate will be possible only when σ 2 < 2—a condition
consistent with [12, Assumption 2.2].

As far as equations that are neither hyperbolic nor parabolic, let us start with a
deterministic example

utt − autxx = c2uxx , a > 0, c > 0. (1.2)

Even though it is a damped wave equation, it is not hyperbolic because its order
in space-time (three) is different from its order in time (two); cf. [14, Theorem 2.7].
Similarly, even though the function v = ut satisfies what looks like an inhomogeneous
heat equation, (1.2) is not parabolic: there are several equivalent conditions that can
be checked and turn out not to hold; see, for example [5, Sect. 1.3.3] or [7, Sect. 9.1].
Still, direct computations, either using integration by parts or the Fourier transform,
show that (1.2) is well-posed for every a > 0 in a way similar to the usual wave
equation.

Now consider a stochastic version of (1.2),

utt − autxx = c2uxx + σuxx ẇ, a > 0. (1.3)

While integration by parts no longer works, the Fourier transform approach shows
that the equation is well-posed for every σ ∈ R, and if 2ac2 > σ 2, then the zero
solution is asymptotically stable; see Sect. 4 for details.

To state the main result of the paper, consider two matrix partial differential oper-
ators A and B with constant coefficients and corresponding symbols A(y), B(y); a
symbol in this case is a square matrix and the entries of the matrix are polynomials in y
with complex coefficients. Letw = w(t) be a standard Brownian motion and consider
the system of stochastic Itô equations for the unknown vector function u(t, x) ∈ R

N :

u(t, x) = u0(x)+
t∫

0

(
Au(s, x)+ f (s, x)

)
ds

+
t∫

0

(
Bu(s, x)+ g(s, x)

)
dw(s), 0 ≤ t ≤ T, x ∈ R

d. (1.4)

We say that system is well-posed if, for every collection of input u0, f , g in some
Sobolev spaces, there exists a unique solution u(t, x) with values in some Sobolev
space, and the norm of the solution continuously depends on the norm of the input.

Define the matrix MA,B(y) = A(y)⊗ I + I ⊗ A + B(y)⊗ B(y),whereNmeans
complex conjugation, I is the N -by-N identity matrix, and ⊗ denotes the Kronecker
product of two matrices.
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Theorem 1.1 System (1.4) is well-posed on a fixed time interval [0, T ] if and only if
the real parts of the eigenvalues of MA,B(y) are uniformly bounded in |y| : there exists
a number C0 ∈ R such that, for every eigenvalue λMA,B (y) of the matrix MA,B(y)

and all y ∈ R
d,

�λMA,B (y) ≤ C0. (1.5)

In Sect. 4 we show that, according to this theorem, Eq. (1.1) is well-posed for all
σ ∈ R, and Eq. (1.2) is well-posed for a > 0 and all σ, c ∈ R.

Denote by B∗ the complex conjugate of the matrix B and denote by ‖ ·‖ any matrix
norm. The stochastic parabolicity condition is as follows.

Definition 1.2 System (1.4) is called parabolic of order 2p if ‖A(y)‖+‖B∗(y)B(y)‖
is a polynomial of degree 2p, and, for some ε > 0 and L ∈ R, all eigenvalues of the
matrix MA,B(y) satisfy

�λ(MA,B(y)
) ≤ −ε|y|2p + L .

The rest of the paper is organized as follows. Section 2 introduces the main notations
and notions, including the Kronecker product, necessary to state and prove the main
result. The main result is in Sect. 3. Section 4 presents various ramifications of the
main result for special types of systems, including parabolic ones. Section 5 discusses
alternative approaches and possible generalizations of the main result. The overall
summary is in Sect. 6.

2 Function spaces, operators, and matrices

Our main object is a function of a d-dimensional real variable x = (x1, . . . , xd), taking
values in the real N -dimensional space R

N or in the complex N -dimensional space
C

N . Such a function will usually be denoted by a lower-case bold Latin letter, e.g. h,
whereas upper-case regular Latin letter, e.g. A, will usually mean an N -by-N matrix.
Then |h| is the Euclidean norm of h and ‖A‖ is the induced matrix norm

‖A‖ = max
{|Ah| : |h| = 1

}
.

For a matrix A ∈ C
N×N , A is the matrix with complex conjugate entries,

A	 means transposition, and A∗ denotes the conjugate transpose: A∗ = A	 =
A

	
.The same notations, ¯ ,	, and∗, will also be used for vectors in C

N .
The Sobolev space Hγ = Hγ (Rd; R

N ) of R
N -valued functions on R

d is the
collection of generalized functions h ∈ S ′ = S ′(Rd; R

N ) such that

‖h‖2
γ =

∫

Rd

(1 + |y|2)γ |̂h(y)|2dy < ∞,
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where ĥ is the Fourier transform of h; for h ∈ L1(R
d; R

N ),

ĥ(y) = 1

(2π)d/2

∫

Rd

e−ixy h(x)dx, i = √−1.

Clearly, Hγ2 ⊂ Hγ1 , γ2 > γ1. If H∞ = ⋂
γ>0 Hγ , H∞ = ⋃

γ<0 Hγ , and

S = S(Rd; R
N ) is the space of rapidly decreasing test functions, then

S ⊂ H∞ ⊂ H∞ ⊂ S ′,

with all inclusions strict: for example, in the case N = d = 1, the function h(x) =
1/(1 + x2) is in H∞ but not in S. For h ∈ H∞ and z ∈ H∞, define

〈h, z〉 =
∫

Rd

ĥ
∗
(y)̂z(y)dy. (2.1)

By the Cauchy-Schwarz inequality,

|〈h, z〉| ≤ ‖h‖−γ ‖z‖γ
with sufficiently large γ > 0.

Definition 2.1 An operator A on H∞ is calledpseudo-differential opera-
tor with constant coefficients if there exists a matrix-valued function
A = A(y) ∈ C

N×N , y ∈ R
d, such that,

(1) the entries of A have at most polynomial growth:

‖A(y)‖ ≤ CA(1 + |y|)a (2.2)

for some CA > 0 and a ≥ 0;
(2) for every h ∈ H∞,

Âh(y) = A(y)̂h(y), (2.3)

(3) all entries of A are continuous functions of y.

The matrix A is called the symbol of the operator A.

In the above definition, the polynomial growth condition (2.2) is standard (without
it, the operator might not map H∞ to itself), while both (2.3) and the “constant coef-
ficients” part of the name come from the observation that if A is a partial differential
operator

Ah(x) =
∑

|α|≤m

Aα
∂ |α|h(x)

∂xα1
1 · · · x

αd
d

, Aα ∈ R
N×N, |α| = α1 + · · · + αd,
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then

A(y) =
∑

|α|≤m

i|α|yα1
1 · · · y

αd
d Aα, i = √−1.

Our definition makes it possible to consider more general operators such as
(−∇2)r , r > 0, with symbol |y|2r . The continuity requirement is for purely tech-
nical reasons, to avoid unnecessary complications in the future; it is still much weaker
than the usual C∞ requirement if the operator is to act on S ′ instead of H∞.

Proposition 2.2 Under (2.2), the operator A is bounded from Hγ to Hγ−a for every
γ ∈ R.

Proof This follows directly from (2.3) and the definition of the norm ‖ · ‖γ . ��
Next, we present a brief summary of the Kronecker product and related topics;

possible references are [4] or [10, Chap. 4].
Kronecker product is a construction allowing a product of three matrices to be

written in an equivalent matrix-vector form. Consider a matrix equation B X A	 = C
with known matrices A, B,C , and the unknown matrix X ; given the nature of our
applications, we assume that all matrices are in C

N×N . Introduce a column vector
vec(X) = X ∈ C

N2
by stacking together the columns of X , left-to-right:

vec(X) = X = (X11, . . . ,Xn1,X12, . . . ,Xn2, . . . ,X1n, . . . ,Xnn)
	. (2.4)

Then direct computations show that the matrix equation AX B	 = C can be written
in the matrix-vector form for the unknown vector X as

(A ⊗ B)X = C, C = vec(C), (2.5)

where A⊗B is theKronecker product of matrices A and B, that is, an N 2-by-N 2

block matrix with blocks Ai j B. For example,

(
1 2
3 4

)
⊗

(
a b
c d

)
=

⎛
⎜⎜⎝

a b 2a 2b
c d 2c 2d
3a 3b 4a 4b
3c 3d 4c 4d

⎞
⎟⎟⎠ .

In other words, (2.5) means

vec
(
BXA	) = (A ⊗ B)vec(X), (2.6)

with vec(·) operation defined in (2.4). The point is that, at least for theoretical purposes,
the matrix-vector Eq. (2.5) is a more familiar, and hence convenient, object than the
corresponding matrix-matrix equation.
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3 The main result

Let A and B be pseudo-differential operators with constant coefficients; denote by
A(y), B(y) the corresponding symbols. Let (�,F , (Ft )T ≥ 0, P) be a stochastic
basis with the usual assumptions and with a standard Brownian motion w = w(t).
Consider the system of stochastic Itô equations for the unknown vector function u ∈
R

N :

u(t) = u0 +
t∫

0

(
Au(s)+ f (s)

)
ds +

t∫

0

(
Bu(s)+ g(s)

)
dw(s), 0 ≤ t ≤ T . (3.1)

To simplify the presentation, we assume that there is only one Brownian motion
and it is the only source of randomness in the system: the initial condition u0, the free
terms f , g, and the operators A,B are all non-random. Many of these restrictions can
be removed, and we will discuss this in Sect. 5.

Sometimes it is convenient to write (3.1) in a less formal differential way

u̇ = Au + f + (Bu + g)ẇ. (3.2)

Definition 3.1 Given

u0 ∈ Hr , f , g ∈ L2((0, T ); Hr ) for some r ∈ R, (3.3)

a solution of (3.1) is an Ft -adapted process u ∈ L2(�× [0, T ]; Hγ ) for some γ ≤ r
with the following property: there is a set�′ ⊆ �with P(�′) = 1 such that, for every
ω ∈ �′, every t ∈ [0, T ], and every z ∈ H∞,

〈u(t), z〉 = 〈u0, z〉 +
t∫

0

〈Au(s)+ f (s), z〉ds +
t∫

0

〈Bu(s)+ g(s), z〉dw(s). (3.4)

Equation (3.1) is called well-posed on [0, T ] if

• for every r ∈ R and input satisfying (3.3), there exists a unique solution u, and
• there exists a C > 0 such that

E‖u(t)‖2
γ ≤ C

(
‖u0‖2

r +
t∫

0

‖ f (s)‖2
r ds +

t∫

0

‖g(s)‖2
r ds

)
, 0 ≤ t ≤ T . (3.5)

Remark 3.2 (1) The definition allows both γ and C in (3.5) to depend on T .
(2) While it is possible that (3.5) can hold for t > 0 with γ > r , we need to assume

γ ≤ r if (3.5) is to hold for t = 0.
(3) Since (3.1) is linear with constant coefficients, it is enough to establish (3.5) for

r = 0.
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Using (2.1) and the notation

(̂h, ẑ) =
∫

Rd

ĥ
∗
(y)̂z(y)dy,

we can re-write (3.4) as

(̂
u(t), ẑ

)= (̂
u0, ẑ

)+
t∫

0

(
A(y)̂u(s)+ f̂ (s), ẑ

)
ds +

t∫

0

(
B(y)̂u(s)+ ĝ(s), ẑ

)
dw(s).

(3.6)

Consider the linear system of stochastic ordinary differential equations depending
on the parameter y:

v(t, y) = û0(y)+
t∫

0

(
A(y)v(s, y)+ f̂ (s, y)

)
ds+

t∫

0

(
B(y)v(s, y)+ ĝ(s, y)

)
dw(s).

(3.7)

Of course, (3.7) is equivalent to (3.6) if a solution of (3.1) exists. The precise
connection between the two systems is as follows.

Proposition 3.3 Assume (3.3) holds. Then

(1) For every y ∈ R
d, system (3.7) has a unique Ft -adapted solution, and the funda-

mental solution of the system is a continuous function of y;
(2) If v = v(t, y) is the solution of (3.7) and

E

∫

Rd

(1 + |y|2)γ |v(t, y)|2dy < ∞ (3.8)

for some γ ∈ R and all t ∈ [0, T ], then u(t) = v̌(t) is the solution of (3.1), where
ˇ denotes the inverse Fourier transform;

(3) If u is a solution of (3.1), then v = û is a solution of (3.7). In particular, (3.1)
has at most one solution.

Proof Recall that the fundamental solution of (3.7) is the matrix�(t, s, y), t ≥ s ≥ 0,
such that

�(t, s, y) = I +
t∫

s

A(y)�(τ, s, y)dτ +
t∫

s

B(y)�(τ, s, y)dw(τ);

I ∈ R
N×N is the identity matrix. Existence and uniqueness of � is standard, and

continuity of � with respect to y follows from continuity of A(y) and B(y); see [8,
Corollary 2.7.1]. While existence and uniqueness of solution of (3.7) are also standard
for every fixed y, representation
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v(t, y) = �(t, 0, y)̂u0(y)+
t∫

0

�(t, s) f̂ (s, y)ds +
t∫

0

�(t, s )̂g(s, y)dw(s) (3.9)

and continuity of � with respect to y ensure that the exceptional set involved in the
construction of v does not depend on y. In particular, if (3.8) holds, then v̌ is well
defined. The rest of the proposition now follows from (3.6).

This completes the proof of Proposition 3.3 ��
Proposition 3.3 reduces analysis of (3.1) to analysis of (3.7), and more specifically,

to verification of (3.8). Let us look at the homogeneous version of (3.7):

v(t, y) = û0(y)+
t∫

0

A(y)v(s, y)ds +
t∫

0

B(y)v(s, y)dw(s). (3.10)

By the Itô formula, the scalar quantity v(t, y) = Ev∗(t, y)v(t, y) = E|v(t, y)|2
satisfies

v(t, y) = û∗
0 û0 + 2�

t∫

0

Ev∗(s, y)A(y)v(s, y)ds

+
t∫

0

Ev∗(s, y)B∗(y)B(y)v(s, y)ds, (3.11)

which is not an equation2 for v. While one can still proceed with this approach and
derive some sufficient conditions for solvability of (3.1), we temporarily abandon
(3.11) in favor of a different approach. We will re-examine (3.11) in Sect. 5.

Instead of looking at the norm of the solution, let us look at the covariance matrix
U (t, y) = Ev(t, y)v∗(t, y). With U = vec(U), the Cauchy-Schwartz inequality
implies

|U |2 =
N 2∑

i, j=1

∣∣Evi v̄ j
∣∣2 ≥

N 2∑
i=1

(
E|vi |2

)2 ≥ 1

N 2

(
E|v|2)2

,

that is,

E|v|2 ≤ N |U |. (3.12)

By the Itô formula,

U (t, y)= û0û∗
0+

t∫

0

(
A(y)U (s, y)+U (s, y)A∗(y)+B(y)U (s, y)B∗(y)

)
ds, (3.13)

2 � denotes the real part of a complex number
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which is a matrix ordinary differential equation for U . We use the Kronecker product
and equality (2.6) to re-write (3.13) as

U(t, y) = U0 +
t∫

0

MA,B(y)U(s, y)ds, (3.14)

where U0 = vec(̂u0û∗
0),

MA,B(y) = A(y)⊗ I + I ⊗ A(y)+ B(y)⊗ B(y), (3.15)

and I ∈ R
N×N is the identity matrix. In other words, Eq. (3.14) and Proposition 3.3

imply that the properties of the solution of the stochastic system (3.1) are determined
by the exponential matrix

exp
(
tMA,B(y)

)
,

with MA,B defined in (3.15). More precisely, if f = g = 0, then, according to (3.14),

U(t, y) = exp
(
tMA,B(y)

)
U0 (3.16)

and therefore (3.8) holds if and only if

‖ exp
(
tMA,B(y)

)‖ ≤ R(1 + |y|2)β, 0 ≤ t ≤ T, (3.17)

for some R > 0 and β ≥ 0.

Theorem 3.4 System (3.1) is well-posed if and only if (3.17) holds.

Proof Necessity follows from the analysis of the homogeneous case. To establish
sufficiency, we need an analogue of (3.16) for the inhomogeneous Eq. (3.7).

In a more compact differential form (c.f. (3.2)), (3.7) becomes

v̇ = Av + f̂ + (Bv + ĝ)ẇ, (3.18)

so that, with V = V (t, y) = vv∗, V = V (t, y) = vec(V),U = U(t, y) = EV , and ˙
denoting derivative with respect to time,

v̇∗ = v∗ A∗ + f̂
∗ + (v∗ B∗ + ĝ∗)ẇ,

V̇ = AV + V A∗ + f̂ v∗ + v f̂
∗ + (Bv + ĝ)(v∗ B∗ + ĝ∗)

+(BV + V B∗ + ĝv∗ + v̂g∗)ẇ,
V̇ = MA,B V + vec

(
f̂ v∗ + v f̂

∗ + ĝv∗B∗ + Bv ĝ∗ + ĝ ĝ∗) (3.19)

+ vec
(

BV + V B∗ + ĝv∗ + v ĝ∗)ẇ,
U̇ = MA,BU + vec

(
E

(
f̂ v∗ + v f̂

∗ + ĝv∗B∗ + Bv ĝ∗ + ĝ ĝ∗))
. (3.20)
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Using the notation

�(t, y) = exp
(
tMA,B(y)

)
, (3.21)

U(t, y) = �(t, y)vec
(̂
u0û∗

0

) +
t∫

0

�(t − s, y)vec
(
E( f̂ v∗ + v f̂

∗

+ ĝv∗ B∗ + Bv ĝ∗ + ĝ ĝ∗)
)

ds. (3.22)

For every (column) vectors h, z ∈ C
N ,

|vec(hz∗)|2 =
N∑

i,j=1

|hizj|2 = |h|2 |z|2.

Then

|U(t, y)| ≤ ‖�(t, y)‖ |̂u0|2 +
t∫

0

‖�(t − s, y)‖ E
(
2| f̂ | |v| + 2|̂g| |Bv| + |̂g|2)ds.

(3.23)

To proceed, re-write (3.17) as

‖�(t, y)‖ ≤ ρβ(y), ρβ(y) = R(1 + |y|2)β, R ≥ 1, (3.24)

use (3.12), and recall that 2|pq| ≤ ε|p|2 + ε−1|q|2, ε > 0. Then

2ρβ

T∫

0

E
(| f̂ | |v|)ds ≤ 2N 1/2ρβ

T∫

0

|U(s, y)|1/2 | f̂ |ds

≤ 2N 1/2ρβ sup
0<t<T

|U(s, y)|1/2
T∫

0

| f̂ |ds

≤ N 1/2ρβ ε sup
0<t<T

|U (s, y)| + N 1/2ρβ ε
−1

⎛
⎝

T∫

0

| f̂ |ds

⎞
⎠

2

≤ N 1/2ρβ ε sup
0<t<T

|U(s, y)| + N 1/2T ε−1

T∫

0

ρβ | f̂ (s, y)|2ds. (3.25)

Similarly, since (2.2) implies

|B(y)v| ≤ CB(1 + |y|2)b/2 |v|, b ≥ 0, CB > 0, (3.26)
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we find

2ρβ

T∫

0

E
(|̂g| |Bv|)ds ≤ N 1/2ρβ ε sup

0<t<T
|U(s, y)|

+C2
B N 1/2ρβ ε

−1T

T∫

0

ρb(y)|̂g(s, y)|2ds. (3.27)

Now take ε = (4N 1/2ρβ(y))−1. Inequality (3.23) becomes

sup
0<t<T

|U(t, y)| ≤ 2ρβ(y)|̂u0(y)|2 + 8N T R

T∫

0

ρ2β(y)| f̂ (t, y)|2dt

+8(C2
B N T R2 + 1)

T∫

0

ρ2β+b(y)|̂g(t, y)|2dt; (3.28)

recall that we assume u0, f , and g to be deterministic, but the above computations
show that this assumption, while making the presentation easier, does not affect the
final result.

The desired inequality (3.8) now follows from (3.28) and (3.12). In fact, keeping
in mind that (3.8) implies v = û, (3.28) also establishes continuous dependence of
the solution on the input:

E‖u‖2
r (t) ≤ C

⎛
⎝‖u0‖2

r+β +
t∫

0

‖ f (s)‖2
r+2βds +

t∫

0

‖g(s)‖2
r+2β+bds

⎞
⎠ , t ∈ [0, T ],

(3.29)

which is more informative than (3.5).
This completes the proof of Theorem 3.4. ��

To state condition (3.17) directly in terms of the matrix MA,B(y), we need some
constructions and facts from linear algebra.

Definition 3.5 The spectral abscissa α(A) of a square matrix A is the largest
real part of the eigenvalue of A:

α(A) = max{�λ : λ is an eigenvalue of A}

The following lemma connects the norm of the exponential of a matrix with the
spectral abscissa of the matrix.
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Lemma 3.6 If A ∈ C
n×n then

etα(A) ≤ ‖et A‖ ≤
(

n−1∑
k=1

(2‖A‖t)k

k!

)
etα(A). (3.30)

If α(A) = −δ < 0, then an alternative upper bound in (3.30) is

‖et A‖ ≤ C(n)

(‖A‖
δ

)n−1

e−tδ/2. (3.31)

If A has a complete system of eigenvectors, arranged in a matrix V , then there is a
yet another upper bound

‖et A‖ ≤ ‖V ‖ · ‖V −1‖ etα(A). (3.32)

Proof For (3.31) and the upper bound in (3.30), see [9, Proposisions 1.3.2 and 1.3.3].
Analysis of the proof shows that the size n of the matrix in both (3.30) and (3.31) can
be replaced with the degree of the minimal polynomial for A, which is always at most
n. For the lower bound in (3.31), see [21, Theorem 15.3]. Inequality (3.32) follows
from the equality

exp(t A) = V
[
diag

(
exp(tλi (A))

)]
V −1.

��
Proposition 3.7 Condition (3.17) is equivalent to

α
(MA,B(y)

) ≤ C0 ln(2 + |y|). (3.33)

Proof If (3.17) holds, then the first inequality in (3.30) with t = T implies (3.33) with

C0 = 2β

T
+ ln R

T ln 2
.

If (3.33) holds, then (2.2) and the second inequality in (3.30) imply

∥∥∥exp
(

tMA,B(y)
)∥∥∥ ≤ C1(T )(1 + |y|)C2 · (2 + |y|)C0T

and (3.17) follows with R = C1(T )2C0T and β = C2 + C0T . ��
The most natural way to satisfy (3.33) is by having

sup
y

α
(MA,B(y)

) ≤ C0. (3.34)

A condition similar to (3.33) appears in the analysis of deterministic hyperbolic sys-
tems [14, Theorem 2.7]. If all elements of A(y) and B(y) are polynomials in y, then
(3.33) and (3.34) are equivalent.

123



Stoch PDE: Anal Comp (2013) 1:687–711 699

4 Regularity of solution

Theorem 3.4 provides the most basic information about system (3.1): if the input is
in some Sobolev space, then the solution will be in some other Sobolev space, and
condition (3.33) is necessary and sufficient for this to happen. Further information
about the solution can be obtained with a more careful analysis of (3.19) and (3.20).

Our basic analysis of solvability of (3.1) assumes a fixed time interval [0, T ]. If we
allow T to change, then (3.17) becomes

∥∥∥exp
(

T MA,B(y)
)∥∥∥ ≤ R(T )(1 + |y|2)β(T ). (4.1)

In (4.1) and below, R = R(t) is a positive continuous function.
To begin, we define several classes of stochastic systems, depending on the behavior

of the function
∥∥∥exp

(
T MA,B(y)

)∥∥∥ for large T and |y|.

Definition 4.1 System (3.1) is called

(1) pseudo-hyperbolic of order (β, b) if (3.26) holds and (4.1) holds with β
independent of T ;

(2) neutrally stable pseudo-hyperbolic of order (β, b) if (4.1) holds
with β independent of T and with a continuous uniformly bounded function
R = R(T ):

sup
T ≥0

R(T ) ≤ R0; (4.2)

(3) stable pseudo-hyperbolic of order (β, b) if (4.1) holds with β indepen-
dent of T and with a continuous exponentially decaying function R = R(T ):

R(T ) ≤ R0e−φT , φ > 0; (4.3)

(4) parabolic of order 2p if there exists a positive number p such that

0 < lim|y|→∞
‖A(y)‖ + ‖B∗(y)B(y)‖

|y|2p
< ∞; (4.4)

α
(MA,B(y)

) ≤ −ε|y|2p + L , ε > 0, L ∈ R; (4.5)

(5) (q, β, b)-dissipative, if (3.26) holds and

∥∥exp
(
tMA,B(y)

)∥∥ ≤ R(t)(1 + |y|2)βe−tε|y|2q
, q > 0, β ≥ 0. (4.6)

A parabolic system of order 2p is (p, 0, p)-dissipative. Indeed, (4.4) implies (3.26)
with b = p. Also, if (4.4) and (4.5) hold, then

‖MA,B(y)‖ ≤ CM (1 + |y|2)p,
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and (3.31) with n = N 2 becomes

∥∥exp
(
tMA,B(y)

)∥∥ ≤ e(L+ε)t (CM/ε)
N 2−1C(N 2)e−t (ε/2)|y|2p

. (4.7)

The reason for the name “pseudo-hyperbolic” is that certain hyperbolic systems
satisfy a condition similar to (3.33), even though system (3.1) is usually not hyperbolic.
If the matrices A(y) and B(y) are real, then conditions for stability can be derived
using the results from [11, Sect. 6.10]: stability of the PDE (3.1) is equivalent to the
mean-square stability of the ODE (3.7) uniformly in y.

Conditions (4.4) and (4.5) can be considered a stochastic analogue of parabolicity
in the sense of Petrowski, as defined, for example, in [7, Sect. 9.1]. This connection
with the classical deterministic setting is the reason for using 2p rather than p in (4.4)
and (4.5), even though p no longer has to be an integer: Eq. (3.14) describes the square
of the solution rather than solution itself. For the same reason, in (4.6) we have 2q and
β rather than q and β/2.

Consider the equation

utt − autxx − c2uxx = σuxx ẇ, x ∈ R, (4.8)

first encountered in Introduction. The equivalent system formulation is

ut = v, vt = c2uxx + avxx + σuxx ẇ. (4.9)

We have d = 1, N = 2, and

A(y) =
(

0 1
−c2 y2 −ay2

)
, B(y) =

(
0 0
σ y2 0

)
, (4.10)

MA,B(y) =

⎛
⎜⎜⎜⎝

0 1 1 0

−c2 y2 −ay2 0 1

−c2 y2 0 −ay2 1

σ 2 y4 −c2 y2 −c2 y2 −2ay2

⎞
⎟⎟⎟⎠ . (4.11)

Analysis of the matrix MA,B(y) can be simplified by observing that there is an
eigenvector (0 1 − 1 0)	 with eigenvalue λ0 = −ay2. All other eigenvectors of the
matrix have the form (h1 h2 h2 h3)

	, and the vector (h1 h2 h3)
	 is an eigenvector of

the matrix

M̃A,B(y) =
⎛
⎜⎝

0 2 0

−c2 y2 −ay2 1

σ 2 y4 −2c2 y2 −2ay2

⎞
⎟⎠ , (4.12)

corresponding to the same eigenvalue. We will see in Sect. 5 that transition from (4.11)
to (4.12) is a particular case of the reduction possible for many second-order systems.

We conclude that the remaining three eigenvalues λ1, λ2, λ3 of MA,B(y) are the
roots of
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λ3 + 3ay2λ2 + (4c2 y2 + 2a2 y4)λ+ 2(2ac2 − σ 2)y4 = 0.

Straightforward perturbation analysis shows that, as |y| → ∞, these eigenvalues
satisfy

λ1 = −2ac2 − σ 2

a2 + o(1), λ2 = −ay2 − 2σ 2

a2 + o(1),

λ3 = −2ay2 + 2ac2 + σ 2

a2 + o(1).

Similar computations provide asymptotic of the eigenvectors, and we conclude that,
as long as a > 0,

∥∥∥exp
(

tMA,B

)∥∥∥ ≤ C(1 + |y|2)e−φt , φ = 2ac2 − σ 2

a2 .

Then system (4.9) is

• pseudo-hyperbolic of order (1,2) if a > 0;
• stable pseudo-hyperbolic of order (1,2) if 2ac2 > σ 2 (cf. [11, Sect. 6.10]);
• neutrally stable pseudo-hyperbolic of order (1,2) if 2ac2 = σ 2.

To illustrate the difference between parabolic and dissipative systems, consider

ut = uxx , vt = 2vxx + σ(−∇2)β/2uẇ, x ∈ R, β ≥ 0, σ > 0. (4.13)

We have d = 1, N = 2, and

A(y) =
(−y2 0

0 −2y2

)
, B(y) =

(
0 0
σ |y|β 0

)
, (4.14)

MA,B(y) =

⎛
⎜⎜⎜⎝

−2y2 0 0 0

0 −3y2 0 0

0 0 −3y2 0

σ 2|y|2β 0 0 −4y2

⎞
⎟⎟⎟⎠ . (4.15)

For Eq. (1.1) in the introduction, the matrix MA,B(y) corresponds to (4.15) with
β = 1. The matrix exp

(
tMA,B(y)

)
can be easily computed, and it follows that

system (4.13) is
• parabolic of order 2 if β ≤ 1;
• (1, β − 1, β)-dissipative if β > 1.

In this example, the coefficient σ has no influence on the type of the system. The
possibility to have β > 1 illustrates the importance of (4.4) as part of the stochastic
parabolicity condition; it also shows that, unlike a single equation, the order of the
operator B in a well-posed system can be arbitrarily larger than the order of A.

The following definition refines Definition 3.1.
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Definition 4.2 System (3.1) is called (�, p, q)-well posed, with �, p, q ∈ R, if, for
every r ∈ R, T > 0, and the input data satisfying

u0 ∈ Hr+�, f ∈ L2((0, T ), Hr+p), g ∈ L2((0, T ); Hr+q), (4.16)

there exists a unique solution u such that u(t) ∈ L2(�; Hr ), t ∈ (0, T ) and

E‖u(t)‖2
r ≤ C(t)

⎛
⎝‖u0‖2

r+� +
t∫

0

‖ f (s)‖2
r+pds +

t∫

0

‖g(s)‖2
r+qds

⎞
⎠ . (4.17)

If, in addition, supt>0 C(t) < ∞, then (3.1) is called (�, p, q)-stable.

The two theorems below connect Definitions 4.1 and 4.2.

Theorem 4.3 A pseudo-hyperbolic system of order (β, b) is (β, 2β, 2β + b)-well
posed; a stable pseudo-hyperbolic system of order (β, b) is (β, 2β, 2β + b)-stable.

Proof Well-posedness follows from (3.29).
To establish stability, we need a more delicate analysis of the right-hand-side of

(3.23). Accordingly, we write

‖�(t, y)‖ ≤ R(t)ρβ(y), ρβ(y) = (1 + |y|2)β (4.18)

(not to be confused with (3.24)), and then modify (3.25) to

ρβ

T∫

0

2R(T − s)E
(| f̂ | |v|)ds ≤ 2N 1/2ρβ

T∫

0

R(T − s)|U(s, y)|1/2 | f̂ |ds

≤ 2N 1/2ρβ sup
0<t<T

|U(s, y)|1/2
T∫

0

R(T − s)| f̂ |ds

≤ ρβN 1/2 ε sup
0<t<T

|U (s, y)| + N 1/2 ε−1

⎛
⎝

T∫

0

R(T − s)ρβ | f̂ |ds

⎞
⎠

2

≤ ρβN 1/2 ε sup
0<t<T

|U(s, y)| + N 1/2 ε−1

T∫

0

R(s)ds

T∫

0

ρβ R(T − s)| f̂ (s, y)|2ds.

(4.19)
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After a similar modification of (3.27), (3.28) becomes

sup
0<t<T

|U(t, y)| ≤ 2R0ρβ(y)|̂u0(y)|2

+2

⎛
⎝

T∫

0

R(t)dt

⎞
⎠

(
4N

T∫

0

ρ2β(y)R(T − s)| f̂ (t, y)|2dt (4.20)

+4(C2
B N + 1)

T∫

0

R(T − s)ρ2β+b(y)|̂g(t, y)|2dt

)
;

Condition (4.3) implies

∞∫

0

R(t)dt ≤ R0/φ,

and then the number C = C(t) in (3.29) satisfies C(t) ≤ 8N (CB +1)max(R0, R0/φ).
This completes the proof of Theorem 4.3. ��

Remark 4.4 If (3.1) is neutrally stable pseudo-hyperbolic of order (β, b) and if f =
g = 0, then (3.28) implies

E‖u(t)‖2
r ≤ 2R0‖u0‖2

r+β.

While a (q, β, b)-dissipative system is pseudo-hyperbolic of order (β, b), the addi-
tional exponentially decaying factor in (4.6) leads to additional regularity of the solu-
tion.

Theorem 4.5 A (q, β, b)-dissipative equation is (0, 2β− q, 2β+ b − q)-well posed.

Proof Combining (4.6) and (4.18) results in

‖�(t, y)‖ ≤ R(t)ρβ(y)e
−tε(1+|y|2)q .

Since

ρβ(y)

T∫

0

e−εt (1+|y|2)q dt ≤ C(T, ε, β, q)ρβ−q(y),

the result follows from a computation similar to (4.20). ��
Corollary 4.6 A parabolic system of order 2p is (0,−p, 0)-well posed.

Proof By (4.4) and (4.7), a parabolic system of order 2p is (p, 0, p)-dissipative. ��
A single stochastic parabolic equation of order 2p is certainly (0,−p, 0)-well

posed, but also has additional regularity properties. It is natural to expect this additional
regularity for parabolic systems as well.
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Theorem 4.7 If system (3.1) is parabolic of order 2p, then, for every r ∈ R, T > 0,
and the input data satisfying

u0 ∈ Hr , f ∈ L2((0, T ), Hr−p), g ∈ L2((0, T ); Hr ), (4.21)

the solution is an element of L2
(
�× (0, T ); Hr+p

) ⋂
L2

(
�; C((0, T ); Hr )

)
and

E sup
0<t<T

‖u(t)‖2
r +

T∫

0

E‖u(t)‖2
r+pdt

≤ C(T )

(
‖u0‖2

r +
T∫

0

‖ f (s)‖2
r−pds +

T∫

0

‖g(s)‖2
r ds

)
. (4.22)

Proof Since the operators in (3.1) have constant coefficients, it is enough to establish
(4.22) for r = 0. Continuity follows in the usual way by showing weak continuity and
continuity of the norm. It remains to show that (4.7) implies

T∫

0

(1 + |y|2)p|U(t, y)|dt

≤ C(T )

(
|̂u0(y)|2 +

T∫

0

(1 + |y|2)−p| f̂ (s, y)|2ds +
T∫

0

|̂g(s, y)|2ds

)
(4.23)

and

sup
0<t<T

∫

Rd

|U(t, y)|dy

≤ C(T )
∫

Rd

(
|̂u0(y)|2+

T∫

0

(1+|y|2)−p| f̂ (s, y)|2ds+
T∫

0

|̂g(s, y)|2ds

)
dy. (4.24)

While the arguments are identical to the Fourier-analytic proof of the similar results
for the one-dimensional heat equation, some explanations might be necessary because,
for the single equation, the proof is usually carried out directly in the physical space
using integration by parts.

With the notations from the proof of Theorem 4.3, and with a suitable function
R(t), (4.7) becomes

‖�(t, y)‖ ≤ R(t)e−(tε/2)(1+|y|2)p
. (4.25)

Define

ψ(y) = ε(1 + |y|2)p

2
.

123



Stoch PDE: Anal Comp (2013) 1:687–711 705

To establish (4.23), we re-write (4.20) [taking β = 0, b = p, and replacing R(t) with
Ce−tψ(y)] as

|U(t, y)| ≤ 2Ce−tψ(y) |̂u0|2 + 2C

ψ(y)

t∫

0

e−(t−s)ψ(y)| f̂ (s, y)|2dt

+2C(1 + C2
B)

ψ(y)

t∫

0

ψ(y)e−(t−s)ψ(y) |̂g(t, y)|2dt. (4.26)

Inequality (4.23) now follows after multiplying both sides of (4.26) by ψ(y), inte-
grating both sides in time from 0 to T and changing the order of integration on the
right-hand side. Note that

T∫

s

e−(t−s)ψ(y)dt = 1 − e−(T −s)ψ(y)

ψ(y)
≤ 1

ψ(y)
.

To establish (4.24), we go back to (3.19) and estimate the stochastic integral using
the Burkholder-Davis-Gundy inequality. The argument is identical to the derivation
of (3.28). An interested reader should be able to fill in the details.

This completes the proof of Theorem 4.7. ��
Remark 4.8 Analysis of the proof shows that a version of (4.22) can be derived for a
(q, β, b) dissipative equation:

E sup
0<t<T

‖u(t)‖2
r +

T∫

0

E‖u(t)‖2
r+qdt

≤ C(T )

(
‖u0‖2

r+β +
T∫

0

‖ f (s)‖2
r+2β−qds +

T∫

0

‖g(s)‖2
r+2β+b−qds

)
.

Again, an interested reader can fill in the details.

5 Further developments

To begin, let us discuss connections between the results of this paper and some of the
existing results.

A single equation. If N = 1, then (3.17) becomes

et (2A(y)−B2(y)) ≤ R(1 + |y|2)β, t ∈ [0, T ].

In particular, for partial differential operators A,B, the condition on the correspond-
ing symbols is
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2�(
A(y)

) − B2(y) ≤ C0;

equations satisfying this condition are called degenerate parabolic (although termi-
nology can vary) and indeed form the largest class of well-posed equations [19, Sect.
IV.2].

A system of deterministic equations. By taking B(y) = 0, we should be able to
recover the results for the deterministic equations, for example, the Petrowski parabol-
icity. In the deterministic case, the conditions do not involve the Kronecker product
and are stated in terms of α(A(y)). The reason is that, when B(y) = 0, the matrix

MA,0(y) = A(y)⊗ I + I ⊗ A(y),

known as the Kronecker sum of A and A, is much easier to study. In particular,
it is known [10, Theorem 4.4.5] that all eigenvalues of MA,0(y) are of the form
λi (A)+ λ j (A), i, j = 1, . . . , N , where λi (A) is an eigenvalue of A(y). In particular,
α(MA,0(y)) = 2α(A(y)). In the deterministic setting, the Petrowski parabolicity
condition is

α(A(y)) ≤ −ε|y|2p + L ,

which is equivalent to (4.5) with B = 0.
A sufficient condition for parabolicity. Let us return to (3.11). Define the matrix

NA,B(y) = A∗(y)+ A(y)+ B∗(y)B(y).

Since NA,B is Hermitian,

v∗(t, y)NA,B(y)v(t, y) ≤ α
(NA,B(y)

)
v∗(t, y)v(t, y).

If we assume that

α(NA,B(y)) ≤ −ε|y|2p + L , ε > 0, (5.1)

then (3.11) and the Gronwall inequality imply

v(t, y) ≤ |̂u0(y)|2 eLt e−tε|y|2p
, v(t, y) = v∗(t, y)v(t, y).

By Proposition 3.3, this is enough to establish well-posedness of (3.1), and in fact,
implies that the system is parabolic of order 2p. Indeed, for systems of second-order
stochastic parabolic equations (p = 1), condition (5.1) is a slightly weaker version of
the parabolicity condition from [12]. Our analysis shows that (5.1) is too restrictive
and can be replaced with a weaker condition (4.5) (to have parabolicity) or even with
(3.33) (to have well-posedness). In fact, it is known [18] that

2α(A) ≤ α(A + A∗)

for every matrix A; equality holds if AA∗ = A∗ A; for more on the subject, see [20].
In other words,
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α(MA,0(y)) ≤ α(NA,0(y)),

meaning that condition (5.1) is not optimal even in the deterministic case.
Next, let us take a closer look at our results.
Verification of condition (3.33). The location of eigenvalues of a matrix can be

analyzed using the Routh-Hurwitz criterion, a necessary and sufficient condition, in
terms of the coefficients of a real polynomial, for the roots of the polynomial to
have negative real parts. Although a classical result, its application to (3.33) requires
two modifications: (a) The region of interest is not exactly the left half-plane; this is
resolved with a suitable shift of the variable in the polynomial; (b) The coefficients of
the polynomial are complex rather than real; a suitable modification of the criterion
exists for this case as well [15, Theorem 40.1].

A complete description of the procedure is rather long, technical, and mostly irrel-
evant to the main subject of this paper. Below are the main ideas.

Suppose that P(λ) is the characteristic polynomial of the matrix MA,B ; it is a
polynomial of order N 2 with coefficients depending on the parameter y. Then (3.33)
means that there exists a C > 0 such that, for all y ∈ R

d, all roots of the equation

P(λ+ C ln(2 + |y|)) = 0

have negative real parts.
If the coefficients of P are real, then Routh-Hurwitz criterion requires analysis of

N 2 determinants of orders 1, 2, 3, . . . N 2, each constructed using the coefficients of
P . If the coefficients of P are complex, then the Routh-Hurwitz criterion requires
analysis of N 2 determinants of orders 2, 4, 6, . . . 2N 2, each constructed using the real
and imaginary parts of the coefficients of P . Presence of the parameter y makes the
complexity of the computations formidable indeed.

On the one hand, for a general polynomial, the Routh-Hurwitz criterion is, in a
certain sense, optimal [2, Theorem 1].

On the other hand, the special structure of the matrix MA,B does allow for certain
simplifications. The general result is as follows: the matrix MA,B has N (N + 1)/2
eigenvectors of the form vec(H) for a Hermitian matrix H , and (N − 1)N/2 eigen-
vectors of the form vec(S) for a skew-Hermitian matrix S [6, Sect. 3]. Let us see how
this result can indeed simplify the analysis of second-order systems with real matrices
A, B. Direct [straightforward and not especially insightful] computations show that,
for real 2-by-2 matrices A, B, the matrix MA,B has an eigenvector (0 1 −1 0)	
corresponding to the eigenvalue trace(A) + det(B). All other eigenvectors of MA,B

are of the form (h1 h2, h2 h3)
	, so that (h1 h2 h3)

	 is an eigenvector of the matrix

⎛
⎝ 2A11 + B2

11 2(A12 + B11 B12) B2
12

A21 + B11 B21 A11 + A22 + B11 B22 + B12 B21 B12 B22 + A12

B2
21 2(A21 + B21 B22) 2A22 + B2

22

⎞
⎠ .

Reduction of a 4-by-4 matrix (4.11) to a 3-by-3 matrix (4.12) during the analysis of
(4.8) provides an illustration of this idea.
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Optimality of the results. While condition (3.17) is necessary and sufficient for
solvability of the (3.1), a regularity result such as (3.29) is only as good as the estimate
(3.17). Lemma 3.6 provides some information, but the resulting bounds are not always
optimal. For example, for the (relatively simple) matrix (4.15) in the case β > 1, (3.30)
gives

∥∥∥etMA,B (y)
∥∥∥ ≤ C

(
(1 + |y|2)β−1)3

e−2y2
,

(3.32) gives

∥∥∥etMA,B (y)
∥∥∥ ≤ C

(
(1 + |y|2)β−1)2

e−2y2
,

and a direct computation gives

∥∥∥etMA,B (y)
∥∥∥ ≤ C

(
(1 + |y|2)β−1)e−2y2

.

One reason parabolic systems are of special interest is that (4.7) all but eliminates
the need to bound the exponential matrix, leading to essentially optimal regularity
result (4.22).

In general, getting optimal bounds on the exponential of a non-normal matrix is a
difficult problem [16,17,21, etc.]. For a normal matrix A (that is, A∗ A = AA∗), the
corresponding bound is very simple:

‖et A‖ = etα(A);

see [21, Theorem 15.3]. As a result, majority of the current research on the subject is
about efficient computation of et A for normal (in fact, Hermitian) matrices A [3,22,
etc.] In this connection, note that if matrices A and B are Hermitian, then so is MA,B .

A related question is possibility of considering truly vector Sobolev space, with an
option of having different regularity for different components of the vector function.
At this point, the answer is not clear, but Eq. (4.13) provides a motivation: if β �= 1,
then it is possible to take u0 ∈ Hr+β−1 and v0 ∈ Hr so that

u ∈ C((0, T ); Hr+β−1)
⋂

L2((0, T ); Hr+β),

and then Bu ∈ L2((0, T ); Hr ), so that

v ∈ L2(�; C((0, T ); Hr )
⋂

L2((0, T ); Hr+1).

According to Remark 4.8, if u0, v0 ∈ Hr+1, then

u, v ∈ L2(�; C((0, T ); Hr )
⋂

L2((0, T ); Hr+1),

which is, technically, neither weaker nor stronger, but just different.
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Generality of the results. System (3.1) was intentionally chosen the simplest pos-
sible, to make sure that the key ideas are not lost in the computations. Analysis of the
proof of Theorem 3.4 suggests immediate generalizations of (3.29) in the following
directions:

(1) Number of Brownian motions. The term
∑

k≥1 Bkudwk(t) can replace the
term Budw(t) as long as

∑
k ‖Bk(y)‖2 ≤ CB(1 + |y|2)b/2. The matrix MA,B

becomes

MA,B(y) = A(y)⊗ I + A(y)⊗ I +
∑

k

Bk(y)⊗ Bk(y);

the infinite sum of Kronecker products is well-defined, because ‖Bk(y) ⊗
Bk(y)‖ ≤ C(N )‖Bk(y)‖2.

(2) Input data. There are no significant difficulties extending the results to

u0 ∈ L2(�,F0; Hr+β), f ∈ L2(�× (0, T ),Ft ; Hr+2β),

gk ∈ L2(�× (0, T ),Ft ; Hr+2β+b),
∑

k

E

T∫

0

‖gk(t)‖2
r+2β+bdt < ∞.

Some technical issues arise in connection with (3.9), which can now contain an
anticipating stochastic integral, and a different approach (e.g using rough path
theory) might be necessary to deal with exceptional sets during the construction
of v.

Further generalizations are more technically demanding:

(1) Time- dependent operators A and Bk . Now there is no matrix exponential to
consider; instead, we need to study the fundamental solution of the corresponding
ODE with matrix MA,B(t, y). Similar to the deterministic setting [7, Sect. 9.2],
this difficulty can be resolved by freezing the time variable in the operators.

(2) Space- dependent operators. The symbol of the operator becomes a function
of t, x, y, and the Fourier transform method no longer works. The analysis should
still be possible with the help of standard PDE techniques such as localization
(freezing the coefficients and partition of unity) and the method of continuity.

(3) Random predictable operators. This generalization presents the most chal-
lenge because now there seems to be no way around anticipating stochastic inte-
grals. While anticipating integration can be avoided for scalar parabolic equa-
tions [13] (and then, under a more restrictive condition (5.1), for systems [12]),
the method does not seem to work under a more general condition (3.33). The
approach based on anticipating stochastic calculus is possible for one equation
[1] and could probably be extended to systems, at least for second-order in space
under the parabolicity condition

sup
ω,t,x

α
(MA,B(ω, t, x; y)

) ≤ −ε|y|2 + L .
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6 Conclusions

In the analysis of stochastic evolution systems, the key object is the covariance matrix
of the solution rather than the norm of the solution. When written in a matrix-vector
form, the matrix differential equation satisfied by the covariance leads to a linear
system of ordinary differential equations; the matrix in the equation is a sum of certain
Kronecker products of the matrices from the original system. In other words, instead
of the “obvious” characteristic matrix

NA,B = A + A∗ + B∗ B,

the “correct” characteristic matrix of the system is

MA,B = A ⊗ I + I ⊗ A + B ⊗ B.

While dimension of the matrix increases from N -by-N to N 2-by-N 2, and integra-
tion by parts no longer works, the pay-off is a sharp condition for well-posedness
of the system. For parabolic systems, the condition is an extension of the Petrowski
parabolicity.
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