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Received: 21 December 2012 / Accepted: 18 September 2013 / Published online: 17 October 2013
© Springer Science+Business Media New York 2013

Abstract The cubature on Wiener space method, a high-order weak approxima-
tion scheme, is established for SPDEs in the case of unbounded characteristics and
unbounded test functions. We first describe a recently introduced flexible functional
analytic framework, so called weighted spaces, where Feller-like properties hold. A
refined analysis of vector fields on weighted spaces then yields optimal convergence
rates of cubature methods for stochastic partial differential equations of Da Prato–
Zabczyk type. The ubiquitous stability for the local approximation operator within
the functional analytic setting is proved for SPDEs, however, in the infinite dimen-
sional case we need a newly introduced technical assumption on weak symmetry of
the cubature formula. Computational results for a cubature discretization of a spatially
extended stochastic FitzHugh–Nagumo model, an SPDE model from mathematical
biology, are shown, illustrating the applicability of our theory.
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1 Introduction

Cubature on Wiener space, a realization of the abstract KLV high order method after
Kusuoka [21] and Lyons and Victoir [24], is a weak approximation scheme for sto-
chastic differential equations. Significant advantages in comparison to other weak
approximation schemes such as Taylor methods, see Kloeden and Platen [20], are that
it respects the geometry of the problem, and that at least theoretically, it is possible to
reach arbitrarily high rates of convergence without requiring the calculation of higher
derivatives, see Lyons and Victoir [24, Theorem 2.4, Prop. 2.5]. The concrete con-
struction of such cubature paths of high order is still quite difficult, see Gyurkó and
Lyons [15] for cubature formulas (on the Lie algebra level) up to degree 11 for a single
driving Brownian motion. Cubature schemes provide a time-discretization approxi-
mating the unknown expected value of a functional of the solution process of the SPDE
by an expectation of an iteratively constructed function on a high-dimensional discrete
product space. Often a direct evaluation of the functional on the discrete probability
space is too expensive, therefore, several methods to speed-up the evaluation of cuba-
ture schemes such as recombination, see Litterer and Lyons [23] and Schmeiser et al.
[31], or tree-based branching, see Crisan and Lyons [5], have emerged. Alternatively,
the functionals can be evaluated using Monte Carlo or Quasi Monte Carlo algorithms
on the discrete product probability space.

The combination with Quasi Monte Carlo integration algorithms makes high-order
weak approximation schemes a particularly interesting alternative to standard multi-
level Monte Carlo schemes. Indeed, multi-level Monte Carlo schemes lead to complex-
ity estimates of order O(ε−2), i.e., a number of operations of order ε−2 is necessary
to reach accuracy ε, see Giles [13] and Giles and Szpruch [14]. In contrast, QMC
evaluations of weak, high-order approximation schemes of order k lead to complexity
estimates of order (almost) O(ε−1−1/k), as long as the QMC integration yields optimal
convergence (this in turn also depends on the dimension of integration space, which is
moderate for high order methods). We therefore believe that it is worth analysing the
functional analytic framework of cubature schemes in depth, i.e., we aim to construct
a pool of Banach spaces of test functions and Banach spaces of characteristics flexible
enough to embed relevant problems from practice.

In this work, we shall relax the regularity assumptions of the cubature method,
similarly as was done in Dörsek [9] and Dörsek and Teichmann [11,12] for the splitting
approach of Ninomiya and Victoir [26]. Consider a stochastic differential equation on
R

n in its Stratonovich form,

dX x
t =

d∑

j=0

Vj (X
x
t ) ◦ dB j

t . (1.1)

In this article (B j
t )t≥0, for j = 1, . . . , d, always denotes the j-th component of a

d-dimensional Brownian motion, running time is encoded for convenience by the
zeroth component B0

t = t , for t ≥ 0, and usually Vj : R
n → R

n , for j = 0, . . . , d
denote vector fields. A deterministic initial value is supposed, i.e. X x

0 = x , for x ∈
R

n . All initial work was based on the fundamental assumption that the vector fields
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Vj : R
n → R

n are bounded and C∞-bounded. This is also a typical assumption in other
approximation methods for stochastic differential equations, e.g., in Talay and Tubaro
[32]. Some success in relaxing these assumptions, which are rarely satisfied in practical
problems, was achieved for approximations of the splitting type in Alfonsi [1] and
Tanaka and Kohatsu-Higa [33]. While the first one focuses on the CIR process and the
second one on Lévy driving noise, it was recognised in both works that polynomially
bounded test functions are the correct context for problems with Lipschitz continuous
vector fields.

Another approach was taken in Dörsek and Teichmann [11]. There, splitting
schemes were analyzed on general weighted spaces, allowing in particular the approx-
imation of Da Prato–Zabczyk stochastic partial differential equations where the drift
part, the infinitesimal generator of a strongly continuous semigroup on the infinite
dimensional state space, is not even continuous.

All these approaches profited from the special structure of splitting schemes, as
there the stability or power boundedness of the discrete approximation operator can
be shown by investigating every part separately. Instead, we follow a similar idea as
was applied to the stochastic Navier–Stokes equations in Dörsek [10]. We extend the
results of Bayer and Teichmann [2], where strong conditions are imposed on the vector
fields, to more general coefficients and test functions. This allows us to obtain methods
of order higher than 2 without having to resort to extrapolation, see Blanes and Casas
[3] and Oshima et al. [27]. The weighted spaces developed originally in Röckner and
Sobol [29] and used for the numerical analysis of weak approximation methods in
Dörsek and Teichmann [11] are a suitable tool for our needs, and we provide a refined
analysis of the vector fields defined on these spaces. This allows us to do a Taylor
expansion of the cubature approximations to compute the local approximation order.

We use two different approaches for proving stability. In the finite dimensional
case with sufficiently smooth vector fields, the Gronwall inequality yields the claim
in a straightforward manner under a reasonable assumption of compatibility between
the vector fields and the weight function. In the infinite dimensional case, we apply
the method of the moving frame from Teichmann [35]. This leads to time depen-
dent vector fields that are nonsmooth in the time component. As this makes a Taylor
expansion impossible, we introduce a weak symmetry condition on cubature paths, a
technical assumption usually satisfied by cubature schemes. This allows us to obtain
stability not only for Da Prato–Zabczyk equations with pseudocontractive genera-
tor, but also for stochastic differential equations on infinite dimensional state spaces
where the vector fields depend roughly, i.e., continuously, but not differentiably,
on time.

As a numerical example, we consider a cubature discretization of degree m = 5
corresponding to weak convergence order 2 of a stochastic FitzHugh–Nagumo model,
extending the stochastic model from Tang et al. [34] spatially using methods from
Tuckwell [36]. We formulate the necessary functional analytic setting, and show
results of the numerical simulation of two quantities of interest that correspond to
purely noise induced state changes. Our computations establish the effectivity of the
proposed algorithm. It is worth pointing out that the cubature discretization of sto-
chastic FitzHugh–Nagumo is locally deterministic, i.e., we can perform local random
walk like studies within this model setting that approximate the original model of high
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order 2. This might be very useful in applications. To the best of our knowledge such
high order random walk approximations of FitzHugh–Nagumo have been unknown.

There are many successful discretisation schemes for stochastic partial differential
equations that can be applied to the stochastic FitzHugh–Nagumo model and sim-
ilar equations. Jentzen and Kloeden [17] give an overview of strong and pathwise
schemes. Weak approximation schemes are more difficult. Recently, it was proved in
Debussche [8] that an implicit Euler scheme converges with weak rate almost 1/2 for
equations driven by space–time white noise, doubling the corresponding strong rate of
convergence; see also the references in Debussche [8] for more background on weak
approximation schemes for stochastic partial differential equations with space–time
white noise. In contrast, we restrict ourselves to finite-dimensional driving noise, but
obtain the same optimal high order weak convergence as for finite-dimensional state
spaces. Additionally we obtain by the cubature method itself deterministic construc-
tion recipes of typical trajectories of the model.

The paper is organised as follows. Sections 2 and 3 contain an exposition of the
theory of Bψ spaces, originally introduced in Röckner and Sobol [29], and explain how
directional derivatives can be analysed in this setting, extending results from Dörsek
and Teichmann [11,12]. In Sect. 4, we prove stability of cubature schemes in Bψ
spaces under various assumptions on the vector fields, using a technical assumption
of weak symmetry of the underlying cubature paths in the infinite-dimensional case.
Section 5 is devoted to the convergence proofs of cubature schemes. Finally, in Sect. 6,
we present numerical results for a spatially extended stochastic FitzHugh–Nagumo
model.

2 Bψ spaces

We recall the following definition of spaces of functions with controlled growth, see
also Röckner and Sobol [29] for their use in the construction of the solution of mar-
tingale problems in infinite dimension, and Dörsek [9,10] and Dörsek and Teichmann
[11,12] for their application to the analysis of splitting schemes for stochastic partial
differential equations.

Definition 2.1 Let (X, ‖·‖X ) be the dual space of a separable Banach space, and
ϕ : X → (0,∞) be bounded from below by some δ > 0. For a Banach space (Y, ‖·‖Y ),
we set

Bϕ(X; Y ) :=
{

f : X → Y : sup
x∈X

ϕ(x)−1‖ f (x)‖Y < ∞
}
, (2.1)

endowed with the ϕ-norm

‖ f ‖ϕ := sup
x∈X

ϕ(x)−1‖ f (x)‖Y . (2.2)
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Let k ≥ 0. If ϕ = (ϕ j ) j=0,...,k, ϕ j : X → (0,∞) bounded from below by some
δ > 0, j = 0, . . . , k, we set

Bϕk (X; Y ) :=
{

f ∈ Ck(X; Y ) : sup
x∈X

ϕ j (x)
−1‖D j f (x)‖L j (X;Y ) < ∞

for j = 0, . . . , k

}
. (2.3)

Bϕk (X; Y ) is endowed with the norm

‖ f ‖ϕ,k := ‖ f ‖ϕ0 +
k∑

j=1

| f |ϕ j , j , (2.4)

where the seminorms |·|ϕ j , j are given by

| f |ϕ j , j := sup
x∈X

ϕ j (x)
−1‖D j f (x)‖L j (X;Y ). (2.5)

Here, L j (X; Y ) denotes the space of bounded multilinear forms a : X j → Y , and is
endowed with the norm

‖a‖L j (X;Y ) := sup
‖hi ‖≤1,i=1,..., j

‖a(h1, . . . , h j )‖Y . (2.6)

For simplicity, we set L0(X; Y ) := Y ; we remark that L1(X; Y ) is the space of
bounded linear operators X → Y , and in this case, the above norm is the usual
operator norm. If Y = R, we define Bϕ(X) := Bϕ(X; R) and Bϕk (X) := Bϕk (X; R).

Definition 2.2 Let (X, ‖·‖X )be the dual space of a separable Banach space. A function
ϕ is called admissible weight function if and only if ϕ : X → (0,∞) is such that
K R := {x ∈ X : ϕ(x) ≤ R} is weak-∗ compact for all R > 0 and bounded from
below by some δ > 0.

It is called D-admissible weight function if and only if it is an admissible weight
function and for every x ∈ X , there exists some R > 0 such that Bε(x) ⊂ K R for
some ε > 0, where Bε(x) := {y ∈ X : ‖y − x‖X ≤ ε} is the closed ε-ball around x .

It is called C-admissible weight function if and only if ϕ is bounded from below by
some δ > 0, weak-∗ lower semicontinuous, and if for every x ∈ X , there exists some
ε > 0 such that ϕ is bounded on Bε(x).

Remark 2.3 We do not require C-admissible weight functions to be admissible. How-
ever, ϕ is D-admissible if and only if it is admissible and C-admissible.

Theorem 2.4 Let k ∈ N, and assume thatϕ = (ϕ j ) j=0,...,k is a vector of C-admissible
weight functions. Then, Bϕk (X; Y ) is a Banach space.
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Proof Let ( fn)n∈N be a Cauchy sequence in this space. It is clear that fn admits a
pointwise limit f. Moreover, it follows that for every x ∈ X and every closed ε-ball
Bε(x), fn |Bε(x) are Cauchy sequences in Ck(Bε(x); Y ). But this entails that f |Bε(x) ∈
Ck(Bε(x); Y ). As differentiability is a local property, we see that f ∈ Ck(X; Y ). The
necessary estimates for f and its derivatives are now easy to see. ��
Definition 2.5 Let (X, ‖·‖X ) be the dual space of a separable Banach space, its predual
being W, X = W ∗, and (Y, ‖·‖Y ) a Banach space. The space of bounded smooth
cylindrical functions is defined by

A(X,Y ) := {
f : X → Y : f = g(〈·, w1〉, . . . , 〈·, wn〉)

for some g ∈ C∞
b (R

n; Y ),

wi ∈ W, i = 1, . . . , n, n ∈ N
}
. (2.7)

Here, 〈·, ·〉 denotes the dual pairing of X and W and C∞
b (R

n; Y ) the space of infinitely
often differentiable functions from Y to R that are bounded with all their derivatives
bounded. For Y = R, we set A(X) := A(X,R).
Definition 2.6 Let (X, ‖·‖X ) be the dual space of a separable Banach space and
(Y, ‖·‖Y ) be a Banach space. Let ψ be an admissible weight function on X .

The space Bψ(X; Y ) is the closure of A(X,Y ) in Bψ(X; Y ). For Y = R, we set
Bψ(X) := Bψ(X; R).

Remark 2.7 [11, Theorem 4.2] shows that our definition of Bψ(X) here agrees with
our earlier definition from Dörsek and Teichmann [11, Definition 2.2]. Due to Dörsek
and Teichmann [11, Theorem 2.7], the functions in Bψ(X) are characterized by the
property that both f |K R ∈ C((K R)w∗) and

lim
R→∞ sup

x∈X\K R

ψ(x)−1| f (x)| = 0. (2.8)

Definition 2.8 Let (X, ‖·‖X ) be the dual space of a separable Banach space and
(Y, ‖·‖Y ) be a Banach space. Letψ = (ψ j ) j=0,...,k withψ j D-admissible weight func-

tions for j = 0, . . . , k. The space Bψk (X; Y ) is the closure of A(X, Z) in Bψk (X; Y ).

For Y = R, we set Bψk (X) := Bψk (X; R). In particular, by Theorem 2.4, it follows

that Bψk (X) is a separable Banach space.

One essential property of Bψ(X) spaces is that the dual space of this separable
Banach space is a well understood space of Radon measures, such as in the case of
C0(X) for locally compact spaces X. The following result follows from the theory of
Röckner and Sobol [29] (see also Dörsek and Teichmann [11] and [12]).

Proposition 2.9 (Riesz representation for Bψ(X)) Let � : Bψ(X) → R be a contin-
uous linear functional. Then, there exists a finite signed Radon measure μ on X such
that

�( f ) =
∫

X

f (x)μ(dx) for all f ∈ Bψ(X). (2.9)
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Furthermore,
∫

X

ψ(x)|μ|(dx) = ‖�‖L(Bψ(X),R), (2.10)

where |μ| denotes the total variation measure of μ.

As every such measure defines a continuous linear functional on Bψ(X), this com-
pletely characterizes the dual space of Bψ(X). This allows for the introduction of the
generalized Feller property, such that we can speak about strongly continuous semi-
groups on spaces of functions with growth controlled by ψ , in particular functions
which are in general unbounded.

Let (Pt )t≥0 be a family of bounded linear operators Pt : Bψ(X) → Bψ(X) with
the following properties:

(F1) P0 = I , the identity on Bψ(X),
(F2) Pt+s = Pt Ps for all t, s ≥ 0,
(F3) for all f ∈ Bψ(X) and x ∈ X, limt→0+ Pt f (x) = f (x),
(F4) there exist a constant C ∈ R and ε > 0 such that for all t ∈ [0, ε], ‖Pt‖L(Bψ(X)) ≤

C ,
(F5) Pt is positive for all t ≥ 0, that is, for f ∈ Bψ(X), f ≥ 0, we have Pt f ≥ 0.

Alluding to Kallenberg [19, Chapter 17], such a family of operators will be called
a generalized Feller semigroup. This is justified by the following result, which is a
direct consequence of Lebesgue’s dominated convergence theorem with respect to
the measure existing due to Riesz representation. Its proof is given in Dörsek and
Teichmann [11, Theorem 3.2] and [12, Corollary 4].

Proposition 2.10 Let (Pt )t≥0 satisfy F1 to F4. Then, (Pt )t≥0 is strongly continuous
on Bψ(X), that is,

lim
t→0+‖Pt f − f ‖ψ = 0 for all f ∈ Bψ(X). (2.11)

3 Vector fields and directional derivatives

When we ask for convergence rates we have to specify large enough sets of test func-
tions within the basic Bψ(X)-spaces. For this purpose we need to analyze directional
derivatives and their functional analytic behavior. This can be done within the setting
of Bψk (X; Y ) spaces.

Let (X, ‖·‖X ) be the dual space of a separable Banach space. Given (Z , ‖·‖Z )

the dual space of another separable Banach space that is embedded in X , we derive

conditions on V : Z → X such that the directional derivative g ∈ Bψ̂k−1(Z), where

g(z) := D f (z)(V (z)) for z ∈ Z (3.1)

and f ∈ Bψk (X). Here, ψ = (ψ j ) j=0,...,k and ψ̂ = (ψ̂ j ) j=0,...,k−1 are vectors of
D-admissible weight functions on X and Z, respectively.
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We shall assume that V ∈ Bϕk−1(Z; X) for some vector ϕ = (ϕ j ) j=0,...,k−1 of
C-admissible weight functions on Z. Then, V is k − 1 times continuously Fréchet
differentiable. As f ∈ Ck(X), the Leibniz rule yields

D j g(z)(h1, . . . , h j )=
j∑

i=0

1

i !( j − i)!
∑

σ∈S j

g j,i (z, hσ1 , . . . , hσ j ), j =0,. . ., k−1.

(3.2)

Here, S j denotes the symmetric group with j elements, and

g j,i (z, h1, . . . , h j ) := Di+1 f (z)(h1, . . . , hi , D j−i V (z)(hi+1, . . . , h j )). (3.3)

In particular, if we assume that for some constant C > 0,

ψ̂ j (z) ≥ C−1
j∑

i=0

(
j

i

)
ψi+1(z)ϕ j−i (z) for j = 0, . . . , k − 1, (3.4)

it follows that g ∈ Bψ̂k−1(Z).
It is not so straightforward to prove that g can also be approximated by functions

in A(X), which would imply g ∈ Bψ̂k−1(Z). In Dörsek [9], a general theory for
multiplication operators on Bψ spaces is derived. Here, we take a different route,
focusing on the problem at hand. The following definition is essential.

Definition 3.1 Given a Banach space (X, ‖·‖X ) and the dual space (Z , ‖·‖Z ) of a
separable Banach space. Let V ∈ Bϕk (Z; X) with ϕ a given vector of C-admissible
weight functions on Z. We say that V ∈ Cϕk (Z; X) if and only if for every y ∈ X∗,
there exists a constant CV,y > 0 such that for each R > 0, there exists a sequence
(vn)n∈N ⊂ A(Z) (depending on R > 0 and y ∈ X∗) with supn∈N‖vn‖ϕ,k ≤ CV,y

such that, with v := y ◦ V ,

lim
n→∞‖v − vn‖Ck

(BR(0))
= 0. (3.5)

Here, BR(0) is the closed ball of radius R in Z, and

‖g‖Ck
(BR(0))

:=
k∑

j=0

sup
z∈BR(0)

‖D j g(z)‖L j (Z) . (3.6)

Remark 3.2 It is clear that vector fields such as those from Dörsek and Teichmann
[12, Sect. 3.1.2] satisfy the above assumption. More generally, if Z is a Hilbert space
and is compactly embedded into a larger Hilbert space Y such that y ◦ V can be
extended to a smooth mapping Y → R lying in Ck

b(Y ; R) for all y ∈ X∗, then the
above assumption is satisfied, i.e., V ∈ Cϕk (Z; X) for every vector ϕ of C-admissible
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weight functions on Z. Indeed, the extension of y ◦V and its derivatives are continuous
on Y, whence uniformly continuous on the compact set BR(0). Let us fix a sequence of
increasing finite-dimensional, orthogonal projections πn → idY converging strongly
to the identity: composing the extension of y◦V withπn yields a pointwise converging,
equicontinous sequence of cylindrical function on BR(0), which is—up to a smoothing
argument—the desired assertion.

Comparable arguments are also used in Dörsek and Teichmann [12, Theorem 5]
and Dörsek [9, Theorem 2.39]. In particular, this implies that Nemytskii operators are
included in our setup if Z is a Sobolev space of sufficiently smooth functions, see also
Dörsek [9, Example 2.48].

This definition should also be compared to the form of the multiplicative noise
suggested in Debussche [8, Remark 2.3]. It is similar in spirit to the definition of
Cϕk (H ; H), as there, A is assumed to be a negative self-adjoint operator with a compact
inverse. Hence, if we consider a single component of the noise, x �→ σ̃ ((−A)−1/4x),
with σ̃ : H → H a C3-function with derivatives bounded up to order 3, it satisfies our
assumptions given above and hence lies in Cϕ3 (H) with ϕ0(x) := (1 + ‖x‖2

H )
1/2 and

ϕ j (x) := 1, j ≥ 1.

Theorem 3.3 Fix k ≥ 1. Let ψ = (ψi )i=0,...,k be a vector of D-admissible
weight functions on X, and ψ̂ = (ψ̂ j ) j=0,...,k−1 a vector of D-admissible and
ϕ = (ϕ j ) j=0,...,k−1 a vector of C-admissible weight functions on Z. Suppose (3.4).

Then, the Lie derivative L : Cϕk−1(Z; X)× Bψk (X) → Bψ̂k−1(Z) defined through

L(V, f )(z) := LV f (z) := D f (z)(V (z)) (3.7)

is a bilinear, bounded operator.

Remark 3.4 Clearly, V ∈ Cϕk (Z; X) is necessary if LV f ∈ Bψ̂k (Z) is supposed to hold

for f ∈ Bψk+1(X) for a sufficiently large class of weight functions ψ . Indeed, choose
ψ0(x) := ρ(‖x‖X ) with some increasing, left continuous and superlinear function ρ,
and ψ j arbitrary D-admissible weight functions on X. Then, f := y ∈ Bψk+1(X) for

all y ∈ X∗. Hence, LV f (z) = y(V (z)), and y ◦ V ∈ Bψ̂k (Z) implies V ∈ Cϕk (Z; X).

Proof The claimed boundedness of L was remarked above, and follows straight away
from (3.4).

Hence, we only need to prove that LV f ∈ Bψ̂k−1(Z) for given V ∈ Cϕk−1(Z; X) and
f = g(〈·, w1〉, . . . , 〈·, wn〉) ∈ A(X); the result then follows from a density argument.
Fix ε > 0. We shall construct gε ∈ A(Z) such that ‖LV f − gε‖ψ̂,k < Cε with some
constant C > 0 independent of ε.

Choose a dual set of vectors (ζi )i=1,...,n ⊂ Z of (wi )i=1,...,n , i.e., 〈ζi , w j 〉 = δi j .
Let Zn := span {ζi : i = 1, . . . , n}, and define π : X → Zn by πx := ∑n

i=1〈x, wi 〉ζi .
Then, f ◦ π = f , and

LV f (z) =
n∑

i=1

D f (z)(ζi )〈V (z), wi 〉. (3.8)
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Clearly, wi ∈ X∗, and thus by Definition 3.1, there exists CV := maxi=1,...,n CV,wi>0
such that for each R > 0, we can find vi

R,ε ∈ A(Z) with ‖vi
R,ε‖ϕ,k−1 ≤ CV and

‖wi ◦ V − vi
R,ε‖Ck−1

(BR(0))
< ε, (3.9)

where BR(0) denotes the closed ball in Z. Setting gε := ∑n
i=1 D f (·)(ζi )v

i
R,ε ∈ A(Z),

it follows that with a constant C f > 0 independent of R > 0,

‖LV f − gε‖Ck−1
(BR(0))

< C f ε. (3.10)

Choose Rε > 0 large enough such thatψ j (z) > ε−1 for ‖z‖Z > Rε. This is possible as
the embedding Z → X is continuous. Hence, as f and all its derivatives are bounded,

ψ̂ j (z)
−1‖D jLV f (z)‖L j (Z) < C f ε for ‖z‖Z > Rε, j = 0, . . . , k − 1, (3.11)

where C f is independent of ε. Furthermore,

ψ̂ j (z)
−1‖D j gε(z)‖L j (Z) ≤ C f,V ε for ‖z‖Z > Rε, j = 0, . . . , k − 1, (3.12)

where C f,V > 0 depends on f and V, but not on ε or Rε. Plugging the results together
proves the claim. ��

Let us consider two special cases.

Corollary 3.5 Let (H, ‖·‖H ) be a Hilbert space, (Z , ‖·‖Z ) a continuously embedded
Hilbert space. Define the D-admissible weight functions ψ j (x) := cosh(‖x‖H ) on H
and ψ̂ j (x) := cosh(‖x‖Z ) on Z and the C-admissible weight functions ϕ j (x) := 1 on
Z , j ≥ 0. Then, for every k ≥ 0, the mapping

L : Cϕk−1(Z; X)× Bψk (X) → Bψ̂k−1(Z), (V, f ) �→ LV f, (3.13)

given by LV f (x) := D f (x)V (x), is bounded and bilinear.

Remark 3.6 If Z = H , this has the simple interpretation that bounded vector fields
map cosh-weighted spaces into themselves.

Proof This is straightforward from Theorem 3.3, as the ψ̂ j defined there is only a
multiple of ψ̂ j in this case. ��

The following special case is very useful in the analysis of stochastic partial differ-
ential equations of Da Prato–Zabczyk type.

Corollary 3.7 Let (H, ‖·‖H ) be a Hilbert space, (Z , ‖·‖Z ) a continuously embedded
Hilbert space. Fix n ∈ N. Define the D-admissible weight functions ψ j (x) := (1 +
‖x‖2

H )
(n− j)/2 on H and ψ̂ j (x) := (1+‖x‖2

Z )
(n− j)/2 on Z , j = 0, . . . , n −1, and the
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C-admissible weight functions ϕ0(x) := (1 + ‖x‖2
Z )

1/2 and ϕ j (x) := 1 on Z , j ∈ N.
Then, for k ≤ n − 1, the mapping

L : Cϕk−1(Z; X)× Bψk (X) → Bψ̂k−1(Z), (V, f ) �→ LV f, (3.14)

given by LV f (x) := D f (x)V (x), is bounded and bilinear.

Remark 3.8 This means that linearly bounded vector fields Z → X with bounded
derivatives (hence also Lipschitz continuous) map polynomially bounded functions
to polynomially bounded functions, with the same weights. In particular, if the lin-
ear operator A : dom A ⊂ H → H is densely defined and closed, then VA ∈
Cϕk (dom A; H) for all k ≥ 0, where ϕ is defined as in Corollary 3.7, dom A is endowed
with the operator norm, and VA(x) := Ax for x ∈ dom A.

Proof Calculating

(1 + ‖x‖2
Z )
(n−1)/2(1 + ‖x‖2

Z )
1/2 +

j∑

i=0

(
j

i

)
(1 + ‖x‖2

Z )
(n−i−1)/2

≤ Cψ̂ j (x), (3.15)

the claim again follows from an application of Theorem 3.3. ��

4 Stability of cubature schemes

We shall now prove stability of cubature on Wiener space in the setting of weighted
spaces. Consider from now on the following setup. Let on [0,1] be given Lipschitz-
continuous paths (ω(1)i )i=1,...,N , ω

(1)
i (s) = (ω

(1), j
i (s)) j=0,...,d , ω

(1),0
i (s) = s starting

at 0, and weights (λi )i=1,...,N of a cubature on Wiener space of degree m ≥ 1 for
a d-dimensional Brownian motion, i.e., for all multi-indices ( j1, . . . , jk) with k +
# {i : ji = 0} ≤ m and a d-dimensional Brownian motion (B j

t ) j=1,...,d,t≥0,

E

⎡

⎢⎣
∫

· · ·
∫

0≤s1≤···≤sk≤1

◦dB j1
s1 · · · ◦ dB jk

sk

⎤

⎥⎦ (4.1)

=
N∑

i=1

λi

∫
· · ·

∫

0≤s1≤···≤sk≤1

dω(1), j1
i (s1) · · · ◦ dω(1), jk

i (sk).

Here, we have set B0
t := t and ◦dB0

t := dt for ease of notation. For a general time
interval [0,�t], we set

ω
(�t),0
i (s) := s and ω

(�t), j
i (s) := √

�tω(1), j
i (s/�t), j = 1, . . . , d, (4.2)
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so that (ω(�t)
i )i=1,...,N and (λi )i=1,...,N define a cubature formula on Wiener space of

degree m on [0,�t]. The approximation of the Markov semigroup (Pt )t≥0, given
by Pt f (x) := E[ f (X x

t )] for a function f : H → R, where (X x
t )t≥0 solves the

Stratonovich stochastic differential equation

dX x
t =

d∑

j=0

Vj (X
x
t ) ◦ dB j

t , X x
0 = x, (4.3)

on some state space H, then reads

Pt f (x) ≈ Qn
(t/n) f (x), (4.4)

where the one step approximation operator is defined by

Q(�t) f (x) :=
N∑

i=1

λi f
(

X x
�t

(
ω
(�t)
i

))
, (4.5)

with X x
t (ω

(�t)
i ) the solution of the problem

dX x
s (ω

(�t)
i ) =

d∑

j=0

Vj

(
X x

s

(
ω
(�t)
i

))
dω(�t), j

i (s), X x
0

(
ω
(�t)
i

)
= x . (4.6)

Under certain smoothness assumptions on the vector fields Vj , j = 0, . . . , d, and the
test function f, we expect that

|Pt f (x)− Qn
(t/n) f (x)| ≤ Cn−(m−1)/2, (4.7)

where the constant C > 0 can depend on f, Vj , j = 0, . . . , d, and x ∈ H . For the
case H finite-dimensional and f and Vj bounded and C∞-bounded, j = 0, . . . , d, it
is known that C depends on the supremum norms of f and its derivatives, but not on
x ∈ H , see Lyons and Victoir [24]. For more background on the method, see Bayer
and Teichmann [2], Crisan and Ghazali [4] and Lyons and Victoir [24]. An alternative
approach can be found in Kusuoka [21,22]. Its implementation as a splitting method
is given in Ninomiya and Victoir [26], see also Alfonsi [1], Ninomiya and Ninomiya
[25], and Tanaka and Kohatsu-Higa [33].

Our strategy is as follows. First, we consider the finite dimensional case. Here, the
analysis is straightforward. Afterwards, we turn to the infinite dimensional setting.
Here, our aim is to prove stability for Da Prato–Zabczyk equations with pseudodissi-
pative generator. We prove first the auxiliary result in Theorem 4.4, which might be of
independent interest. The method of the moving frame then yields first Theorem 4.7,
and the Szőkefalvi–Nagy theorem allows us to conclude in Corollary 4.8.
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4.1 Finite dimensional state space

Given a Stratonovich SDE on R
n ,

dX x
t =

d∑

j=0

Vj (X
x
t ) ◦ dB j

t , X x
0 = x, (4.8)

we let the local discretisation of Pt f (x) := E[ f (X x
t )] be defined by

Q(�t) f (x) :=
N∑

i=1

λi f
(

X x
�t

(
ω
(�t)
i

))
, (4.9)

where X x
t (ω

(�t)
i ) is the solution of the problem

dX x
s (ω

(�t)
i ) =

d∑

j=0

Vj

(
X x

s

(
ω
(�t)
i

))
dω(�t), j

i (s), X x
0 (ω

(�t)
i ) = x . (4.10)

Theorem 4.1 Let ψ be an admissible weight function on R
n, and assume that

|Vi Vjψ(x)| + |Viψ(x)| ≤ Cψ(x) for i = 0, . . . , d and j = 1, . . . , d, (4.11)

where we require that all the necessary derivatives are well-defined.
Then, there exists a constant C̃ > 0 independent of 0 < �t ≤ T such that

Q(�t)ψ(x) ≤ exp(C̃�t)ψ(x). (4.12)

Proof We define the intermediate operator

Q(�t,s) f (x) :=
N∑

i=1

λi f
(

X x
s

(
ω
(�t)
i

))
for s ∈ [0, t] (4.13)

and note that Q(�t) = Q(�t,�t). The definition of the iteration step yields

ψ(X x
s (ω

(�t)
i )) = ψ(x)+

d∑

j=0

s∫

0

Vjψ
(

X x
r

(
ω
(�t)
i

))
dω(�t), j

i (r)

= ψ(x)+
s∫

0

V0ψ
(

X x
r

(
ω
(�t)
i

))
dr +

d∑

j=1

Vjψ(x)ω
(�t), j
i (s)

+
d∑

j=1

d∑

k=0

s∫

0

r∫

0

Vk Vjψ
(

X x
q

(
ω
(�t)
i

))
dω(�t),k

i (q)dω(�t), j
i (r).

(4.14)
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By (4.11),
s∫

0

V0ψ
(

X x
r

(
ω
(�t)
i

))
dr ≤ C

s∫

0

ψ
(

X x
r

(
ω
(�t)
i

))
dr. (4.15)

Furthermore, as |ω(�t), j
i (s)| ≤ Ĉ(�t)1/2 and | ∂

∂sω
(�t), j
i (s)| ≤ Ĉ(�t)−1/2 with some

constant Ĉ > 0 independent of 0 < �t ≤ T (notice the case j = 0), Fubini’s theorem
yields

s∫

0

r∫

0

Vk Vjψ
(

X x
q

(
ω
(�t)
i

))
dω(�t),k

i (q)dω(�t), j
i (r)

≤ C

s∫

0

|ω(�t), j
i (s)− ω

(�t), j
i (q)|ψ

(
X x

q

(
ω
(�t)
i

)) ∣∣∣∣
∂

∂q
ω
(�t),k
i (q)

∣∣∣∣ dq

≤ 2Ĉ2C

s∫

0

ψ
(

X x
q

(
ω
(�t)
i

))
dq. (4.16)

Thus, we see that for some C ′ > 0,

Q(�t,s)ψ(x) =
N∑

i=1

λiψ
(

X x
s

(
ω
(�t)
i

))
(4.17)

≤ ψ(x)+
d∑

j=1

Vjψ(x)
N∑

i=1

λiω
(�t), j
i (s)+ C ′

s∫

0

Q(�t,r)ψ(x)dr.

Defining α�t,s(x) := ∑d
j=1 Vjψ(x)

∑N
i=1 λiω

(�t), j
i (s), the Gronwall inequality

yields

Q(�t,s)ψ(x) ≤ ψ(x)+ α�t,s(x)+
s∫

0

(
ψ(x)+ α�t,r (x)

)
C ′ exp(C ′(s − r))dr.

(4.18)

Note that α�t,�t (x) = 0 by the equality
∑N

i=1 λiω
(�t), j
i (�t) = 0. Furthermore,

α�t,r (x) ≤ C
√
�tψ(x) ≤ C

2
(1 +�t)ψ(x) ≤ C

2
exp(�t)ψ(x). (4.19)

This proves

Q(�t)ψ(x) = Q(�t,�t)ψ(x) ≤ ψ(x)

(
1 +

(
1 + C

2
exp(�t)

)
(exp(C ′�t)− 1)

)

≤ exp(C̃�t)ψ(x), (4.20)

where C̃ := max(C/2(1 + C ′)+ 1,C ′ + 1), which is the required estimate. ��

123



648 Stoch PDE: Anal Comp (2013) 1:634–663

4.2 Time-dependent stochastic ordinary differential equations on Hilbert space

Let H be a Hilbert space, and consider the nonautonomous stochastic ordinary differ-
ential equation

dX x
t =

d∑

j=0

Vj (t, X x
t ) ◦ dB j

t , X x
0 = x, (4.21)

on H . We define cubature approximations of (4.21) by

dXt,x
s

(
ω
(�t)
i

)
=

d∑

j=0

Vj

(
t + s, Xt,x

s

(
ω
(�t)
i

))
dω(�t), j

i (s), Xt,x
0 = x, (4.22)

and the approximation operator by

Qt
(�t) f (x) :=

N∑

i=1

λi f
(

Xt,x
�t

(
ω
(�t)
i

))
. (4.23)

Definition 4.2 A cubature formula (ω(�t)
i , λi )i=1,...,N is called symmetric if for every

i ∈ {1, . . . , N }, there exists some i ′ ∈ {1, . . . , N } such that λi = λi ′ and

ω
(�t), j
i (s) = −ω(�t), j

i ′ (s) for all s ∈ [0,�t] and j = 1, . . . , d. (4.24)

It is called weakly symmetric if for j = 1, . . . , d,

N∑

i=1

λiω
(�t), j
i (s) = 0 for s ∈ [0,�t]. (4.25)

Remark 4.3 In words symmetry means that with every cubature path ω also its
space-component-wise negative, i.e., (s,−ω1(s), . . . ,−ωd(s)), for s ∈ [0,�t] is
among the cubature paths. Notice that time is not reversed. Clearly, all symmet-
ric cubature formulas are also weakly symmetric. Note that many known cuba-
ture formulas are actually symmetric. Moreover, a non-symmetric cubature for-
mula can be made symmetric by adding the space-component-wise negatives of
the paths with the same weights to it and dividing all weights by two. This will
at most double the number of paths. Thus, if we use a cubature formula with a
small number of paths in high dimensions, we can also find a symmetric cuba-
ture formula with this property. Also notice that we only need weak symmetry of
cubature formulas for our considerations, but we introduced symmetry for conve-
nience.
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Theorem 4.4 Suppose that the cubature formula used in the definition of Qt
(�t) is

weakly symmetric. Let ψ be an admissible weight function on H and suppose

‖Dψ(x)‖ ≤ C1(1 + ‖x‖2)−1/2ψ(x) and (4.26)

‖D2ψ(x)‖ ≤ C1(1 + ‖x‖2)−1ψ(x) (4.27)

with some constant C1 > 0, Furthermore, assume that for some constant C2 > 0,

‖Vj (t, x)‖ ≤ C2(1 + ‖x‖2)1/2 for j = 0, . . . , d, x ∈ Xand t ∈ [0, T ], (4.28)

and that x �→ Vj (t, x) is continuously differentiable with derivative bounded uni-
formly in t ∈ [0, T ] for j = 1, . . . , d.

Then, there exists a constant C̃ > 0 such that for all t ∈ [0, T ] and�t ∈ [0, T − t],

Qt
(�t)ψ(x) ≤ exp(C̃t)ψ(x) for all x ∈ H. (4.29)

Remark 4.5 The above result is remarkable as we do not assume that the vector fields
Vj are differentiable with respect to t . This is also the reason why we cannot directly
use the ideas in Theorem 4.1 to conclude.

Proof Define the intermediate approximation for s ∈ [0,�t] by

Qt
(�t,s) f (x) :=

N∑

i=1

λi f
(

Xt,x
s

(
ω
(�t)
i

))
. (4.30)

As in the proof of Theorem 4.1, we note that Qt
(�t,�t) = Qt

(�t). For 0 ≤ s ≤ �t ,

ψ
(

Xt,x
s

(
ω
(�t)
i

))
=

ψ(x)+
d∑

j=0

s∫

0

Dψ
(

Xt,x
r

(
ω
(�t)
i

))
Vj

(
t+r, Xt,x

r

(
ω
(�t)
i

))
dω(�t), j

i (r). (4.31)

Consider g j (r, x) := Dψ(x)Vj (t + r, x). Then,

g j (ρ, Xt,x
r (ω

(�t)
i )) = g j (ρ, x)

+
d∑

k=0

r∫

0

Dx g j

(
ρ, Xt,x

q

(
ω
(�t)
i

))
Vk

(
t + q, Xt,x

q

(
ω
(�t)
i

))
dω(�t),k

i (q). (4.32)

From (4.26) to (4.28), we obtain that for 0 ≤ s ≤ �t ≤ T ,

|g0(r, x)| = |Dψ(x)V0(t + r, x)| ≤ ‖Dψ(x)‖ · ‖V0(t + r, x)‖
≤ C1C2ψ(x). (4.33)
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We argue in a similar manner for Dx g j (r, x)Vk(t +q, x), j = 1, . . . , d, k = 0, . . . , d,
to obtain that for 0 ≤ q ≤ r ≤ �t ,

|Dx g j (r, x)Vk(t + q, x)| = |D2ψ(x)(Vj (t + r, x), Vk(t + q, x))

+Dψ(x)Dx Vj (t + r, x)Vk(t + q, x)|
≤ C1(C

2
2 + C2)ψ(x). (4.34)

An application of Fubini’s theorem just as in the proof of Theorem 4.1 gives

ψ
(

Xt,x
s

(
ω
(�t)
i

))

= ψ(x)+
s∫

0

g0

(
r, Xt,x

r

(
ω
(�t)
i

))
dr +

d∑

j=1

s∫

0

g j (r, x)dω(�t), j
i (r)

+
d∑

j=1

d∑

k=0

s∫

0

r∫

0

Dx g j

(
r, Xt,x

q

(
ω
(�t)
i

))
Vk

(
t + q, Xt,x

q

(
ω
(�t)
i

))
dω(�t),k

i (q)dω(�t), j
i (r)

≤ ψ(x)+ C ′
s∫

0

ψ
(

X x
r

(
ω
(�t)
i

))
dr +

d∑

j=1

s∫

0

g j (r, x)dω(�t), j
i (r) (4.35)

with a constant C̃ > 0 depending on C1 and C2, where we apply that �t ≤ T . As
from the weak symmetry of the cubature paths,

N∑

i=1

λi

d∑

j=1

s∫

0

g j (r, x)dω(�t), j
i (r) =

d∑

j=1

s∫

0

g j (r, x)d

(
N∑

i=1

λiω
(�t), j
i (r)

)

= 0, (4.36)

we obtain

Q(�t,s)ψ(x) ≤ ψ(x)+ C̃

s∫

0

Q(�t,r)ψ(x)dr. (4.37)

An application of Gronwall’s lemma yields Q(�t)ψ(x) ≤ exp(C̃�t)ψ(x), which
proves the result. ��
Remark 4.6 It is clear that the given assumptions on the vector fields and the weight
function are not the only ones possible. Instead, we could also require the vector
fields to be bounded uniformly in t ∈ [0, T ], and allow the weight function to satisfy
‖Dψ(x)‖ + ‖D2ψ(x)‖ ≤ Cψ(x). While the situation above corresponds to poly-
nomially growing weight functions and linearly bounded vector fields, this variant
corresponds to exponentially growing weight functions and bounded vector fields, see
also Corollaries 3.5 and 3.7.
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Such an approach might be more appropriate when dealing with exponentials of
stochastic processes such as Lévy processes, which are ubiquitous in applications in
mathematical finance, as they ensure nonnegativity in a simple manner and allow us
to work on the natural scale of the problem.

4.3 Da Prato–Zabczyk equations

Suppose now that

dX x
t = AX x

t dt +
d∑

j=0

Vj (X
x
t ) ◦ dB j

t , X x
0 = x, (4.38)

is a stochastic partial differential equation of Da Prato–Zabczyk type on some Hilbert
space H , see Da Prato and Zabczyk [6,7] for a comprehensive exposition of the theory
of such equations. Here, solutions are understood in the mild sense,

X x
t = exp(t A)x +

d∑

j=0

t∫

0

exp((t − s)A)Vj (X
x
t ) ◦ dB j

s , (4.39)

and we also define the cubature discretisations in the mild sense,

X x
t

(
ω
(�t)
i

)
=exp(t A)x+

d∑

j=0

t∫

0

exp((t−s)A)Vj

(
X x

t

(
ω
(�t)
i

))
dω(�t), j

i (s). (4.40)

Again, the approximation of the Markov semigroup Pt f (x) := E[ f (X x
t )] is given by

Q(�t) f (x) :=
N∑

i=1

λi f
(

X x
�t

(
ω
(�t)
i

))
. (4.41)

Here we do only treat Da Prato–Zabczyk equations driven by finitely many Brown-
ian motions, since there are no generically infinite dimensional cubature approaches
known for Da Prato–Zabczyk equations driven by infinitely many Brownian motions.
Certainly approximation arguments would always work but are not considered in this
article.

Theorem 4.7 Suppose that A is the generator of a group St = exp(t A), t ∈ R, with
growth estimate ‖St‖ ≤ M exp(λ|t |) for t ∈ R and for some numbers M ≥ 1 and
λ ∈ R (which always exist!), and that the cubature formula used in the definition of
Q(�t) is weakly symmetric. Letψ be an admissible weight function on H. Suppose that
for some C > 0 depending on A, ψ , and Vj , j = 1, . . . , d, ψ(St x) ≤ exp(Ct)ψ(x)
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for all x ∈ H and t > 0,

‖Dψ(x)‖ ≤ C(1 + ‖x‖2)−1/2ψ(x), (4.42a)

‖D2ψ(x)‖ ≤ C(1 + ‖x‖2)−1ψ(x), and (4.42b)

‖Vj (x)‖ ≤ C(1 + ‖x‖2)1/2 for j = 0, . . . , d, (4.42c)

and that Vj is continuously differentiable with derivative bounded by C for j =
1, . . . , d.

Then, for any T > 0, there exists a constant C̃ > 0 depending on C and T such
that for every �t ∈ [0, T ], the operator Q(�t) satisfies

Q(�t)ψ(x) ≤ exp(C̃�t)ψ(x) for all x ∈ H. (4.43)

Proof We apply the method of the moving frame from [35]. This yields that X x
t =

St Y x
t , where (Y x

t )t≥0 satisfies the Hilbert space stochastic ordinary differential equa-
tion

dY x
t =

d∑

j=0

Ṽ j (t,Y x
t ) ◦ dB j

t , Y x
0 = x, (4.44)

with Ṽ j (t, y) = S−t V j (St y). Thus, rewriting the cubature discretisations of (X x
t )t≥0

using (Y x
t )t≥0,

dY x
s

(
ω
(�t)
i

)
=

d∑

j=0

Ṽ j

(
s,Y x

s

(
ω
(�t)
i

))
dω(�t), j

i (s), (4.45)

we see that, if we define

Q̃(�t) f (y) :=
N∑

i=1

λi f
(

Y y
�t

(
ω
(�t)
i

))
(4.46)

for f : H → R, then Q(�t)h(x) = Q̃(�t)g(x), where g(y) := h(S�t y). In particular,

Q(�t)ψ(x) = Q̃(�t)(ψ ◦ S�t )(x) ≤ exp(C�t)Q̃(�t)ψ(x), (4.47)

where we apply the assumptions on ψ and the positivity of Q̃(�t).
But now, we are in the situation of Theorem 4.4: The estimates for ψ are clear by

assumption, and for Ṽ j (s, y), we note that, as s ∈ [0, T ],

‖Ṽ j (s, y)‖ = ‖S−s Vj (Ss y)‖ ≤ C M2 exp(2λT )(1 + ‖y‖2)1/2 (4.48)

and ‖Dy Ṽ j (s, y)‖ = ‖S−s Dy Vj (Ss y)Ss‖ ≤ C M2 exp(2λT ) for j = 1, . . . , d.

(4.49)
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An appeal to Theorem 4.4 yields

Q̃(�t)ψ(x) ≤ exp(C̃�t)ψ(x) (4.50)

with some constant C̃ > 0, and the result follows. ��

The Szőkefalvi–Nagy theorem now allows us to obtain a corresponding result for
pseudocontractive semigroups.

Corollary 4.8 Suppose that A is the generator of a semigroup of pseudocontractions
St = exp(t A), t ≥ 0. Let ψ(x) = ρ(‖x‖2) with some increasing and left continuous
function ρ : [0,∞) → (0,∞) (see also Dörsek and Teichmann [11, Example 4.1])
which satisfies ρ(Cu) ≤ Cρ(u) for all u ≥ 0 and C > 0, and which is twice
differentiable and satisfies

ρ′(u) ≤ C(1 + u)−1ρ(u) and ρ′′(u) ≤ C(1 + u)−2ρ(u). (4.51)

Furthermore, assume that ‖Vj (x)‖ ≤ C(1 + ‖x‖2)1/2 for j = 0, . . . , d, and that Vj

is continuously differentiable with bounded derivative for j = 1, . . . , d, and that the
cubature formula used in the definition of Q(�t) is weakly symmetric.

Then, for any T > 0, there exists a constant C̃ > 0 such that for every�t ∈ [0, T ],
the operator Q(�t) satisfies

Q(�t)ψ(x) ≤ exp(C̃�t)ψ(x) for all x ∈ H. (4.52)

Proof Assume without loss of generality that (St )t≥0 is a semigroup of contractions.
By the Szőkefalvi–Nagy theorem [28, p. 452, Théorème IV], we see that we can find a
Hilbert space (H, ‖·‖H) containing H as a closed subspace and a strongly continuous
group (St )t∈R of unitary mappings such that St = πSt , where π : H → H is the
orthogonal projection.

Define ψH(y) := ρ(‖y‖2
H) and V H

j (y) := Vj (πy), then it is easy to see that the
assumptions of Theorem 4.7 are satisfied. The results of Teichmann [35] prove that
the solution of

XH,y
t = St y +

d∑

j=0

t∫

0

St−s V H
j

(
XH,y

s

)
◦ dB j

s (4.53)

satisfies X x
t = πXH,x

t , and similarly for the cubature approximations. Setting

QH
(�t) f (y) :=

N∑

i=1

λi f
(

XH,y
�t

(
ω
(�t)
i

))
, (4.54)
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Theorem 4.7 yields that QH
(�t)ψH(y) ≤ exp(C̃�t)ψH(y)with some constant C̃ > 0,

and from ψH(x) = ψ(x) for x ∈ H we obtain that for x ∈ H ,

Q(�t)ψ(x) =
N∑

i=1

λiρ
(
‖πXH,x

�t

(
ω
(�t)
i

)
‖2

)
≤

N∑

i=1

λiρ
(
‖XH,x

�t

(
ω
(�t)
i

)
‖2
H

)

= QH
(�t)ψH(x) ≤ exp(C̃�t)ψH(x) = exp(C̃�t)ψ(x). (4.55)

The result is thus proved. ��

5 Convergence estimates of cubature schemes

We are now ready to prove rates of convergence for cubature on Wiener space on
weighted spaces. We shall only prove these results in the infinite-dimensional setting;
corresponding results in finite dimensions are obtained in a similar manner.

Let H be a Hilbert space and A the infinitesimal generator of a strongly continuous
semigroup of pseudocontractions on H. Fix �0 ∈ N. For � = 0, . . . , �0, let H� be
subspaces of H endowed with Hilbert norms ‖·‖H� , H0 = H , such that for � =
0, . . . , �0 − 1, H�+1 ⊂ H� and A : H�+1 → H� is a bounded linear operator. On H�,
we define D-admissible weight functions

ψ s
� (x) :=

(
1 + ‖x‖2

H�

)s/2
, s ≥ 1, � = 0, . . . , �0, ψ s := ψ s

0 , (5.1)

and the functions

ϕ�,0(x) :=
(

1 + ‖x‖2
H�

)1/2
, ϕ�, j (x) := 1, j ≥ 1. (5.2)

Define the vectors of weight functions ψ(n)� := (ψ
n− j
� ) j=0,...,k, k < n, and ϕ� :=

(ϕ�, j ) j=0,...,k .

Assumption 5.1 The vector fields satisfy

Vj ∈ Cϕ�k (H�, H�) for j = 0, . . . , d and � = 0, . . . , �0. (5.3)

Remark 3.8 shows that A ∈ Cϕ�+1
k (H�+1, H�) for � = 0, . . . , �0 − 1. For x ∈

H�, � = 0, . . . , �0, we can then consider the Da Prato–Zabczyk equation

dX x
t = AX x

t dt +
d∑

j=0

Vj (X
x
t ) ◦ dB j

t , X x
0 = x, (5.4)

on H�. As the assumptions on the vector fields Vj essentially mean that they are Lip-
schitz continuous with bounded derivatives, all these equations have unique solutions,
agreeing if we vary � for sufficiently smooth initial conditions.
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Assumption 5.2 The Markov semigroup (Pt )t≥0, Pt f (x) := E[ f (X x
t )], is strongly

continuous on Bψn
� (H�) for all n ∈ N and � = 0, . . . , �0. For some k0 ∈ N, Pt is a

bounded map from Bψ
(n)
�

k (H�) into itself for k = 0, . . . , k0 and n ∈ N, n > k, with
norm bounded uniformly in t ∈ [0, T ] for every T > 0.

See also Dörsek and Teichmann [11, Sect. 4, Lemma 7.19] for sufficient conditions
for these assumptions.

5.1 Taylor expansion of stochastic partial differential equations

Theorem 5.3 Let � = 1, . . . , �0. Consider the strongly continuous semigroup (Pt )t≥0
on the space Bψn

� (H�) with n ≥ 4. Denote its generator by (G, dom G).
Then, Bψ

(n)
�−1

2 (H�−1) ⊂ dom G, and

G f (x) = D f (x)(Ax)+ LV0 f (x)+ 1

2

d∑

j=1

L2
Vj

f (x) (5.5)

for f ∈ Bψ
(n)
�−1

2 (H�−1) and x ∈ H�.

Proof By the Itô formula, see, e.g., Da Prato and Zabczyk [7, Theorem 7.2.1], it
follows that for f ∈ A(H�−1), we have f ∈ dom G and f satisfies (5.5). Corollary 3.7

shows that the right hand side of (5.5) is a continuous linear operator Bψ
(n)
�−1

2 (H�−1) →
Bψn

� (H�). The closedness of G proves the claim. ��
The next result follows directly from Corollary 3.7, together with the explicit rep-

resentation in (5.5).

Corollary 5.4 Let k ≥ 0. Under the assumptions of Theorem 5.3, the infinitesimal
generator G satisfies the mapping property

G : Bψ
(n)
�−1

k+2 (H�−1) → Bψ
(n)
�

k (H�), � = 1, . . . , �0. (5.6)

Induction now yields:

Corollary 5.5 Let j = �, . . . , �0. Under the assumptions of Theorem 5.3, the powers
of the infinitesimal generator G satisfy

G j : Bψ
(n)
�− j

k+2 j (H�− j ) → Bψ
(n)
�

k (H�). (5.7)

They are given explicitly by taking the powers of (5.5).

This allows us to obtain a Taylor expansion of Pt f for smooth enough f, which we
will compare to the Taylor expansion of cubature approximations.
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Corollary 5.6 Let f ∈ Bψ
(n)
�−(k+1)

2(k+1) (H�−(k+1)), k + 1 ≤ � ≤ �0, n ≥ 2(k + 2).
Then,

Pt f =
k∑

j=0

t j

j !G
j f + tk+1 Rt,k f, (5.8)

where the linear operator Rt,k : Bψ
(n)
�−(k+1)

2(k+1) (H�−(k+1)) → Bψn
� (H�) satisfies

‖Rt,k f ‖ψn
�

≤ CT ‖ f ‖
ψ
(n)
�−(k+1),2(k+1)

for t ∈ [0, T ] (5.9)

for a constant CT > 0 independent of f.

5.2 Taylor expansion of cubature approximations

For a multiindex α = (i1, . . . , ik), we define deg(α) := k +#
{

j = 1, . . . , k : i j = 0
}
.

The empty multiindex is denoted by ∅, corresponds to k = 0, and satisfies deg(∅) = 0.
We set

Am := {α : deg(α) ≤ m} and A∗
m := Am \ {∅, (0)} . (5.10)

Theorem 5.7 Assume that the cubature formula is of degree m = 2k + 1. For f ∈
Bψ

(n)
�−(k+1)

2(k+1) (H�−(k+1)), k + 1 ≤ � ≤ �0, n ≥ 2(k + 2),

Q(�t) f =
k∑

j=0

(�t) j

j ! G j f + (�t)k+1 R̂�t,k f, (5.11)

where the linear operator R̂�t,k : Bψ
(n)
�−(k+1)

2(k+1) (H�−(k+1)) → Bψn
� (H�) satisfies

‖R̂�t,k f ‖ψn
�

≤ CT ‖ f ‖
ψ
(n)
�−(k+1),2(k+1)

for �t ∈ [0, T ] (5.12)

for a constant CT > 0 independent of f.

Proof Under the assumptions on the vector fields, we can easily see that for every
f ∈ A(H�−(k+1)), we have the Taylor expansion

f
(

X x
�t

(
ω
(�t)
i

))

=
∑

(i1,...,ik )∈Am

Vi1 . . . Vik f (x)I (i1,...,ik )
�t

(
ω
(�t)
i

)
+ R̂i

�t,k f (x), (5.13)
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where we define the iterated integrals by

I (i1,...,ik )
�t

(
ω
(�t)
i , g

)
(5.14)

:=
∫

0<t1<···<tk<�t

g
(

X x
t1

(
ω
(�t)
i

))
dω(t),i1

i (t1) . . . dω
(t),ik
i (tk),

I (i1,...,ik )
�t (ω

(�t)
i ) := I (i1,...,ik )

�t (ω
(�t)
i , 1), the remainder term R̂i

�t,k f satisfies

R̂i
�t,k f (x) =

∑

(i1,...,ik )∈Am
(i0,i1,...,ik )/∈Am

I (i0,...,ik )
�t (ω

(�t)
i , f(i0,...,ik )), (5.15)

and we set β0(x) := Ax + V0(x), β j (x) := Vj (x), j = 1, . . . , d, and f(i0,...,ik ) :=
βi0 . . . βik f, (i0, . . . , ik) ∈ {0, . . . , d}k+1. Summing up, it is easy to see by the scaling
of the cubature paths that we can find a remainder term (�t)k+1 as in the claim of the
theorem with the correct estimates. To see that the initial terms have the form given, we
use the degree 2k + 1 of the cubature and the explicit formula of G from Theorem 5.3.
A density argument proves the result. ��

5.3 The rate of convergence

We can now present our main result.

Theorem 5.8 For f ∈ Bψ
(n)
�−(k+1)

2(k+1) (H�−(k+1)), k+1 ≤ � ≤ �0, n > 2(k+1), 2(k+1) ≤
k0,

‖PT f − Qn
(T/n) f ‖ψn

�
≤ CT n−k‖ f ‖

ψ
(n)
�−(k+1),2(k+1)

(5.16)

with a constant CT independent of f.

Proof The local estimate follows from a combination of Corollary 5.6 and Theo-
rem 5.7. In the core of the argument lies the very definition of cubature formulas, where
the expectations of iterated Brownian integrals is mimicked, see formula (4.1). The sta-

bility of Q(T/n) from Corollary 4.8 and the assumed invariance of Bψ
(n)
�−(k+1)

2(k+1) (H�−(k+1))

with respect to Pt prove the claim by means of the telescoping sum

(PT f − Qn
(T/n)) f =

n−1∑

i=1

(
Q
( T

n )

)(n−i) (
P
( T

n )
− Q t

n

)
PiT

n
f (5.17)

for f ∈ Bψ
(n)
�−(k+1)

2(k+1) (H�−(k+1)). ��
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Example 5.9 Let H� = R
N , � ≥ 0, be finite-dimensional, and assume n ≥ 5; in the

finite-dimensional setting, we do not need to consider subspaces of the state space.

Then, fm,i ∈ Bψ(n)k (H) for all k ≥ 0, where fm,i (y) = ym
i , i = 1, . . . , n, y =

(y1, . . . , yN ), and m = 1, . . . , 4. This implies that not only the expected value and the
variance, but also the skewness and kurtosis are accurately computed by our scheme.
Similarly, mixed moments are determined to high accuracy, and if n is even larger,
this also holds true for higher degree moments. Such a property is very useful in risk
management, where high precision in higher moments means an accurate evaluation
of risk. Similar observations were made in [1] and [33].

Example 5.10 The Heath–Jarrow–Morton framework is included in our setup. As
explained in [12], it is more natural to use cosh-weighted spaces instead of poly-
nomially weighted spaces in this case. The more general definition of vector fields
in Definition 3.1 allows us to enlarge the class of admissible equations considerably
compared to [12].

6 Numerical example

The FitzHugh–Nagumo model is a popular model for the behaviour of neurons and
allows the analysis of noise-induced phase changes. We consider the SODE model
with multiplicative and additive noise from [34], spatially extended similarly as in
[36]. The stochastic partial differential equation we analyse reads

εdu(t, x) = ∂2

∂x2 u(t, x)dt + (u(t, x)(u(t, x)− 1)(a − u(t, x))− bv(t, x))dt

+2αu(t, x)(u(t, x)− 1) ◦ dW d−1
t , (6.1a)

dv(t, x) = (z(u(t, x)− c)− v(t, x))dt

+2βu(t, x) ◦ dW d
t + 2γ

d−2∑

j=1

ϕ j (x) ◦ dW j
t , (6.1b)

complemented by Neumann boundary conditions, ∂
∂x u(t, 0) = ∂

∂x u(t, 1) = 0, t > 0,
and initial values, u(0, x) = u0(x), v(0, x) = v0(x), x ∈ (0, 1). This implies that
there is no signal, i.e., no deterministic inhomogeneous Neumann boundary condition
or forcing, so the only reason for phase changes, i.e., deflecting the system out of
equilibrium, comes from the multiplicative noise terms 2αu(t, x)(u(t, x)−1)◦dW d−1

t

and 2βu(t, x)◦dW d
t or the additive noise term 2γ

∑d−2
j=1 ϕ j (x)◦dW j

t . Here, u denotes

the fast, v the slow variable, (W 1
t , . . . ,W d

t )t≥0 is d-dimensional Brownian motion, ε >
0, a ∈ (0, 1), b, c, z, α, β, γ > 0, and ϕ j : [0, 1] → R are some smooth functions.

While the Nemytskii nonlinearities in the equation for u are non-Lipschitz, they can
be cut off in a smooth manner to Lipschitz continuous functions outside a large enough
interval including [0,1]. This approach seems to be reasonable, as we are interested in
the behaviour of the system only for functions u with values in this interval where the
stable equilibria of the corresponding deterministic system lie. Furthermore, in our
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numerical examples, we never observed values for u outside [−5 ·10−3, 1+5 ·10−3].
It then follows that (6.1) has solutions lying in all Sobolev spaces H�(0, 1), � ∈ N,
provided the initial values for u and v and the functions ϕ j , j = 1, . . . , d − 2, are
regular enough. Hence, (6.1) falls into the setting of our numerical schemes: Using
the notation from Sect. 5, we set

H� : =
{
(u, v) : u, v ∈ H1+2�(0, 1) with

∂1+2i

∂x1+2i
u(0)

= ∂1+2i

∂x1+2i
u(1) = 0 for i = 1, . . . , �

}
, (6.2)

A(u, v) := ( ∂
2

∂x2 u, 0), together with Neumann boundary conditions, and

V0(u, v) := (u(u − 1)(a − u)− bv, z(u − c)− v), (6.3)

Vj (u, v) := (0, 2γ ϕ j ), j = 1, . . . , d − 2, (6.4)

Vd−1(u, v) := (2αu(u − 1), 0), and (6.5)

Vd(u, v) := (0, 2βu). (6.6)

After cutting off V0 and Vd−1 as suggested above, all these vector fields satisfy Def-
inition 3.1 by applying Runst and Sickel [30, p. 381, Theorem 2; p. 32, Theorem 1].
It follows that we have optimal weak rates of convergence for sufficiently smooth test
functions. If rates of convergence are to be analysed without cutting off the vector
fields, an approach similarly as in Dörsek [10] using a quickly growing weight func-
tion might be applicable. We stress that this problem, not even with cut off vector
fields, can be analysed using the theory from Dörsek [10] or Dörsek and Teichmann
[12], as Nemytskii operators are not contained in either setting. Similarly, the results
of Bayer and Teichmann [2, Sect. 4] are not applicable because the vector fields Vd−1
and Vd do not have any smoothing properties.

In order to gauge phase transitions, we want to determine the probability that the
system ends up in one stable equilibrium, given that it started in the other. Fixing
the parameters to be ε = 0.01, a = c = 0.47, b = 0.1, and z = 1.0, as in
Tang et al. [34], the two stable equilibria are given approximately by (u∞

1 , v
∞
1 ) =

(.112702,−.357298) and (u∞
2 , v

∞
2 ) = (.887298, .417298). We choose the initial

value u0(x) := u∞
1 , v0(x) := v∞

1 , x ∈ (0, 1). The two functions whose expected
values we approximate are fi (u, v) := exp(−‖u − u∞

i ‖2
L2
(0,1)

/δ), i = 1, 2, with

δ = 0.05, which serve as proxy for the probability that u ends up in the state
u∞

i , i = 1, 2. These functions are smooth and bounded on H�(0, 1) for � ≥ 0, and by
the compact embedding H�+1(0, 1) → H�(0, 1), � ≥ 0, and Dörsek and Teichmann
[12, Theorem 5], they are included in Bψk (H �) for � ≥ 0, where the weight functions
are chosen as in Sect. 5. We set α = 0.008, β = 0.0001, γ = 0.003, d = 6, and
ϕ j (x) = cos(( j − 1)πx), i.e., we force the low modes, and want to determine

E[ fi (u(T, ·))], i = 1, 2, (6.7)

for T = 10.
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For the space discretisation, we employ a cosine expansion, writing

u(t, x) =
M−1∑

i=0

ui (t) cos(iπx) and v(t, x) =
M−1∑

i=0

vi (t) cos(iπx) , (6.8)

which is efficient due to forcing of low modes. In the time variable, we first perform
a Strang-type splitting. The split equations read

εdu0(t, x) =
(
∂2

∂x2 u0(t, x)+ u0(t, x)(u0(t, x)− 1)(a − u0(t, x))− bv0(t, x)

)
dt,

dv0(t, x) = (z(u0(t, x)− c)− v0(t, x))dt, and (6.9)

εdu1(t, x) = 2αu1(t, x)(u1(t, x)− 1) ◦ dW d−1
t ,

dv1(t, x) = 2βu1(t, x) ◦ dW d
t + 2γ

d−2∑

j=1

ϕ j (x) ◦ dW j
t . (6.10)

The equations for (u1, v1) are solved by a degree 5 cubature scheme on path level,
cf. Lyons and Victoir [24] (see Gyurkó and Lyons [15] for an alternative degree 5
scheme on flow level), which is evaluated via Quasi Monte Carlo integration. The
equations for (u0, v0) are split further into

εdu01(t, x) = ∂2

∂x2 u01(t, x)dt,

dv01(t, x) = 0, and (6.11)

εdu02(t, x) = (u02(t, x)(u02(t, x)− 1)(a − u02(t, x))− bv02(t, x))dt,

dv02(t, x) = (z(u02(t, x)− c)− v02(t, x))dt. (6.12)

Due to the particular choice of the spatial discretisation, (6.11) can be solved ana-
lytically. As we want to use large timesteps, we choose a geometric integrator
for the approximation of (6.12), the extended Störmer–Verlet scheme from Hairer
et al. [16, Sect. 1.8]. The resulting non-linear equations are solved by the New-
ton algorithm. This is efficient, as (6.12) corresponds to entirely separated ODEs
at the discretisation points, whence the non-linear equations to be solved are one-
dimensional.

Finally, the split problems are concatenated using the symmetrically weighted
sequential splitting, see Oshima et al. [27]. Hence, we expect to observe second order
weak convergence. This is illustrated in Fig. 1, where we show the somehow more
expressive relative errors with respect to the reference value (in contrast to Theorem
5.8, where errors of norms relative to the norm of the initial value are estimated)

|Eapp[ fi (u(T, ·))] − Eref[ fi (u(T, ·))]|
Eref[ fi (u(T, ·))] , i = 1, 2. (6.13)
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Fig. 1 Errors in weak approximation of the stochastic FitzHugh–Nagumo equation

The computations were performed using 16 cores of a ProLiant DL385 G7 with
24 AMD Opteron 6174 cores and 128 GB RAM in total. The reference values
Eref[ fi (u(T, ·))] were obtained using M = 128 terms in the cosine expansions,
N = 256 timesteps, and K = 220 Quasi Monte Carlo points, applying the Sobol’
sequences of Joe and Kuo [18]. They were found to be Eref[ f1(u(T, ·))] ≈ 0.471830
and Eref[ f2(u(T, ·))] ≈ 0.397405. In the computation of the approximate values
Eapp[ fi (u(T, ·))], we fixed M = 32 and K = 216, and used the number N of
timesteps indicated in Fig. 1. The numerical results show second order convergence,
perturbed probably because we compare not to an exact reference value, but to an
approximate one. In particular, we obtain a relative error of less that 2 · 10−3 with
only 64 timesteps. This calculation takes 10 s, which establishes the effectivity of the
proposed algorithm.

7 Conclusions

We considered the weak approximation of marginal distributions of stochastic (par-
tial) differential equations. We extended the functional analytic framework of Röck-
ner and Sobol [29], used for the numerical analysis of stochastic evolution equations
in Dörsek [10] and Dörsek and Teichmann [11,12], to more general characteristics
through a flexible formulation of directional derivatives in weighted spaces. This set-
ting was then used to prove optimal rates of convergence of cubature schemes for more
general equations. Results of numerical computations for an example from mathemat-
ical biology, a spatially extended stochastic FitzHugh–Nagumo model, were shown to
demonstrate that our theoretical findings can be applied to practically relevant prob-
lems.
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