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Abstract In this paper we propose a novel numerical scheme based on the Wiener
chaos expansion for solving hyperbolic stochastic partial differential equations
(PDEs). Through the Wiener chaos expansion the stochastic PDE is reduced to an
infinite hierarchy of deterministic PDEs which is then truncated to a finite system of
PDEs, that can be addressed by standard techniques. A priori and a posteriori conver-
gence results for the method are provided. The proposed method is applied to solve the
stochastic wave equation with additive noise and the stochastic Klein–Gordon wave
equation with multiplicative noise and the results are compared to those derived by the
Monte Carlo method. The main advantages of the proposed scheme is that it provides
almost identical results and is significantly faster than the Monte Carlo simulation
method, providing a convenient way to compute numerically the statistical moments
of the solution.
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1 Introduction

In recent years there is a growing interest in developing numerical techniques for
solving and simulating problems concerning stochastic partial differential equations
(SPDEs). This interest is due to the fact that SPDEs are the most common method
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by which we model several phenomena in the natural sciences, engineering and eco-
nomics. Many algorithms that are used for solving SDEs are extensions of existing
methods for solving ODEs, such as the Euler–Maruyama and the Milstein method
[15]. These methods approximate the true solution of a stochastic differential equa-
tion as a Markov Chain. However, the extension to the stochastic partial differential
problems is a relatively new field and a lot of work needs to be done in this direction.
The well known Monte Carlo (MC) method is still the most popular method for simu-
lating SPDEs and dealing with the statistical characteristics of the solution, although
it is a rather computationally expensive method.

In the current work we develop a numerical scheme for solving hyperbolic SPDEs,
based on recent work concerning analytic results on solvability and well-posedness for
such equations based on the Wiener chaos expansion [9]. This method is relatively new
and inspired by the seminal relevant work on parabolic SPDEs as proposed by Lototsky
and Rozovsky in [11], [12], and [13]. The basic idea of the method is to construct the
solution as a generalized Fourier series that (depending on the type of equation and
the data) may converge in appropriate weighted Wiener chaos spaces that contain
important information on the statistical properties of the random fields generated by
the SPDE. The random field is thus expressed in terms of an infinite sum of elements,
which expresses randomness through a “generic” basis which is determined solely by
the Wiener process. The deterministic amplitudes that multiply the elements of this
generic stochastic basis, take values in appropriate function spaces, and are equation
specific. The random field which is the solution of the SPDE is reconstructed as the
random series, however it is important to note that important statistical features of the
solution such as the moments can be reconstructed by knowledge of the deterministic
amplitudes only.

These can be determined through the solution of an infinite hierarchy of determin-
istic evolution equations (called the propagator)—uniquely defined from the SPDE
in question. The ability to recover statistical information only by the knowledge of
the solution of the deterministic propagator equation allows us to avoid time con-
suming computations based on the Monte-Carlo method (see [8] and the references
therein).

Therefore, the Wiener chaos expansion (WCE) may serve not only as an impor-
tant analytical and theoretical tool to study existing and novel types of solutions
of SPDEs, but may be used for the development of efficient numerical schemes
for the treatment of these problems, that may serve as useful alternatives to
Monte-Carlo type methods. Similar a priori results for finite element methods have
been established for elliptic and parabolic problems (cf. [8,10] and the references
therein).

It is the aim of the current paper to explore this suggestion in detail, by developing
a novel numerical method for the solution of hyperbolic SPDEs based on the Wiener
chaos expansion. To this end, we develop the method, provide suggestions concerning
the truncation of the random series as well as a priori and a posteriori error estimates for
the approximate solution. The method is tested on the stochastic wave equation with
additive noise and the stochastic Klein–Gordon equation with multiplicative noise and
it is shown to be superior to Monte-Carlo based methods in terms of accuracy and time
consumed.
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2 Weighted Wiener chaos solutions: general framework

2.1 Weighted Wiener chaos spaces and solutions to hyperbolic SPDEs

Let us consider a countable collection of independent one dimensional Brownian
motions W = (wk = wk(t), 1 ≤ k, 0 ≤ t ≤ T ), for fixed T > 0 on a complete prob-
ability space W = (Ω,F , (Ft )0≤t≤T , P), where Ft is the σ -algebra generated
by the random variables (wk(s), 1 ≤ k, s ≤ t) and denote by X = L2(W; X) =
L2(Ω,FT , P; X) the separable Hilbert space of FT measurable square integrable
X -valued random variables, where X is a Hilbert space.1 Let also m = {mi , i ≥ 1}
be a given orthonormal basis of L2([0, T ]), such that mi (·) ∈ L∞([0, T ]) where
i = {1, 2, . . .}, and define the independent standard Gaussian random variables
ξik = ∫ T

0 mi (s)dwk(s). As we will in general consider mi as a Fourier basis, we
may assume without loss of generality that mi ∈ W 1,∞([0, T ]). Now, consider the
countable set of multi-indices J = {

α = (αk
i , i, k ≥ 1), αk

i ∈ {0, 1, 2, . . .}} with
length |α| := ∑

i,k αk
i < ∞, order �(α) := max{i ≥ 1 : αk

i > 0} and dimension
d(α) := max{k ≥ 1 : αk

i > 0}. Define the collection Ξ = {
ξα, α ∈ J

}
of ran-

dom variables so that ξα = 1√
α!
∏

i,k Hαk
i
(ξik), where Hn(x) = (−1)ne

x2
2 dn

dxn e
−x2

2 is

the Hermite polynomial of order n and α! = ∏
i,k αk

i !. We will also use the notation
α±(i, k) for the multi-index with the components

α±(i, k)l
j =

{
max(αk

i ± 1, 0) if i = j and k = l

αk
i otherwise

.

For details concerning these definitions see e.g. [11]. The following theorem is the
classical result obtained by Cameron and Martin and generalized by Lototsky and
Rozovsky for square integrable random variables taking values in a general Hilbert
space X (see [11] and [18]).

Theorem 1 ([11,16]) The collection � = {
ξα, α ∈ J

}
is an orthonormal basis in

L2(W). If u ∈ L2(W; X) and uα = E[uξα] ∈ X, then

u =
∑

α∈J

uαξα and E[‖u‖2
X ] =

∑

α∈J

‖uα‖2
X

The Cameron–Martin expansion can be considered as a Fourier expansion that
separates the stochastic from the deterministic part of a random field u. One may
also consider the converse procedure, i.e., choosing a set of deterministic functions
{uα : α ∈ J } and constructing the random series

∑
α∈J uαξα as a formal object.

In case this series does not converge in L2(W; X) we may consider its convergence
in appropriately weighted Hilbert spaces called weighted Wiener chaos spaces. This
leads to the construction of generalized random fields, which are very useful in the

1 The argument X is omitted if X = R.
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study of SPDEs since many important SPDE models do not admit square integrable
solutions. For the definition of weighted Wiener chaos spaces, we need to consider
the collection of positive numbers {rα : α ∈ J } and introduce the bounded linear
operator R on L2(W) defined by (Rξ)α := rαξα for every α ∈ J , and its extension
on L2(W; X) (still denoted by R) defined as the unique element R f of L2(W; X)

such that for g ∈ L2(W),

E[(R f, g)X ] =
∑

α∈J

rαE[(R f, g)Xξα],

and then using the operator R define the norm

‖u‖2
RL2(W;X)

:= ||Ru||2L2(W;X)
. (2.1)

The weighted Wiener chaos space is then defined as follows:

Definition 1 (Weighted Wiener chaos space) Given a collection
{
rα, α ∈ J

}

of positive numbers, the weighted Wiener chaos space RL2(W; X), correspond-
ing to this set of weights, is the closure of L2(W; X) with respect to the norm
|| · ||RL2(W;X) defined in (2.1), or equivalently the space of random elements of the
form

∑
α∈J uα ξα , with coefficients uα ∈ X such that

∑
α∈J r2

α ‖uα‖2
X < ∞.

Weighted Wiener chaos spaces are Hilbert spaces. We may further introduce the
dual space of RL2(W; X), relative to the inner product in the space L2(W; X) , which
is described through the inverse operator R−1 by

R−1L2(W; X) = {g ∈ L2(W; X) : R−1g ∈ L2(W; X)}.

Weighted Wiener chaos spaces provide a rich and convenient functional framework
within which we may consider a variety of random fields (and thus allow us to construct
solutions of various SPDEs) as the following list of examples indicate:

– If the weights rα = 1 for all α ∈ J , then the weighted Wiener chaos space
coincides with the standard Wiener chaos space L2(W; X).

– An interesting class of weighted Wiener spaces2 are those for which the weighting

functions are chosen of the special form rα = ∏
i,k q

αk
i

k for all α ∈ J and a
suitable sequence of positive numbers {qk, k ≥ 1}. If the sequence {qk, k ≥ 1}
is chosen so that rα > 1 for all α ∈ J then the weighted Wiener chaos space
generated is a subset of L2(W; X) and for the proper choice of the sequence
the random elements of the corresponding weighted space are not only square
integrable but also smooth (differentiable) in the Malliavin sense. On the other
hand if the sequence {qk, k ≥ 1} is chosen so that rα < 1 for all α ∈ J then the
random elements of the corresponding weighted space are not square integrable
and are generalized random fields.

2 This type of weighted spaces leads to a very convenient form for the propagator of a general class of
SPDEs.
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2.2 Stochastic linear evolution equations and the Wiener chaos expansion

Denote by (V, H, V ′) a normal (Gel’fand) triple of Hilbert spaces, such that V ⊂ H ⊂
V ′, with both embeddings continuous and dense. We denote by V ′ the topological dual
of V and by

〈
v′, v

〉
, v′ ∈V ′, v∈V , the duality pairing between V and V ′ relative to the

inner product in H . For a complete presentation of the normal (or Gel’fand triple) see
e.g. [3]. We will also use the notation: V = L2((0, T ); V ), H = L2((0, T ); H) and
V ′ = L2((0, T ); V ′), for T <∞. Consider now the linear stochastic evolution equation

u(t) = u0 +
t∫

0

(
A (s)u(s) + f (s)

)
ds

+
t∫

0

∑

k≥1

(Mk(s)u(s) + gk(s))dwk(s), 0 ≤ t ≤ T (2.2)

where the solution u(·) is considered as a Hilbert space valued stochastic process
(typically for each t , u(t) ∈ H , and since we consider the case of SPDEs each u(t) is
to be understood as a function of a spatial variable x ∈ U ⊂ R

n i.e. u(t) = u(t, x)).
The families of deterministic linear operators {A (t)}t∈[0,T ] and {Mk(t)}t∈[0,T ] are
assumed to be such that for each t ∈ [0, T ] the operators A (t),Mk(t) : V → V ′
are linear and bounded and thus, there exists a constant CM such that ‖Mkv‖V ′ ≤
CM ‖v‖V for all v ∈ V . Moreover, for each t , the operators Mk(t) are such that
for every sequence un such that un ⇀ u in V and u′

n ⇀ u′ in V
′
, (primes denote

differentiation with respect to time) it follows that Mk(t)u′
n(t) ⇀ Mk(t)u′(t). It is

worth mentioning that the assumptions considered above are standard. An example is
the case where H = L2(U ) and V = H1

0 (U ), where U ⊂ R
n is an open and bounded

domain with sufficiently smooth boundary, the operator A is a first or second-order
linear differential operator and the operator Mk is a multiplicative operator, in the same
functional setting. Assume also that f, gk ∈ RL2(W;V ) are generalized random
processes and u(0) = u0 ∈ L2(W; V ) is the initial condition.

A generalized solution u ∈ H of (2.2) in the Wiener chaos expansion framework is
constructed as an element of the weighted Wiener chaos space, such that the general-
ized Fourier coefficients satisfy a system of deterministic evolution equations, known
as the propagator. The propagator is uniquely determined by the stochastic problem
(2.2) and was introduced by Mikulevicius and Rozovsky in [14], and studied exten-
sively by Lototsky and Rozovsky in [11]. This solution is called Wiener chaos solution
and is a strong solution in the probabilistic sense, belonging to the class of variational
solutions. In the special case where rα = 1 for every α ∈ J , the Wiener chaos solu-
tion coincides with the standard square integrable solution. In this paper we focus on
hyperbolic SPDEs. To this end we consider the stochastic evolution equation (2.2) as a
hyperbolic system of m first order equations in [0, T ]×R

n and the unknown is a random
field consisting of random variables such that each realization ω consists of a vector
field u : [0, T ]×R

n → R
m . We will consider the case {A (t)}t∈[0,T ] = {Ah(t)}t∈[0,T ]

where {Ah(t)}t∈[0,T ] is the family of first-order partial differential operators defined
by Ah(t)u(t) = −∑n

j=1 B j (t)ux j (t), where the matrices B j (t, x) ∈ C2([0, T ] ×
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R
n; M

m×m), ( j = 1, . . . , n) are symmetric, satisfy the conditions sup[0,T ]×Rn (
∣
∣B j
∣
∣ ,∣

∣D2
t,x B j

∣
∣ ,
∣
∣Dt,x B j

∣
∣) < ∞. Furthermore, they satisfy the hyperbolicity condition,

i.e., the matrix B(t, x; y) := ∑n
j=1 y j B j (t, x), is diagonizable for every x, y ∈ R

n ,

t ∈ [0, T ]. A convenient functional setting is to choose H = L2(Rn; R
m) and

V = H1(Rn; R
m). Boundary conditions can also be easily implemented by minor

variations of the functional setting. An analytical treatment of hyperbolic SPDEs
based on the Wiener chaos expansion has been proposed in [9], where well posedness
of such equations in weighted Wiener chaos spaces has been proved. The treatment
was constructive in nature, and was based on the study of the propagator

uα(t) = u0,α +
t∫

0

(
Ah(s)u(s) + f (s)

)
α

ds

+
t∫

0

∑

i,k

√
αk

i

(
Mk(s)u(s) + gk(s)

)
α−(i,k)

mi (s)ds, α ∈ J (2.3)

where the subscript α denotes the deterministic amplitude of the corresponding random
element, in terms of the chaos expansion, for example, u0 = ∑

α∈J u0,αξα with
u0,α ∈ V and similarly for the other random fields. Clearly, the propagator (2.3) is a
lower diagonal infinite hierarchy of deterministic evolution equations. As it is the goal
of this paper to explore the possibility of its use for numerical analysis of such systems,
in the sequel we briefly recall the main results which will be used in the current work.

Theorem 2 (Existence and uniqueness of weak solution of the propagator [9]) For
data such that u0,α ∈ V , fα, gk,α ∈ V , there exists a unique solution uα of the
propagator (2.3) such that uα ∈ V ∩C([0, T ]; H) and u′

α ∈ H (where primes denote
derivatives with respect to time) satisfying, for every |α| = n, the energy estimates

max
0≤t≤T

‖uα(t)‖V + ∥∥u′
α

∥
∥

H ≤ C(A ,M , T )
∑

|α|≤n

(∥
∥u0,α

∥
∥

V + ‖ fα‖V + ∥∥ f ′
α

∥
∥

H

+
∑

i,k≥1

(√
αk

i

∥
∥gk,α−(i,k)

∥
∥

V +
∥
∥
∥g′

k,α−(i,k)

∥
∥
∥

H

))

and the constant C(A ,M , T ) depends only on T and the operators A and Mk and
α ∈ J .

Solutions of the hyperbolic SPDE are then constructed using the solutions of the
propagator equation in terms of the expansion u(t) =∑α∈J uα(t)ξα . It is shown that
this expansion converges in the appropriate weighted Wiener chaos space and that it
is indeed the solution of the original SPDE.

Theorem 3 (Existence Theorem [9]) Let u0 ∈ RL2(W; V ) and f, gk ∈RL2(W;V )

for a suitably chosen weighted Wiener chaos space. Then there exists a variational
solution u ∈ RL2(W;V ) of the hyperbolic SPDE (2.2). This solution admits a Wiener
chaos expansion with respect to the Cameron–Martin basis, as u = ∑

α∈J uαξα

where {uα}α∈J is the solution of the propagator (2.3).
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In case the data of the problem allow us to choose the operator R = I , the identity
operator, the solution of the hyperbolic SPDE belongs to L2(W;V ), and coincides
with the standard square integrable solution. Then the first and second moments are
provided solely in terms of the solution of the propagator as

E[u] = u(0), E[||u||2H ] =
∑

α∈J

||uα||2H ,

respectively and similar formulae can be derived for higher order moments, in case
these exist (see e.g., [8]). For other choices of weights, the sum

∑
α∈J r2

α||uα||2H
provides “generalized” moments. For example if the data allow us to choose rα =

√
ak

i
the generalized moment corresponds to the norm of the first Malliavin derivative of
the random field. Other choices leading to smoother or weaker random fields are of
course possible.

3 A numerical scheme for hyperbolic SPDEs based on the Wiener chaos
expansion

In this section we propose a numerical scheme, based on the Wiener chaos expansion.
In summary, we treat the expansion

∑
α∈J uα(t)ξα as a stochastic Galerkin expan-

sion and approximate this expression by finite dimensional random elements. For the
convenience of the reader we summarize the steps of algorithm:

Step 1 Choose a two-way truncation of the stochastic basis {ξα : α ∈ J }: Use a
finite dimensional approximation of the infinite dimensional Wiener process and
truncate the random series to a finite random sum.
Step 2 For the chosen truncation of the stochastic basis solve the deterministic
lower-triangular truncated propagator using any chosen algorithm for the deter-
ministic system (e.g. Upwind or Lax–Wendroff).
Step 3 From the solution of the deterministic propagator reconstruct the moments
of the random field.

We note that implementation of the proposed numerical method does not require
generation of the random variables ξα for the computation of the statistical moments
of the solution to the SPDE (2.2). We also emphasize that the proposed deterministic
algorithm for the computation of moments does not introduce any statistical error.
In addition to the computation of the moments, using the proposed Wiener chaos
algorithm and with one more step we can also reconstruct the solution of the stochastic
PDE (2.2) as follows:

Step 4 Generate the Gaussian random variables ξα and use the propagator compo-
nents to compute the approximate solution of the stochastic equation (2.2).

Remark 1 In order to reconstruct the actual random field rather than just the moments
we may use the following approach. Since the Gaussian random variables ξα are inde-
pendent of the equation to be solved, one may use the Monte Carlo method to generate
draws from the distribution of ξα that may be stored offline. Then, the reconstruction
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of the random field for a particular equation, can be performed simply by using the
solution of the propagator.

Let us now pass to a detailed study of the above steps:

3.1 Truncation of the stochastic basis and the truncated propagator

It has been shown that the solution of the SPDE (2.2) can be expressed as the random
series u(t) = ∑

α∈J uα(t)ξα . To make any use of this series as a numerical scheme
for the calculation of the solution, we need to truncate it into a finite sum. This means
truncating the full stochastic basis {ξα : α ∈ J } into a finite set {ξα : α ∈ J f }
where J f ⊂ J and finite. This is equivalent to truncating the propagator equation
into a finite set of deterministic PDEs, i.e., working with the finite set of deterministic
functions {uα : α ∈ J f } in lieu of the original infinite set {uα : α ∈ J }. Our main
goal in this section is to propose a scheme for choosing the finite index set J f . To
do this, note first that the sum over α ∈ J is a doubly-infinite sum, meaning that
for each N ≥ 1 there are infinitely many multi-indices such that |α| = N . Note that
if �(α) ≤ n and d(α) ≤ r , there exist at most (nr)N multi-indices α with length
|α| = N . Now, we introduce the truncated set of multi-indices

J n,r
N := {α ∈ J : |α| ≤ N , �(α) ≤ n, d(α) ≤ r

}
.

The set J n,r
N is finite, and an upper bound of the number of elements is [(nr)N+1 −

1]/(nr − 1) (cf. [6]).
In Table 1 we summarize the exact number of elements in the set J n,r

N for several
values of the parameters N , n and r .

The exact number of elements in each case is equivalent to the dimension of the
lower-triangular deterministic propagator system of equations to be solved.

The choice of N , n, r affects the accuracy of the approximation and can be chosen
so that the norm of the difference

∑
α∈J \J f

uαξα , where J f = J n,r
N , is smaller

than a prespecified acceptable error (see Sect. 4 for detailed estimates). Having chosen
a convenient combination of N , n, r we obtain the truncated propagator

uα(t) = u0,α +
t∫

0

(
Ah(s)u(s) + f (s)

)
α

ds

+
t∫

0

∑

i,k

√
αk

i

(
Mk(s)u(s) + gk(s)

)
α−(i,k)

mi (s)ds, α ∈ J n,r
N . (3.1)

Table 1 Exact number of
elements in the truncated set
J n,r

N for n · r = {5, 10, 15, 20}
and N = {1, 2, 3}

N n · r

5 10 15 20

1 6 11 16 21

2 21 66 136 231

3 56 286 816 1771

123



614 Stoch PDE: Anal Comp (2013) 1:606–633

The truncated solution will be denoted by uN ,n,r := ∑
α∈J n,r

N
uαξα , to distin-

guish from the solution of the full stochastic equation (2.2). The sequence uN ,n,r

is a universal and flexible approximation of the solution to the stochastic problem
(2.2), but it requires the solution of the deterministic propagator system of equations
uα, α ∈ J n,r

N . While several well-known numerical methods can be implemented for
the solution of the propagator, in the next section we briefly discuss two representative
methods appropriate for solving deterministic hyperbolic PDEs.

It is worth noting that the Wiener chaos expansion u = ∑
α∈J uαξα converges

rather fast. As shown in Sect. 5, even small values of N (e.g. N = 1) may lead to
very accurate approximation of the random field u. Similar results are also produced
by [19] for the stochastic advection-diffusion equation.

3.2 Numerical solution of the truncated propagator

The truncated propagator (3.1) is a finite set of deterministic hyperbolic PDEs but is
still an infinite dimensional system. In order to approximate this system numerically we
need to use a discretization scheme in space and/or time using an appropriate Finite Dif-
ference Scheme. In particular, we need to apply an effective numerical scheme to solve
the propagator system of equations (3.1). However, the choice of the suitable scheme
is not obvious. The order of accuracy along with the stability and the consistency are
the main criteria used to determine the efficiency of a numerical scheme. Details on
finite difference schemes in partial differential equations can be found in [17]. In our
analysis we use the Upwind scheme and the Lax–Wendroff scheme, as representatives
of first-order monotone and second-order central finite difference schemes respec-
tively, which can be used for the implementation of the proposed numerical algorithm
in the solution of the stochastic hyperbolic equation with either additive or multiplica-
tive noise. However, the Upwind scheme for the stochastic wave and Klein–Gordon
equation, seems to be an unsatisfactory alternative to the Lax–Wendroff method, as it
shows an apparently unstable behavior for almost all values of the constant c of the
problem.

Note also that the Lax–Wendroff scheme can be interpreted as a vanishing viscosity
limit of the solution to the original hyperbolic equation, including an artificial viscosity
term of the form εΔu for different values of the viscosity coefficient ε. The introduction
of an artificial viscosity term is widely used also as an analytical tool for the study of
well posedness and regularity of solutions of hyperbolic systems, typically by adding
a perturbation of the form εΔu where Δ is the Laplacian, to the original hyperbolic
equation, then treating the solution uε of the resulting parabolic problem and going
to the limit as ε → 0 to obtain solutions of the original hyperbolic system (see e.g.
[5]). This approach has been adopted in [9] and led to the solvability results for the
hyperbolic SPDE (2.2). Thus, when employing the Lax–Wendroff scheme, the analytic
results of [9] can be used to study the well-posedness of the scheme. Thus, one may
refer to the analytic results on the convergence of the vanishing viscosity method for
the propagator system (see [9]) in order to obtain existence and uniqueness results
along with a prior bounds for the convergence of the Lax–Wendroff approximation of
the propagator system.
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Before proceeding with the implementation of the finite difference schemes, let
us define a grid of points in the (t, x) ∈ [0, T ] × U plane, where U ⊂ R

n and
x = (x1, · · · , xn). We also denote by G := {ti, xj} where Δt , Δx are positive numbers
and i, j positive integers such that ti = iΔt and xj = j(Δx1, · · · ,Δxn). Then we denote
by u i

j = u(ti, xj). Let us also introduce the function h := h(Δx,Δt) as a function of
order O(Δx p + Δt p), where p = 1 corresponds to the Upwind scheme and p = 2
corresponds to the Lax–Wendroff scheme.3

When the expansion u = ∑
α∈J uαξα is used, the computation of statistical

moments can be obtained through knowledge of the deterministic components uα

only, without need of any statistical computation.

3.2.1 Numerical algorithm

As we have already completed the construction of the proposed numerical method
and presented the error bounds of the scheme, we summarize the required steps for
the implementation of the numerical scheme for the solution of the hyperbolic SPDE
(2.2). Note that the random field uN ,n,r

Δ :=∑α∈J n,r
N

uΔ,αξα , where the process uΔ,α

satisfies the discretized propagator (3.1).

Algorithm 1 Numerical algorithm for the solution of the SPDE (2.2).

Step 1 Choose a two-way truncation of the stochastic basis ξα, α ∈ J n,r
N , i.e. choose

the number of Wiener processes r ≥ 1 and the number of elements n ≥ 1 in the
deterministic basis.
Step 2 Truncate the finite random series α to a finite sum N ≥ 1.
Step 3 Define a grid of points in the (t, x) ∈ [0, T ] × U for the Lax-Wendroff finite
difference scheme.4

Step 4 For each ti = it and xj = j(x1, · · · ,xn), solve the propagator system of
equations (3.1) for all α ∈ J n,r

N on the time-space interval, using the Lax-Wendroff
scheme.
Step 5 From the solution of the deterministic discretized propagator uΔ,α reconstruct
the moments.
Step 6 (optional) Generate the Gaussian random variables ξα, α ∈ J n,r

N and

compute the approximate solution uN ,n,r
Δ =∑α∈J n,r

N
uΔ,αξα .

4 A priori and a posteriori estimates of approximation errors

We summarize our approach so far; from the hyperbolic SPDE (2.2), we formulate
the propagator system (2.3) (called P), which is then truncated using the truncated

3 Alternatively, for problems with more complicated geometries (e.g. curved domains), one can employ
finite element methods or a proper combination of the two methods. However, this extension is beyond the
scope of the current work.
4 Note that a criterion for the choice of the coefficients for the truncation N , n and r can be the size of the
multi-index set J n,r

N and the maximum error tolerance due to the truncation (see Theorem 4 for details).
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set of multi-indices J n,r
N , thus forming a finite system of deterministic PDEs (3.1),

hereafter called P N ,n,r . We then approximate the truncated propagator P N ,n,r using
either a space-discrete (or semi-discrete) finite difference scheme and obtain a finite
dimensional system P N ,n,r

δ or a fully-discrete finite difference scheme and obtain sys-

tem P N ,n,r
Δ . Each of these operators include some approximation error. It is the aim of

this section to assess the overall error, i.e. the error induced when approximating the
solution (2.2) as composed using the propagator P) with the random field obtained
when recomposing the discretized truncated propagator P N ,n,r

Δ . We adopt the convec-
tion of using the same subscripts and superscripts as employed above to denote the
random fields or amplitudes rendering to the solution of the corresponding problems.

4.1 A priori error estimates

The error estimates due to the application of the proposed numerical scheme to the
propagator system of equations (2.3) are provided in the following theorem.

Theorem 4 Under the assumptions of Theorem 2, the error due to the approximation
of the solution u =∑α∈J uαξα ∈ RL2(W;V ) of Eq. (2.2) by the solution uN ,n,r

Δ =
∑

α∈J n,r
N

uΔ,αξα , where the process uΔ,α is the discretized solution of the truncated
equation (3.1) (produced through the finite difference method), satisfies the a priori
bound

∥
∥
∥u − uN ,n,r

Δ

∥
∥
∥

2

RL2(W;V )
≤ I1 + I2

where the error term I1 is given by

I1 := C
∑

α∈J \J n,r
N

r2
α

[∥
∥u0,α

∥
∥

V + ‖ fα‖V + ∥∥ f ′
α

∥
∥

H

+ |α|1/2
∑

i,k

(∥
∥gα−(i,k)

∥
∥

V +
∥
∥
∥g′

α−(i,k)

∥
∥
∥

H

)]2

and the error term I2 is given by I2 := C2(Mk, N , n, r) |h|2 with the constant

C2(Mk, N , n, r) =
∑

α∈J n,r
N

r2
α

⎡

⎣1 +
N∑

p=1

CM
N−p+1

N∏

|β|=p

|β|(nr)|β|−1

⎤

⎦

2

depending only on the operator Mk , the order of the truncation and the weights rα .

It follows from the error estimates of Theorem 4 that the global error of the proposed
numerical scheme depends on the order of the truncation of the propagator system of
equations and the space-time discretization step, i.e. the error of the approximation of
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the propagator P using the truncated propagator P N ,n,r
Δ . If the random fields involved

in the data are such that a high order Wiener chaos is required (large N , meaning
slow convergence of the Wiener chaos expansion u = ∑

α∈J uαξα) then one may
choose the discretization step h small enough to compensate for the overall error.
Note however that the choice of h needed for the convergence of the discretization
scheme for the Proposition is not (in principle) dependent on the choice of N (unless
the behaviour of the components of the expansion of the data of the problem fα etc.
for such |α| < N is requiring a specific attention as far as h is concerned, e.g. high
frequency oscillations etc.

The proof of the theorem (given at the end of this section) is based on estimates of
(a) the error induced by the truncation of the stochastic basis and (b) the error induced
by the discretization of the deterministic propagator system. Since these estimates are
of interest in their own right, we choose to present them separately in two propositions,
which are then combined at the end of this section to complete the proof of Theorem 4.

Proposition 1 (Error generated by the truncation of the Wiener chaos expansion and
the Wiener process.) The random field uN ,n,r = ∑

α∈J n,r
N

uαξα ∈ RL2(W,V )

produces an approximation to the solution u of the stochastic evolution equation (2.2)
and it satisfies the following a priori bound:

∥
∥u − un,r

N

∥
∥2

RL2(W;V )
≤ I1

where the error coefficient I1 is the error due to the truncation of the propagator on
the set J n,r

N , i.e. due to the elimination of the elements of the Wiener chaos expansion,
along with the truncation of the infinite dimensional Wiener process, defined by

I1 := C
∑

α∈J \J n,r
N

r2
α

[∥
∥u0,α

∥
∥

V + ‖ fα‖V + ∥∥ f ′
α

∥
∥

H

+ |α|1/2
∑

i,k

(∥
∥gα−(i,k)

∥
∥

V +
∥
∥
∥g′

α−(i,k)

∥
∥
∥

H

)]2

with the constant C depending only on T , the operators A and Mk and α ∈ J .

Proof Let the Wiener chaos expansion of the solution u and the truncated solution
uN ,n,r of the stochastic equation (2.2) be:

u =
∑

α∈J

uαξα and uN ,n,r =
∑

α∈J n,r
N

uαξα,

where uα satisfies the propagator system of equations (2.3). Then, the approximation
error due to the elimination of the higher order components of the Wiener chaos
expansion and the truncation of the infinite dimensional Brownian motion is given by
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u − uN ,n,r =
∑

α∈J

uαξα −
∑

α∈J n,r
N

uαξα.

Now, by using Parseval’s identity and from the triangle inequality we obtain:

∥
∥u − un,r

N

∥
∥2

RL2(W;V )
≤

∑

α∈J \J n,r
N

r2
α ‖uα‖2

V = I �
1

Applying the results of Theorem 2 to the error term I �
1 yields that

I �
1 ≤ C

∑

α∈J \J n,r
N

r2
α

[∥
∥u0,α

∥
∥

V + ‖ fα‖V + ∥∥ f ′
α

∥
∥

H

+ |α|1/2
∑

i,k

(∥
∥gα−(i,k)

∥
∥

V +
∥
∥
∥g′

α−(i,k)

∥
∥
∥

H

)]2

=: I1

and this completes the proof.

Remark 2 Note that this error term is related to the tail of the Wiener Chaos expansion
of the data of the problem and can be recognized through Parseval’s identity (due to
the orthonormality of the Cameron–Martin basis) as the tail of the numerical series
defining moments of random fields involved with the data.

Remark 3 Note that the error term I1 corresponds to the truncation of the compo-
nents of the infinite-dimensional propagator system of equations and the infinite-
dimensional Brownian motion. The constant C , for each α ∈ J n,r

N , depends only on
the operators A and Mk and on T . From the analytical expression of the bound of the
error term I1, it is straightforward that the addition of the terms to the Wiener chaos
expansion leads to the reduction of the error due to the truncation. Moreover, it reveals
the dependence of the error on the structure of the weighted Wiener chaos space as if,
for example, the weights rα = 1, the contribution of each truncated component of the
Wiener chaos expansion is equivalent.

The estimates provided by Proposition 1 would be satisfactory as long as we have
the exact solution of the truncated propagator P N ,n,r . However, this is a PDE system
and must be approximated by a finite difference (or finite element) procedure, i.e. by
an approximation system P N ,n,r

Δ .

Proposition 2 (Discretization error) The random field uN ,n,r
Δ = ∑

α∈J n,r
N

uΔ,αξα ∈
RL2(W;V ) produces an approximation to the solution uN ,n,r = ∑

α∈J n,r
N

uαξα ,

where the process uα, α ∈ J n,r
N is the solution of the truncated propagator (3.1) and

it satisfies the following a priori bound:

∥
∥
∥uN ,n,r − uN ,n,r

Δ

∥
∥
∥

2

RL2(W;V )
≤ I2
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where I2 := C2(Mk, N , n, r) |h|2 with the constant

C(Mk, N , n, r) =

⎧
⎪⎨

⎪⎩

∑

α∈J n,r
N

r2
α

⎡

⎣1 +
N∑

p=1

CM
N−p+1

N∏

|β|=p

|β|(nr)|β|−1

⎤

⎦

2
⎫
⎪⎬

⎪⎭

1/2

depending only on the operator Mk , the order of the truncation and the weights rα .

Proof Since the propagator is a lower triangular system, the proof is made by induction
on |α|. For α = (0), or equivalently, |α| = 0, equation (3.1) reduces to

u(0)(t) = u0,(0) +
t∫

0

(
Ah(s)u(s) + f (s)

)
(0)

ds

and the error due to discretization can be directly derived by the Taylor’s theorem and
equals to

∥
∥u(0) − uΔ,(0)

∥
∥

V ≤ |h|

Consider now the case |α| = 1. This corresponds to a family of multi-indices which
correspond to matrices, with only one nonzero element, the (i, k) element, equal to 1.
For this index, equation (3.1) implies that

u(1)(t) = u0,(1) +
t∫

0

(
Ah(s)u(s) + f (s)

)
(1)

ds

+
t∫

0

(
Mk(s)u(s) + gk(s)

)
(0)

mi (s)ds

Then, by subtracting the discretized truncated solution uΔ,(1) from the truncated solu-
tion u(1) of the propagator and from the previous level we obtain:

∥
∥u(1) − uΔ,(1)

∥
∥

V ≤ |h| (1 + CM )

where the constant CM depends only on the operator Mk . Assume now that for |α| =
N , the discretized error is bounded by:

∥
∥u(N ) − uΔ,(N )

∥
∥

V ≤ |h|
⎡

⎣1 +
N∑

p=1

CM
N−p+1

N∏

|β|=p

|β|(nr)|β|−1

⎤

⎦ (4.1)
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Therefore, for |α| = N +1 and by using the induction hypothesis that inequality (4.1)
holds, we obtain that

∥
∥u(N+1) − uΔ,(N+1)

∥
∥

V

≤ |h|
⎧
⎨

⎩
1 + CM |N + 1| (nr)N

⎡

⎣1 + C N
M

N∑

p=1

C N−p+1
M

N∏

|β|=p

|β|(nr)|β|−1

⎤

⎦

⎫
⎬

⎭

or equivalently

∥
∥u(N+1) − uΔ,(N+1)

∥
∥

V ≤ |h|
⎧
⎨

⎩
1 + C N+1

M

⎡

⎣1 +
N+1∑

p=1

N+1∏

|β|=p

|β|(nr)|β|−1

⎤

⎦

⎫
⎬

⎭

Thus, the error due to the discretization of the propagator system of equations (2.3) is
bounded from above by:

∥
∥uα − uΔ,α

∥
∥

V ≤ |h|
⎡

⎣1 +
|α|∑

p=1

CM
|α|−p+1

|α|∏

|β|=p

|β|(nr)|β|−1

⎤

⎦ (4.2)

for all α ∈ J n,r
N . Now adding over all α ∈ J n,r

N and using Parseval’s identity, yields
that

∥
∥
∥uN ,n,r −uN ,n,r

Δ

∥
∥
∥

2

RL2(W;V )
≤
∑

α∈J n,r
N

r2
α |h|2

⎡

⎣1+
|α|∑

p=1

CM
|α|−p+1

|α|∏

|β|=p

|β|(nr)|β|−1

⎤

⎦

2

or equivalently

∥
∥
∥uN ,n,r − uN ,n,r

Δ

∥
∥
∥

2

RL2(W;V )
≤ C2(Mk, N , n, r) |h|2 (4.3)

for the constant

C(Mk, N , n, r) =

⎧
⎪⎨

⎪⎩

∑

α∈J n,r
N

r2
α

⎡

⎣1 +
|α|∑

p=1

CM
|α|−p+1

|α|∏

|β|=p

|β|(nr)|β|−1

⎤

⎦

2
⎫
⎪⎬

⎪⎭

1/2

and this completes the proof.

Remark 4 Note that the error bound (4.3) involves the product of the constant C (which
depends on the truncation of the Wiener chaos expansion) with h, which depends on
the “fineness” of the grid. This is important, since C may increase considerably when
choosing larger values of N , n and r . However, by choosing a finer grid h, we may
compromise the overall error.
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The following corollary provides a tradeoff between the number of “modes”
employed in the Wiener chaos expansion and the discretization parameter h of the
deterministic propagator.

Corollary 1 Consider Eq. (3.1) and let the operator Mk = 0 and the weighting
function rα = 1, ∀α. Then, the discretized solution uN ,n,r

Δ = ∑α∈J n,r
N

uΔ,αξα of the
stochastic equation (2.2), satisfies the following a priori bound:

∥
∥
∥uN ,n,r − uN ,n,r

Δ

∥
∥
∥

RL2(W;V )
≤ |h|

√
(nr)N+1 − 1

nr − 1
.

Proof Recall that the set J n,r
N is finite with at most [(nr)N+1 − 1]/(nr − 1) elements

(cf. Sect. 3.1). Then, the proof is an immediate consequence of Proposition 2.

We are now ready to provide the proof of Theorem 4.

Proof The approximation error can be decomposed in terms of the Wiener chaos
expansion as:

u − uN ,n,r
Δ =

∑

α∈J

uαξα−
∑

α∈J n,r
N

uΔ,αξα =
∑

α∈J n,r
N

(
uα−uΔ,α

)
ξα+

∑

α∈J \J n,r
N

uαξα.

By applying Parseval’s identity and the triangle inequality we obtain:

∥
∥
∥u − uN ,n,r

Δ

∥
∥
∥

2

RL2(W;V )
≤

∑

α∈J n,r
N

r2
α

∥
∥uα − uΔ,α

∥
∥2

V +
∑

α∈J \J n,r
N

r2
α ‖uα‖2

V

or equivalently

∥
∥
∥u − uN ,n,r

Δ

∥
∥
∥

2

RL2(W;V )
≤ I1 + I2

Hence, the proof is an immediate consequence of Propositions 1 and 2.

4.2 A posteriori error estimates

At this point, we derive a posteriori error estimates for the error between the solution
u of the hyperbolic stochastic partial differential equation (2.2) and the solution of the
corresponding space-discretized stochastic equation.

To perform our a posteriori analysis, we follow the construction proposed by [7],
properly adapted for a lower triangular system of PDEs. At each level α ∈ J n,r

N we
consider the L2- orthogonal projection operator � : H → Vh , where H := L2(U )

and with Vh we denote the space-discretized space for U ⊂ R
n . We also define the

elliptic reconstruction wα := wα(t) ∈ V := H1
0 (U ), t ∈ [0, T ] of the discretized

solution uδ,α , satisfying the elliptic problem a(wα, v) = 〈zα, v〉, for all v ∈ V , where
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zα := Av − �Zα + Zα with Zα = fα + ∑i,k

√
αk

i (Mku + gk)α−(i,k) mi (t) and
A : Vh → Vh be the discrete elliptic operator defined by: 〈Aq, x〉 = a(q, x) for all
q, x ∈ Vh . Moreover, we denote by 〈·, ·〉 the standard inner product of the L2 space.

We also decompose the error of the approximation as:

eα := uδ,α − uα εα := wα − uδ,α and ρα := wα − uα

Then, the following relation holds ([7]):

〈eα t t , v〉 + a(ρα, v) = 0, v ∈ V (4.4)

In order to construct an a posteriori error estimate for the solution of the stochastic
hyperbolic PDE (2.2), we first introduce the a posteriori bound for the solution of the
corresponding hyperbolic propagator P N ,n,r

δ .
At this point, we state the a posteriori error bound proposed by Lakkis et al. [7],

with several modifications that are necessary for it to hold under the regularity assump-
tions of the proposed Wiener chaos solution, imposed by the deterministic propagator
P N ,n,r

δ .
Before dealing with the general case, we first provide a result concerning the special

case Mk ≡ 0.

Proposition 3 (A posteriori error estimate for the propagator) [7] The following a
posteriori error estimate hold between the solution of the hyperbolic propagator P
and the semi-discrete propagator P N ,n,r

δ

‖εα‖H ≤ C
( ∥
∥uδ,α,t t

∥
∥

H + |h| + ∥∥ε0,α

∥
∥

V + ∥∥εt,0,α

∥
∥

H

)
(4.5)

where the constant C depends on the order of the truncation α, the domain U, the
time T , the operator A and the constant of the Poincare-Friedrichs inequality.

Proof The proof is divided in two parts. In the first part, we sketch the main points
of the proof of the a posteriori error bound, proposed by Lakkis [7], with minor
modifications on the regularity of the estimates. In the second part, we impose the
energy estimates for the wave equation in order to mitigate the dependence of the a
posteriori bound on the auxiliary process wα .

(a) Let ṽ := ∫ T
t ρα(s, ·)ds ∈ V , where t, T ∈ [0, T ] and ρα ∈ V . Now, by setting

v = ṽ in (4.4) and integrating by parts, we obtain:

−
T∫

0

〈eα,t , ṽt 〉 + 〈eα,t (T), ṽ(T)〉 − 〈eα,t (0), ṽ(0)〉 +
T∫

0

a(ρα, ṽ) = 0
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or equivalently

1

2
‖ρα(T)‖2 − 1

2
‖ρα(0)‖2 + 1

2
a(ṽ(0), ṽ(0)) =

T∫

0

〈eα t , ρα〉 + 〈eα,t (0), ṽt (0)〉

Due to the Cauchy-Schwartz inequality along with standard calculus results, we deduce
that

∥
∥uα−uδ,α

∥
∥

H ≤ C

⎛

⎝
∥
∥wα−uδ,α

∥
∥

V +∥∥u0,α−uδ,0,α

∥
∥

H +∥∥w0,α−uδ,0,α

∥
∥

H

+
T∫

0

∥
∥(wα − uδ,α)t

∥
∥

H + ∥∥(ut,0,α − ut,0,δ,α)
∥
∥

H

⎞

⎠

(4.6)

(b) In order to mitigate the dependence of the a posteriori error bound on the auxiliary
process wα , we use the auxiliary function εα := wα − uδ,α . Now for all α ∈ J n,r

N ,
the process εα satisfies the differential equation:

εα,t t − cεα,xx = Auδ,α − 2�Zα + Zα (4.7)

where Zα = fα +∑i,k

√
αk

i gk,α−(i,k)mi (t).

Thus, for the process εα due to the triangle inequality we have the energy estimate5:

‖εα‖V + ∥∥εα,t
∥
∥

H ≤ C
( ∥
∥Auδ,α − �Zα

∥
∥

H + ‖�Zα − Zα‖H

+ ∥∥ε0,α

∥
∥

V + ∥∥εt,0,α

∥
∥

H

)
(4.8)

or equivalently

‖εα‖V + ∥∥εα,t
∥
∥

H ≤C
( ∥
∥uδ,α,t t

∥
∥

H + |h| + ∥∥ε0,α

∥
∥

V + ∥∥εt,0,α

∥
∥

H

)
(4.9)

and this completes the proof.

Now assume that Mk �= 0.

Proposition 4 (A posteriori error estimate for the propagator: general case) The fol-
lowing a posteriori error estimate hold between the solution of the hyperbolic propa-
gator P and the semi-discrete propagator P N ,n,r

δ

‖eα‖H ≤ C

⎛

⎝
∥
∥uδ,α,t t

∥
∥

H + |h| +
|α|−1∑

n=0

‖εn‖H + ∥∥ε0,α

∥
∥

V + ∥∥εt,0,α

∥
∥

H

⎞

⎠ (4.10)

5 For details on the energy estimates of the wave equation see [5], Sect. 7.2.
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where the constant C depends on the order of the truncation α, the domain U,
the time T , the operators A and Mk and the constant of the Poincare-Friedrichs
inequality.

Proof Since the propagator is a lower triangular system, the proof is made by induction
on |α|. For α = (0), or equivalently, |α| = 0, Eq. (3.1) reduces to

u(0)(t) = u0,(0) +
t∫

0

(
A u(s) + f (x, s)

)
(0)

ds

and Proposition 3 holds. Thus, from Proposition 3, the a posteriori error bound becomes

∥
∥e(0)

∥
∥

H ≤ C
( ∥
∥uδ,(0),t t

∥
∥

H + |h| + ∥∥ε0,(0)

∥
∥

V + ∥∥εt,0,(0)

∥
∥

H

)
(4.11)

where the constant C depends on the order of the truncation α, the domain U , the time
T , the operators A and the constant of the Poincare-Friedrichs inequality.

Consider now |α| = 1. This case corresponds to the multi-indices α with only one
non-zero element αk

i = 1. For this index, Eq. (3.1) implies that

u
′
(1)(t) = (

A (t)u(t) + f (x, t)
)
(1)

+ (Mku + gk
)
(0)

(t) mi (t),

u(1)(0) = u0,(1). (4.12)

Then, for (|α| = 1), the right hand side of Eq. (4.12) is fully determined by knowledge
of u(0), which in turn is fully specified by the previous level. Thus, the process εα , for
|α| = 1 satisfies the differential equation:

εik,t t − cεik,xx = Auδ,(1) − 2�Z(1) + Z(1) (4.13)

where Z(1) = f(1) + (Mku + gk)(0)mi (t). By applying the triangle inequality to the
energy estimates (4.8) and due to the boundedness of the operator Mk , yields that

∥
∥ε(1)

∥
∥

V +∥∥ε(1),t
∥
∥

H ≤ C
( ∥
∥Auδ,(1)−�Z(1)

∥
∥

H +∥∥�( f(1)+gk,(0))−( f(1)+gk,(0))
∥
∥

H

+∥∥�Mku(0)−Mku(0))
∥
∥

H +∥∥ε0,(1)

∥
∥

V +∥∥εt,0,(1)

∥
∥

H

)
(4.14)

or equivalently

∥
∥ε(1)

∥
∥

V +∥∥ε(1),t
∥
∥

H ≤C
( ∥
∥uδ,(1),t t

∥
∥

H +|h|+∥∥ε(0)

∥
∥

H +∥∥ε0,(1)

∥
∥

V +∥∥εt,0,(1)

∥
∥

H

)

(4.15)
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Continuing in this way, and by induction on |α| it follows that for every α ∈ J , the
process uα satisfies the a posteriori bound

‖eα‖H ≤ C

⎛

⎝
∥
∥uδ,α,t t

∥
∥

H + |h| +
|α|−1∑

n=0

‖εn‖H + ∥∥ε0,α

∥
∥

V + ∥∥εt,0,α

∥
∥

H

⎞

⎠ (4.16)

with |α| = n. However, from the definition of the multi-indices α, each α has only
finite nonnegative integer elements αk

i . As a result, the error bound (4.16) is bounded
for all α ∈ J n,r

N and this completes the proof.

In Theorem 5 we establish a global a posteriori error estimate for the solution of
the hyperbolic SPDE (2.2).

Theorem 5 (A posteriori error estimate for hyperbolic SPDEs) The difference
between the solution u of the stochastic hyperbolic partial differential equation (2.2)
and the solution uN ,n,r

δ of the corresponding semi-discretized equation satisfies the a
posteriori error bound:

∥
∥
∥u − uN ,n,r

δ

∥
∥
∥

2

RL2(W;H )
≤ I1 + I3 (4.17)

where the quantity

I3 = C
( ∥
∥uδ,t t

∥
∥2

RL2(W;H )
+ |h|2 + ‖ε‖2

RL2(W;H )
+ ‖ε0‖2

RL2(W;V )

+ ∥∥εt,0
∥
∥2

RL2(W;H )

)

Proof Based on the Wiener chaos expansion of the random fields u = ∑
α∈J uαξα

and uδ =∑α∈J n,r
N

uδ,αξα , the approximation error can be decomposed as

u − uδ =
∑

α∈J n,r
N

(uα − uδ,α)ξα +
∑

α∈J \J n,r
N

uαξα. (4.18)

Then, triangle inequality and Parseval’s identity yields that

‖u − uδ‖2
RL2(W;H )

≤
∑

α∈J n,r
N

‖uα − uδ,α‖2
RL2(W;H )

+ C
∑

α∈J \J n,r
N

‖uα‖2
RL2(W;V )

:= I �
3 + I1 (4.19)

for some positive constant C , due to embedding theorems of L2 space.
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We now look at the term I3. From Proposition 4, triangle inequality and Parseval’s
identity, we obtain

I �
3 ≤ C

( ∥
∥uδ,t t

∥
∥2

RL2(W;H )
+ |h|2 + ‖ε‖2

RL2(W;H )
+ ‖ε0‖2

RL2(W;V )

+ ∥∥εt,0
∥
∥2

RL2(W;H )

)
:= I3 (4.20)

Note that the a posteriori error estimate for the discretized propagator P N ,n,r
δ at

each step of the expansion is fully determined by the data of the problem and the
previous steps.

The proof of Theorem 5 is directly derived from Parseval’s identity, triangle inequal-
ity, Theorem 2 and Proposition 4. Similar results can be derived for the fully discretized
propagator, but it is beyond the scope of the current work.

5 Numerical results

In this section, we apply the general theory of the Wiener chaos expansion to the sto-
chastic wave equation and the stochastic Klein–Gordon equation and provide numer-
ical results for both equations, based on the proposed numerical scheme. In these
experiments we compare the computational accuracy and the efficiency of the Wiener
chaos expansion to the popular Monte Carlo method. For both the stochastic wave
equation and the Klein–Gordon equation we use N = 1 and n = 4. Our numerical
results show that the proposed Wiener chaos method is significantly faster than the
corresponding Monte Carlo method, and the overall error is still small, compared to
either the true solution or the Monte Carlo simulated solution for the Wave or the
Klein–Gordon equation respectively.

5.1 Stochastic wave equation in 1D

The wave equation driven by Brownian motion has been a very active research field
during the last decades, as it is a fundamental stochastic equation in physics relativistic
quantum mechanics and oceanography (e.g. [3] and the references therein). In this
section, we consider the following 1D stochastic wave equation:

∂2u

∂t2 + A u =
d∑

k=1

σkdWt

u(0, x) = u0(x)

(5.1)

where A = −c2Δ for a real constant c and W (t) = {Wk(t)}1≤k≤d is a d-dimensional
Brownian motion. For simplicity, we consider that the initial condition is deterministic.
Under the proposed setting, Eq. (5.1) admits a unique square-integrable solution and
thus, it has a Wiener chaos solution. In the sequel, we present the corresponding
propagator system of equation for the current problem.

123



Stoch PDE: Anal Comp (2013) 1:606–633 627

The moments of the solution u of Eq. (5.1) can be derived directly from the stochastic
equation using Itō calculus. For example, the first moment satisfies:

∂2u

∂t2 + A u = 0 with u(0, x) = u0(x) (5.2)

Similar expressions hold for higher order moments.

5.1.1 Propagator system for the 1D wave equation

Using formula (2.3), we obtain the corresponding propagator system for the Wiener
chaos expansion of the wave equation (5.1):

Ut,α + A Uα = Fα

Uα(0, x) = U0(x)1(|α|=0)

(5.3)

where A =
(

0 −c ∂
∂x−c ∂

∂x 0

)

and Fα =
(

0
∑d

k=1 σk1(|α|=1)mi (t)

)

. As mentioned

above, the propagator is a deterministic system of equations and the stochasticity of the
solution is represented by the elements comprising the L2 basis functions {mi (t)}i≥1.
Note also that the first equation in the Wiener chaos expansion (5.3) coincides with
the mean of the stochastic solution. In the sequel we demonstrate the efficiency and
accuracy of the proposed Wiener chaos expansion based scheme.

5.1.2 Numerical results for the 1D wave equation

In our numerical experiments, we consider the following initial condition:

u0(x) = 2 + x1x≤1 + (2 − x)1x≥1, x ∈ [0, 2]. (5.4)

with c = 1 and σ = (2, 1). We also divide the space interval [0, 2] into 50 points
and the time interval [0, 1] into 200 points. As we do not have an explicit analytical
solution for Eq. (5.1), we formulate and solve the equations of the first four moments
analytically. These solutions will hereafter be considered as the true solutions of the
moment equations.

In Fig. 1 we present the first four statistical moments of the solution of equation (5.1)
computed by the Wiener chaos expansion and compare them to the moments based
on the Monte Carlo method with 105 realizations.6 The numerical results obtained
through the Wiener chaos expansion are almost identical to those obtained through
the Monte Carlo method, with 105 realizations. However, the computational time
required for the Wiener chaos is only 0.0048 s as opposed to 397 s required for the
Monte Carlo simulation.

6 From the convergence study, we find that the Monte Carlo simulation requires about 105 realizations, in
order to reach the accuracy of order O(10−5).
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Fig. 1 The first four moments of the Wiener chaos expansion compared to the Monte Carlo simulation
with 105 realizations for the wave equation (5.1)

Table 2 Relative error of the first four moments of the Wiener chaos expansion compared to the true
solution of the moments, for the one dimensional wave equation (5.1)

Mean Second moment Third moment Fourth moment

Wiener chaos 0 4.24 × 10−5 1.02 × 10−5 1.59 × 10−5

Moreover, in Table 2, we provide numerical results concerning the L2 error of the
Wiener chaos expansion compared to the true solution for the moments. The relative
error for the mean based on the Wiener chaos is given by

∥
∥E(uWC E ) − E(utrue)

∥
∥

L2/∥
∥E(utrue)

∥
∥

L2 and similar formulas hold for the higher-order moments.7

5.2 Numerical results for the rate of convergence of the Wiener chaos expansion

In the following numerical experiment we demonstrate the rate of convergence of the
Wiener chaos solution of the stochastic evolution equation (5.5) with respect to the
length of the truncation N .

Consider the 1D stochastic wave equation with random initial condition

∂2u

∂t2 + A u =
d∑

k=1

σkdWt (t, x) ∈ (0, 1] × [0, 2]

u(0, x) = sin(πx) + 0.5
∑

N≥0

ξN /N ! {t = 0} × x ∈ [0, 2]
(5.5)

7 The mean of the solution of equation (5.1) coincides with the zero-order coefficient in the Wiener chaos
expansion
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Fig. 2 Convergence of the L2 norm of the error due to the truncation of the Wiener chaos expansion, with
respect to the length of the truncation N

where ξN ∼ N (0, 1). The initial condition u0(x) admits a Wiener chaos expansion,
with u0(x) = sin(πx)+∑n>0

∑
|α|=n u0,αξα and by Theorem, 3 there exists a unique

Wiener chaos solution u =∑α∈J uαξα to the stochastic evolution equation (5.5).

In Fig. 2, we demonstrate the convergence of the L2 norm of the error due to
truncation of the Wiener chaos expansion, with respect to the length of the truncation
N . In particular, we compute the relative error of the second moment

∥
∥
∥E(u2

WC ) − E(u2
MC )

∥
∥
∥

L2
/

∥
∥
∥E(u2

MC )

∥
∥
∥

L2

of the stochastic evolution equation (5.5) solved using the Wiener chaos expansion
with n = 5, r = 1 and 1 ≤ N ≤ 100. As an analytical solution is not available, we
consider the Monte Carlo solution with 105 realizations as the “true solution” for the
computation of the moments.

From Fig. 2, we conclude that the expansion converges fast with respect to N , even
in the case of the stochastic initial condition. We also note that we obtain accurate
results for N > 1 and further addition of terms to the expansion does not improve the
accuracy of the approximation.

5.3 Stochastic Klein–Gordon equation in 2D

In this section we apply our results to the stochastic Klein–Gordon equation in two
space dimensions. This stochastic equation is the most frequently used wave equation
for the description of particle dynamics in relativistic quantum mechanics (see e.g.
[2,4] and the references therein). In this section, we consider the following 2D Klein–
Gordon equation with multiplicative noise:

ut + A u = u
d∑

k=1

σkdWt

u(0, x, y) = u0(x, y), (x, y) ∈ [0, 2]2

(5.6)
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where A = −c2
(

∂
∂x2 + ∂

∂y2

)
and W (t) = {Wk(t)}1≤k≤d is a Brownian motion

vector with d independent components. Now, let us consider the deterministic initial
condition u0(x, y) = sin(πx) · sin(πy), with c = 0.5 and σ = (0.5, 0.2). Moreover,
we divide the space interval into 50 × 50 points and the time interval into 150 points.
As in the 1D case, Eq. (5.6) admits a Wiener chaos expansion, because it has a unique
square-integrable solution. The corresponding propagator system of equation for the
current problem satisfies the following system of equations:

Ut,α + A Uα = 0

Uα(0, x) = U0(x)1(|α|=0)

(5.7)

where

U =

⎛

⎜
⎜
⎝

u1
u2
u3
u4

⎞

⎟
⎟
⎠ and A =

⎛

⎜
⎜
⎝

0 0 −c ∂
∂x 0

0 0 −c ∂
∂x 0

−c ∂
∂x −c ∂

∂y 0 −∑d
k=1 σk1(|α|=1)mi (t)

0 0 0 −1

⎞

⎟
⎟
⎠

(5.8)

In contrast to the additive noise case, the higher moments of the Klein–Gordon
equation of order higher that one cannot be computed analytically. For that reason,
we compute only the first moment analytically and the higher order moments numer-
ically, using the Monte Carlo simulation. In this case, we refer to the true solution as
the best possible Monte Carlo estimator available, taking into account computational
limitations and convergence results of the MC method (in terms of variance of the
estimator). For the problem at hand, with volatility σ = (0.5, 0.2), we employ the MC
method with 103 realizations, which is sufficient as it produces an error for the mean
of order O(10−4), compared to the analytical solution.

In the following Table 3 we present the relative error of the first four moments
computed using the proposed numerical Wiener chaos scheme, and those computed
through the Monte Carlo simulation, with 103 realizations.

In Fig. 3 we compare the first two statistical moments of the solution of Klein–
Gordon wave equation (5.6) computed by the Wiener chaos expansion to the moments
based on the Monte Carlo method with 103 realizations. As in the one-dimensional
case, the numerical results obtained through the Wiener chaos expansion are almost
identical to those obtained through the Monte Carlo method. In this case, the compu-
tational time required for the Wiener chaos expansion is only 0.3687 s as opposed to
536 s required for the Monte Carlo simulation.

Table 3 Relative error of the first four moments of the Wiener chaos compared to the Monte Carlo
simulation, for the Klein–Gordon wave equation (5.6)

Mean Second moment Third moment Fourth moment

Wiener chaos 7.88 × 10−5 8.69 × 10−5 1.02 × 10−4 1.11 × 10−4
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Fig. 3 Comparison between the first two moments of the Wiener chaos and the Monte Carlo simulation for
the Klein–Gordon wave equation (5.6). Left column first and second moment of the true solution, computed
by the Monte Carlo simulation method. Right column difference between the first and the second moment
computed by the Monte Carlo simulation and the corresponding moments computed using the Wiener chaos
expansion

Concluding, we see that the proposed numerical algorithm based on the Wiener
chaos expansion for the moments almost coincides with the Monte Carlo method
with 103 realizations, but is significantly faster. It is also evaluated numerically that
the artificial viscosity term, introduced analytically in Sect. 3, is necessary, as it pro-
vides numerical stability in the solution of the wave equation in one and two space
dimensions. All the computations ran on an Intel Core 2 3.06 GHz processor under
Windows 7.

6 Conclusions and extensions

In the current work we proposed an efficient and accurate method for solving a large
class of hyperbolic stochastic evolution equations, through the Wiener chaos expan-
sion. The infinite dimensional stochastic evolution equation is projected on a finite
dimensional space, and the solution is determined through the Wiener chaos expan-
sion, as introduced by Lototsky and Rozovsky in [11] and further studied in [9]. The
coefficients of the expansion satisfy a lower triangular system of deterministic hyper-
bolic partial differential equations, known as the Propagator. We then provided both
analytical and numerical results for the rate of convergence of the expansion with
respect to the norm. In particular, a priori error bounds for the error due to the trunca-
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tion of the stochastic equation is provided, along with and a posteriori error estimates
for the discretization are provided.

In hyperbolic PDEs, the smoothness of the solution depends on the smoothness of
the initial and boundary conditions. For instance, if there is a jump in the data at the
start or at the boundaries, then the jump will propagate as a shock in the solution. In
order to provide smooth solutions for the hyperbolic stochastic model, and motivated
by the Lax-Wendroff scheme, we employ the results derived in [9] concerning the
convergence of solution of the hyperbolic equations to solutions of approximate par-
abolic equations as a vanishing viscosity limit. In this case, we use the Lax-Wendroff
finite numerical scheme for the parabolic approximation along with the Upwind finite
difference scheme for the purely hyperbolic problem. Then, it is evaluated numerically
that only the parabolic approximation of the solution, derived through the vanishing
viscosity limit, converges to the solution of the stochastic hyperbolic equation.

The Wiener chaos algorithm is significantly faster than the Monte Carlo method,
while the numerical results derived through the proposed method are very accurate
and almost identical to the Monte Carlo solution. As the theoretical basis of the Wiener
chaos method is independent of the number of spatial dimensions, the computa-
tional gain of the implementation of the proposed numerical method will be definitely
increased in higher spatial dimensions. Comparing the performance of the two dif-
ferent numerical approaches proposed in this paper, we conclude that the Upwind
method produces apparently diffusive and unstable results. Thus, we conclude that
the use of the Lax-Wendroff scheme, which is equivalent to the use of the vanishing
viscosity limit, provides us with stable solutions that depend smoothly upon the data
of the problem.

Concluding, the main advantage of the Wiener chaos expansion is the fast conver-
gence due to the structure of the propagator of the Wiener chaos expansion, as a lower
triangular system of deterministic equations. Another great advantage is the efficiency
due to the orthogonality of the Hermite polynomials that generate the stochastic basis.
The proposed method is general and can be easily extended to a broad family of hyper-
bolic stochastic partial differential equations. The use of the Wiener chaos expansion
for the study of hyperbolic SPDEs is not necessarily restricted to the calculation of
statistical moments. Through the proper modification of Markov type inequalities or
formulae such as the Rice formula [1] one may use the deterministic propagator to
approximate the level sets of the random field generated by the solution of the SPDE.
This is beyond the scope of the present work and is under active consideration.
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