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Abstract A rigorous equation is stated and it is shown that the spatial derivative of the
Cole–Hopf solution of the KPZ equation is a solution of this equation. The method of
proof used to show that a process solves this equation is based on rather weak estimates
so that this method has the advantage that it could be used to verify solutions of other
highly singular SPDEs, too.
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1 Motivation and summary

The formal equation discussed in this paper is

∂

∂t
Y = ∂2

∂u2 Y + γ
∂

∂u
(Y 2) + √

2
∂3 B

∂t∂u2 (1.1)

where γ is a real-valued parameter and B stands for a Brownian sheet thus ∂3 B
∂t∂u2 can

be interpreted as the spatial derivative of a space-time white noise driving force. The
potential solutions Y to this equation which were first constructed in [4] take values in
the space D([0, T ];D ′(R)) of all cadlag functions mapping [0, T ] into the space of
Schwartz distributions D ′(R). So the problem arises to give meaning to the non-linear
term ∂

∂u (Y 2) and this is meant by stating a rigorous equation in this paper.

S. Assing (B)
Department of Statistics, The University of Warwick, Coventry CV4 7AL, UK
e-mail: s.assing@warwick.ac.uk

123



366 Stoch PDE: Anal Comp (2013) 1:365–388

Equation (1.1) is the equation the spatial derivative of a solution of the KPZ equation
for growing interfaces would formally satisfy and the main result in [4] is actually an
approximation scheme for the KPZ equation. The limiting field of this approximation
scheme equals the Cole–Hopf transform of another process and the community started
to call it the Cole–Hopf solution of the KPZ equation. Taking the spatial derivative of
the KPZ equation turns it into a conservative system with an invariant state and that’s
why (1.1) is also called conservative KPZ equation.

There has been a recent breakthrough in the theory of solutions to the KPZ equation,
see [8], and the reader is referred to this work and the references therein for a good
account on the progress being made over the past few years in the understanding of
the KPZ equation. But, as in [4], the main focus in [8] is on an approximation scheme
and it is not shown that the limiting field, which again equals the Cole–Hopf solution,
is the solution of a well-defined equation.

Since Yt ∈ D ′(R) for fixed t , the canonical definition of the ill-posed term ∂
∂u (Y 2

t )

would be a limit of type ∂
∂u [(Yt � JN )2], N → ∞, using a mollifier J ∈ D(R) to

approximate the identity. Here Yt � JN denotes the convolution of the generalized
function Yt and the smooth function JN (u) = N J (Nu), u ∈ R.

It turned out that, even in the case where Yt is stationary, it is hard to make sense of
such a limit in an appropriate space. The author only achieved to get convergence in
a rather artificial space of so-called generalized random variables which made it kind
of impossible to understand (1.1) as a PDE and the notion of solution was based on a
generalized martingale problem (see [1]). It even remains to be shown that Y is indeed
a solution of this generalized martingale problem.

The difficulty seems to be that, as far as we know, there is no control of moments
higher than two. Very good if not the best second order moment estimates for Yt (G) in
the case where Yt is stationary can be found in [5] but the authors themselves remark
that their method cannot be applied to moments of higher order.

On the other hand, the convergence of time integrals
∫ t

r
∂
∂u [(Ys � JN )2] ds, N → ∞,

r ≤ t fixed, is much more regular and the notion of solution to (1.1) introduced in [7]
is based on the existence of such a limit.

However, in [7] it is not explained how ∂
∂u (Y 2) should be understood for a chosen

Y ∈ D([0, T ];D ′(R)). Instead, first showing very useful estimates, the authors of [7]
conclude that

− lim
N→∞

t∫

r

∫

R

(Ys � JN )2(u)
G(u+1/N )−G(u)

1/N
duds exists in mean square (1.2)

for every r ≤ t and every test function G in the Schwartz space S (R). If ∂
∂u (Y 2) is

defined by a limit for every Y ∈ D([0, T ];D ′(R)) then verifying Eq. (1.1) for a possi-
ble solution requires a further limit-exchange and this has not been accomplished in [7].

The main message from [1] is that interchanging limN→∞ and the time integration
in (1.2) leads to severe complications. So one wants to define

〈

1[r,t] ⊗ G ,
∂

∂u
(Y 2)

〉

by − lim
N→∞

t∫

r

∫

R

G ′(u) (Ys � JN )2(u) duds,
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thinking of 1[r,t] ⊗ G as a test function and of 〈 , 〉 as a dual pairing, which triggers
the idea to explain ∂

∂u (Y 2) as an element of D ′((0, T ) × R). Indeed, if

lim
N→∞

T∫

0

∫

R

∂

∂u
φ(t, u) (Yt � JN )2(u) dudt exists for all φ ∈ D((0, T ) × R)

then this defines an element in D ′((0, T )×R). Of course, the above limit does not exist
for all Y ∈ D([0, T ];D ′(R)) and limits of subsequences can be different depending
on φ. So the definition of ∂

∂u (Y 2) justified in this paper requires finding a suitable
subsequence (Nk)

∞
k=1 which is used to split D([0, T ];D ′(R)) into two setsNdiv∪N c

div
where

Ndiv
def=

⎧
⎨

⎩
Y ∈ D([0, T ];D ′(R)) : lim

k→∞

T∫

0

∫

R

∂

∂u
φ(t, u) (Yt � JNk )

2(u) dudt

does not exist for some φ ∈ D((0, T ) × R)

⎫
⎬

⎭
. (1.3)

Defining ∂
∂u (Y 2) ∈ D ′((0, T ) × R) for every φ ∈ D((0, T ) × R) by

〈φ,
∂

∂u
(Y 2)〉 def=

{
0 : Y ∈Ndiv

− limk→∞
∫ T

0

∫
R

∂
∂u φ(t, u) (Yt � JNk )

2(u) dudt : Y ∈N c
div

(1.4)

turns the equation (1.1) into a classical SPDE and it will be shown in this paper that

〈

φ,
∂

∂t
Y − ∂2

∂u2 Y −γ
∂

∂u
(Y 2)−√

2
∂3 B

∂t∂u2

〉

=0 for all φ∈D((0, T )×R) a.s. (1.5)

for the stationary (potential) solution Y constructed in [4] and some Brownian sheet
B both given on the same probability space.

Notice that the limits defining ∂
∂u (Y 2) in the case where Y ∈ N c

div could depend
on the choice of the mollifier J . But, when verifying (1.5) for a fixed γ in this paper,
a subset �γ ⊆ N c

div is constructed such that (1.5) holds for all Y ∈ �γ and ∂
∂u (Y 2)

given by (1.4) on �γ is the same for all even mollifiers J .
If Y ε approximates Y then the standard method for showing that Y satisfies (1.5)

with ∂
∂u (Y 2

t ) defined by (1.4) would be:

control Eε

⎡

⎣
T∫

0

∫

R

∂

∂u
φ(s, u) (Y ε

s � JN )2(u) duds

⎤

⎦

2

in ε, N , φ. (1.6)

A good control of this type has been obtained in [7] for φ = 1[r,t] ⊗ G using the
density fluctuations Y ε in

√
ε-asymmetric exclusion as approximation scheme. But,
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sharp bounds on the spectral gap of the symmetric exclusion processes restricted to
finite boxes were required.

In this paper it is demonstrated that (1.6) can be based on the weaker estimates
obtained in [3, Lemma 3.3]. Using these weaker estimates makes it more difficult
to verify that Y satisfies (1.5). But the proof of Proposition 2.5, which is the main
achievement of this paper, presents a method of how to overcome this difficulty.
Having a method based on weaker estimates might be beneficial when it comes to
a similar problem with other highly singular SPDEs.

Finally it should be mentioned that the estimates used in this paper, just as the
estimates found in [7], are only justified in the case where Y is the spatial derivative of
the Cole–Hopf solution starting from Gaussian white noise on R which is a stationary
state. In this case, in particular since this invariant state is Gaussian, the state space
of Y can be relaxed to be D([0, T ];S ′(R)) with S ′(R) being the space of tem-
pered distributions—see Remark 2.2(i). But, in the non-stationary case, the growth
conditions implied by the theorems in [4] would not allow for S ′(R) without further
analysis. As a consequence ∂

∂u (Y 2) was defined to be an element of D ′((0, T ) × R)

to leave room for non-stationary solutions.
It remains an open problem to show that the spatial derivative of the Cole–Hopf

solution starting from initial conditions other than Gaussian white noise on R satisfies
(1.5).

2 Notation and results

The approximation scheme for the conservative KPZ equation used in this paper goes
back to [4]. It is based on

√
ε-asymmetric exclusion processes and will be briefly

explained in what follows. The reader is referred to [10] for the underlying theory of
exclusion processes.

Fix γ = 0 and consider a scaling parameter ε > 0 small enough such that
√

εγ ∈
[−1, 1]. Denote by (�,F , Pε

η , η ∈ {0, 1}Z, (ηt )t≥0) the strong Markov Feller process

whose generator Lε acts on local functions f : {0, 1}Z → R as

Lε f (η) =
∑

x∈Z

(
(1 + √

εγ ) η(x)(1 − η(x + 1))[ f (ηx,x+1) − f (η)]

+(1 − √
εγ ) η(x)(1 − η(x − 1))[ f (ηx,x−1) − f (η)]

)
(2.1)

where ηx,y is standard notation for the operation which exchanges the ‘spins’ at x and
y.

Denote by ν1/2 the Bernoulli product measure on {0, 1}Z satisfying ν1/2(η(x) =
1) = 1/2 for all x ∈ Z. Define

Pε =
∫

Pε
η dν1/2(η), ξt (x) = ηt (x) − 1/2√

1/4
, t ≥ 0, x ∈ Z,

and notice that the process (ξt )t≥0 is a mean-zero stationary process on (�,F , Pε)

which takes values in {−1, 1}Z.
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Denote by δεx the Dirac measure concentrated in the macroscopic point εx and
define by

Y ε
t = √

ε
∑

x∈Z

ξtε−2(x)δεx , t ≥ 0,

the measure-valued density fluctuation field. Fix a finite time horizon T and regard
Y ε = (Y ε

t )t∈[0,T ] as a random variable taking values in the space D([0, T ];S ′(R)) of
all cadlag functions mapping [0, T ] into the space of tempered distributions S ′(R).
Equip D([0, T ];S ′(R)) with the Skorokhod topology J1 and let Y be the notation
for both an element in and the identity map on D([0, T ];S ′(R)). So Y = (Yt )t∈[0,T ]
plays the role of the coordinate process on D([0, T ];S ′(R)) and it is evident that the
topological σ -algebra on D([0, T ];S ′(R)) is equal to FY

T = σ({Yt (G) : t ≤ T, G ∈
S (R)}).
Theorem 2.1 [4, Th.B.1 & Prop.B.2] Let P̂ε denote the push forward of Pε with
respect to the map Y ε. Then, when ε ↓ 0, the probability measures P̂ε converge
weakly to a probability measure on D([0, T ];S ′(R)) which is denoted by Pγ in what
follows. The measure Pγ has the following properties:

(i) the support of Pγ is a subset of C([0, T ];S ′(R));
(ii) the process Y is stationary under Pγ satisfying Yt ∼ μ, t ∈ [0, T ], where μ is

the mean-zero Gaussian white noise measure with covariance Eγ Yt (G)Yt (H) =∫
R

G H du;
(iii) Pγ is equal to the law of the spatial derivative of the so-called Cole–Hopf solution

of the KPZ equation for growing interfaces starting from a two-sided Brownian
motion.

Remark 2.2 (i) The space used in Th.B.1 of [4] is D([0, T ];D ′(R)). But this can
be relaxed to D([0, T ];S ′(R)) because ν1/2 is the initial condition of (ηt )t≥0.
Indeed, this implies that condition (2.13) on page 578 in [4] is satisfied for m ≡ 0
and one can rule out that the functions fX used in the proof of Th.B.1 have
exponential growth.

(ii) This result in [4] is stronger than the tightness of {P̂ε, ε > 0} shown in [7] as
tightness would only give the weak convergence with respect to certain subse-
quences εk, εk ↓ 0, with possibly different limit points. The identification of all
limit points is a consequence of the Cole–Hopf transform for discrete systems
applied in [4].

Definition 2.3 The coordinate process Y on the probability space (D([0, T ];S ′(R)),

FY
T , Pγ ) is called Cole–Hopf solution of the conservative KPZ equation (1.1).

The following two results whose proofs will be given in the next section form the
basis for the method of verification used in this paper to show that Y solves Eq. (1.1) in
the sense of (1.5) where ∂

∂u (Y 2
t ) is defined by (1.4). Notice that, by technical reasons,

the mollifier J ∈ D(R) defining JN by u �→ N J (Nu), N ≥ 1, should be taken to be
even.
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Lemma 2.4 Fix G ∈ S (R). Then

T∫

0

dt Eγ

⎡

⎣
t∫

0

∫

R

G ′(u)
(
(Ys � JÑ )2(u) − (Ys � JN )2(u)

)
duds

⎤

⎦

2

≤ eT CJ N−1/3
3∑

m=1

sup
u

|(1 + u2)
∂m

∂um
G(u)|2

for all Ñ ≥ N ≥ 1 where CJ is a constant which only depends on the choice of the
mollifier J .

This lemma is proven using the estimates obtained in [3, Lemma 3.3] by applying
a resolvent-type method. It only gives a bound on the (⊗Pγ )—average of the square
of the functional

(t, Y ) �→
t∫

0

∫

R

G ′(u)
(
(Ys � JÑ )2(u) − (Ys � JN )2(u)

)
duds

where  denotes the Lebesgue measure on [0, T ]. The main disadvantage of using an
L2( ⊗ Pγ )—estimate of the above functional is that it complicates the method of
identifying the Brownian sheet in (1.5). The next proposition deals with each single
step of this method in detail. It’s proof is also based on [3, Lemma 3.3], only. This
means that fairly weak L2( ⊗ P) a priori estimates are still good enough for solving
singular SPDEs.

Define the map

MN : D([0, T ];S ′(R)) → D([0, T ];S ′(R))

by

MN (Y )G
t = Yt (G) − Y0(G) −

t∫

0

Ys(G
′′) ds + γ

t∫

0

∫

R

G ′(u)(Ys � JN )2(u) duds.

Applying Lemma 2.4 gives that, for every G ∈ S (R), there exists a B([0, T ])⊗FY
T -

measurable process

M̃G : [0, T ] × D([0, T ];S ′(R)) → R

such that

T∫

0

dt Eγ

[
M̃G

t − MN (Y )G
t

]2 → 0, N → ∞. (2.2)
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Denote by F the filtration (Ft )t∈[0,T ] with Ft = σ({Ys(G) : s ≤ t, G ∈ S (R)} ∪ N )

where N is the collection of all Pγ -null sets in FY
T .

Proposition 2.5 (i) For every G ∈ S (R), there exists an F-adapted process MG =
(MG

t )t∈[0,T ] on (D([0, T ];S ′(R)),FY
T , Pγ ) which is a continuous version of

M̃G in the following sense: there is a measurable subset TG ⊆ [0, T ] with
(TG) = T such that M̃G

t = MG
t a.s. for all t ∈ TG. For every positive T ′ < T ,

when restricted to [0, T ′], the process MG is a square integrable F-martingale.
(ii) For every G ∈ S (R), the process MG = (MG

t )t∈[0,T ] is an F-Brownian motion
with variance 2‖G ′‖2

2 on the probability space (D([0, T ];S ′(R)),FY
T , Pγ ).

(iii) It holds that

Ma1G1+a2G2
t = a1 MG1

t + a2 MG2
t a.s.

for every t ∈ [0, T ], a1, a2 ∈ R and G1, G2 ∈ S (R).
(iv) The process MG

t indexed by t ∈ [0, T ] and G ∈ S (R) is a centred Gaussian
process on (D([0, T ];S ′(R)),FY

T , Pγ ) with covariance

Eγ MG1
t1 MG2

t2 = 2(t1 ∧ t2)
∫

R

G ′
1(u)G ′

2(u) du

hence there is a Brownian sheet B(t, u), t ∈[0, T ], u ∈R, on (D([0, T ];S ′(R)),

FY
T , Pγ ) such that

MG
t = √

2
∫

R

B(t, u)G ′′(u) du a.s.

for every t ∈ [0, T ] and G ∈ S (R).

In what follows let M = (Mt )t∈[0,T ] denote the continuous S ′(R)-valued process
defined by

Mt (G)
def= √

2
∫

R

B(t, u)G ′′(u) du, t ∈ [0, T ], G ∈ S (R). (2.3)

Remark that, by Schwartz’ kernel theorem, M and Y can also be considered random
variables taking values in D ′((0, T ) × R) such that

T∫

0

dt g′(t)

⎡

⎣−Yt (G) + Y0(G) +
t∫

0

Ys(G
′′) ds + Mt (G)

⎤

⎦

=
〈

g ⊗ G ,
∂

∂t
Y − ∂2

∂u2 Y − ∂

∂t
M

〉
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for all g ∈ D((0, T )), G ∈ D(R) where 〈· , ·〉 denotes the dual pairing between
D((0, T ) × R) and D ′((0, T ) × R). Notice that the last equality can be extended
to hold for all g ∈ C1([0, T ]) with g(T ) = 0 and G ∈ S (R). Then it is an easy
consequence of Lemma 2.4, (2.2) and the Cauchy–Schwarz inequality that

Eγ

∣
∣
∣
∣
∣
∣
−

T∫

0

∫

R

g(t)G ′(u) (Yt � JN )2(u) dudt −
〈

g ⊗ G ,
∂

∂t
Y − ∂2

∂u2 Y − ∂

∂t
M

〉

/γ

∣
∣
∣
∣
∣
∣

2

≤ 2eT CJ N−1/3 ‖g′‖2
L2[0,T ]

3∑

m=1

sup
u

|(1 + u2)
∂m

∂um
G(u)|2, N ≥ 1, (2.4)

for all g ∈ C1([0, T ]) with g(T ) = 0 and G ∈ S (R).
The next step consists in finding a subsequence (Nk)

∞
k=1 and a subset �γ ∈ FY

T
of measure Pγ (�γ ) = 1 such that �γ ⊆ N c

div where Ndiv is defined by (1.3). The
ultimate goal would of course be a subsequence (Nk)

∞
k=1 which is the same for all

γ = 0.
For this purpose it turns out to be useful to think of the function

(t, u) �→ (Yt � JN )2(u) where Y ∈ D([0, T ];S ′(R))

as a regular distribution in D ′((0, T )×R). This regular distribution is denoted by (Y �2
JN )2 in what follows. Notice the notation �2 which emphasises that the convolution
only acts on the space component of Y .

Then the idea is to construct a Banach space (E, ||| · |||) satisfying D((0, T ) × R) ⊆
E ′ ⊆ L2([0, T ] × R) ⊆ E such that

Eγ ||| ∂

∂u
(Y �2 JN )2−

(
∂

∂t
Y − ∂2

∂u2 Y − ∂

∂t
M

)

/γ |||2 ≤ const/Nα, N ≥ 1, (2.5)

for some α > 0.

Remark 2.6 Suppose for now that (2.5) can be achieved by finding ||| · |||, α and
const where the latter might depend on T, J and γ . Choosing (Nk)

∞
k=1 to be

Nk =
{

kα̃ for some α̃ > 1/α : α ≤ 1
k : α > 1

would then yield

∞∑

k=1

Pγ

({

||| ∂

∂u
(Y �2 JNk )

2−
(

∂

∂t
Y − ∂2

∂u2 Y − ∂

∂t
M

)

/γ |||≥δ

})

<∞, ∀ δ > 0,

hence

123



Stoch PDE: Anal Comp (2013) 1:365–388 373

∣
∣
∣
∣

∣
∣
∣
∣

∣
∣
∣
∣

∂

∂u
(Y �2 JNk )

2 −
(

∂

∂t
Y − ∂2

∂u2 Y − ∂

∂t
M

)

/γ

∣
∣
∣
∣

∣
∣
∣
∣

∣
∣
∣
∣ −→ 0, k → ∞,

for all Y ∈ �γ for some �γ ∈ FY
T with Pγ (�γ ) = 1. Since weak convergence in

E implies weak convergence in D ′((0, T ) × R) one would obtain that

〈

φ,
∂

∂t
Y − ∂2

∂u2 Y − ∂

∂t
M

〉

/γ = lim
k→∞

〈

φ,
∂

∂u
(Y �2 JNk )

2
〉

= − lim
k→∞

T∫

0

∫

R

∂

∂u
φ(t, u) (Yt � JNk )

2(u) dudt

for all φ ∈ D((0, T )×R) and Y ∈ �γ which obviously means �γ ⊆ N c
div where

the chosen subsequence (Nk)
∞
k=1 would indeed be the same for all γ = 0. Notice

that 〈φ , ∂
∂t Y − ∂2

∂u2 Y − ∂
∂t M〉/γ does not depend on the choice of J so that ∂

∂u (Y 2)

given by (1.4) on �γ would be the same for all even mollifiers J . Furthermore,
the equality in (1.5) would also be true for all φ ∈ D((0, T ) × R) and all Y ∈ �γ

because ∂ M/∂t = √
2 ∂3 B/∂t/∂u2 by (2.3).

So it remains to justify (2.5). Of course, one wants to use the bounds given by the
right-hand side of (2.4) to construct the Banach space (E, ||| · |||) but some care is needed
to ensure that D((0, T )×R) ⊆ E ′. A straight forward approach to tackle this problem
is using a so-called negative-order Sobolev space which is introduced next.

First observe that

sup
u∈R

|(1+u2)H(u)|2 ≤4 ‖(1 + u2)H‖2
L2(R)

+ 2 ‖(1 + u2)H‖L2(R)‖(1 +u2)H ′‖L2(R)

(2.6)

for any test function H ∈ S (R). Now let (gm)∞m=1 be the eigenbasis of the one-
dimensional Laplacian on [0, T ] with Dirichlet boundary conditions and let (Gn)∞n=1
be the collection of Hermite functions. Then (gn ⊗ Gm)n,m forms an orthonormal
basis in L2([0, T ] × R) and it follows from (2.4) and (2.6) that

Eγ

∣
∣
∣
∣

〈

gm ⊗ Gn ,
∂

∂u
(Y �2 JNk )

2−
(

∂

∂t
Y − ∂2

∂u2 Y − ∂

∂t
M

)

/γ

〉∣∣
∣
∣

2

≤const · m2n6/N 1/3

(2.7)

where const does not depend on the choice of m and n. Of course the factor m2 goes
back to the eigenvalue associated with gm and, using the combinatorical properties
of the Hermite functions, O(n6) is a quite crude estimate of the norms of H and its
derivative in (2.6) when H = G ′

n, G ′′
n, G ′′′

n . So an appropriate choice of the Banach
space E is the completion of D((0, T ) × R) with respect to the norm ||| · ||| given by
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|||φ|||2 =
∑

m,n

[
(m3 + n3)m2n6

]−1 〈gm ⊗ Gn, φ〉2.

Notice that D((0, T ) × R) ⊆ E ′ is a standard consequence when choosing (gm)∞m=1
and (Gn)∞n=1 as above.

Using this Banach space and applying (2.7) to calculate Eγ ||| ∂
∂u (Y �2 JN )2 −( ∂

∂t Y −
∂2

∂u2 Y − ∂
∂t M)/γ |||2 results in (2.5) for α = 1/3 hence Remark 2.6 proves the following

theorem.

Theorem 2.7 (i) There exists a subsequence (Nk)
∞
k=1 such that for every γ = 0

there is a set �γ ∈ FY
T with Pγ (�γ ) = 1 such that �γ ⊆ N c

div where Ndiv

is defined by (1.3) and ∂
∂u (Y 2) given by (1.4) on �γ is the same for all even

mollifiers J .
(ii) There exists a Brownian sheet B(t, u), t ∈ [0, T ], u ∈ R, on (D([0, T ];D ′(R)),

FY
T , Pγ ) such that the coordinate process Y solves the Eq. (1.1) in the sense of

(1.5).

Remark 2.8 (i) The choice of the subsequence used in the definition (1.4) of ∂
∂u (Y 2)

depends on the power α needed to establish (2.5). The power α = 1/3 used in
this paper goes back to [2]. The results in [7] suggest that α = 1/2 seems to be
possible. However, for the purpose of giving rigorous sense to the Eq. (1.1), the
choice of an optimal subsequence is not intrinsic and so the author used what
he had proved himself in [2]. But, in the light of the new techniques applied in
[8], he would like to conjecture the following: Eq. (1.1) holds true in the sense of

(1.5) using Nk = k in the definition (1.4) of ∂
∂u (Y 2).

(ii) It is a consequence of Theorem 2.7(i) that
⋃

γ =0 �γ ⊆ N c
div . But, as shown in

[4], each measure Pγ is related to the solution of a corresponding stochastic heat
equation

∂

∂t
Z = ∂2

∂u2 Z + γ
√

2 Z
∂2 B

∂t∂u
, γ = 0,

through the Cole–Hopf transform and changing the diffusion coefficient by γ

indicates that all measures Pγ , γ = 0, are singular to each other. Thus, the set⋃
γ =0 �γ is not too small since Pγ (�γ ) = 1 for all γ = 0.

3 Proofs

This section contains the proofs of Lemma 2.4 and Proposition 2.5, but first, further
notation and auxiliary results need to be provided.

Fix ε > 0 small enough such that
√

εγ ∈ [−1, 1], fix a test function G ∈ S (R)

and denote by ‖ · ‖p the norm in L p(R), 1 ≤ p ≤ ∞. Then

MG,ε
t = Y ε

t (G) − Y ε
0 (G) −

t∫

0

ε−2 LεY ε
s (G) ds, t ≥ 0,
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is a martingale on (�,F , Pε) by standard theory on strong Markov processes and

t∫

0

ε−2 LεY ε
s (G) ds =

t∫

0

ε− 3
2
∑

x∈Z

G(εx)Lεξsε−2(x) ds, t ≥ 0, (3.1)

where

Lεξsε−2(x) = [(
ξsε−2(x − 1) − 2ξsε−2(x) + ξsε−2(x + 1)

)

+√
εγ

(
ξsε−2(x)ξsε−2(x + 1) − ξsε−2(x − 1)ξsε−2(x)

)] (3.2)

follows from (2.1). Substituting (3.2) into (3.1), performing a summation by parts and
approximating by Taylor expansion implies

t∫

0

ε−2 LεY ε
s (G) ds =

t∫

0

Y ε
s (G ′′) ds − γ

t∫

0

∑

x∈Z

G ′(εx) ξsε−2(x)ξsε−2(x + 1) ds

+γ ε

2

t∫

0

∑

x∈Z

G ′′(εx) ξsε−2(x)ξsε−2(x + 1) ds + RG
ε (t)

with

|RG
ε (t)| ≤ √

ε
1

6
(2 + √

εγ )(π + 2ε)‖(1 + u2)G ′′′‖∞ · t, t ≥ 0, (3.3)

where π + 2ε is an upper bound of the discretization of the integral
∫
R
(1 + u2)−1du

in this context. Now, by notational purpose, define

RG ′,0
ε,N (t)

def= ε

2

t∫

0

∑

x∈Z

G ′′(εx)ξsε−2(x)ξsε−2(x + 1) ds, t ≥ 0, (3.4)

although the right-hand side does not depend on N and includes G ′′ instead of G ′.
Using this notation leads to the decomposition

MG,ε
t + RG

ε (t) + γ RG ′,0
ε,N (t) = Y ε

t (G) − Y ε
0 (G) −

t∫

0

Y ε
s (G ′′) ds

+γ

t∫

0

∑

x∈Z

G ′(εx)ξsε−2(x)ξsε−2(x + 1) ds

(3.5)

for all t ≥ 0.
It turns out to be useful to rewrite the difference below as follows
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t∫

0

∫

R

G ′(u)(Y ε
s � JN )2(u) duds −

t∫

0

∑

x∈Z

G ′(εx)ξsε−2(x)ξsε−2(x + 1) ds =
4∑

i=1

RG ′,i
ε,N (t)

(3.6)

where

RG ′,i
ε,N (t)

def=
t∫

0

V G ′,i
ε,N (ξsε−2) ds, t ≥ 0, i = 1, 2, 3, 4, (3.7)

are given by

V G ′,1
ε,N (ξ) =

∑

x∈Z

∫

R

[G ′(u) − G ′(εx)]JN (u − εx)
∑

x̃∈Z

εJN (u − εx̃) du ξ(x)ξ(x̃),

V G ′,2
ε,N (ξ) = ε

∑

x∈Z

G ′(εx)

∫

R

J 2
N (u − εx) du ξ(x)[ξ(x) − ξ(x + 1)],

V G ′,3
ε,N (ξ) = ε

∑

x =x̃

G ′(εx)

∫

R

JN (u − εx)JN (u − εx̃) du ξ(x)[ξ(x̃) − ξ(x + 1)],

V G ′,4
ε,N (ξ) =

∑

x∈Z

G ′(εx)

∫

R

JN (u − εx)

[
∑

x̃∈Z

εJN (u − εx̃) − 1

]

du ξ(x)ξ(x + 1).

Notice that
∫
R

G ′(u)du = 0 hence the following lemma can be applied in this context.

Lemma 3.1 [3, Lemma 3.3] Recall (3.7) for the definition of RG ′,i
ε,N , i = 1, 2, 3, 4.

Then

(i)
∫ T

0 dt Eε

[
RG ′,1

ε,N (t)
]2 ≤ eT C̃J

( ‖(1+u2)G ′′′‖2∞
N 2 + ‖(1+u2)G ′′‖2∞

N

)

(ii)
∫ T

0 dt Eε

[
RG ′,2

ε,N (t)
]2 ≤ eT C̃J

(
ε2 N 2 ‖G ′′‖2∞ + εN 2 ‖(1 + u2)G ′‖2∞

)

(iii)
∫ T

0 dt Eε

[
RG ′,3

ε,N (t)
]2 ≤ eT C̃J

‖(1+u2)G ′‖2∞
N 1/3

(iv)
∫ T

0 dt Eε

[
RG ′,4

ε,N (t)
]2 ≤ T 3C̃J ε2 N 4‖G ′‖2

1

for all ε > 0, N ≥ 1 where C̃J is a constant which only depends on the choice of the
mollifier J .

Remark 3.2 Recall the definition of RG ′,0
ε,N given in (3.4) which does not depend on

N . Then the rate of convergence

T∫

0

dt Eε

[
RG ′,0

ε,N (t)
]2 = O(ε2), ε ↓ 0, uniformly in N , (3.8)
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follows from Remark 1(iii) in [2] by the same method used in the proof of the above
lemma in [3].

Proof of Lemma 2.4 Fix N ≥ 1, fix δ > 0 and choose Nδ ≥ N such that

8eT C̃J

(
N−2

δ ‖(1+u2)G ′′′‖2∞+N−1
δ ‖(1+u2)G ′′‖2∞+N−1/3

δ ‖(1+u2)G ′‖2∞
)

≤ δ/4

where C̃J is the constant appearing in Lemma 3.1. Then

T∫

0

dt Eγ

⎡

⎣
t∫

0

∫

R

G ′(u)
(
(Ys � JNδ )

2(u) − (Ys � JN )2(u)
)

duds

⎤

⎦

2

=
T∫

0

dt

t∫

0

∫

R

t∫

0

∫

R

ds1du1ds2du2 G ′(u1) G ′(u2)

×Eγ

(
(Ys1 � JNδ )

2(u1)−(Ys1 � JN )2(u1)
) (

(Ys2 � JNδ )
2(u2)−(Ys2 � JN )2(u2)

)

where by Lemma 4.1 in the Appendix

Eγ

(
(Ys1 � JNδ )

2(u1) − (Ys1 � JN )2(u1)
) (

(Ys2 � JNδ )
2(u2) − (Ys2 � JN )2(u2)

)

= lim
ε↓0

Êε

(
(Ys1 � JNδ )

2(u1)−(Ys1 � JN )2(u1)
)(

(Ys2 � JNδ )
2(u2)−(Ys2 � JN )2(u2)

)

such that

∣
∣
∣Êε

(
(Ys1 � JNδ )

2(u1) − (Ys1 � JN )2(u1)
) (

(Ys2 � JNδ )
2(u2) − (Ys2 � JN )2(u2)

)∣∣
∣
2

≤ f̂ (‖JN ‖2, ‖JNδ‖2)

for all ε ≤ 1, 0 ≤ s1, s2 ≤ T and u1, u2 ∈ R. Hence, by dominated convergence, it
follows that

T∫

0

dt Eγ

⎡

⎣
t∫

0

∫

R

G ′(u)
(
(Ys � JNδ )

2(u) − (Ys � JN )2(u)
)

duds

⎤

⎦

2

≤ δ

2
+

T∫

0

dt Êε

⎡

⎣
t∫

0

∫

R

G ′(u)
(
(Ys � JNδ )

2(u)−(Ys � JN )2(u)
)

duds

⎤

⎦

2

(3.9)

if ε = εN ,Nδ > 0 is chosen to be sufficiently small.
Using (3.6), the last summand can be further estimated by
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8
4∑

i=1

T∫

0

dt Eε

[
RG ′,i

ε,N (t)
]2 + 8

4∑

i=1

T∫

0

dt Eε

[
RG ′,i

ε,Nδ
(t)
]2

where

4∑

i=1

∞∫

0

dt Eε

[
RG ′,i

ε,N (t)
]2 ≤ eT C̃J

(‖(1+u2)G ′′′‖2∞
N 2 + ‖(1+u2)G ′′‖2∞

N
+ ‖(1+u2)G ′‖2∞

N 1/3

)

+eT C̃J
(
ε2 N 2‖G ′′‖2∞+εN 2‖(1+u2)G ′‖2∞+ε2 N 4‖G ′‖2

1

)

by Lemma 3.1. Of course, the same inequality holds if N is replaced by Nδ such that

4∑

i=1

∞∫

0

dt Eε

[
RG ′,i

ε,Nδ
(t)
]2 ≤ δ

32
+ eT C̃J

(
ε2 N 2

δ ‖G ′′‖2∞ + εN 2
δ ‖(1 + u2)G ′‖2∞

+ε2 N 4
δ ‖G ′‖2

1

)

by the choice of Nδ at the beginning of this proof. So, choosing ε = εN ,Nδ small
enough such that both (3.9) and

2 · 8eT C̃J

(
ε2 Nδ

2 · ‖G ′′‖2∞ + εNδ
2 · cG‖G ′‖2∞ + ε2 Nδ

4 · ‖G ′‖2
1

)
≤ δ/4

yields

T∫

0

dt Eγ

⎡

⎣
t∫

0

∫

R

G ′(u)
(
(Ys � JNδ )

2(u) − (Ys � JN )2(u)
)

duds

⎤

⎦

2

≤ δ + 8eT C̃J

(‖(1 + u2)G ′′′‖2∞
N 2 + ‖(1 + u2)G ′′‖2∞

N
+ ‖(1 + u2)G ′‖2∞

N 1/3

)

≤ δ + 8eT C̃J N−1/3
3∑

m=1

sup
u

|(1 + u2)
∂m

∂um
G(u)|2.

Repeating the above procedure with respect to Nδ ≥ Ñ gives the same inequality for
Ñ . Hence

T∫

0

dt Eγ

⎡

⎣
t∫

0

∫

R

G ′(u)
(
(Ys � JÑ )2(u) − (Ys � JN )2(u)

)
duds

⎤

⎦

2

≤ 4δ + 32eT C̃J N−1/3
3∑

m=1

sup
u

|(1 + u2)
∂m

∂um
G(u)|2

123



Stoch PDE: Anal Comp (2013) 1:365–388 379

for arbitrary but fixed N , Ñ with Ñ ≥ N which finally proves the lemma since δ can
be made arbitrarily small. ��
Proof of Proposition 2.5(i) In this proof the notation const is used when a notation for
a constant is needed thus const can take different values depending on the situation.

Fix G ∈ S (R). Applying (2.2), there exists a subsequence (Nk)
∞
k=1 and a measur-

able subset TG ⊆ [0, T ] with (TG) = T such that

lim
k→∞ Eγ

[
M̃G

t − MNk (Y )G
t

]2 = 0 (3.10)

for all t ∈ TG . For technical reasons assume T /∈ TG and let {t1, t2, . . . } ⊆ TG be a
dense subset of [0, T ].

First observe that M̃G
tn is FY

tn - measurable, n = 1, 2, . . . , and and the key is to show
the following FY

t - martingale property

Eγ X [M̃G
tn − M̃G

tn′ ] = 0

for tn′, tn ∈ {t1, t2, . . . } satisfying tn′ < tn and an arbitrary random variable X of the
form X = f (Ys1(H1), . . . , Ysp (Hp)) where f : R

p → R is a bounded continuous
function, Hi ∈ S (R) and 0 ≤ si ≤ tn′, 1 ≤ i ≤ p. Of course, this martingale
property is satisfied if there exists const > 0 such that

(
Eγ X [M̃G

tn − M̃G
tn′ ]
)2 ≤ const · δ for all δ > 0. (3.11)

In order to prove (3.11), fix an arbitrary δ > 0 and remark that Lemma 3.1 implies

T∫

0

dt Eε

[
RG ′,1

ε,N (t)
]2 = O(N−1) and

T∫

0

dt Eε

[
RG ′,3

ε,N (t)
]2 = O(N−1/3)

uniformly in ε > 0. Hence, for some τ > 0 satisfying tn + 2τ < T , one can choose
k big enough such that both



({

t ∈ [0, T ] : Eε

[
RG ′,1

ε,Nk
(t)
]2+Eε

[
RG ′,3

ε,Nk
(t)
]2 ≥ δ

})

≤τ/2 for all ε > 0 (3.12)

and

Eγ

[
M̃G

tn − MNk (Y )G
tn

]2 + Eγ

[
M̃G

tn′ − MNk (Y )G
tn′

]2
< δ (3.13)

hold true. This k = kδ is chosen and fixed for proving (3.11) in what follows.
Of course, applying Cauchy–Schwarz, (3.13) implies

(
Eγ X [M̃G

tn − M̃G
tn′ ]
)2 ≤ const

{

δ +
(

Eγ X [MNk (Y )G
tn − MNk (Y )G

tn′ ]
)2
}

. (3.14)

Now, substituting the definition of MNk , one obtains that
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(
Eγ X [MNk (Y )G

tn − MNk (Y )G
tn′ ]
)2 =

⎛

⎜
⎝Eγ X [Ytn (G) − Ytn′ (G)]−

tn∫

tn′

Eγ XYs(G
′′) ds

+γ

tn∫

tn′

∫

R

G ′(u) Eγ X (Ys � JNk )
2(u) duds

⎞

⎟
⎠

2

where

Eγ X (Ys � JNk )
2(u) = lim

ε↓0
Êε X (Ys � JNk )

2(u)

such that

|Êε X (Ys � JNk )
2(u)|2 ≤ supx∈Rp | f (x)| f̂ (‖JNk )‖2

2)

for all ε ≤ 1, s ∈ [0, T ] and u ∈ R by Lemma 4.1 in the Appendix. Here f is the
function defining X while f̂ corresponds to Lemma 4.1 applied to (Ys � JNk )

2(u) and
does not depend on u. So

tn∫

tn′

∫

R

G ′(u) Eγ X (Ys � JNk )
2(u) duds = lim

ε↓0

tn∫

tn′

∫

R

G ′(u) Êε X (Ys � JNk )
2(u) duds

by dominated convergence and, as similar estimates can be obtained for the remaining
but easier terms, one arrives at

(
Eγ X [MNk (Y )G

tn − MNk (Y )G
tn′ ]
)2

= lim
ε↓0

⎛

⎜
⎝Eε Xε

⎡

⎢
⎣Y ε

tn (G)−Y ε
tn′ (G)−

tn∫

tn′

⎧
⎨

⎩
Y ε

s (G ′′) − γ

∫

R

G ′(u)(Y ε
s � JNk )

2(u) du

⎫
⎬

⎭
ds

⎤

⎥
⎦

⎞

⎟
⎠

2

= lim
ε↓0

(

Eε Xε

[

MG,ε
tn −MG,ε

tn′ +RG
ε (tn)−RG

ε (tn′)+γ

4∑

i=0

(
RG ′,i

ε,Nk
(tn)−RG ′,i

ε,Nk
(tn′)

)
])2

using (3.5) and (3.6) for the last equality and writing Xε as a substitute for
f (Y ε

s1
(H1), . . . , Y ε

sp
(Hp)). Notice that Eε Xε[MG,ε

tn − MG,ε
tn′ ] disappears by the mar-

tingale property. So, if ε0 is chosen small enough then

(
Eγ X [MNk (Y )G

tn − MNk (Y )G
tn′ ]
)2

≤ const

⎧
⎨

⎩
δ +

∑

t∈{tn ,tn′ }

(

Eε0

[
RG

ε0
(t)
]2 +

4∑

i=0

Eε0

[
RG ′,i

ε0,Nk
(t)
]2
)⎫⎬

⎭
(3.15)
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by Cauchy–Schwarz. Also, choose ε0 small enough such that

Eε0

[
RG

ε0
(tn)

]2 + Eε0

[
RG

ε0
(tn′)

]2
< δ

which is possible by (3.3). The next lemma provides estimates for the remaining
summands.

Lemma 3.3 Fix 0 ≤ i ≤ 4, t ∈ {tn, tn′ } and τ > 0 satisfying tn + 2τ < T . If

({t ∈ [0, T ] : Eε

[
RG ′,i

ε,N (t)
]2 ≥ δ}) ≤ τ/2

then there exists t̃ ∈ [t, t + 2τ ] such that

Eε

[
RG ′,i

ε,N (t̃)
]2

< δ and Eε

[
RG ′,i

ε,N (t̃) − RG ′,i
ε,N (t)

]2
< δ.

Indeed, observe that if t̃ ≥ t then

Eε

[
RG ′,i

ε,N (t̃) − RG ′,i
ε,N (t)

]2 = Eε

[
RG ′,i

ε,N (t̃ − t)
]2

by stationarity and the Markov property. Now assume the contrary of the lemma’s
assertion, hence

[t, t + 2τ ] ⊆
{

t̃ ∈ [t, t + 2τ ] : Eε

[
RG ′,i

ε,N (t̃)
]2 ≥ δ

}

∪
{

t̃ ∈ [t, t + 2τ ] : Eε

[
RG ′,i

ε,N (t̃) − RG ′,i
ε,N (t)

]2 ≥ δ

}

=
{

t̃ ∈ [t, t + 2τ ] : Eε

[
RG ′,i

ε,N (t̃)
]2 ≥ δ

}

∪
{

t̃ ∈ [t, t + 2τ ] : Eε

[
RG ′,i

ε,N (t̃ − t)
]2 ≥ δ

}

.

Thus, as the Lebesgue measures of each of the sets on the last equality’s right-hand
side are bounded by τ/2, one obtains that 2τ ≤ τ which is a contradiction proving
the lemma.

Next, for fixed Nk , from Lemma 3.1 follows that

T∫

0

dt Eε

[
RG ′,2

ε,Nk
(t)
]2 = O(ε) and

T∫

0

dt Eε

[
RG ′,4

ε,Nk
(t)
]2 = O(ε2)

and, additionally taking into account (3.8), one obtains that



({

t ∈ [0, T ] : Eε1

[
RG ′,0

ε1,Nk
(t)
]2+Eε1

[
RG ′,2

ε1,Nk
(t)
]2+Eε1

[
RG ′,4

ε1,Nk
(t)
]2 ≥δ

})

≤ τ/2

123



382 Stoch PDE: Anal Comp (2013) 1:365–388

for a sufficiently small ε1 > 0. Thus, because (3.12) holds for all ε > 0 and so for ε1
in particular, one can estimate

Eε

[
RG ′,i

ε,Nk
(t)
]2 ≤ 2 Eε

[
RG ′,i

ε,Nk
(t̃) − RG ′,i

ε,Nk
(t)
]2 + 2 Eε

[
RG ′,i

ε,Nk
(t̃)
]2

≤ 2δ + 2δ

using Lemma 3.3 for each i = 0, 1, 2, 3, 4 and t = tn, tn′ where t̃ of course depends
on the chosen i and t . So, when ε0 in (3.15) is replaced by the minimum of ε0 and ε1,
it follows that

(
Eγ X [MNk (Y )G

tn − MNk (Y )G
tn′ ]
)2 ≤ const · δ

which, together with (3.14), proves (3.11). Hence (M̃G
s j

)m
j=1 is an (FY

s j
)m

j=1 - martingale
for every finite ordered subset {s1, . . . , sm} of {t1, t2, . . . }.

Now, choose arbitrary s, t ∈ TG and fix a > 0. Without restricting the generality
one can assume for a moment that s, t play the role of tn′, tn chosen in the previous
part of this proof. Combining Chebyshev’s inequality and (3.13) yields

Pγ

(
|M̃G

t −M̃G
s | > a

)
≤ const

a2 · δ+Pγ

(
|MNk (Y )G

t −MNk (Y )G
s | > a/3

)
(3.16)

for the corresponding k = kδ . Remark that the set {|MNk (Y )G
t −MNk (Y )G

s | > a/3} is
open in D([0, T ];S ′(R)) with respect to the uniform topology and that convergence
in J1 to elements of C([0, T ];S ′(R)) is equivalent to uniform convergence. Thus, by
Theorem 2.1(i), the weak convergence of the measures P̂ε, ε ↓ 0, implies

Pγ

(
|MNk (Y )G

t −MNk (Y )G
s | > a/3

)
≤ lim ε↓0 P̂ε

(
|MNk (Y )G

t −MNk (Y )G
s | > a/3

)

where the lim inf on the right-hand side is equal to

lim ε↓0Pε

⎛

⎝

∣
∣
∣
∣
∣
∣
Y ε

t (G)−Y ε
s (G)−

t∫

s

⎧
⎨

⎩
Y ε

r (G ′′)−γ

∫

R

G ′(u)(Y ε
r � JNk )

2(u)du

⎫
⎬

⎭
dr

∣
∣
∣
∣
∣
∣
> a/3

⎞

⎠

= lim ε↓0 Pε

(∣∣
∣
∣
∣
MG,ε

t −MG,ε
s +RG

ε (t)−RG
ε (s)+γ

4∑

i=0

(
RG ′,i

ε,Nk
(t)−RG ′,i

ε,Nk
(s)
)
∣
∣
∣
∣
∣
> a/3

)

≤ lim ε↓0

(

Pε(|MG,ε
t −MG,ε

s |>a/6)+ 36

a2 Eε

[

RG
ε (t) − RG

ε (s)+γ

4∑

i=0

(
RG ′,i

ε,Nk
(t)

−RG ′,i
ε,Nk

(s)
)
]2 ⎞

⎠

where
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Eε

[

RG
ε (t) − RG

ε (s)+γ

4∑

i=0

(
RG ′,i

ε,Nk
(t)−RG ′,i

ε,Nk
(s)
)
]2

≤const · δ for all ε < ε0 ∧ ε1

as in the proof of (3.11). Using this to estimate the right-hand side of (3.16) yields

Pγ (|M̃G
t − M̃G

s | > a) ≤ lim ε↓0 Pε(|MG,ε
t − MG,ε

s | > a/6) (3.17)

since δ can be made arbitrarily small.
Now recall that s, t ∈ TG were arbitrarily chosen and observe that

Pε(|MG,ε
t −MG,ε

s |>a/6)≤ 64

a4 Eε

∣
∣
∣MG,ε

t −MG,ε
s

∣
∣
∣
4 ≤ 64C4

a4 Eε

(
[MG,ε]t − [MG,ε]s

)2

by first applying Chebyshev’s and then Burkholder-Davis-Gundy’s inequality with
constant C4. Furthermore, it is known in this context (see [6] for example) that

Eε

(
[MG,ε]t − [MG,ε]s

)2 ≤ C(T, G){ε2 + (t − s)2}.

Hence, by (3.17), there exists const only depending on T and G such that

Pγ (|M̃G
t − M̃G

s | > a) ≤ const · a−4(t − s)2 (3.18)

for all a > 0 and s, t ∈ TG .
The next step is to construct a continuous process (MG

t )t∈[0,T ] such that M̃G
t = MG

t
Pγ -a.s. for all t ∈ TG . But such a construction can be achieved almost the same way
the continuous version of a process is constructed in the proof of the Kolmogorov-
Chentsov theorem (see [9] for example). As in this proof, it follows from (3.18) that,
for a dense subset D of [0, T ], {M̃G

t (ω); t ∈ D} is uniformly continuous in t for
every ω ∈ �� where �� is an event in FY

T of Pγ -measure one. But in difference to
[9], D should not be the set of dyadic rationals in [0, T ] but rather an appropriate
subset of the set {t1, t2, . . . } chosen at the beginning of this proof. Then one can define
MG

t (ω) = 0, 0 ≤ t ≤ T , for ω /∈ �� while, for ω ∈ ��, MG
t (ω) = M̃G

t (ω) if t ∈ D
and MG

t (ω) = limn M̃G
sn

(ω) for some (sn)
∞
n=1 ⊆ D with sn → t if t ∈ [0, T ] \ D.

This gives indeed a continuous process.
To see that M̃G

t = MG
t a.s. for all t ∈ TG one splits TG into D and TG \ D. For

t ∈ D one has M̃G
t = MG

t a.s. since Pγ (��) = 1. For t ∈ TG \ D and (sn)
∞
n=1 ⊆ D

with sn → t one has MG
t = limn M̃G

sn
a.s. by construction as well as M̃G

t = limn M̃G
sn

in probability by (3.18) which also gives M̃G
t = MG

t a.s.
Realise that, without restricting the generality, both TG and D can be chosen to

contain zero as MN (Y )G
0 = 0 for all N by definition. Notice that D ⊆ {t1, t2, . . .} and

M̃G
tn is FY

tn - measurable for all n and �� ∈ FY
T . So MG

t is Ft - mesurable for t ∈ D.
Hence (MG

t )t∈[0,T ] is F-adapted since it is continuous and D is dense in [0, T ].
Finally, the FY

t - martingale property of M̃G
tn , n = 1, 2, . . ., shown by (3.11) implies

that (MG
s j

)m
j=1 is an (Fs j )

m
j=1 - martingale for every finite ordered subset {s1, . . . , sm} of
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D. All these martingales are square integrable because Eγ (M̃G
tn )2 < ∞ by the choice

of tn, n = 1, 2, . . . , at the beginning of this proof. Now choose an arbitrary positive
T ′ < T . Then (MG

t )t∈[0,T ′] is a square integrable F - martingale as the limits used
to construct this process can be interchanged with both expectations and conditional
expectations by Doob’s maximal inequality for martingales as there must be an element
of D between T ′ and T . ��
Proof of Proposition 2.5(ii) Fix G ∈ S (R). Since (MG

t )t∈[0,T ] is a continuous F-
adapted process it suffices to show that for every positive T ′ < T , when restricted to
[0, T ′], the process MG is an F-Brownian motion with variance 2‖G ′‖2

2. So, in what
follows, T is identified with some positive T ′ < T to simplify notation.

Obviously, it remains to show that (MG
t )2 − 2‖G ′‖2

2 · t, t ∈ [0, T ], is an F-
martingale. Recalling the construction of MG in the proof of Proposition 2.5(i) above,
the F-martingale property already follows from

Eγ X [(MG
t )2 − 2‖G ′‖2

2 · t − (MG
t ′ )

2 + 2‖G ′‖2
2 · t ′ ] = 0

for all t, t ′ ∈ D such that t ′ < t and X = f (Ys1(H1), . . . , Ysp (Hp)) where f : R
p →

R is a bounded continuous function, Hi ∈ S (R) and 0 ≤ si ≤ t ′, 1 ≤ i ≤ p. Again
this is verified by showing that

(
Eγ X [(MG

t )2 − 2‖G ′‖2
2 · t − (MG

t ′ )
2 + 2‖G ′‖2

2 · t ′]
)2 ≤ const · δ for all δ > 0

(3.19)

for some const > 0. So fix t, t ′ ∈ D such that t ′ < t and observe that

(
Eγ X [(MG

t )2 − 2‖G ′‖2
2 · t − (MG

t ′ )
2 + 2‖G ′‖2

2 · t ′ ]
)2

≤ const

{

δ +
(

Eγ X [(MNk (Y )G
t )2 − (MNk (Y )G

t ′ )
2 − 2‖G ′‖2

2 · (t − t ′)]
)2
}

for some k = kδ big enough since the inequality

(
Eγ [(MG

t )2 − (MNk (Y )G
t )2]

)2 ≤ 2 Eγ [MG
t − MNk (Y )G

t ]2
(

Eγ (MG
t )2

+Eγ (MNk (Y )G
t )2

)

holds for t and t ′. Furthermore, using Lemma 4.1 in the Appendix as in the proof of
Lemma 2.4 gives

Eγ X (MNk (Y )G
t )2

= lim
ε↓0

Êε X

⎛

⎝Yt (G)−Y0(G)−
t∫

0

⎧
⎨

⎩
Ys(G

′′)−γ

∫

R

G ′(u) (Ys � JNk )
2(u) du

⎫
⎬

⎭
ds

⎞

⎠

2
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which simplifies to

lim
ε↓0

Eε Xε

(

MG,ε
t +RG

ε (t)+γ

4∑

i=0

RG ′,i
ε,Nk

(t)

)2

with Xε = f (Y ε
s1

(H1), . . . , Y ε
sp

(Hp)).

As the same equality holds for t ′, one obtains that

(
Eγ X [(MG

t )2 − 2‖G ′‖2
2 · t − (MG

t ′ )
2 + 2‖G ′‖2

2 · t ′ ]
)2

≤ const

{

δ +
(

Eε Xε[(MG,ε
t )2 − (MG,ε

t ′ )2 − 2‖G ′‖2
2 · (t − t ′)]

)2
}

for a sufficiently small ε > 0 by estimating

Eε MG,ε
t

(

RG
ε (t) + γ

4∑

i=0

RG ′,i
ε,Nk

(t)

)

and Eε

(

RG
ε (t) + γ

4∑

i=0

RG ′,i
ε,Nk

(t)

)2

for t and t ′ using the bounds derived in the proof of Proposition 2.5(i).
Now (MG,ε

t )2, t ≥ 0, is a submartingale in the class (DL). Hence (MG,ε
t )2 −

〈MG,ε〉t , t ≥ 0, is a martingale so that

(
Eγ X [(MG

t )2 − 2‖G ′‖2
2 · t − (MG

t ′ )
2 + 2‖G ′‖2

2 · t ′ ]
)2

≤ const

{

δ +
(

Eε Xε[〈MG,ε〉t − 〈MG,ε〉t ′ − 2‖G ′‖2
2 · (t − t ′)]

)2
}

.

Finally Eε[〈MG,ε〉t − 〈MG,ε〉t ′ − 2‖G ′‖2
2 · (t − t ′)]2 can be made arbitrarily small by

choosing a suitable ε which proves (3.19) hence part (ii) of Proposition 2.5. The last
argument is standard and can be found in [6], for example. ��
Proof of Proposition 2.5(iii) Fix a1, a2 ∈ R and G1, G2 ∈ S (R). The wanted linear-
ity holds for MN (Y ) and, because MN (Y ) is an approximation for (M̃G)G∈S (R), the
linearity should also hold for the version (MG)G∈S (R) of (M̃G)G∈S (R). But some
care has to be taken since the construction of (MG)G∈S (R) depends on the choice of
subsequences and, also, since the notion of version used in this paper is special as not
all t ∈ [0, T ] are covered.

By Proposition 2.5(i), there are sets TG1, TG2 , Ta1G1+a2G2 corresponding to the
processes MG1 , MG2 , Ma1G1+a2G2 . First one wants to find a set

T ⊆ TG1 ∩ TG2 ∩ Ta1G1+a2G2 dense in [0, T ]

such that

M̃a1G1+a2G2
t = a1 M̃G1

t + a2 M̃G2
t a.s. for t ∈ T . (3.20)
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This is achieved by successively choosing subsequences as follows. Using (3.10),
there is a subsequence (k j )

∞
j=1 of (Nk)

∞
k=1 such that

M̃a1G1+a2G2
t = lim

j→∞

(
a1Mk j (Y )

G1
t + a2Mk j (Y )

G2
t

)
a.s. for t ∈ Ta1G1+a2G2 .

(3.21)

Now, using (2.2) with respect to (k j )
∞
j=1 and G1, there is a measurable subset T ′

G1
⊆

[0, T ] with (T ′
G1

) = T and a subsequence ( jl)∞l=1 of (k j )
∞
j=1 such that

M̃G1
t = lim

l→∞ M jl (Y )
G1
t a.s. for t ∈ T ′

G1
.

Notice that T ′
G1

and TG1 can be different. Similarly, one obtains that

M̃G2
t = lim

m→∞ Mlm (Y )
G2
t a.s. for t ∈ T ′

G2

where (lm)∞m=1 is a subsequence of ( jl)∞l=1 and (T ′
G2

) = T . Then

T def= TG1 ∩ TG2 ∩ Ta1G1+a2G2 ∩ T ′
G1

∩ T ′
G2

⊆ TG1 ∩ TG2 ∩ Ta1G1+a2G2

and T is dense in [0, T ] because (T ) = T . Furthermore, using the subsequence
(lm)∞m=1 instead of (k j )

∞
j=1 in (3.21) implies (3.20).

But, by Proposition 2.5(i), (3.20) is equivalent to

Ma1G1+a2G2
t = a1 MG1

t + a2 MG2
t a.s. for t ∈ T

which proves part (iii) of Proposition 2.5 because the processes Ma1G1+a2G2 , MG1 ,

MG2 are continuous. ��
Proof of Proposition 2.5(iv) Remark that part (iv) would not follow from part (ii)
allone but, including part (iii), it is straight forward to check both the Gaussian dis-
tribution and the covariance structure of the process MG

t indexed by t ∈ [0, T ] and
G ∈ S (R). Of course, from the covariance structure follows that the index set of the
process can be extended to t ∈ [0, T ] and absolutely continuous functions G on R

with density G ′ ∈ L2(R) without changing the underlying probability space. Hence

B̃(t, u) = MGu
t /

√
2 , t ∈ [0, T ], u ∈ R,

is properly defined using test functions Gu(ũ), ũ ∈ R, given by

Gu(ũ) =
{

0 ∨ (u ∧ ũ) : u ≥ 0,

0 ∧ (u ∨ ũ) : u < 0.
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Obviously, B̃(t, u), t ∈ [0, T ], u ∈ R, is a centred Gaussian process on
(D([0, T ];S ′(R)),FY

T , Pγ ) with covariance Eγ B̃(t, u)B̃(t ′, u′) = (t ∧ t ′)(|u|∧|u′|)
if u, u′ have the same sign and vanishing covariance otherwise.

So, as in the proof of the Kolmogorov-Chentsov theorem, one can construct a
version B(t, u) of B̃(t, u) on the same probability space which is continuous in t and
u, hence, is a Brownian sheet. By standard theory on random linear functionals, see
[11] for a good reference, there is an S ′(R)-valued version of the process MG

t which
is of course indistinguishable of

√
2
∫

R

B(t, u)G ′′(u) du, t ∈ [0, T ], G ∈ S (R),

finally proving part (iv) of Proposition 2.5. ��
Acknowledgments The author thanks Martin Hairer for valuable comments.

4 Appendix

Recall that P̂ε is the push forward of Pε with respect to the map Y ε introduced on
page 4 and denote by Êε the expectation when integrating against P̂ε. Then it is a
consequence of Theorem 2.1(i) that weak convergence implies

Êε X → Eγ X, ε ↓ 0, (4.1)

for X = f (Ys1(H1), . . . , Ysp (Hp)) defined by bounded continuous maps f : R
p → R

and Hi ∈ S (R), 0 ≤ si ≤ T, 1 ≤ i ≤ p, although such functions X are not J1 -
continuous on the space D([0, T ];S ′(R)).

The lemma below states that the boundedness condition on f can be relaxed when
the one-dimensional marginals of the limit process are Gaussian. This result is not
new but the specific statement needed in this paper could not be found in the literature.
Remark that if the limit process does not have Gaussian one-dimensional marginals
then, for polynomial singularities, instead of weak convergence of measures one should
consider convergence in Wasserstein spaces.

Lemma 4.1 The convergence (4.1) remains true for X defined by continuous functions
f with polynomial growth and

supε≤1|Êε X |2 + |Eγ X |2 ≤ f̂ (‖H1‖2
2 , . . . , ‖Hp‖2

2)

where f̂ is a polynomial not depending on the time points s1, . . . , sp defining X.

Proof It suffices to show the lemma for polynomials f . The convergence claim follows
from Theorem 2.1(ii). Indeed, as the one-dimensional marginal distributions of Y under
Pγ are Gaussian, one can cut-off f turning it into a bounded continuous function for
which (4.1) holds and estimate the remainder using the exponential decay of the tails
of the Gaussian distribution.
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The uniform bound f̂ (‖H1‖2
2 , . . . , ‖Hp‖2

2) also follows from Theorem 2.1(ii) by
successively applying Hölder’s inequality and estimating moments of Gaussian distri-
butions by powers of the variances. Notice that the supremum is taken over 0 < ε ≤ 1
but any other bounded subset of ε > 0 could have been used. ��
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