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Shear Resistant Mechanism into Base Components: Beam Action
and Arch Action in Shear-Critical RC Members
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Abstract: In the present paper, a behavioral model is proposed for study of the individual contributions to shear capacity in shear-
critical reinforced concrete members. On the basis of the relationship between shear and bending moment (V' = dM/dx) in beams
subjected to combined shear and moment loads, the shear resistant mechanism is explicitly decoupled into the base components—
beam action and arch action. Then the overall behavior of a beam is explained in terms of the combination of these two base
components. The gross compatibility condition between the deformations associated with the two actions is formulated utilizing
the truss idealization together with some approximations. From this compatibility condition, the ratio of the shear contribution by
the tied arch action is determined. The performance of the model is examined by a comparison with the experimental data in
literatures. The results show that the proposed model can explain beam shear behavior in consistent way with clear physical

significance.
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1. Introduction

Up to now, the beam shear problem remains one of the
more controversial aspects of structural reinforced concrete
analysis and design, and it has been generally agreed that the
truss model theory provides a more promising way to treat
the problem. That is not only because it provides a clear
concept of how a reinforced concrete beam resists shear after
cracking, but also because the effect of various loading
conditions can be included in a logical way (ASCE-ACI
Committee 445 1998; ASCE-ACI Committee 426 1973;
Hsu 1993).

The classical shear analysis of Ritter and Mdorsch explains
the shear behavior in the cracked state by a truss analogy,
using a truss with parallel chords with 45° inclined concrete
struts and no stresses across the cracks. In this model the
bending moment is carried by the top chord (concrete
compression zone) and the bottom chord (main longitudinal
reinforcement), and the applied shear force is fully carried by
the web by means of inclined compressive stresses in
the concrete and tension in the stirrups. This simplified
version of truss model has long provided the basis for the
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formulation of general shear design codes, such as in ACI-
318 (1999) and Eurocode-2 (Commission of the European
Communities 1991). During last four decades, the concept of
the truss model theory has been greatly extended, and now
several approaches have been developed (Marti 1985;
Nielsen 1984; Vecchio and Collins 1986; Schlaich et al.
1987; Ramirez and Breen 1991). An excellent review of the
current theories as well as available experimental evidences
are given by ASCE-ACI Committee (ASCE-ACI Committee
445; ASCE-ACI Committee 426).

One approach (ACI Committee 318) has been to add a
concrete contribution term to the web shear reinforcement
contribution, assuming a parallel chord truss with the strut
angle of 45°. Another approach (CEB/FIP 1990; Commis-
sion of the European Communities 1991) has been the use of
a parallel chord truss with a variable angle of inclination of
the diagonal struts. This approach is referred to as the
standard truss model with no explicit concrete contribution,
and is explained by the existence of aggregate interlocking
and the dowel action, which make a lower inclination of the
concrete struts and a higher effectiveness of the stirrups. A
combination of the variable-angle truss with parallel chords
and a concrete contribution has also been proposed. This
approach has been referred to as the modified truss model
(American Association of State Highway and Transportation
Officials 2002; Ramirez and Breen 1991).

These resent approaches, however, does not directly
account for the individual components of the concrete con-
tribution in shear resistant mechanism, such as the shear
carried by the concrete compression zone, the dowel action,
and the aggregate interlocking action, which are distinguish-
able from one another (Taylor 1974). The constituent resistant



Table 1 Resistant components of various truss models

Model Resistant components Responses
|78 V(=) 0 f, stirrup stress | AT tension shift
Vuc (: Va) Vci vd
Classical truss X X X O 45° (V) 12(¥)
model
Standard truss X X X ©) Variable anl_ () 1/2(¥) cotl
pubuz
model type (a)
Modified truss model
ACI O O 45° (Y =Ve) | 1200 =)
Lump sum V.. (fixed)
EC-2 O O Variable b (y — y.) [12(V = V) cotd
pubuz
Lump sum V.. (fixed)
AASHTO X 0 X O Variable SOV = V) 120V = Vep) cotd
LRFD (vari able)
Complex truss model
Type (b) O X or O X O Irregular variable Undefined
Type (c) O XorO X O [rregular variable Undefined
Type (d) O X or O X O Irregular variable Undefined

components of various truss approaches are summarized and
compared at Table 1. It can be seen that the shear force by the
concrete compression zone is not directly accounted.

In the early investigations (Lorentsen 1965; Leonhardt
1965; Kani 1964), complex models combined with arch and
truss, as typically shown in Fig. 1, were recognized from the
observation of crack patterns and the evidences measured in
different beams. In this model the compression chord of the
truss is curved, so that the behavior of a beam is represented
partly by tied arch and partly by beam. Thus, a substantial
load is carried essentially by the tied arch action. Leonhardt
(1965) observed that a remarkable shear is resisted by an
inclined top chord (the concrete compression zone). In the
normal T beams he tested, the web element carried less than
half of the total shear force even under ultimate loading
stages, and the distribution ratio was largely dependent upon
the ratio between web stiffness and chord stiffness. In spite of
better representation of the behavior of beams, however, this
model has been used largely as a conceptual tool to describe
beam behavior rather than a precise analytical model. This is
mainly because the geometry of the arch rib (inclined top
chord) cannot be precisely defined due to the nature of a
statically indeterminate system (ASCE-ACI Committee 426).

Therefore, the present work is intended to numerically
formulate the truss model with an inclined compression chord
shown in Fig. 1 by decoupling the beam behavior into the tied
arch and the beam. The theoretical base concept for the
present approach is based on the relationship between shear
and bending moment in a cracked reinforced concrete beam,
i.e., V' = dM/dx. Utilizing some idealizations together with
the recent elaborations by Collins and Mitchell (1991) and

(@)

Fig. 1 Refined truss idealization with inclined compression
chord. a Standard truss model. b Fan truss model (Marti
1985). ¢ Truss model combined with Strut-Tie (Walrav-
en and Niwa). d Refined truss model (Leonhardt 1965)
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Hsu (1993), a gross compatibility condition is established and
formulated between the deformation associated with the tied
arch and the deformation with the web. Thereby, the beam
shear resistant mechanism is decoupled into the base com-
ponents. The performance of the present approach is briefly
examined by a comparison with the existing experimental
data and a sensitivity study. It is also shown that the theo-
retical results can explain in a rigorous and consistent way the
experimentally observed behavior of beam failing in shear.

2. Derivation of Base Concept

Consider a simply supported reinforced concrete beam
directly loaded as shown in Fig. 2a, in which shear force
¥V and moment M act simultaneously throughout the shear
span. After flexural cracking the moment on a cross section
is resisted by the internal force couple C and T with the lever
arm of z, that is M = Tz = Cz. When this relationship of the
flexural resistance is combined with the well-known rela-
tionship between shear and the rate of change of bending
moment along a beam V' = dM/dx, the shear force can be
expressed as a sum of two terms (Park and Paulay 1975;
Kim and Jeong 2011a, b, c):

dT d

As known from various proceeding studies, the first term
arises from the transmission of a steel force into the concrete
by means of bond stresses, and it is said to be the shear
resistant component by beam action (Kani 1964; Park and
Paulay 1975). Consider a segment cut out from the beam
between two adjacent vertical cross sections distance dx apart
in Fig. 2a, the difference of tension d7 causes shear force on
the bottom face of the web element mnop as shown in Fig. 2b.
As the same manner, the difference of compressive resultant
dC acts on the upper face. These shear forces on the top and
bottom of the web element produce a couple moment zdT
(=zdC), which must be balanced by the moment of shear
forces acting on the vertical faces mn and op. Thus, the ver-
tical shear force is expressed by the first term of Eq. (1).

The second term in Eq. (1) directly implies the vertical
component of the inclined compression resultant force C, and
it is referred to the shear component by arch action (Kani
1964); Park and Paulay 1975). That is because the compres-
sion resultant is equal to the tension resultant 7 and the slope
of the resultant is mathematically expressed dz/dx as shown in
Fig. 2c. This means that the beam behaves as a tied-arch, and
a part of the applied shear is carried by the inclined top chord.

From such mechanical interpretation on Eq. (1), it is seen
that the applied shear is essentially resisted by a combination
of the two base components that are distinctively different
actions—beam action and arch action. Thus, the extent to
which each action contributes to shear resistance in a beam
will depend on the compatibility of deformations associated
with these actions. If such beam shear behavior could be
decoupled into the base components, the shear resistant
mechanism would be much clearly described. Accordingly,
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Fig. 2 Mechanical interpretation of shear resistant compo-
nents. a A reinforced concrete beam. b Beam action of
zdT/dx. ¢ Arch action of Cdz/dx

for the purpose of the present study, it is to employ a factor-o
defined by follows (Kim and Jeong 2011a, 2011b, 2011c¢):

__ Shear resisted by arch action

)

Total shear

By this definition, the value of « varies between 0 and 1 and
depends on the compatibility condition of the deformations
associated with the beam and arch action.

2.1 Smeared Truss ldealization with Inclined
Chord

As in a usual smeared truss modeling (Hsu 1993), the
stress field in the beam segment shaded in Fig. 2a can be
idealized to have three discrete elements with each having a
different function to resist the applied loads as shown in
Fig. 3a. The area within the compression stress block is
assumed to concentrate at the location of the resultant C and
form the top chord. The longitudinal tensile steel bars and
the surrounding concrete are also assumed to be concen-
trated at the geometric centroid and constitute the bottom
chord. The middle element separated from the tension and
compression chords can be treated as a web shear element
subjected to pure shear.

In order to include the shear resistant mechanism due to
the arch action, an inclined top chord is installed in the
present model, instead of a paralleled chord, With its incli-
nation, the top chord has a function to resist not only against
the compression resultant C caused by the applied moment
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Fig. 3 Smeared truss idealization. a The present approach.
b Truss with parallel chord. ¢ Simple strut-and-tie
model. d Conceptual illustration of the present model

M but also against the part of the applied shear oV, and in
turns the rest of the shear (1 — o)V must be allocated to the
web shear element. Consecutively extending such idealiza-
tion to whole span of a beam may lead to an idealized form
of a tied arch having a membrane shear element inside as
shown in Fig. 4a, in which the lever arm z varies from z, at
the maximum moment section to 0 at the support section.
The force transmitted between the elements is dC/dx (=dT/
dx). This force acts as a form of shear flow on the web shear
element, while it acts as a form of distributed axial force on
the chords.

In a simple strut-and-tie model, the tensile force of the tie
(bottom chord) is constant throughout the span (d7/dx = 0),
so that beam action cannot be developed in the web shear
element. Accordingly, the shear and moment must be fully
resisted by the inclined top (strut) and bottom chords, as
shown in Fig. 3c. From the view of the present model, it is
said that a simple strut-and-tie model is the extreme case of
the present model when « is 1.0. On the other hand, a par-
allel chord truss model (dz/dx = 0 as seen in Fig. 3b) cannot
rely on the arch action to sustain shear, thus it is the other
extreme case of the present model with o of 0. It may be
realized therefore that the internal force flow of usual beams
can be closely described by a proper assignment of the value
of a, as conceptually illustrated in Fig. 3d.

~— Bending Plane u, a—x

oo m'm 0’00’ _m' mm
— e -— S — e
o m'm C C— ¢ C

o"\lo" m"\m' 0" am%m

+ =
P P’ \n" Pip\p" ni\n'\n"

'
n —»dT —»dT
4—1&34 Pt — em—»
dx T P 4 n o n 4 p ‘n nn T
dx M

(b) Bending
deformation

(d) Flexural and Shear
deformation

(¢) Deformation
by Beam Action

(e)

Fig. 4 Gross compatibility condition. a Idealized beam and its
deformation. b Bending deformation. ¢ Shear defor-
mation. d Combined deformation. e Compatibility of
deformation between web and chords

2.2 Gross Compatibility Condition

The idealization above make it possible to evaluate the
state of the cross sectional deformation of a reinforced
concrete beam. Consider the deformation of the element
mnop in a beam under a concentrated load as shown in
Fig. 4a. The final deformation of the element can be
decomposed into the two base components—the deforma-
tion associated with the arch action and the deformation
associated with the beam action. As stated before, the
bending moment causes the internal couple C and T at the
chords, resulting in the axial shortening of the top chord and
the axial elongation of the bottom chord. Thus these axial
deformations eventually produce a bending curvature on the
element as shown in Fig. 4b.

The element further undergoes a shear deformation
because it is subjected to a pure shear d7/dx, which is equal
to (I — a)V/z, as shown in Fig. 4c. Linear distortion can be
assumed with the average shear strain of y,,. It is seen from
the figure that the shear strain is equal to the amount that the
upper edge displaces horizontally with respect to the lower
side divided by the depth of the element. Consequently, this
shear deformation of the web shear element should be
compatible with the relative displacements of the top and
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bottom chord with respect to the bending planes m'—#/,
which are designated by u,, and u, respectively in Fig. 4c,
because the element is connected to the chords. The relative
displacements of the chords can be visualized easily if the
bending deformation and the couple C and T acting on the
chords are omitted and the all elements are stretched as
shown in Fig. 4e.

By the symmetry, the relative displacement of the top
chord at the loading section must be zero. And the dis-
placement of the top chord u,, at the section m—n, a—x apart
from the loading section, is equal to the elongation of the top
chord due to the distributed axial force dC/dx over the length
of a—x. Therefore, the u,, can be obtained by successive
integrations over the length. As the same manner, together
with zero displacement at the support section due to the
support restraint, the relative displacement of the bottom
chord u, is also obtained. Thus,

X

um=/(E;)n a/de dx (3a)

a

X X

M"ZO/(E%)M /dT dx (3b)

a

where (EA),. and (EA),. are the axial stiffness of the top
chord and the bottom chord respectively. These relative
displacements of the chords should be compatible with the
shear deformation of the web shear element as sketched in
Fig. 4e. Thus, the following relationship should be
satisfied:

T = (4)

From the view of the gross compatibility relationship
above, it can be seen that the ratio of contribution by each
action to total shear resistance in a beam is dependent on the
relative stiffness ratio between the chords and the web (Kim
and Jeong 2011a, 2011b, 2011c).

2.3 Simplified Arch Shape Function

The presence of non-zero values of dz/dx in the present
approach is eventually leading to variable lever arm length
z over the span of a beam. Combining the definition of
oV = Cdz/dx with the relationship of C = Vx/z in a pris-
matic simple beam subjected to a direct point loading, the
factor-o can be expressed in terms of z and x as follow:

xdz

@=_— (5)
For the establishment of the present approach, the value of «
is assumed to remain constant over the shear span in a given
prismatic beam. Then, with the boundary condition of z = z,
at x = a, the general solution of Eq. (5) can be obtained in
term of the lever arm z over the shear span as the following
form:

zy = (f) ", (6)

a

where z, is the lever arm calculated from the conventional
beam theory. Figure 5 shows the geometrical expressions of
Eq. (6) as o varies from 0 to 1.0. As seen in the figure,
Eq. (6) represents a simple arch shape, and its curvature is
mainly dependent on the value of «. For example, when
o =0, Eq. (6) becomes z, = z, with dz/dx = 0 over the
entire span, corresponding to the traditional beam theory
with no arch action. While, when o = 1.0, Eq. (6) stands for
a straight line from the support to the loading point, repre-
senting the situation in which the load is carried by a simple
strut-and-tie action.

It is noted that for the beams subjected to other type of
loadings rather than direct point loadings, the corresponding
arch shape function can be obtained by the same manner
above, and it will be the following general form (Kim and
Jeong 2011a, b, ¢):

M, \*
. (M’ ) . (7)

where M, is the maximum moment at a zero shear section.
Utilizing this general expression, the arch shape can be
easily formulated for a beam subjected to various types of
loadings, such as uniform loaded beams or eccentrically
loaded columns, on condition that an appropriate o is
known. Now it becomes clear that the crux of the present
approach is the assignment of a value to the factor-o, and the
value can be determined from the gross compatibility con-
dition of Eq. (4).

3. Formulation

3.1 Web Shear Element

As stated before, the web shear element can be treated as a
membrane element subjected to pure shear force (1 —
o)V, After diagonal cracking, the concrete is separated by
diagonal cracks into a series of concrete struts as shown in
Fig. 6a. The shear force produces a set of bi-axial stress field
constituted with the compressive principal stress f> and the
tensile principal stress f; with inclination angle of 6 as shown
in Fig. 6. The reinforcing bars are assumed to be a link
member transmitting axial force only. The behavior of such a

‘ a

-

Fig. 5 Simplified arch shapes in a point loaded simple beam
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membrane element is well explained by either Collins’
MCFT (Vecchio and Collins 1986) or Hsu’s STM (Hsu
1993).

The equilibrium conditions, which relate the concrete
stresses and the stirrup stress to the applied shear stress, can
be expressed in terms of average stresses. These relation-
ships are derived from the Mohr’s circle shown in Fig. 6.
These are

fH =1 —a)v(tan0 + cot0) — f; (8)
fi=(l—a)vtanf — f; 9)
fi= (1l —a)vecotf — fi (10)

where v is an average shear stress defined by V/b,z, f is
positive in compression, and f; is positive in tension. From
the vertical force equilibrium the transverse concrete stress f;
of Eq. (9) must be balanced by the stirrup stress:

pufy = (1 — a)vtand — f;, for p, >0 (11a)
0= (1—oa)vtan0 —f;, for p, =0 (11b)

In the same manner, the longitudinal concrete stress f, of
Eq. (10) is balanced by the chords and the horizontal web
steels, if any. When the horizontal web steels are not
provided, it is transferred to the top and bottom chord. The
equilibrium of the resultants on the right face is shown by
the force polygon in Fig. 6b, and the longitudinal
compressive resultant N, produced by the f; is

Ny = fibyz = (1 — o)V cot 0 — fib,,z (12)

The acting point of this resultant will be z/2 from the center
of the bottom chord. The average stress and average strain of

the concrete in each principal direction (axis 1-2 in Fig. 6a) is
assumed to obey the material laws developed by Vecchio and
Collins (Vecchio and Collins 1986), as summarized in
Figs. 7a and 7b. Thus, after diagonal cracking with taking
for =033 \/f_c' (MPa), for principal tensile direction;

/ 2
& :o.ooz(%— 1) (13)

1

For principal compressive direction with taking
&0 = 0.002;
& = 0.002(1 —\/1- 08+ 17081)f2/fc/> (14)

In beams having vertical stirrups, the transverse average
strain &, can be approximately evaluated using CEB/FIP MC-
90 (1990) the equation for tension stiffening effect, which is
shown in Fig. 7c. Replacing f; by f, of Eq. (11), then &g,
corresponds to ¢. Thus the following relationship is
obtained:

& :Eslpv [(1 —a)vtan 0 — <f1 +o.132\/Z)] (15)

From the compatibility condition satisfying Mohr’s strain
circle shown in Fig. 7d, the average shear strain y,0f the
web shear element is expressed in terms of ¢, &, and ¢, as
follows:

7w = (1 + &) sin20 (16a)
= 2(& + &) tan 0 (16b)

Substituting Eqs. (13), (14) and (15) for ¢, & and ¢
respectively in Eq. (16), the shear strain y, of the web
element is eventually expressed in terms of f;, > and 6.

3.2 Redistribution of Resultants in a Section

As previously stated, the vertical component of the axial
force in the inclined top chord is the shear carried by the arch
action, and it is designated by aV. This shear force will be
combined with flexural compression resultant C, eventually
leading to form an inclined thrust line (arch). For the
extension of the present approach to a simple strut-and tie
model, it may be technically required that the shear force «V
is accompanied by the longitudinal resultant N,, and whose
acting point is temporarily denoted by z, as shown in Fig. 8.
That is,

N, = oV cotl (17)

It has been known that significant longitudinal forces are
caused by each base action. By such induction of the
longitudinal forces at a cross section, the internal couple C,
and T, calculated from the conventional beam theory due to
the bending moment is redistributed to meet the equilibrium
condition over the section. Figure 9 shows the forces N, and
N,, acting on the points z, and 0.5z from the reinforcement
level in addition to the internal force couple C, — AC and
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T, + AT To satisfy the equilibrium condition in longitudinal
direction, the change in the compression resultant AC and
that in steel tension AT are seen to be

AC = L (Nyzy + 0.5N,2) (18a)

o

aV
__439_*N

a

(a) (b)

Fig. 8 Sectional resultants related to arch action
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N,
=z
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+(C, —AC)(z, —2)/ z
(a) (b)

Fig. 9 Shear—moment interaction in a section

AT = l [Ny(zo — z4) + Np(z, — 0.52)] (18b)

Zo

The redistributed compression resultant C, — AC and the
longitudinal force due to the arch action N, should be
combined to form a final compression resultant C in a sec-
tion. Hence, as shown in Fig. 9, the final acting point z will
be

(Co — AC)z, + Nz,

z C,—AC+N, (19)

The lever arm length z above is established on the basis of
the force equilibrium conditions at a section. Whereas the
z defined by Eq. (7) is mathematically derived on the basis of
the assumption of constant o throughout the shear span.
These values of z must be identical to each other. By
equating these two equations with substituting Eqgs. (12),
(17) and (18) and the approximation of z, = z, the inclined
angle 0 is expressed in terms of « and f;:

U (= 1) + fibuzo(R)*(15 = 05(R.)")
Ve(a{l — (R)*} + (1 — a){1.5 — 0.5(R)"})
(20)

cotl, =

where R, = M, /M., that is the sectional moment ratio with
respect to the maximum moment of a beam.

From the moment equilibrium at a section with z, =~ z, the
final compression force C in the top chord and the tension
force T in the bottom chord should be

24N =——— (21a)
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-z M N,
T =T, +AT + (C, — AC) > Z:—+7” (21b)
z z

Figure 10 shows the final configuration of the resultants
acting at a section. From the figure, it can be realized that the
equilibriums in both the shear and the moment are simul-
taneously satisfied at the section. Also, the slope of the thrust
in the top chord is V,/C, which is equivalent to dz/dx in
Fig. 2¢c. As the section approaches toward the support, the
slope dz/dx becomes steeper because C becomes smaller
owing to the smaller sectional moment. This is the primary
reason for which a tied-arch action is formed in cracked
reinforced concrete beams.

3.3 Relative Displacements of Top and Bottom
Chord

As described before, the relative displacements of the top
and bottom chords u,, and u, can be evaluated by Eq. (3).
Utilizing Egs. (2) and (7) together with Fig. 4, dC/dx and dT/
dx at each section are simply expressed in terms of o and V:

ac _dr (1 —o)l;

dc  dx  z,(R.)” (22)

For the evaluation of the axial stiffness of the top and bottom
chord, some approximations are required because the actual
stress distributions are relatively complex. It may be
reasonable estimation that the effective depth of the
compression chord is equal to the depth of the rectangular
compression stress block and remains constant along the
span as sketched in Fig. 11. With this approximation and the
substitution of Eq. (22), Eq. (3a) becomes

um:/ ! / (l_a)i/xdx dx
Ec‘Atc a Zo(Rx)

a 1= (R (23a)

_ Va X
oz, EA(2 — o)

where E, is the concrete elastic modulus, and A4,. is the
effective area of the top chord estimated based on the
effective depth defined above. The axial deformation of the
tension chord due to d7/dx, which corresponds to the relative
displacement u,,, is approximately evaluated using CEB/FIP

aV
m L -C
MV (l—a)V V=0!V+(1—0()V
z, N, M=T-z
z, -N,-z, /2

- - Y m—l- T
n

Fig. 10 Final configuration of sectional resultants

MC-90 the tension stiffening effect expression (Fig. 7¢). In
applying this formula to a beam, the height of the effective
tensile tie is normally assumed to be about 2.5(h — d) as
shown in Fig. 11 (CEB-FIP 1990). Hence, Eq. (3b) can be
rewritten as follow:

Ve 0.13/f.
un:lL [1,(13)()1—“} Cx 013 vifer >0
zo EgAg(2 — o) Espoy

(23b)

where p,; = m and x is distance from the support.

3.4 Solution Algorithm

All of the relationships required to determine the value of
o have been discussed above. For a specific section in a
beam with vertical stirrups at a given load, a suitable itera-
tive procedure is as follows:

Step-1: Assume a value of o

Step-2: Choose a value of &, then calculate f; from
Eq. (13)

Step-3: Calculate z from Eq. (7), and 6 from Eq. (20)
Step-4: Calculate 5, from Eq. (8), and f, from Eq. (11)
Step-5: Calculate ¢, from Eq. (14), and ¢, from Eq. (15)
Step-6: Calculate y,,from Eq. (16a) and y,, from Eq. (16b)

Then, check that y, from Eq. (16a) = v,, from Eq. (16b) or
not.

If y, from Eq. (16a) # 7, from Eq. (16b), return to Step-
2.

If y,,from Eq. (16a) = v, from Eq. (16b), go to Step-7.

Step-7: Calculate u,,from Eq. (23a), and u,, from Eq. (23b)
Step-8: Check that y,, = (u,, + u,)/z or not.

If y,, # (un + u,)/z, return to Step-1 and repeat

Ify, = (u,, + u,)/z, take the last assumed o value.

With the help of a spread sheet calculator, the procedure
above is easily performed. As a tip for fast iteration, it is
recommended to use the inverse value of the shear span-to-
depth ratio of the beam considered as an initial value of o in
Step-1.

Arch effective depth
|

=1

‘ a-x

T
Arch

dh

i tensile tie

: T R At 2t 5 A Pt | At
....................... -~ /.l\ |- l/;l.\ A d

>‘ Tie effective depth : 2.5 (h-d)
VI Uncracked zone : x,,

1
i
|
X |

Fig. 11 I|dealization of tie and arch
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4. Verification

As part of a large investigation of the shear behavior in
reinforced concrete beams at Stuttgart University in early
1960s, Leonhardt (1965) investigated the effectiveness of
stirrups on the shear strength of beams. The four beams he
tested had the identical web reinforcement and longitudinal
reinforcement with the same geometry, and only the web
width varied in these beams. Accordingly, p and p, were
changed as listed in Table 2. This work is the most com-
prehensive investigation reported on typical shear-critical
reinforced concrete beams under combined action of

bending and shear, and it is used here as the basis of the
examination for the principle described above.

At several loading stages after cracking, the values of o are
calculated at the mid-shear span of each beam utilizing the
procedure described in previous section, and the results are
summarized in Fig. 12. From the figure, it can be observed
that the values gradually increase and converge to a certain
ultimate value as the load increases from the cracking load
through the failure load. The results clearly imply that after
formation of diagonal cracks, the resistant mechanisms have
gradually changed from the beam action to the arch action
with increasing load intensity. With increase of applied load

Table 2 Comparisons with, the test results performed by Leonhardt (1965)

Specimen - T
ET2 ET3 ET4
ETI
Beam properties
fox (MPa) 27.93 27.93 27.93 27.93
b,, (cm) 30 15 10 5
d (cm) 30 30 30 30
a (cm) 105 105 105 105
ald 3.5 3.5 3.5 3.5
o (%) 1.40 2.80 4.20 8.40
oy (%) 0.17 0.34 0.51 1.03
£, (MPa) 460 460 460 460
fuv (MPa) 314 314 314 314
Vay (KN) 140.9 140.9 140.9 140.9
Measured value
V. (kN) 142.2 116.7 98.1 88.3
Sy at v, (MPa) 161.7 314 314 314
Predicted value
ol 0.360 0.395 0.415 0.462
0, (x =a2) (°) 44.6 45.4 43.6 414
z, (x = a/2) (cm) 21.04 20.46 20.18 19.63
fvat v, (MPa) 150.3 315.7 2942 284.4
v, = oV, 512 46.6 08 412
V.; by Eq. (26) 74.5 37.3 24.8 12.4
Vs (kN) 16.5 32.6 342 359
V, =V, + Vo + Ve (kN) 142.2 116.5 101.8 89.5
Vi Predicied ! Vi Measured 1.00 0.99 1.04 1.01
Failure mode Flexure Stirrups yielding
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in each beam, the internal force flow experiences three dif-
ferent stages; uncracked stage, transient stage and stabilized
stage as illustrated in Fig. 12. Since the ultimate limit state
of members is the most concern, the value of o at the ulti-
mate load stage of each beam is denoted by o,.

The o, of the four beams is also listed in Table 2. And it is
seen that as the web width decreases, the higher value of «,,
is resulted in with varying between 0.29 for ET1 and 0.46
for ET4. This means that 29—46 % of the applied shear force
is carried by the arch action. It may be worthwhile to note
that Leonhardt stated in his paper (1965) that 15-25 % of
total shear was carried by the inclined compression chord in
those beams.

Parametric studies are now carried out to investigate the
variation of the value of «, with respect to the important
factors involved. A close examination of the present
approach may reveal that the value of «, is mainly affected
by the geometry of the beam, the amount of web rein-
forcement and the amount of longitudinal reinforcement.
The four curves in Fig. 13 show the variation of the «, for
the beams tested by Kani (1964) and Kim et al. (1998) with
respect to the span-to-depth ratio a/d. Because each curve
represents a different amount of reinforcement in the beam,
the influence of each parameter can be visualized.

Figure 13 indicates that the a/d ratio is the most dominant
parameter that affects magnitude of o, and the value
decreases with increasing a/d ratio. The rate of decrease is
larger for high ratio of web reinforcement. Figure 13 also
shows that the longitudinal steel ratio p has also a pro-
nounced influence on the variation of «, and the higher p
causes the greater o. Such trend is well agreed with the
discussion that is based on the relative stiffness ratio
between the chords and the web element.

4.1 Section Analysis

When a proper « is obtained for a specific beam at a
certain load stage, the geometry of the new truss model
proposed can be determined. Here, ET1, ET3 are selected as
an example for how assembles the truss at the ultimate load
stage. The geometry of the top chord (arch) is determined
from the arch shape function of Eq. (6) together with o of
0.36-0.42 as illustrated in Fig. 14. Also, the angles of the

1.0
0.8
ungracked fransient stabilized
0.6 stage stage stoge
(04
P G S
0.4 D
/ i o
02 » /; 'k/
ET4 ET3 ET2 ET1
0
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
VIV,

Fig. 12 Variation of the values of a with increase of load

diagonal struts at every section are calculated by Eq. (20)
with o = 0.39 (mean) and f; calculated at the corresponding
section. The results are also displayed over the shear span in
Fig. 14, and compared with the actually recorded cracks in
the beam. This comparison demonstrates that the predicted
angle along the span shows a good agreement with the crack
angles in the actual beam.

In determining the geometry of the present approach
above, average stresses and average strains have been con-
sidered. However, the local stresses that occur at a crack are
different from the calculated average values. At a crack the
concrete tensile stress goes to zero, whilst the steel tension
becomes larger. Also, the shear behavior of a beam is mainly
governed by the forces transmitted across the crack.

Figure 15 shows the forces acting at an inclined cracked
section of a beam provided with vertical stirrups. Here, the
inclined crack angles are assumed to coincide with the
direction of principal compressive stresses. It is seen that at
the section the shear force is resisted by the combined
actions of the stirrups, the compression zone and the
aggregate interlocking. Recognizing that the shear resisted
by the compression zone corresponds to that by arch action
oV, the shear sustained by the uncracked compression zone
is depending on the value of the corresponding o in beams.
Assuming that the portion of the shear resisted by the dowel
action of the longitudinal steel is negligible, the internal
shear force is composed of three base components (Kim and
Jeong 2011a, b, c).

V=oV+V;+ Vs (24)

The sum of the first two terms is normally referred to the
concrete contribution V., and the last term is referred to the
steel contribution. In view of the present approach, the first
term is the component resisted by the arch action, and the
sum of the last two terms, which is equal to (1 — «)/V] is the
component resisted by the web element by means of the
beam action.

1.0
0.9 \(\
0.8 \é\
0.7 \\)\
0.6 K
(04 “\
0.5 \ \C\\ Kani(1966)
0.4 Q p:2.88%]
b \\ p=1.88%
0.3

without stirrup

[%]

with stirrups
Kim(1998) D\\O\
0.2 P, =0.452% 7RO 0
p=1.94% \ ST
0.1 ( 0 =1.08% T >
0
0 1 2 3 4 5 6 7 8

a/d

Fig. 13 Variation of the values of «, versus a/d ratio
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Fig. 15 Forces acting at a cracked section. a Inclined sec-
tion. b Vertical section

After the formation of inclined cracks, no tension force
perpendicular to the crack can be transmitted across it.
However, as long as the crack is narrow, it can still transmit
forces in its own plane through the interlocking of the rough
surface. So, sizable interlocking shear force V.; (MPa) has
been measured. This shear component will be analytically
predicted using the expression developed by Bhide and
Collins (1989).

0.18+/f. b,
Vo = s bz 2s)
0.3 + 24w/(d, + 16)

where d, is the maximum aggregate size, and w is the crack
width. The crack width is taken as the product of the

principal tensile strain & and the average spacing of the
cracks. The detailed information on Eq. (25) should be
referred by Nielsen (1984).

In actual beams, however, a portion of shear is resisted by
dowel action and/or frame action in addition to the aggregate
interlocking Leonhardt (1965). If these beneficial contribu-
tions are accounted as an equivalent term of V,;, the mag-
nitude of V; in beams may differ from that evaluated based
on the interlocking action alone. Therefore, an alternative
simple expression may be required. From the view of
Eq. (24), the ultimate shear strengths of sufficiently slender
beams with no web reinforcement are purely rely on V7,
alone because both oV and V; cannot be developed in such
beams. Hence, it seems reasonable that the lowest shear
strength from ACI-318 shear expression (ACI Committee
318 1999) is taken as the simple practical expression for V;:

Ve = 0.16\/f.byd (26)

This expression is an alternative for a practical evaluation of
V.; (MPa) and is appropriate for the ultimate limit state rather
than the service stages.

4.2 Steel Stresses

After the development of shear cracks in a beam provided
with vertical stirrups, the concrete struts in the web shear ele-
ment are subjected mainly to compression, the vertical stirrups
act as vertical tension tie, and the longitudinal reinforcement
acts as horizontal tension tie, thus forming a truss action to
resist shear. The shear carried by this truss action, which is the
so-called stirrup contribution Vj, is equal to (1 — )V — V;
from Eq. (24). This shear force must be balanced by the forces
acting at the stirrups crossing the crack A4.f,(z/s) cot 6. From
this equilibrium, the stirrup stress f, is expressed as

1
fV B pvbWZ

[(1—a)V — V] tan 0, (27)

Figure 16 shows the comparison between the stirrup stresses
calculated from Eq. (27) and those measured at the mid-shear
span of the four beams tested at Stuttgart. In calculating each
stirrup stress using Eq. (27), two methods are employed. One is
the theoretical calculation in which the theoretical values of o
(Fig. 12)and V; of Eq. (25) corresponding to every load intensity
are used, and the other is a simple practical calculation in which
the fixed value of «, and V. from Eq. (26) are used without
considering the load intensity. As seen from Fig. 16, there are
excellent agreements between the calculated and the measured.

As shown in Fig. 15, the truss action in the web also
produces the longitudinal compression force V; tanf. From
the sectional moment equilibrium, the longitudinal steel
tension T at a cracked section is expressed by

M,
To="2+05[1—-a)V, —

Zx

V.| cot 0, (28)

It may be interesting to note that Eq. (28) with a =0
(z = z,) and V_; = 0 coincides with the steel tension in the
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Fig. 16 Comparison of stirrup stressed predicted with those
measured

variable-angle truss model, whereas that with o = 1 and
V.; = 0 corresponds to the steel tension in a simple strut-
and-tie model. To examine Eq. (28), one of the specimen
tested by Kim et al. (1998) is selected because its whole
load-tension histories at three sections in the shear span are
available as illustrated in Fig. 17. In calculating 7, by
Eq. (28) for all loading stages, the simple practical method
with o, = 0.51 and the fixed V. from Eq. (26) is used, and
the results are compared with the measured values in
Figs. 17a and 17b. As seen in the figures, good agreements
are observed between the calculated and the measured with
increase of load, and also the distribution of the tension
predicted over the span near the ultimate load stage is also
well agreed with the measured.

The accuracy of the theoretically calculated tension of the
vertical tie (stirrup) and the horizontal tie (longitudinal steel)
may strongly confirm the rationale of the present approach
although the solution procedure is too complicated to be
used. The fact that the simple practical calculation method is
accurate enough may also confirm the practical applicability
of the present approach. Moreover, it can be seen from
Fig. 16 that the shear prior to diagonal cracking is main-
tained during the stirrup stresses rise to yield level. This
confirms the fact that both the arch and the beam action are
the essential mechanisms in resisting the applied load in
stabilized stage up to failure.

4.3 Ultimate Shear Strength V,

The shear strength at the ultimate when the stirrups start to
yield V,, is derived from Eq. (27) by substituting the yield
strength of the stirrups f,,, for f.
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p=194% Predicted by Vei o0 )
2001 g
z
=3
Z 150+
9 4
i ” \M
F 1001 easured
—l v
[UN) v
[ mnolpP
(%]
50 1
mno p
04 . . : ,
0 100 200 300 400
Moment (kN-m)
(a)
kN MPa
Simple V=0.99Vu
250 - Strut-Tie Model (=80 kN) 500
200 - 400
< wv)
ke o
% 150 300 g
- S
© s, ) ‘S
9O 100 4 S Conventional 200 %
& o 450 beamtheory =
Truss Model
507 o&—e : Measured 100
o---0: Predicted
0 0
od 0.5d 1.0d 1.5d 2.0d
Distance from Support
(b)

Fig. 17 Comparison of longitudinal reinforcement tension
predicted with those measured. a Variation of tension
with increase of load intensity. b Distribution of
tension over the shear span near the ultimate load
stage
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Viy =

— (Ve + Adfy ot 0.) <V (29)

where V, s is the shear force when flexural failure occurs.
Figure 18 shows the comparison of the strengths predicted
from Eq. (29) with the measured results of the four beams
tested at Stuttgart. It is seen that the three beams failed by
stirrup yielding, the other (ET1) failed by flexure in which
the shear strength exceeded the flexural strength. Within this
comparison it can be said that Eq. (29) yields a very close
predictions for the shear strengths of beams failed by stirrup
yielding. The failures associated with the arch action will be
the crushing/splitting of concrete arch, the yielding of steel
tie, and the anchorage failure in the joint between arch and
tie. All of these failure modes and the web concrete crushing
failure are not dealt with in the present paper.

5. Conclusions

On the basis of the relationship between shear and the rate
of change in bending moment (V' = dM/dx = zdT/dx + Tdz/
dx) in reinforced concrete beams subjected to shear and
bending, a behavioral model has been proposed in the present
paper. In the model the rate of the change in the lever arm (dz/
dx) is accounted for, so that the shear resistant mechanism has
been decoupled into two base components—the arch action
and the beam action. The ratio (denoted by factor-a) of con-
tribution to shear resistance by the tied arch action in a beam
is numerically derived from the gross compatibility of
deformations associated with the base actions. Then, the
actual behavior of shear-critical beams is formulated by
means of interpolating between the sectional approach and the
tied arch approach using the value of the factor-o. The ade-
quacy of the new approach has been briefly examined by
some test results in literatures, and the results show an
excellent agreement between the predicted and the measured.
From the present study, it can be concluded that the factor-o is
appeared to be the most crucial parameter for understanding
the behavior of shear-critical reinforced concrete members.
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