
Retrofit Design of Damaged Prestressed Concrete Cylinder Pipes

Yongjei Lee1),*, and Eun-Taik Lee2)

(Received April 27, 2013, Accepted September 18, 2013)

Abstract: Prestressed concrete cylindrical pipe (PCCP) has been widely used for the distribution of water in communal,

industrial, and agricultural systems for a long time. However, as it deteriorates, structural failures have been experienced.

Replacing the entire existing PCCP with partial damages is not an economical method. Currently, as a cost effective repairing

method, a new approach using fiber reinforced polymer (FRP) has been applied. A new design procedure of this method was

proposed considering various kinds of loading condition. However, it is not easy to apply this method for design purpose due to its

complex procedures. The objective of this study is to provide a new design criteria and process for PCCP rehabilitation with FRP.

Through this method, the appropriate quantities of FRP layers will be decided after examining of limit states of deteriorated PCCP.

For this purpose, two deterioration conditions are assumed; fully deteriorated and partially deteriorated. Different limit states for

each case are applied to decide the quantities of attached FRP. The concept of ‘‘margin of safety’’ is used to judge whether the

design results are within the optimal ranges to satisfy all limit states.
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1. Introduction

Prestressed concrete cylindrical pipe (PCCP) has been
widely used for the distribution of water in communal,
industrial, and agricultural systems for a long time. For
example, the California Department of Water Resources has
over 330,000 feet of PCCP in operation for more than
30 years. However, as it deteriorates, structural failures have
been experienced. For example, the breaks in 1994 and 1998
in the Mojave Siphon pipeline resulted in significant damage
and shut down of the east branch of the aqueduct. Due to the
single rupture of 20 feet of pipeline, over $500,000 was
spent for the restoration of service (Lee 2002).
The PCCP is composed of three major structural compo-

nents: concrete core, steel liner, and prestressed (PS) strands.
The typical initial stress in the PS wires is about 65 % of the
ultimate value. For that reason, when the prestress fails, the
internal pressure confined by the section bursts into an
explosive failure as well as the energy stored in wires is
released. It is the damage in the mortar coating where the
ingress of water happens and causes the corrosion of the
wires. The damage may also happen during the manufac-
turing, transportation, and installation of PCCP.

Replacing the entire existing PCCP with partial damages is
not a cost effective way, so a few rehabilitation methods have
been proposed. One of them is to use a repair sleeve which
confines the damaged area from the outside (McReynolds
1999). This method is suitable for emergency repair but it
requires heavy lifting equipment and it is applicable only up to
four feet diameter pipe in maximum. Another method is post-
tension circumferential tendon system (Zarghamee et al.
1998). This method requires the removal of soil cover as well
as the removal of PS wire. It may cause the cost and the
environmental issues. The most popular repairing method
currently used is an inner installation of steel cylinder (Fortner
1999). However, this method can be very costly in manufac-
turing of inner steel and raises technical difficulties in insert-
ing the steel. To overcome the difficulties in previous PCCP
rehabilitation methods, a new approach using fiber reinforced
polymer (FRP) has been applied. The FRP rehabilitation
method relies onmanual installation of FRP sheets, and thus is
currently suitable only for sectional repairs to keep the line in
service and to prevent failure once an imminent failure threat
is detected. However, because detection methods can be
unreliable and the labor cost is high, there is a need to auto-
mate FRP technology to enable it to advance from high-cost
sectional repairs (Lee 2011).
A comprehensive review of current design practice is pro-

vided (Zarghamee 1988a). A review of current design practice
and test results for determining the state of stress after losses
due to creep, shrinkage, and wire relaxation is also presented
(Zarghamee 1988c). According to these reviews, the typical
pipes designed by current methods have ample safety against
ultimate loads and pressures. A new design procedure for PS
concrete pipe based on limiting the combined effects on the
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pipe wall of axial thrust and bending moment resulting from
internal pressure and external loads is presented byHeger et al.
(1990). The proposed design criteria include the serviceability
for crack control in the core and coating of the pipe, elastic
limits to maintain repeatability, and strength limits. The
complex behavior of PS concrete pipe subjected to internal
pressure and external loads can be explained with the non-
linearities of the constituent materials (Zarghamee 1988b).
This model was extended to allow moment redistribution in
the pipe as the core undergoes tensile softening, cracking, and
yielding of the steel cylinder and PSwire (Zarghamee and Fok
1990). However it is not easy to apply this method for design
purpose. In practice, a relatively simplified method is used to
explain the nonlinear behavior of the concrete after crack
happens. It assumes the modulus is reduced to a certain degree
based on its condition (American Concrete Institute 2008a).

2. Theory and Method

Usually, PCCP in market is considered as a kind of thick-
walled pipe because its thickness is more than 10 % of its
diameter. However, a deteriorated PCCP that with cracks in
the concrete layers doesn’t act like a thick-walled pipe
anymore. Even with FRP layer reinforcements, it can be
considered as a thin-walled pipe because the thickness of the
FRP layer is very thin in comparison with the diameter. For
this reason, a PCCP needs to be treated differently according
to its deterioration state.
The objective of this study is to provide a design process

of PCCP rehabilitation. In other word, the appropriate
quantities of FRP layers will be decided after examining of
limit states of fully deteriorated or partially deteriorated
PCCP. Two deterioration conditions are assumed as fol-
lowing cases:

Case 1 (fully deteriorated): FRP layer is separated from the
inner core with the concrete core cracked as a stand-alone
buried flexible pipe. The limit states for this case are shown
in Fig. 1. Fully deteriorated pipes have many broken
prestressing wires, multiple wide cracks in the concrete
core, uneven internal surface, and has deformed into a
noncircular shape. Uneven internal surface and noncircular
shape may reduce the buckling strength of the FRP liner.
Case 2 (partially deteriorated): FRP layer and inner
concrete core are acting as a composite pipe with the outer
core cracked. The limit states for this case are shown in
Fig. 2. Partially deteriorated pipes are known to have
some broken wires but have not lost their circular shape
and do not have irregularities on their surface. For such
pipes, hydroblasting will provide a uniform, round
surface, resulting in no waviness in the FRP liner that
could reduce its buckling strength.

The tolerable crack width of water-retaining structures like
PCCP, is 0.1 mm (American Concrete Institute 2001). After
measuring the crack width and/or evaluation of unevenness,
the state of PCCP is decided and the design method is
selected. For design purpose, various loadings and

reasonable quantities of safety factors should be selected. In
this study, as a loading set, working pressure, transient
pressure, vacuum pressure, soil cover height, ground water,
and surface live load are used. The safety factors and the
design procedure follow AWWA C301-07 (American Water
Works Association 2007b) and AWWA C304-07 (American
Water Works Association 2007a).
Analysis methods for each limit states can be altered with

change of conditions. For example, the mono-layer method
to get the pipe stress is used here but in some situation multi-
layers model may give more reasonable results (Lee 2011).
There can also be alternative ways to get the buckling force,
pipe deflection, debonding force and so on. It depends on the
designer’s choice.

2.1 Deflection
The pipe deflection is the decrease of the vertical diameter

of the pipe and the corresponding increase in the horizontal
diameter. The increase in horizontal diameter is resisted by
the stiffness of the soil at the sides of the pipe. The pipe
deflects according to the ratio of the load in the ring to the
material stiffness. However, the material stiffness is more
complicated since a soil-pipe interaction takes place. The
material stiffness becomes a combination of the structural
modulus of the pipe and the modulus of the soil. Equation
(1) is used to predict the average long-term vertical deflec-
tion of pipe (Howard et al. 1995; Howard 1996; Howard
1977). This equation is an empirical relationship based on
the Iowa Formula (Spangler and Handy 1982; Spangler
1941) and its revised version (Watkins and Spangler 1958).

DY ð%Þ ¼ Tf Kch
EI
r3 þ 0:061FdE0 ð1Þ

where DY (%) is the percent vertical deflection, Tf is the
time-lag factor, dimensionless, K is the bedding constant (as
a general rule, a value of K = 0.1), c is the backfill unit
weight (kN/mm3), h is the depth of cover (mm), EI/r3 is the
pipe stiffness factor (kN/mm2), Fd is the design factor,
dimensionless, and E0 is the modulus of soil reaction (kN/
mm2).
The pipe stiffness factor is normally obtained from man-

ufacturer’s literature. Time-lag factor, design factor, and
modulus of soil reaction vary according to the type of soil
used as the embedment and the degree of compaction of the
embedment soil. The strain of pipe due to a deflection under
each loading condition is

epipe ¼ n � Dy
D

� t
D

ð2Þ

where n is the shape factor, D is the deflection (mm), t is the
thickness of layer (mm), and D is the diameter to midpoint of
layer (mm).

2.2 Buckling and Debonding
The buckling resistance for both Case 1 and Case 2

follows the Glock’s model (Omara et al. 1997). In this
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application, the small wavy imperfection in radial direction
(D) is assumed to be zero for partially deteriorated condition
and it is assumed to be the same as the FRP thickness for
fully deteriorated condition. The correction factor from wavy
imperfection for buckling resistance is

CF1 ¼ e�0:56 D
FRPthickness ð3Þ

The ovality due to earth load and pipe weight is

q ¼ deflection due to earth load þ pipe weight

inner diameter
ð4Þ

The correction factor from ovality for buckling resistance is

CF2 ¼ e�
q

0:18 ð5Þ

The buckling resistance using Glock’s Model is modified
to account for imperfections as in Eq. (6a). In case the FRP
and the inner concrete core acting together, the buckling
resistance is expressed in Eq. (6b).

Pbuck�resist ¼
modulus of FRP

1� poissons ratio of FRP2ð Þ
� thickness of FRP

diameter

� �
� CF1 � CF2 ð6aÞ

Limit States

CFRP liner acting alone
CFRP liner and 

concrete inner core 
acting together

Pressure alone Combined pressure and bending Buckling

-Long-term stress and strain due to working pressure
-Short-term stress due to transient pressure
-Short-term strain

-Deflection under earth load
-Deflection under pipe weight
-Deflection under water weight
-Deflection under live load

-Long-term strain in CFRP due to horizontal diametrical deflection under earth load
-Long-term strain in CFRP due to horizontal diametrical deflection under pipe weight
-Long-term strain in CFRP due to horizontal diametrical deflection under water weight
-Long-term strain due to working pressure
-Short-term strain in CFRP due to horizontal diametrical deflection under live (traffic) load
-Short-term strain due to pressure

Combined case 1: Empty pipe with surface live load
Combned case 2: Full pipe without pressure
Combined case 3: Full pipe with working pressure
Combined case 4: Full pipe with working plus transient pressure
Combined case 5: Full pipe with working pressure and surface live load

Check criterion

Margin of safety

-Ground water pressure
-Vacuum

Constrained buckling 
(Glock s Model)

Fig. 1 Limit states for Case 1.
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Pbuck�resist ¼
plastic modulus of FRP

1� poissons ratio of FRP2ð Þ

� moment of inertiað Þ
3
5� areað Þ

2
5

radiusð Þ
11
5

ð6bÞ

The debonding is a behavior that occurs if the force in the
FRP cannot be sustained by the substrate, regardless of
where the failure plane propagates within the FRP-adhesive-
substrate region. To prevent a crack-induced debonding, the
FRP strain is limited as in Eq. (7) (American Concrete
Institute 2008b; Teng et al. 2001; Teng et al. 2004).

efd ¼ 0:083

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
concretestrengthð Þ

modular ratioð Þ � modulusof FRPð Þ � thicknessof FRPð Þ

s

ð7Þ

2.3 Margin of Safety

The internal pressure could be short term loading like a
water hammering as well as long term loading, and for that
reason both short term and long term loading combined

Limit States

CFRP liner and 
concrete inner core 

acting together
CFRP liner acting alone

Pressure alone
Combined pressure and external 

load
Long-term bending

-Long-term stress and strain due 
to working pressure
-Short-term stress due to 
transient pressure
-Short-term strain

-Deflection under earth load
-Deflection under pipe weight
-Deflection under water weight
-Deflection under live load

-Long-term strain in CFRP due to horizontal 
diametrical deflection under earth load
-Long-term strain in CFRP due to horizontal 
diametrical deflection under pipe weight
-Long-term strain in CFRP due to horizontal 
diametrical deflection under water weight
-Long-term strain due to working pressure
-Short-term strain in CFRP due to horizontal 
diametrical deflection under live (traffic) load
-Short-term strain due to pressure

Combined case 1: Empty pipe with surface live 
load
Combned case 2: Full pipe without pressure
Combined case 3: Full pipe with working 
pressure
Combined case 4: Full pipe with working plus 
transient pressure
Combined case 5: Full pipe with working 
pressure and surface live load

Check criterion

Margin of safety

-Due to earth load
-Due to pipe weight
-Due to water weight

Compression failuer of 
inner core concrete
-Due to earth load
-Due to pipe weight
-Due to water weight

Buckling

-Ground water pressure
-Vacuum

Constrained buckling 
(Glock s Model)

Crack-induced 
debonding of CFRP

Radial tension

Fig. 2 Limit states for Case 2.
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together to calculate the total applied pressure. In other
cases, the long-term loading is considered the most severe
loading condition.
A concept of ‘‘margin of safety (MS)’’ is used to judge if

the design satisfies a certain limit state. Each of limit states
has its own criteria to be fulfilled by design. The MS is a
reciprocal of the criterion. This numerical index shows if the
design is OK or not. For example, if the MS is greater than
or equal to one, then the design for the limit state is fine. The
criteria from AWWA C304-07 are summarized in Table 1,
according to the limit states.

3. Example and Result

The 1 mm thick FRP layers are attached to the inside of
the deteriorated PCCP and the changes of the MS are
examined as the number of the FRP layers changes. Eight
limit-states in total are considered. Buckling model, deb-
onding model and mono-layer model presented in the pre-
vious sections are used to calculate each limit-state. The load
factors and reduction factors follow American Concrete
Institute (2008b) and American Society of Civil Engineers
(2005). The resultant factor of safety is 3.5 for FRP sub-
jected to long-term loads and 1.9 for FRP subjected to short-
term loads. It is 2.2 for concrete in flexure as well as for
radial tension between concrete core and FRP layer. It is 2.5
for crack-induced debonding between concrete core and
FRP layer. The rerounding factor of 0.77 and the bedding
coefficient of 0.09 are used (American Water Works Asso-
ciation 2005).

Table 1 Criteria according to the limit states.

Case Limit states Criteria Description

Fully deteriorated (FRP alone)
Pressure alone es�FSs

efrp
þ el �FSl

efrp
� 1:0

Critical pressure be less then tensile
strength of FRP

Combined pressure and external
loads

ecomp �FS
efrp

� 1
Critical strain be less than ultimate

tensile strain of FRP

Buckling
pbuck
pcr

� 1
Critical buckling pressure be less

than buckling resistance

Partially deteriorated
(inner core & FRP
acting together)

Combined pressure and external
loads

ecomp �FS
efrp

� 1
Critical strain be less than ultimate

tensile strain of FRP

Concrete crushing
ecomp �FS

eco
� 1

Critical compressive strain in
concrete be less than ultimate
compressive strain of concrete

Debond
ecomp �FS

edeb
� 1

Critical strain in FRP be less than
debonding strain

Radial tension
rrt �FS
rrf

� 1
Radial tensile stress between FRP
and inner core be less than radial

tensile bond strength

Buckling
pbuck
pcr

� 1
Critical buckling pressure be less

than buckling resistance

es, el short term and long term strain, FS, FSs, FSl factor of safety (short term and long term) ecomb, efrp combined strain, ultimate strain of FRP,
pbuck, pcr buckling load, buckling resistance, ecomp, eco compressive bending strain, ultimate compressive strain in concrete, edeb strain in FRP
that causes debonding, rrt, rrf radial tensile stress, radial tensile bond strength (kN/mm2).

Fig. 3 Margins of safety (FRP acts alone).

Fig. 4 Margins of safety (FRP and inner core act along).
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Figure 3 shows the change of the safety margin of each
loading case according to increasing of the FRP layers when
FRP acts alone. Figure 4 shows the change of the safety
margin of each loading case according to increasing of the
FRP layers when FRP and inner core concrete act together.
When FRP acts alone with only internal pressure, and with

the combined internal pressure and the external loads, the
MS reaches 1.14 and 1.10 respectively, with seven layers of
FRP. When FRP acts alone and considering the buckling, it
requires 14 layers to reach the MS of 1. This means quite
many FRP layers are required to rehabilitate PCCP when the
inner core concrete is cracked. When FRP and core concrete
act together subject to the combined internal pressure and the
external loads, the MS reaches 1.06 with 9 layers of FRP.
Unlike expectation, there are certain limit-states at which

the increase of the reinforcing layers would reduce the MS.
For example, when it comes to the inner core concrete crush,
the MS is less than 1 with the layers of 11 or more. Thick
FRP layer would receive more portions of the applied loads
than core concrete. Because of the higher strain limit of FRP,
the concrete cracks before the total failure.
Similar trends are observed in debonding between FRP

and concrete, and in radial tension between them. Although
the MS is not going under 1 in this examination, it is con-
tinuously decreasing as more layers are attached. It is
thought that the unequal distribution of the loads due to the
increasing FRP portion causes the different behavior
between FRP and attached inner core concrete.
After inspection of the PCCP, the degree of the deterio-

ration can be informed. If the inner core concrete is already
cracked so that the FRP is expected to act alone, it is rec-
ommended that more than 14 layers of SCH-41 be applied.
If the inner core is deteriorated but still in sound condition so
that the FRP is expected to act along with it, then using of
nine or ten layers of FRP is recommended.

4. Conclusions

The limit-states of the PCCP with FRP rehabilitation were
studied. For design purpose, proper factors of safety were
selected. To get the stress and strains of each layer under
certain condition, the mono-layer model was used. It was
extended to get the stresses in radial direction and tangential
direction of the pipe section. This mono-layer model was
also developed to be used in a plastic range behavior of thick
and thin layered pipe. The Glock’s buckling model (Omara
et al. 1997) was modified and used to express FRP behavior.
Teng’s debonding limit equation (American Concrete Insti-
tute 2008b; Teng et al. 2001; Teng et al. 2004) was intro-
duced for crack-induced debonding of FRP.
Through the analysis, the MS could be obtained for each

limit-state. Total eight limit-states were considered: three
states for FRP alone case, and five states for FRP and core
concrete together case. Conducting an example analysis, the
tendency of the MS according to the increase of the FRP
layers was obtained. In general, the more FRP reinforcing
produces the better performance of the pipe. However, some

limit-states, for example, concrete crushing, crack-induced
debonding, and radial tension showed opposite results to the
general expectation. It may be caused by the increase of the
non-uniform stress distribution due to the difference of the
material properties as FRP layer getting thicker. It is very
important to find the optimal quantities of the FRP layers
considering all limit-states. As shown in above example, too
much or too little rehabilitation can cause negative effects.
The debonding strain equation used in this example was

originally developed for the FRP strengthened concrete
beam. There could be some discrepancy in applying it to the
PCCP. However, to the best of the author’s knowledge, there
is no proper study of PCCP for this topic. In the future
studies, experimental data should be obtained to get the
strain equation of FRP debonding of the PCCP as it’s done
for the concrete beam.
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