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Abstract In this study, the theory of curves is reconstructed with fractional calculus. The condition of a
naturally parametrized curve is described, and the orthonormal conformable frameof the naturally parametrized
curve at any point is defined. Conformable helix and conformable slant helix curves are defined with the help
of conformable frame elements at any point of the conformable curve. The characterizations of these curves
are obtained in parallel with the conformable analysis Finally, examples are given for a better understanding
of the theories and their drawings are given with the help of Mathematics.

Mathematics Subject Classification 53A04 · 26A33

1 Introduction

The theory of curves has been one of the most important and most curious fields of differential geometry
from past to present. Carl Friedrich Gauss and Gaspard Monge have done very important study on curves and
surfaces. In this respect, they can be considered the founders of differential geometry. Afterwards, thanks to
numerous studies, the subject of curves has shown incredible developments. Most of the studies on this subject
are directed towards characterizing curves. The best way to characterize a curve is to use relations between
Frenet elements. There are two knownmethods for this. The first is to characterize the curve using the relations
between Frenet vectors. The best examples of this are curve pairs. As is known, curve pairs are characterized
by the states of Frenet vectors at opposite points of the curves. Bertrand curve pair, Mannheimm curve pair
and involute–evolute curve pair are the most well-known examples [5,6,10,33]. A second way to characterize
a curve is to make use of the relations between its curvatures. General helices and slant helices are the best
examples of curves characterized in this way. General helices characterized by M. A. Lancret in 1806 and first
proved by B. de Saint Venant in 1845 as follows [22]:

τ

κ
= c, c ∈ R. (1)

Similarly, slant helices curves characterized by S. Izumiya and N. Takeuchi in 2004 as follows [19]:
(

κ2

(κ2 + τ 2)3/2

(τ

κ

)′) = constant. (2)

Fractional calculus is the application of the classical derivative and integral concepts, which are studied in
detail bymany researchers today is a generalization.What is meant by fractional derivative is actually any order
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derivative. The concepts of fractional derivative and integral are as old as the concepts of integer derivative
and integral, and the term fractional derivative mentioned for the first time in Leibniz’s letter to L’Hospital in
1695, as stated in many sources. Leibniz addressed in his letter to L’Hospital “Can integer decimal derivatives
be extended to fractional decimal derivatives?” question can be shown as the first emergence of the concept of
fractional differential. The concept of fractional calculus is attracted the attention of many mathematicians and
is found a wide field of study. Fractional calculus, which is claimed to give more numerical results especially
in the solutions of differential equations, is become an indispensable cornerstone of almost every subject
in the field of basic sciences and engineering [1,8,24,32]. The fact that the subject of fractional calculus is
extremely popular is led to the emergence of the definition of fractional calculus with different features by
many researchers. Some of these are Riemann–Liouville (R–L), Caputo, Grünwald–Letnikov, Wely, Riesz
fractional derivatives [25–27]. As each fractional calculus has a common feature, it also has its own unique
rules. For example, none of the non-local fractional derivative types satisfy the classical Leibniz and chain
rule. In addition, the derivative of the constant is not zero in any of the non-local fractional derivative except
for the Caputo fractional derivative [7]. On the other hand, local fractional derivatives such as Conformable,
Alternative, M-fractional and V -fractional are known to satisfy Leibniz and the chain rule. Therefore, local
fractional derivatives provide an advantage in this respect in algebraically constructed subjects [20,21,28,29].

The theory of curves can be described as the study of the motion of a point in a plane or space using
the techniques of linear algebra and calculus. Considering the adventure of the literature in the last ten years,
it is observed that fractional calculus is started to be used for curves and surface in differential geometry. T.
Yajima and K. Kamasaki are made the first study on this subject by examining surfaces with fractional calculus
[34]. Later, T. Yajima et al. are obtained Frenet formulas using fractional derivatives [35]. In another study,
K.A. Lazopoulos and A.K. Lazopoulos are studied fractional differentiable manifolds [23]. M.E Aydın et al.
are studied plane curves in equiaffine geometry in fractional order [2]. U. Gozutok et al. are analyzed the
basic concepts of curves and Frenet frame in fractional order with the help of conformable local fractional
derivative [11]. On the other hand, A. Has and B. Yılmaz have investigated some special curves and curve pairs
in fractional order with the help of conformable Frenet frame [13,14]. In addition, electromagnetic fields and
magnetic curves are investigated under fractional derivative by A. Has and B. Yılmaz [15,36,37]. Additionally,
studies on this subject are ongoing [3,4,9,17,18,31].

In this study, algebraic and calculus based properties of curves are reconstructed with the help of con-
formable local fractional derivative. First of all, the most basic concepts of geometry, line, plane and sphere,
are redefined in fractional order. Then, the concepts of unit and orthogonality, which are the algebraic basis
of curves, are defined in fractional order. Then, the α−conformable frame of the α−conformable naturally
parameterized curve is defined. Throughout this study, definitions based on conformable analysis is denoted by
Cα . For example, Cα−frame, Cα−naturally parameterized curve, etc. It should be noted here that the Cα−frame
defined in this study is different from the frame discussed in the study [11]. The Cα−frame mentioned in this
article is fully defined by the conformable local fractional derivative of the vectors and gives different results
than the classical Frenet frame. In addition, general helices and slant helices, which are the most important
concepts of the theory of curves, are discussed again in fractional order. The effects of conformable calculus
on these curves are investigated and necessary characterizations are given. Finally, the concepts obtained from
fractional order are given with examples and their graphs are drawn.

2 Preliminaries

2.1 Basics parametrized curves

A regular naturally parametrization of classCk ,with k ≥ 1of a curve inR3 is a vector functionx : I ⊂ R → E
3,

s �→ x(s) = (x1(s), x2(s), x3(s)) defined on an interval I which satisfies x is of class Ck and x′(s) �= 0 for
all s ∈ I . A curve x is continuously differentiable if x′(s) exists for all s ∈ I and the derivative x′(s) is a
continuous function; thinking dynamically, the vector x′(s) is the velocity of the curve at time s. We call x(s)
naturally parametrized curve if xi (s) (i = 1, 2, 3) is of class Ck and ‖x′(s)‖ = 1, for each s ∈ I [30].

Let x(s) be biregular, that is, x′(s)×x′′(s) �= 0, for each s ∈ I . We consider a trihedron {T (s), N (s), B(s)}
along x(s), so-called Frenet frame, where [30]

T (s) = x′(s), N (s) = T ′(s)
‖T ′(s)‖ , B(s) = T (s) × N (s).
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The curvature κ , a non-negative scalar field, is defined by setting κ(s) = ‖T ′(s)‖ and torsion is defined by
setting τ(s) = 〈N ′(s), B(s)〉. The naturally parametrized curve x has unit speed and strictly positive curvature
then the following equations hold [30]:⎡

⎣T ′
N ′
B ′

⎤
⎦ =

⎡
⎣ 0 κ 0

−κ 0 τ
0 −τ 0

⎤
⎦

⎡
⎣T
N
B

⎤
⎦ . (3)

2.2 Basics in conformable fractional calculus

Given s �→ x(s) ∈ E
3, s ∈ I ⊂ R, the conformable derivative of x at s is defined by [21]

Dα(x)(s) = lim
ε→0

x(s + εs1−α) − x(s)

ε
.

Let Dx(s) = dx(s)/ds. We then notice

Dαx(s) = s1−αdx(s)/ds.

Denote by Dαx(s) the αth order conformable derivative of x(s) for each s > 0, 0 < α < 1.
It can be said that the conformable derivative provides some properties such as linearity, Leibniz rule and

chain rule as in the classical derivative as follows:

1. Dα(ax + by)(s) = aDα(x)(s) + bDα(y)(s), for all a, b ∈ R,
2. Dα(s p) = ps p−α for all p ∈ R,
3. Dα(λ) = 0, for all constant functions x(s) = λ,
4. Dα(xy)(s) = x(s)Dα y(s) + y(s)Dαx(s),
5. Dα( xy )(s) = x(s)Dα y(s)−y(s)Dαx(s)

y2(s)
,

6. Dα(y ◦ x)(s) = x(s)α−1Dαx(s)Dα y(x(s)),

where x, y be α-differentiable for each s > 0 and 0 < α < 1 [21].
The definition of the conformable integral is given as the inverse operator of the conformable derivative.

The conformable integral of the function x(s) is defined by [21]

I aα f (t) = I a1 (tα−1 f ) =
∫ t

a

f (x)

x1−α
dx .

The effect of conformable analysis on vector-valued functions is investigated, and the limit and derivative
of these functions also are investigated. In the following theorem, the conformable fractional derivative of
vector-valued functions is given.

Theorem 2.1 Let x be a vector-valued function with n variables, and let x be a vector-valued function
x(s1, ..., sn) = (x1(s1, ..., sn), ..., xm(s1, ..., sn)). So x is α−differentiable at t = (t1, ..., tn) ∈ R, for all
ti > 0 if and only if each xi is, and [12]

Dαx(t) = (Dαx1(t), ..., Dαxm(t)).

3 Some concepts of fractional differential geometry

In this section, some vector operations and parameterized curves will be reconstructed with conformable
calculus. First of all, let’s define the concepts of conformable angle and conformable perpendicularity, which
are the most important concepts of geometry, with the help of conformable calculus as follows.
The geometric interpretation of the conformable derivative draws inspiration from the principles of fractal
geometry, where objects exhibit self-similarity across varying scales. In the realm of fractal geometry, this self-
similarity manifests as patterns repeating themselves at different magnifications. Similarly, the conformable
derivative captures this notion of self-similarity within functions by examining their local fractional variations.
From a geometric standpoint, envision the conformable derivative as akin to zooming in on a function at a
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Fig. 1 Transformation from line to curve

specific point. This zooming process reveals intricate details and nuances,much like how the classical derivative
unveils local linear behavior. Essentially, the conformable derivative allows us to scrutinize the function’s
behavior at different levels of detail and resolution, mirroring the self-similarity and scaling properties inherent
in fractal objects.Moreover,we can conceptualize the conformable derivative as ametric of curvature-the extent
to which a straight line or plane deviates to form a curve or surface. Figure 5 visually demonstrates this effect
of the conformable calculus, illustrating how a line bends under its influence, offering a tangible representation
of the concept’s geometric implications.

Example 3.1 Let consider the s �→ x(s) = (s,
∫
s1−αds), Cα−line passing through the point P = (0, 0) and

whose direction is v = (s1−α, s1−α).
Figure1 shows the graph of the conformable line for various α values.

As seen in Fig. 1, there is no classical line in the Cα− (fractional) system. This is only achieved when
α → 1. Accordingly, it requires a new concept of angle in Cα− space. This angle is called the Cα− angle,
which gives the angle between two Cα− lines. In addition, the concept of orthogonality in this Cα− space
is different from the classical one. Because we cannot talk about classical directness, we cannot talk about
steepness in the classical sense. We will explain this below.

Notation: Along the study, expressions that are equal to 1whenα → 1will it denoted as 1α , and expressions
that are equal to 0 when α → 1 will be denoted as 0α .

Suppose that x and y are Cα−unit vector, that is, they are vectors of the form ‖x‖ = 1α and ‖y‖ = 1α .
Then, the α−conformable radian measure of Cα−angle between x and y is defined by

θα = arccos

( 〈x, y〉
‖x‖‖y‖

)
.

In this sense,

〈x, y〉 = 0α

when x and y are Cα−orthogonal. For example, the Cα− vectors u = (s1−α, 1−α, 1
s1−α ) and v = ( 1−α

sα , sα, 2−
2α) are orthogonal to each other in the Cα− sense, and we present this in Fig. 2.

In addition, vectors u, v and u × v form the fractional orthogonal system. For example, if u = (s1−α, 1−
α, 1

s1−α ) and v = ( 1−α
sα , sα, 2 − 2α), it becomes u × v = (2α2 − 4α − s2α−1 + 2, 2αs1−α − 2 s1−α − α

s +
1
s , −α2 s−α +2αs−α −s−α +s). The fractional orthogonal system is shown in Fig. 3. Also fractional alternative
frame definitions defined on the Cα− parametrized curves will be given with the help of conformable fractional
derivative [16].
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Fig. 2 Cα−orthogonal vectors

Fig. 3 Cα−orthogonal system

Definition 3.2 Let x : I ⊂ R → E
3 be a vector-valued function where s �→ x(s) = (x1(s), x2(s), x3(s)).

Then, Dαx(s) = (Dαx1(s), Dαx2(s), Dαx3(s)). We call x(s) Cα−naturally parametrized curve if xi (s) (i =
1, 2, 3) is of class Cα and ‖Dαx(s)‖ = s1−α , for each s ∈ I . Here n is the maximum order that we will need.

In the remaining part, unless otherwise specified, we will assume that x(s) in E
3 is a Cα−naturally

parametrized curve. Let x(s) be Cα−biregular, that is, Dαx(s) × D2
αx(s) �= 0α , for each s ∈ I . We con-

sider a trihedron {E1(s), E2(s), E3(s)} along x(s), so-called Cα−frame, where

E1(s) = Dαx(s), E2(s) = DαE1(s)

‖DαE1(s)‖ , E3(s) = E1(s) × E2(s), (4)

where {E1(s), E2(s), E3(s)} trihedron is called Cα−tangent, Cα−principal normal and the Cα−binormal of
the Cα−curve x, respectively. Also, considering Eq. (4) Cα−tangent, Cα−principal normal and Cα−binormal
of the Cα−curve x, they different from the Frenet vectors by the effect of the conformable calculus. However,
these vectors turn into Frenet vectors, respectively, in case α → 1. In addition, the set {E1(s), E2(s), E3(s)}
is mutually Cα−orthogonal and Cα−unit speed vectors.

We call κα(s) = ‖DαE1(s)‖ Cα−curvature and τα(s) = 〈DαE2(s), E3(s)〉 Cα−torsion. The Cα−frame
formulae are now [16] ⎡

⎣DαE1
DαE2
DαE3

⎤
⎦ =

⎡
⎣ 0 κα 0

−κα 0 τα

0 −τα 0

⎤
⎦

⎡
⎣E1
E2
E3

⎤
⎦ . (5)

Conclusion 3.3 (What is the advantage of Cα− frame?) In noticeable that a function is α-differentiable at a
point where it is not classically differentiable. For example, consider the function f (t) = 2

√
t . Here f ′(0)

does not exist. However, the result D 1
2
f (0) = 1 can be easily reached. As can be seen from this example, the

function f does not have a tangent at the 0 point in the classical sense, but an approximation to this tangent
can be obtained with the help of the conformable fractional derivative. As it is known, the most important
vector element of the Frenet frame is the tangent of the curve. Therefore, a Frenet frame of the curve cannot
be mentioned at a point where the tangent of the curve does not exist. However, the Cα−frame eliminates
this problem. At the points in the Cα−frame where the tangent of the curve does not exist, fractional values
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Fig. 4 Classical tangent and Cα−tangent of the curve x(s)

are assigned to provide an approximation to the tangent at that point. Also, when α = 1, the Cα−frame
is equivalent to the Frenet frame. In that case, the Cα−frame both includes the classical Frenet frame and
provides advantages to the researchers at points not defined by the Frenet frame.

Example 3.4 Let x : I ⊂ R → E3 be a Cα−naturally parametrized curve in R3 parameterized by

x(s) =
(
2s

1
2 , s

3
2 , s

5
2

)
.

The tangent of the curve x obtained with the classical derivative and the tangent obtained with the conformal
fractional derivative for α = 1

2 and −2 < s < 2 are as follows, respectively.

T =
(
s

−1
2 ,

3

2
s
1
2 ,

5

2
s
3
2

)
,

T1
2

=
(
1,

3

2
s,

5

2
s2

)
,

where T and T1
2
are the classical tangent and Cα−tangent of the curve x(s), respectively. In Fig. (4) we present

the graph classical tangent and Cα−tangent of the curve x(s).

On the other hand, if a curve does not have a tangent at any point, then there does not exist Frenet frame.
As can be seen in Fig. (5), the Frenet frame is not present at s = 0, while the Cα−frame is present at this point.

Theorem 3.5 Let x = x(s) be Cα−naturally parametrized curve in the Euclidean 3−space where s measures
its Cα−arc length. When α → 1, as follows [16]

κα = s1−α
√

(1 − α)2s−2α + s2−2ακ2 (6)

and

τα = s5−5ακ2

κ2
α

τ. (7)
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Fig. 5 Frenet frame and Cα−frame of the curve x(s) at s = 0

4 Cα−Helices and Cα−Slant Helices

Definition 4.1 Let us Cα−naturally parametrized curve s �→ x(s) in E
3, s ∈ I ⊂ R, where

{E1(s), E2(s), E3(s)} denotes the Cα−frame. Suppose that Cα−biregular. We call the curve x(s) Cα−helix, if
the Cα−tangent of the curve makes a constant angle with a constant direction U ∈ R

3. In this context, it can
be shown by the following equation:

〈E1,U 〉 = cos θ, (8)

where θ is a constant angle.

Theorem 4.2 (The Conformable Lancret Theorem) Let’s x(s) be Cα−naturally parametrized curve. The
Cα−curve x(s) with the Cα−curvature κα > 0 is a Cα−general helix if and only if the ratio of its Cα−
torsion and its Cα− curvature is a constant.

Proof Without loss of generality, suppose that Cα−naturally parametrized curve s �→ x(s). Taking a con-
formable differentiation of Eq. (8) together with considering Cα−frame formulae, we have

〈DαE1,U 〉 = 0

and
κα〈E2,U 〉 = 0.

Since κα > 0, we find
〈E2,U 〉 = 0. (9)

If taking conformable derivative of above equation is taken together with considering Cα−frame formulae, we
obtain

−κα〈E1,U 〉 + τα〈E3,U 〉 = 0

whereupon

〈E3, U 〉 = κα

τα

cos θ.

If conformable fractional derivative of this expression is taken according to s again and considering Eq. (9),
we get

Dα

(
κα

τα

)
= −τα 〈E2, U 〉

cos θ

and finally from this equation, we have

Dα

(
κα

τα

)
= 0

or in this context
κα

τα

= c, c ∈ R.

��
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Proposition 4.3 Let the Cα−naturally parameterized curve s �→ x(s) be a helix. From this situation, the
constant U−direction, which makes a constant angle with the Cα−tangent of the helix curve x, as follows:

U = cE1 + E3√
1 + c2

,

where c ∈ R.

Proof From Eq. (9), we have
〈E2,U 〉 = 0.

It can be easily seen that E2 and U are perpendicular. Therefore, we can say that the constant U−direction is
in the plane spanned by the vectors E1 and E2. So the constant U−direction can be expressed as

U = cos θE1 + sin θE3. (10)

Taking the conformable differentiation of this equation and considering Cα−frame formulae, we get

DαU = (κα cos θ − τα sin θ)E2.

From the last equation, we obtain
τα

κα

= cot θ = c,

where c ∈ R. So, we have the following equations:

cos θ = c√
1 + c2

and sin θ = 1√
1 + c2

.

If this results is used in Eq. (10), we can easily see that

U = cE1 + E3√
1 + c2

.

��

Definition 4.4 Let us Cα−naturally parametrized curve s �→ x(s) in E
3, s ∈ I ⊂ R, where

{E1(s), E2(s), E3(s)} denotes the Cα−frame. Suppose that Cα−biregular. We call the curve x(s) Cα−slant
helix, if the Cα−principal normal vector of the curve makes a constant angle with a constant direction and
Cα−unit vector U ∈ R

3. In this context, it can be shown by the following equation:

〈E2,U 〉 = cos θ, (11)

where θ is a constant angle.

Theorem 4.5 Let Cα−naturally parametrized curve x with the κα(s) �= 0. Then x is a Cα−slant helix if and
only if

κ2
α

(κ2
α + τ 2α)3/2

Dα

(
κα

τα

)
(12)

is constant function.

Proof Suppose that Cα−naturally parametrized curve s �→ x(s) is a Cα−slant helix. Taking a conformable
derivative of Eq. (11), we get

〈DαE2,U 〉 = 0 (13)

and
−κα〈E1,U 〉 + τα〈E3,U 〉 = 0.

As can be seen from the elements of Cα−frame and (11), since there is a constant angle between E2 and
fixed directionU , there is also a constant angle between E3 and fixed directionU . Then there is the following
equations:

〈E1,U 〉 = τα

κα

c, (14)
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Fig. 6 Cα−cylindrical helices

〈E3,U 〉 = c, c ∈ R. (15)

The constant direction U from Eqs. (11), (14) and (15) is obtained as follows:

U = τα

κα

cE1 + cos θE2 + cE3. (16)

Since U is the Cα−unit vector, taking the norm of both sides of the above equation:

1α =
(

τα

κα

)2

c21α + cos2 θ1α + c21α

or

1 =
(

τα

κα

)2

c2 + cos2 θ + c2.

If this equation is arranged, we get (
τ 2α

κ2
α

+ 1

)
c2 = sin2 θ

whenupon, it follows that

c = ∓ κα√
κ2
α + τ 2α

sin θ.

Therefore, U can be written as

U = ∓E1
τα√

κ2
α + τ 2α

sin θ + E2 cos θ∓E3
κα√

κ2
α + τ 2α

sin θ. (17)
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Since U vector is also a constant vector, by taking a conformable differentiation in Eq. (13), as follows:

〈D2
αE2,U 〉 = 0. (18)

If we use Cα−frame and from Eq. (17), we have
〈
DακαE1 + (κ2

α + τ 2α)E2 − DαταE3, ∓ τα√
κ2
α + τ 2α

sin θE1 + cos θE2∓ κα√
κ2
α + τ 2α

sin θE3

〉
= 0,

∓ταDακα − καDατα

(κ2
α + τ 2α)3/2

tan θ + 1 = 0,

tan θ = ∓ (κ2
α + τ 2α)3/2

ταDακα − καDατα

and finally, we get

∓ κ2
α

(κ2
α + τ 2α)3/2

Dα

(
κα

τα

)
= cot θ = c, c ∈ R.

��
Example 4.6 Let x : I ⊂ R → E3 Cα−naturally parametrized curve in R3 parameterized by

x(s) =
(

−2
√
13

7

∫
sα−1 sin 2sds,

2
√
13

7

∫
sα−1 cos 2sds,

6

7

∫
sα−1ds

)
.

In Fig. (6) we present the graph of the Cα−cylindrical helices for different α values

5 Conclusion

At the beginning of themost popular topics in the field ofmathematics are different types of calculus.While this
is done the mathematical concepts obtained by classical analysis are redefined from different types of analysis
and compared with their classical results. The first thing that comes to mind when we say different calculus
is fractional calculus. Today, fractional analysis is used in almost all basic sciences, especially in Physics,
Chemistry and Engineering. The reason for this is the claim that fractional calculus gives more numerical
results than classical calculus. This makes fractional calculus more advantageous than other calculus. In this
direction this article, the basic concepts of geometry is re-examined with conformable fractional analysis,
which is a local fractional calculus. The difference of this study from the others is that geometric concepts
are defined with conformable fractional calculus, unlike the classical ones. The Cα− frame is constructed
differently from previous similar studies and different from the classical Frenet frame. The advantage of this
frame is that when α → 1 it gives the classical Frenet frame, it also gives the opportunity to examine the
frame of the curve for all cases in the range of 0 < α < 1. In other words, it exhibits a more general situation
compared to the classical Frenet frame. In this context, curves defined according to the Cα−frame take on a
different variation of the curve for each α value. In addition, general helices and slant helices are introduced
according to the Cα−frame and their necessary characterizations are given. As seen in Fig. 6, for each α value,
the Cα−helix curve corresponds to a point on the Cα−cylindrical. Thus, we can obtain an infinite number
of variations of the Cα−cylindrical helices curve obtained by classical calculus. In addition, we can make
approximations as close as we want to the helices curve obtained by classical methods.
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