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Abstract Fourth order extended Fisher Kolmogorov reaction diffusion equation has been solved numerically
using a hybrid technique. The temporal direction has been discretized using Crank Nicolson technique. The
space direction has been split into second order equation using twice continuously differentiable function. The
space splitting results into a system of equations with linear heat equation and non linear reaction diffusion
equation. Quintic Hermite interpolating polynomials have been implemented to discretize the space direction
which gives a system of collocation equations to be solved numerically. The hybrid technique ensures the fourth
order convergence in space and second order in time direction. Unconditional stability has been obtained by
plotting the eigen values of the matrix of iterations. Travelling wave behaviour of dependent variable has been
obtained and the computed numerical values are shown by surfaces and curves for analyzing the behaviour of
the numerical solution in both space and time directions.

Mathematics Subject Classification 35B25 · 35C07 · 65D07 · 65M06 · 65N35

1 Introduction

Different forms of non-linear PDEs like advection–diffusion, reaction–diffusion or many more have been
modelled and analyzed corresponding to some real-life phenomenon or scientific processes so far [2,4,16,24,
34,44]. Non-linear reaction diffusion equations having fourth order derivative terms, frame problems in the vast
category of fields under science and engineering. These equations occur in both the form of ordinary differential
equation (ODE) and partial differential equation (PDE). The wide applications of these problems have made
it the topic of research worldwide since long ago. In [62] a non-linear PDE modelling the under-ground water
flow problem, which is a serious problem for the living-beings has been considered. In [59] a non-linear
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PDE modelling the propagation of optic pulses in optic fibers has been solved analytically. Applications of
various non-linear partial differential equations and non availability of the compact form of solution in most
of the cases, demands an efficient technique for analysing the phenomenon. Earlier, non-linear PDEs have
been treated numerically as well as analytically [1,38] to study the solution behaviour of these problems.
Various forms of non-linear reaction–diffusion equations having vast field of applications has been studied
so far [14,35,42,66]. Extended Fisher Kolmogorov (EFK) equation is an example of such type of reaction
diffusion equation involving linear diffusion term and non-linear logistic term f (u).Consider the general form
of non-linear reaction diffusion fourth order parabolic partial differential equation.

ut + εuζ ζ ζ ζ − uζ ζ + f (u) = 0 (ζ, t) ∈ (a, b) × (0, T ], (1)

with ε > 0 and f (u) as a non-linear polynomial function of u.

Initially, u(ζ, 0)= u0(ζ ) ζ ∈ (a, b).

The boundary conditions are defined as:

u(a, t) = g1(t) u(b, t) = g2(t)

uζ ζ (a, t) = g3(t) uζ ζ (b, t) = g4(t). (2)

where, g1(t), g2(t), g3(t) and g4(t) are continuous functions of t and f (u) = u − um, m > 1. For f (u) =
u −u3, the Eq. (1) is introduced as Extended Fisher–Kolmogorov (EFK) equation with perturbation parameter
0 ≤ ε ≤ 1. For ε = 0,Eq. (1) is standard Fisher–Kolmogorov equation given by Fisher andKolmogorovwhich
models complex biological processes in gene theory [6,28]. The requirement ε > 0 is chosen for stability
of Eq. (1) at short wavelength [23]. Various physical phenomenon like pattern formation due to propagating
fronts [23,64], spatial temporal chaos in bi-stable systems [19], chemical waves [27], transition of phase and
propagation of fronts near a Lipschitz point [33,67], instabilities in liquid crystals [18,67], propagating waves
in reaction–diffusion systems [29,55] have been framed by Eq. (1) which approaches the amplitude near certain
degenerate points [57]. Also, in [56], the transition from periodic patterns by Ginzburg–Landau equation to the
multi-bump solutions predicted by EFK equation has been discussed. Periodicity, chaotic, stationary behavior,
uniqueness of the solution and existence of kinks, travelling wave solutions etc. have also been considered
[22,47,49–51,57,63].

In literature, non-linear parabolic PDEs have been analyzed by different numerical techniques [9,53]. Vari-
ous elliptic non-linear second order PDEs having compact form of solution have been treated with generalized
finite difference method given in [30]. Due to the complex nature, compact form of solution exists only for
some non-linear higher order PDEs. Complexity of the equation enhances the requirement of numerical tech-
niques. EFK equation has been analyzed by variational method for investigating the nature of saddle-focus
equilibria connections [36]. Topological shooting method has been applied for the existence of kinks and
analyzing their properties [48]. Numerically, it has been implemented with the differential quadrature method
[13,54], orthogonal cubic spline collocation method [21], quintic B- spline collocation method [46], mixed
finite element method [65], quintic trigonometric differential quadrature method [7], finite element method
[20], Galerkin approximation technique [31], compact difference method [37] etc. Quasi-Exact solution has
been obtained in [39]. Local radial basis function, finite difference method [25] has also been implemented for
numerical solution of EFK equation.

In present study collocation method with Hermite splines has been discussed. Collocation technique is
basically a three-step process

1. Suitable choice of the finite degree polynomial lying in finite dimensional space for the discretization
process.

2. Suitable choice of collocation points for space discretization.
3. Making that polynomial solution to satisfy the equation at the collocation points.

In the present study, a hybrid Crank–Nicolson quintic Hermite spline method accomplished by the reduc-
tion of the order of the aforementioned differential equation has been considered. The considered mesh is
uniform in both space and time directions. This technique improves the efficiency of collocation technique in
approximation by interpolating the function and its derivatives up-to second order at nodal points. Quintic Her-
mite splines are simple, smooth, easy to implement and can be implemented to the variety of boundary value
problems having high order and high degree of non-linearity. Travelling wave behaviour has been analysed
with different values of various parameters and the non-linear function f (u). Quintic Hermite splines (QHS)
provide super convergence up to fourth order in spatial direction and Crank–Nicolson scheme is second order

123



Arab. J. Math.

convergent. Earlier, the technique has been applied to second order, singularly perturbed non-linear partial
differential equations [8,11,12]. The computational work for the approximation of fully discrete system is
comparatively easy to program.

The paper is fabricated by the introduction of EFK equation in Sect. 1. Second order splitting method has
been explained briefly under Sect. 2. Hybrid quintic Hermite spline collocation method has been elaborated in
Sect. 3 whereas in Sect. 4 stability analysis has been discussed. The existence of error bounds and convergence
analysis has been discussed in Sect. 5. The application of QHSwith CrankNicolson scheme has been discussed
in Sect. 6 and the conclusions of the entire study is given in Sect. 7.

2 Second order splitting of EFK equation

Fourth order non-linear equations involve concerned differential equation and four constraints. To apply any
numerical technique, these constraints play an important role to discretize the equation. Quintic Hermite
splines by construction involve the discretized form of the differential equation at collocation points and two
constraints at the boundary of the interpolating polynomial. Therefore, to apply quintic Hermite splines on
fourth order differential equation, it must be split into second order differential equation by introducing second
order continuously differentiable function to reduce the number of constraints to two for each interpolating
polynomial.

Theorem 2.1 [5] Any Hermite interpolation problem of any order n ∈ N is applicable on two point boundary
value problems.

Consider the non-linear EFK type Eq. (1). For the implementation of proposed technique, a twice contin-
uously differentiable function v(ζ, t) has been introduced such that:

v(ζ, t) = −uζ ζ (ζ, t).

On substitution [26], the induced coupled system of differential equations is obtained as under:

v + uζ ζ = 0, (3)

ut − εvζζ + v + f (u) = 0, (4)

with f (u) = u − um, subject to the following initial and boundary conditions:

u(ζ, 0) = u0(ζ ), (5)

u(a, t) = g1(t) u(b, t) = g2(t), (6)

v(a, t) = 0 v(b, t) = 0. (7)

Hence, a fourth order equation has been reduced to a system of equations with one equation is linear and
another is semi-linear. This splitting of non-linear EFK equation gives a semi-linear parabolic equation in two
function u and v.

3 Hybrid quintic hermite spline collocation method

The hybrid technique consists of discretization using time and space semi-discretizing techniques. This two-
step process has been implemented to the second order coupled system of singularly perturbed PDEs:

3.1 Time discretization

For discretization in time direction, theCrank–Nicolson scheme has been followed as a special case ofweighted
finite difference scheme [60]. This Crank–Nicolson scheme is based on the concept of nearest neighbourhood
points to analyse the behaviour without any jump in time direction [15]. For implementation of the technique
to the reduced coupled system for EFK equation, let vn+1 and un+1 be the approximating polynomial function
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at time step tn+1. Also, let �t = T/M, M > 0 then tn = n�t for n = 0, 1, 2, . . . , M. The semi-discretized
form of the coupled system follows as:

vn+ 1
2 = −u

n+ 1
2

ζ ζ , (8)

un+1 − un

�t
= εv

n+ 1
2

ζ ζ − vn+ 1
2 − (um − u)n+ 1

2 , (9)

with corresponding boundary conditions are given by Eqs. (6) and (7), respectively. For any function F,

Fn+ 1
2 = Fn+1 + Fn

2
. (10)

3.2 Space discretization

Let � : a = ζ0 < ζ1 < ζ2 < · · · < ζn = b, ζ ′
i s ∈ I be the partition of the domain I = [a, b] and let

hi = ζi+1−ζi and Ii denotes [ζi , ζi+1].Corresponding to each subinterval Ii , six collocation points have been
taken including two boundary or node points. Collocation points are the roots of shifted Legendre polynomial
of order sixwhich are not equidistant to the average and the details of these collocation points is given elsewhere
[10].

In space direction, the quintic Hermite interpolating polynomials Pi (η), P̄i (η) and ¯̄Pi (η) are introduced to
approximate the trial function within each partition Ii of the domain. The approximate function is considered
as:

u(ζ ) = u(ζi )

2∑

i=1

Pi (ζ ) + u′(ζi )

2∑

i=1

P̄i (ζ ) + u′′(ζi )

2∑

i=1

¯̄Pi (ζ ), (11)

where Pi (ζ ) interpolates the function u(ζ ) at the nodal points of the sub-interval Ii and P̄i (ζ ), ¯̄Pi (ζ ) interpolates
slope and curvature at the nodal points, respectively.

Qi (ζ ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

6 (ζi+1−ζ )5

(ζi+1−ζi )
5 − 15 (ζi+1−ζ )4

(ζi+1−ζi )
4 + 10 (ζi+1−ζ )3

(ζi+1−ζi )
3 ζi ≤ ζ ≤ ζi+1

6 (ζ−ζi−1)
5

(ζi −ζi−1)
5 − 15 (ζ−ζi−1)

4

(ζi −ζi−1)
4 + 10 (ζ−ζi−1)

3

(ζi −ζi−1)
3 ζi−1 ≤ ζ ≤ ζi

0 otherwise

Q̄i (ζ ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

3 (ζi+1−ζ )5

(ζi+1−ζi )
4 − 7 (ζi+1−ζ )4

(ζi+1−ζi )
3 + 4 (ζi+1−ζ )3

(ζi+1−ζi )
2 ζi ≤ ζ ≤ ζi+1

−3 (ζ−ζi−1)
5

(ζi −ζi−1)
4 + 7 (ζ−ζi−1)

4

(ζi −ζi−1)
3 − 4 (ζ−ζi−1)

3

(ζi −ζi−1)
2 ζi−1 ≤ ζ ≤ ζi

0 otherwise

¯̄Qi (ζ ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(ζi+1−ζ )5

2(ζi+1−ζi )
3 − (ζi+1−ζ )4

(ζi+1−ζi )
2 + (ζi+1−ζ )3

2(ζi+1−ζi )
ζi ≤ ζ ≤ ζi+1

(ζ− ζi−1)
5

2(ζi −ζi−1)
3 − (ζ−ζi−1)

4

(ζi −ζi−1)
2 + (ζ−ζi−1)

3

2(ζi −ζi−1)
ζi−1 ≤ ζ ≤ ζi

0 otherwise.

(12)

To apply orthogonal collocation, within each subinterval Ii a new variable ω is introduced such that ω =
(ζ−ζi )

hi
, where ω varies from 0 to 1 as ζ varies from ζi to ζi+1. This transformation reduces the polynomial

structure Eq. (12) to the tabular form presented in Table 1. The quintic Hermite polynomials are presented on
the interval [ζi , ζi+1] in Table 1 and the values of Hermite splines and its derivatives are presented in Table 2
at ω = 0 and 1. The approximating function at each time level tn+1 within each sub-interval is taken as

un+1(ω) =
6∑

i=1

cn+1
i Hi (ω); vn+1(ω) =

6∑

i=1

dn+1
i Hi (ω). (13)
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Table 1 Presentation of quintic Hermite splines

i Hi H ′
i H ′′

i

1 1 − 10ω3 + 15ω4 − 6ω5 −30ω2 + 60ω3 − 30ω4 −60ω + 180ω2 − 120ω3

2 h(ω − 6ω + 8ω4 − 3ω5) h(1 − 18ω2 + 32ω3 − 15ω4) h(−36ω + 96ω2 − 60ω3)

3 h2
2 (ω2 − 3ω3 + 3ω4 − ω5) h2

2 (2ω − 9ω2 + 12ω3 − 5ω4) h2
2 (2 − 18ω + 36ω2 − 20ω3)

4 h2
2 (ω3 − 2ω4 + ω5) h2

2 (3ω2 − 8ω3 + 5ω4) h2
2 (6ω − 24ω2 + 20ω3)

5 10ω3 − 15ω4 + 6ω5 30ω2 − 60ω3 + 30ω4 60ω − 180ω2 + 120ω3

6 h(−4ω3 + 7ω4 − 3ω5) h(−12ω2 + 28ω3 − 15ω4) h(−24ω + 84ω2 − 60ω3)

Table 2 Value of quintic Hermite splines and corresponding first and second order derivative at boundary points

ω = 0 ω = 1 ω = 0 ω = 1 ω = 0 ω = 1

H1 1 0 H ′
1 0 0 H ′′

1 0 0

H2 0 0 H ′
2 h 0 H ′′

2 0 0

H3 0 0 H ′
3 0 0 H ′′

3 h2 0

H4 0 0 H ′
4 0 0 H ′′

4 0 h2

H5 0 1 H ′
5 0 0 H ′′

5 0 0

H6 0 0 H ′
6 0 h H ′′

6 0 0

The next step is the choice of collocation points. It plays an important role in Hermite collocation. Zeros
of orthogonal polynomials are taken as the collocation points such as Jacobi polynomials. Legendre and
Chebyshev polynomials are special cases of Jacobi polynomials. In the present study, zeros of shifted Legendre
polynomials have been taken as collocation points.

After semi-discretization of the aforementioned equation for f (u) = u −um, coupled system of equations
on using Eq. (10) in (9) and (8) is defined as:

{
vn+1 + vn

2

}
= −

{
un+1

ζ ζ + un
ζ ζ

2

}
, (14)

un+1 − un = ε�t

{
vn+1
ζ ζ + vn

ζ ζ

2

}
− �t

{
vn+1 + vn

2

}

−�t

2

{
f n+1(u) + f n(u)

}
. (15)

The quasi linearisation of f (u) = um −u has been taken with Taylor series approximation given in [41,58]
as:

um(t + �t) = um(t) + �t (um)t + O(�t)2

= um(t) + �tmum−1ut + O(�t)2. (16)

Again using finite difference approximation i.e.

u(t + �t) = u(t) + �tut + O(�t)2. (17)

This implies,

�tut + O(�t)2 = u(t + �t) − u(t)

�⇒ um(t + �t) = um(t) + mum−1(u(t + �t) − u(t)) + O(�t)2. (18)
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At t = tn

um(tn+1) = um(tn) + mum−1(tn)u(tn+1) − mum(tn) + O(�t)2. (19)

Using Eq. (19) omitting the second order truncation term, one gets the following coupled system of
equations:

vn+1 + un+1
ζ ζ = −(vn + un

ζ ζ

)
, (20)

un+1 − un = ε�t
(vn+1

ζ ζ + vn
ζ ζ

2

)
− �t

(vn+1 + vn

2

)
+ �t

(un+1 + un

2

)

−�t
(mun+1(um−1)n − (m − 2)(um)n

2

)
, (21)

and rearranging the terms, the following coupled system of equations is obtained:

(vn+1 + un+1
ζ ζ )

2
= − (vn + un

ζ ζ )

2
, (22)

un+1 + �t

2

[
−εvn+1

ζ ζ + vn+1 − un+1 + mun+1(um−1)n
]

= un + �t

2
[εvn

ζ ζ − vn + un + (m − 2)(um)n]. (23)

For space discretization, consider the different approximations un+1 and vn+1 for u and v, respectively as:
un+1 = ∑6

i=1 cn+1
i Hi (ω) and vn+1 = ∑6

i=1 dn+1
i Hi (ω), 0 ≤ ω ≤ 1.

The approximate solution lies in each subinterval Ii , of �, where Hi (ω) are quintic Hermite splines
defined over the interval [0, 1]. The system of collocation equations obtained after discretization are explained
hereunder:

6∑

i=1

{
cn+1
4(r−1)+iκ j i + dn+1

4(r−1)+iη j i

}
=

6∑

i=1

{
cn
4(r−1)+iν j i + dn

4(r−1)+iα j i

}
, (24)

6∑

i=1

{
cn+1
4(r−1)+iρ j i + dn+1

4(r−1)+iγ j i

}
=

6∑

i=1

{
cn
4(r−1)+iχ j i + dn

4(r−1)+iλ j i

}

+ (m − 2)�t

2

[
6∑

i=1

cn
4(r−1)+i Hi (ω j )

]m

, (25)

where, r = 1, 2, 3, . . . , N . j = 1, 2, 3, 4. ci and di are unknown coefficients and the constant parameters are
defined as:

ρ j i = Hi (ω j ) − �t

2
Hi (ω j ) + m�t

2
Hi (ω j )

{
6∑

i=1

cn
4(r−1)+i Hi (ω j )

}m−1,

λ j i = ε�t

2h2 H ′′
i (ω j ) − �t

2
Hi (ω j ),

γ j i = −ε�t

2h2 H ′′
i (ω j ) + �t

2
Hi (ω j ); ν j i = −1

2h2 H ′′
i (ω j ),

χ j i = Hi (ω j ) + �t

2
Hi (ω j ); η j i = 1

2
Hi (ω j ),

κ j i = 1

2h2 H ′′
i (ω j ); α j i = −1

2
Hi (ω j ). (26)

Total number of variables are 8N + 4 and the collocation equations are 8N . The extra four variables are
computed from the boundary conditions. Again, in compact form, the system of EFK equation can be written
as:

[L]yn+1 = [J]yn + fn, (27)
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this implies

yn+1 = [L−1J]yn + [L−1fn], (28)

where L and J are 8N × 8N diagonal dominated matrices with each block Lr and Jr for r = 2, . . . , N − 1 of
order 8 × 12. Due to boundary constraints L1, LN and J1, JN are of order 8 × 10. yn+1 is 8N × 1 column
matrix. fn contains the non-linear term �t[∑6

i=1 cn
4(r−1)+i Hi (ω j )]m/2 and the non-homogenous boundary

data. The fully discretized algebraic system of Eq. (27) is solved using the MATLAB software.

yn =
[
dn(i)
cn(i)

]

8N×1
, dn =

⎡

⎢⎢⎢⎢⎢⎢⎣

dn
1

dn
2

...

dn
4N

⎤

⎥⎥⎥⎥⎥⎥⎦

4N×1

, cn =

⎡

⎢⎢⎢⎢⎢⎢⎣

cn
1

cn
2

...

cn
4N

⎤

⎥⎥⎥⎥⎥⎥⎦

4N×1

,

L =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

L1

L2

. . .

Lr

. . .

L N−1

L N

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

8N×8N

, J =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

J1

J2

. . .

Jr

. . .

JN−1

JN

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

8N×8N

.

Computationally, each block Lr and Jr also contains sub-blocks of order 2 × 2 having the structure as

Lr =
⎡

⎣
[

ηi j κi j

γi j ρi j

]

i j

⎤

⎦ , Jr =
⎡

⎣
[

αi j μi j

λi j χi j

]

i j

⎤

⎦ ,

where i = 1, 2, 3, 4 and j = 1, 2, . . . , 6 except for the case of r = 1 and N then j = 1, 2, 3, 4, 5 due to
known boundary data.

fn =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

(m − 2)�t
2

{∑6
i=1 an

i Hi (ω j )
}m

...
0

(m − 2)�t
2

{∑6
i=1 an

4(r−1)+i Hi (ω j )
}m

...
0

(m − 2)�t
2

{∑6
i=1 an

4(N−1)+i Hi (ω j )
}m

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

8N×1

.

4 Stability analysis

For any numerical technique involving iterations for analysing transient partial differential equations, stability
is one of the most important concept to be considered for ensuring the control over the errors. Otherwise, the
accumulation of errors at one stage may overwhelm the solution.

The stability of the proposed numerical algorithm of hybrid nature is completely stored in the component
matrices of [L−1J] which improves the initial solution at each iteration.
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10-3 Plot of eigen values for N=50 and epsilon=0.0001

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
Real part

-1

-0.5

0

0.5

1

Im
ag

in
ar

y 
pa

rt

10-3 Plot of eigen values for N=128 and epsilon=0.0001

Fig. 1 Behaviour of eigen values at N = 128 and N = 50 with ε = 0.0001
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10-3 Plot of eigen values for N=128 and epsilon= 0.1
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10-3 Plot of eigen values for N=50 and epsilon=0.1

Fig. 2 Behaviour of eigen values at N = 128 and N = 50 with ε = 0.1

The component matrices L and J both depends on the perturbation parameters, grid sizes towards both
space and time directions and the Hermite splines adopted for approximation.

Let λ be the eigen value of the matrix [L−1J]. It is observed computationally that the magnitude of eigen
values of matrix [L−1J] are bounded by unity. The behaviour of eigenvalues is shown in Figs. 1 and 2 for
N = 128 and N = 50 corresponding to ε = 0.0001 and ε = 0.1, respectively (Fig. 3).

It is observed that the imaginary part of eigen values is zero and the real part of eigen values is less than
unity, i.e., | λ |≤ 1which signifies the stability of the proposed iterative technique by Lax–Richtmyer definition
for stability.

NOTE: u has been considered as locally constant η (say) for the quasi linearization of the non-linear
term. The implemented technique comprises both the operators F and T operate on both u and v i.e. Fu,v

and Tu,v simultaneously and thus approximating two set of values at each iteration at the chosen collocation
points for the two approximate solutions ũ and ṽ. Thus, the iterative scheme at each time step, approximate a
function consisting of two component functions u and v i.e.U = {u, v} using the differentHermite interpolating
polynomial function i.e.H = {

H̄1, H̄2
}
. Since, u is bounded, hence operators can be linearised by considering

η as the maximum bound of (um−1)n, where (um−1)n = u(tn)m−1

For Crank–Nicolson scheme, the operators are represented as:
Fu,v(ωi ) = P1(u j (ωi ), v

j (ωi )) and Tu,v(ωi ) = P2(u j (ωi ), v
j (ωi )),
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Fig. 3 Behavior of wave solution u(ζ, t) and absolute error with N = 50 and �t = 0.01 for Example 6.1

where,

F(U(ωi )) = Fu,v(ωi ) = v j+1(ωi ) + u j+1
ζ ζ (ωi ),

T (U(ωi )) = Tu,v(ωi ) = u j+1(ωi ) − �t

2

(
εv

j+1
ζ ζ (ωi ) − v j+1(ωi ) + (1 − mη)u j+1(ωi )

)
,

P1

(
u j (ωi ), v

j (ωi )
)

= −v j (ωi ) − u j
ζ ζ (ωi ),

P2(u
j (ωi ), v

j (ωi )) = u j (ωi ) + �t

2

(
εv

j
ζ ζ (ωi ) − v j (ωi ) + (1 + (m − 2)η)u j (ωi ).

The matrix notation for the parameters and collocation equations can be written as:

Ly j+1 =
[
Fu,v

Tu,v

]
, J y j =

[
P j
1

P j
2

]
, y j =

[
d j

i

c j
i

]
,

where y j contains the coefficients of Hermite polynomials.
Let Ũ = {̃u, ṽ} be the approximation of U = {u, v} and H = {

H̄1, H̄2
}
be the Hermite approximation to

the function U = {u, v}. These functions have two component functions and are defined on C6[a, b].

5 Convergence analysis

Lemma 5.1 [17,40] For Crank–Nicolson scheme, local truncation error en+1 estimate and global truncation
error En+1 estimate are of O(�t)3 and O(�t)2, respectively, i.e.

|| en+1 ||∞≤ C(�t)3 and || En+1 ||∞≤ C(�t)2.
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Theorem 5.2 [40] Let U (ζ, t) be the function such that £U = 0 and U ≤ C, C being an arbitrary constant
then Ut is also bounded by some constant C.

Lemma 5.3 [61] Let u(ζ, 0) be the positive continuous initial solution of non-linear reaction–diffusion equa-
tion with 0 ≤ u(ζ, 0) ≤ 1 then the bounds for solution u(ζ, t) remains constant with time.

Through out the paper C denotes the generic constant.

Theorem 5.4 [43] If any Hermite interpolation problem based on at the most two distinct points has a unique
solution in � then any Hermite interpolation problem has a unique solution in �. This implies any Hermite
interpolation problem has a unique solution in the polynomial space Pn of degree n on I.

Theorem 5.5 [43] The univariate Hermite interpolating polynomials are regular for any set of nodes.
Moreover, Hermite interpolating polynomials are regular for any nodal set as well as for any choice of
derivatives to be interpolated.

Theorem 5.6 [43] Let H̄ be the space of all Hermite interpolating polynomials of order 5 defined on [0 1].
Then the Hermite splines of order 5 are bounded with upper bound unity. Moreover,

∑6
i=1 | Hi (ζ ) |≤ 6, for

all 0 ≤ ζ ≤ 1.

Theorem 5.7 [32,52] Suppose H ∈ H2q
�ζ (ζ ) be the piecewise Hermite spline of degree 2q − 1 over the

subinterval [ζi , ζi+1] approximating U ∈ C2q [a,b] then || H(r) − U(r) ||∞≤ O(h2q−r), r = 1, 2, . . . , q − 1.

Proof Let us define a function

H̄(ζ ) =
2∑

j=1

u(ζ j )ϕ j1(ζ ) +
2∑

j=1

u′(ζ j )ϕ j2(ζ ) + · · · +
2∑

j=1

uq−1(ζ j )ϕ jq(ζ ), (29)

¯̄H(ζ ) =
2∑

j=1

v(ζ j )� j1(ζ ) +
2∑

j=1

v′(ζ j )� j2(ζ ) + · · · +
2∑

j=1

vq−1(ζ j )� jq(ζ ), (30)

where both the sets {ϕ j i (ζ )} and {ψ j i (ζ )} are of total 2q polynomialmembers, each of degree 2q−1 satisfying

ϕ
(i−1)
j i (ζk) = δ jk and �

(i−1)
j i (ζk) = δ jk (31)

where ζk is the node point i = 1, 2, 3, 4, . . . , q and at node points H(ζ ) satisfies

H(r)(ζi ) = U(r)(ζi ), (32)

for r = 0, 1, 2, . . . , q − 1 and H(r)(ζi ) =
{

H̄ (r)(ζi ),
¯̄H (r)(ζi )

}
and U(r)(ζi ) = {

u(r)(ζi ), v
(r)(ζi )

}
with

H̄r (ζi ) = ur (ζi ) and ¯̄Hr (ζi ) = vr (ζi ),

considering above Eq. (32) and Rolle’s theorem, H(r)(ζ ) − U(r)(ζ ) has r + 2 zeros in [ζ1, ζ2]
ζ1 = z1 ≤ z2 ≤ · · · ≤ zr+1 ≤ zr+2 = ζ2 for r = 0, 1, . . . , q − 1.

Let us define a function D(ζ ) = {D1(ζ ), D2(ζ )} on domain having the collection z′
i s glued with ϑ , as its

zeroes such that

D(ζ ) =
[
U(r)(ζ ) − H(r)(ζ )

]
−
[
U(r)(ϑ) − H(r)(ϑ)

] S(ζ )

S(ϑ)
, (33)

for r = 0, 1, 2, . . . , q − 1, where S(ζ ) is defined as a polynomial function of degree 2q − r having z′
i s as

single zeroes except z1 and z2 of equal multiplicity and ϑ is any arbitrary point of domain [ζ1, ζ2] differ from
z′

i s.
For any r, D(ζ ) has r + 3 zeros, the degree of polynomial S(ζ ) decreases as r increases.
Combine Eq. (31), Eq. (32) and Rolle’s theorem, it is ready that (q − r − 1)th order derivative of D(ζ ) has

a total of q + 2 zeroes.
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This assures the existence of a real ξ ∈ [a, b] (say) such that

D(2q−r)(ξ) = 0, (34)

U(2q)(ξ) − U(r)(ϑ) − H(r)(ϑ)

S(ϑ)
(2q − r)! = 0, (35)

⇒ U(r)(ϑ) − H(r)(ϑ) = U(2q)(ξ)

(2q − r)!S(ϑ), (36)

since maximum of | (ζ − ζ1)(ζ − ζ2) | is (ζ2 − ζ1)
2/22 and ϑ is arbitrary point in [ζ1, ζ2], one gets

|| U(r)(ζ ) − H(r)(ζ ) ||∞ ≤ αr h2q−r , (37)

for h = ζi+1 − ζi and αr = ||u(2q)(ξ)||
22q−[r ](2m−r)! r = 0, 1, 2, . . . , q − 1 and [r] = r + 1 for r odd,

otherwise [r] = r. �	
For q = 2 Theorem 5.7 gives error bounds for cubic Hermite splines and for q = 3 Theorem 5.7 gives

error bounds for quintic Hermite splines.

Theorem 5.8 Let Ū(ζ ) be the approximate solution of the function U(ζ ) defined on [a, b] such that U(ζ ) ∈
C6[a, b] and H(ζ ) be the quintic Hermite splines interpolate of U(ζ ). Then the error estimate || U − Ū || is
defined by:

|| U(ζ ) − Ū(ζ ) ||∞≤ C

(
α0h6 + max

{
h4(α2 + α0h2), h4

(
ε�tα2

2
+ �tα0

2
h2 + (1 + �t (1 − ηm)

2
)α0h2

)})
.

Proof Let Ū1(ζ ) and Ū2(ζ ) be the appropriate approximating functions defined by Theorem 5.4, with Ū ={
Ū1, Ū2

}
, corresponding to the uniform grid in space direction with nodal gap h. Let H(ζ ) = {H̄(ζ ), ¯̄H(ζ )}

be the quintic Hermite spline approximatingU(ζ ) = {u(ζ ), v(ζ )}. H̄(ζ ) be the quintic Hermite spline of u(ζ )

and ¯̄H(ζ ) be the quintic Hermite spline of v(ζ ). Now,

|| FU(ζi ) − FH(ζi ) ||∞ =|| v(ζi ) − ¯̄H(ζi ) + u′′(ζi ) − H̄ ′′(ζi ) ||∞, (38)

|| T U(ζi ) − T H(ζi ) ||∞ =|| (u(ζi ) − H̄(ζi )
)− ε�t

2

(
v′′(ζi ) − ¯̄H ′′(ζi )

)

+ �t

2

(
v(ζi ) − ¯̄H(ζi )

)
− �t (1 − ηm)

2

(
u(ζi ) − H̄(ζi )

) ||∞ . (39)

Using Theorem 5.7, one gets

|| FU(ζi ) − FH(ζi ) ||∞ ≤ Ch6 + Ch4

≤ Ch4(1 + h2), (40)

and

|| T U(ζi ) − T H(ζi ) ||∞ ≤ C

(
h6 + ε�t

2
h4 + �t

2
h6 + �t (1 − ηm)

2
h6
)

≤ Ch4
(

ε�t

2
+ �t

2
h2 + (1 + �t (1 − ηm)

2
)h2
)

. (41)

Now, consider:

|| FH(ζi ) − FŪ(ζi ) ||∞= || P1(ζi ) − FŪ(ζi ) ||∞ ,

|| T H(ζi ) − T Ū(ζi ) ||∞= || P2(ζi ) − T Ū (ζi ) ||∞,
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where FH(ζi ) = P1(ζi ) and T H(ζi ) = P2(ζi ) are the fully discretized explicit form of differential problem
mentioned in Sect. 4.

|| FH(ζi ) − FŪ(ζi ) ||∞ ≤ || FU(ζi ) − FŪ(ζi ) ||∞
≤ Ch4(1 + h2),

|| T H(ζi ) − T Ū(ζi ) ||∞ ≤ || T U(ζi ) − T Ū(ζi ) ||∞
≤ Ch4

(
ε�t

2
+ �t

2
h2 + (1 + �t (1 − ηm)

2
)h2
)

. (42)

Equation (42) has been obtained using the above equation and again, using

FŪ(ζi ) = P̂1(ζi ) and T Ū(ζi ) = P̂2(ζi ),

its compact matrix representation

Lŷn+1 = Jŷn + fn . (43)

This implies, using Eqs. (43) and (27), one gets

L[yn+1 − ŷn+1] = J[yn − ŷn],
⇒ [yn+1 − ŷn+1] = L−1J[yn − ŷn]. (44)

Again, L is non-singular and boundedness of Hermite splines by unity implies that

|| L−1 ||∞≤ C, (45)

where C is some arbitrary constant. Now,

|| J(yn − ŷn) ||∞ ≤ max
{
| P1(ζi ) − P̂1(ζi ) |, | P2(ζi ) − P̂2(ζi ) |

}

≤ max
{| FH(ζi ) − FŪ(ζi ) |, | T H(ζi ) − T Ū (ζi ) |}

≤ C max

{
h4(1 + h2), h4

(
ε�t

2
+ �t

2
h2 + (1 + �t (1 − ηm)

2
)h2
)}

. (46)

From Eqs. (44), (45) and (46) one derives

|| yn+1 − ŷn+1 ||∞≤ C max

{
h4(1 + h2), h4

(
ε�t

2
+ �t

2
h2 + (1 + �t (1 − ηm)

2
)h2
)}

. (47)

Moving towards the error bounds of

|| ¯̄H(ζ ) − v̄(ζ ) ||∞ =
∥∥∥∥∥

6∑

i=1

(di (t) − d̂i (t))Hi (ζ )

∥∥∥∥∥
∞

≤
6∑

i=1

| Hi (η) ||| di (t) − d̂i (t)) ||∞

≤ Ch4(α2 + α0h2). (48)

Equation (48) is obtained using Eq. (47) and boundedness of Hi (ζ ) by 1. Similarly,

|| H̄(ζ ) − ū(ζ ) ||∞ =
∥∥∥∥∥

6∑

i=1

(ci (t) − ĉi (t))Hi (ζ )

∥∥∥∥∥
∞

≤
6∑

i=1

| Hi (η) ||| ci (t) − ĉi (t)) ||∞

≤ Ch4
(

ε�tα2

2
+ �tα0

2
h2 +

(
1 + �t (1 − ηm)

2

)
α0h2

)
. (49)
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Combining the above results in Eqs. (48) and (49), one gets

|| H(ζ ) − Ū(ζ ) ||∞ ≤ C max

{
h4(α2 + α0h2),

h4
(

ε�tα2

2
+ �tα0

2
h2 +

(
1 + �t (1 − ηm)

2

)
α0h2

)}
. (50)

now,

|| U(ζ ) − Ū(ζ ) ||∞≤|| U(ζ ) − H(ζ ) ||∞ + || H(ζ ) − Ū(ζ ) ||∞,

using Theorem 5.7 and Eq. (50)

|| U(ζ ) − Ū(ζ ) ||∞≤ Cα0h6 + C max

{
h4(α2 + α0h2), h4

(
ε�tα2

2
+ �tα0

2
h2 +

(
1 + �t (1 − ηm)

2

)
α0h2

)}

≤ C

(
α0h6 + max

{
h4(α2 + α0h2), h4

(
ε�tα2

2
+ �tα0

2
h2 +

(
1 + �t (1 − ηm)

2

)
α0h2

)})
.

(51)

�	
Theorem 5.9 Let Ū(ζ, t) be the approximate solution of the function U(ζ, t) defined on [a, b] × (0, T ] such
that U(ζ, t) ∈ C6[a, b] and H(ζ ) be the quintic Hermite splines interpolate of U(ζ, t) with Crank Nicolson
scheme in time direction. Then the error estimate || U − Ū ||∞ is defined by:

|| U − Ū ||∞≤ C

(
(�t)2 + α0h6 + max

{
h4(α2 + α0h2), h4

(
ε�tα2

2
+ �tα0

2
h2 + (1 + �t (1 − ηm)

2
)α0h2

)})
.

Proof Directly from Theorem 5.8 and Lemma 5.1. �	

Parameter uniform rate of convergence

For the problems,where exact solution not known, nodal error is estimated by using the following formula:

eN ,M
ε (i, m) =| U N ,M (i, m) − U2N ,M (i, m) | .

Maximum nodal error has been calculated by

Eε,N ,M = maxi e
N ,M
ε (i, m).

Maximum ε—uniform nodal error has been calculated by

EN ,M = maxε Eε,N ,M ,

And the parameter ε—uniform rate of convergence has been evaluated by using double mesh principle [45]

RN = log(EN ,M ) − log(E2N ,M )

log(2)
.
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Fig. 4 Behavior of wave solution u(ζ, t) and v(ζ, t) with ε = 10−1 for Example 6.1

6 Results and discussion

In this part of manuscript, various fourth order EFK type equation with different non-linear function f (u)
has been investigated by the proposed technique. Solution behaviour has been analysed with respect to the
different parameters of the technique and the perturbation parameter. The numerical results are presented in
the form of graphs and tables. L2- norm, L∞-norm and Global relative error (GRE) has been computed as-

|| u ||2 =
√√√√h2

N∑

j=1

u2(ζ j , t),

|| u ||∞ = maxi u(ζi , t),

G RE =
∑N

j=1 | u(ζ j , t) − ũ(ζ j , t) |
∑N

i=1 | u(ζi , t) | , (52)

where u(ζ, t) denotes the approximate solution and ũ(ζ, t) denotes the analytic solution. For computation of
L2-norm and L∞-norm for error, function u(ζ, t) has been replaced by the error.

Example 6.1 Consider the EFK equation with initial and the boundary conditions defined as:

u(ζ, 0) = −sin(πζ ) x ∈ [−4, 4],
u(−4, t) = 0, u(4, t) = 0,

uζ ζ (−4, t) = 0, uζ ζ (4, t) = 0.

The problem has been analyzed for two cases, first when the equation is homogenous and second when it
has a non-homogenous part

f (ζ, t) = exp(−t)sin(πζ )(exp(−2t)sin2(πζ )+π2+π4−2). For non-homogenous case i.e. f (ζ, t) 
= 0
perturbation parameter ε = 1 has been considered.
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Fig. 5 Behavior of wave solution u(ζ, t), v(ζ, t) with ε = 10−4 for Example 6.1

Table 3 Parameter uniform convergence rate at T = 0.2 for Example 6.1

ε N = 16 N = 32 N = 64 N = 128

2−3 0.00083164 0.00042031 0.000211041 0.000105585
2−5 0.005066764 0.002564092 0.00128547 0.000643064
2−6 0.006815595 0.00345487 0.001732069 0.000866521
2−7 0.007891508 0.004007425 0.002009494 0.001005345
2−8 0.008484801 0.004314483 0.002164167 0.001082758
2−9 0.008795733 0.004475655 0.00224579 0.001123657
2−10 0.008693113 0.004361217 0.002182505 0.00109149
2−11 0.009036136 0.004599197 0.002308712 0.001155332
2−12 0.009076983 0.004620009 0.002319244 0.001160679
2−15 0.009112922 0.004638374 0.002328442 0.00116533
2−16 0.009115493 0.004639694 0.002329104 0.001165659
2−17 0.009116779 0.004640354 0.002329435 0.001165824
En 0.009116779 0.004640354 0.002329435 0.001165824
RN 0.974289335 0.994254794 0.998630068 –

Table 4 Comparison of L2, L∞ and GRE norm due to �t = 0.01 and �t = 0.001 for Example 6.1 with N = 64

Time �t = 0.01 �t = 0.001

L2-norm L∞-norm GRE L2-norm L∞-norm GRE

0.0 1.42874e−17 8.88178e−16 3.56768e−09 1.42874e−17 8.88178e−16 3.56768e−09
0.5 8.24109e−05 3.12068e−03 5.01495e−03 6.17258e−06 3.92776e−04 5.14833e−04
1.0 4.84202e−05 1.99664e−03 5.05022e−03 2.17706e−06 3.42516e−04 6.00652e−04
1.5 2.76149e−05 1.34984e−03 5.14661e−03 4.41442e−07 3.47012e−04 1.23549e−03
2.0 1.46576e−05 1.01352e−03 5.53307e−03 2.36769e−06 4.06579e−04 3.32529e−03
2.5 6.26190e−06 9.56217e−04 9.09238e−03 4.07361e−06 5.87362e−04 8.69122e−03
3.0 3.44444e−07 1.17377e−03 2.22965e−02 5.93443e−06 9.52380e−04 2.23252e−02
3.5 4.49788e−06 1.65753e−03 5.66291e−02 8.31754e−06 1.53108e−03 5.67165e−02
4.0 9.32854e−06 2.48154e−03 1.42831e−01 1.16591e−05 2.42139e−03 1.43048e−01
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Table 5 Comparison of L2-norm L∞-norm and GRE with respect to partitions in space and time directions for Example 6.1 at
T = 2

Time N = 20 N = 40 N = 60 N = 80

�t = 0.1 L2-norm 1.37406e−03 4.45938e−04 2.08576e−04 1.19453e−04
L∞-norm 8.74229e−03 7.47418e−03 7.10195e−03 6.94779e−03
GRE 5.28462e−02 5.12724e−02 4.99799e−02 4.99747e−02

�t = 0.01 L2-norm 1.41692e−04 2.13303e−05 1.60035e−05 7.28243e−05
L∞-norm 2.89695e−03 1.47745e−03 1.05749e−03 4.13368e−03
GRE 1.90780e−02 8.24560e−03 5.62795e−03 5.00313e−03

�t = 0.001 L2-norm 1.39713e−04 2.12319e−05 3.32691e−06 5.62754e−07
L∞-norm 6.28584e−04 8.76524e−04 4.51042e−04 2.87972e−04
GRE 5.35450e−04 7.92931e−03 3.71863e−03 2.16258e−03

Table 6 Comparison of L∞-norm with the results with EFG method for Example 6.1

Method EFGM QHSCM

Time �t = 0.01 �t = 0.001 �t = 0.01 �t = 0.001

T = 1 h = 1/10 7.7195×10−2 2.1542×10−2 2.57163e−03 9.59093e−04
h = 1/20 2.1536×10−2 5.8138×10−3 2.18962e−03 5.45979e−04
h = 1/40 5.8078×10−3 1.4625×10−3 2.01533e−03 3.62735e−04
h = 1/80 1.4567×10−3 3.6573×10−4 1.94303e−03 2.88109e−04

T = 2 h = 1/2.5 2.8445×10−2 2.8442×10−3 2.89695e−03 6.28584e−04
h = 1/5.0 7.9425×10−3 7.9380×10−4 1.47745e−03 8.76524e−04
h = 1/7.5 2.1437×10−3 2.1386×10−4 1.05749e−03 4.51042e−04
h = 1/10 5.3904×10−4 5.3377×10−5 4.13368e−03 2.87972e−04

Table 7 Comparison of absolute error at different values of ζ for Example 6.1 with �t = 0.01 and N = 64

Time ζ = −3 ζ = −2 ζ = −1 ζ = 0 ζ = 1 ζ = 2 ζ = 3

0.0 0.00000e+00 2.22045e−16 0.00000e+00 2.08167e−17 3.33067e−16 1.11022e−16 0.00000e+00
0.5 2.13925e−03 3.11837e−03 2.30463e−03 1.88514e−04 1.98467e−03 2.94162e−03 2.12575e−03
1.0 1.33606e−03 1.95872e−03 1.48480e−03 2.13110e−04 1.09949e−03 1.67968e−03 1.18862e−03
1.5 8.54182e−04 1.26644e−03 1.00450e−03 2.51032e−04 5.33624e−04 8.79348e−04 5.79580e−04
2.0 5.70992e−04 8.65117e−04 7.41180e−04 3.11357e−04 1.43989e−04 3.38703e−04 1.46587e−04
2.5 4.13573e−04 6.50847e−04 6.25200e−04 4.05935e−04 1.64116e−04 7.41854e−05 2.13465e−04
3.0 3.40134e−04 5.65588e−04 6.21818e−04 5.51928e−04 4.60480e−04 4.53962e−04 5.79854e−04

In first case, �t = 0.01 and N = 100. which is quite less than as considered in [7] with ε is taken to be
0.0001 and 0.1. Numerical profile of u(ζ, t) and v(ζ, t) has been shown graphically in Figs. 3 and 4 for ε = 0.1
and 0.0001 respectively. Stable solution profile of EFK is shown for both ε = 0.0001 and ε = 0.1. The solution
u(ζ, t) moves to zero at 40th time step with �t = 0.01. The effect of perturbation parameter has been studied
and shown in Table 3.

In second case, the analytic form of solution is u(ζ, t) = exp(−t)sin(πζ ) and the initial function has been
taken as u(ζ, 0) = sin(πζ ). The solution behaviour and the error profile has been depicted in the Fig. 5. The
non-homogenous part delays the stable state value in comparison to the homogenous case. L2-norm, L∞-norm
and GRE at different time level with respect to �t = 0.01 and �t = 0.001 has been reported in Table 4. The
effect of �t and h on L2-norm, L∞-norm and GRE has been studied in Table 5. At different time level, step
size and �t, a comparison of L∞-norm has been given in Table 6 with the results available in [3]. Again the
behaviour of absolute error at some node points corresponding to different time levels has been reported in
Table 7.

Example 6.2 Consider EFK equation with Gaussian initial condition

(a) u(ζ , 0) = 10−3 exp(−ζ 2) ζ ∈ [− a, a] with boundary conditions
u(−a, t) = 1 u(a, t) = 1,
uζ ζ (−a, t) = 0 uζ ζ (a, t) = 0.
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Fig. 6 Stable behavior of solution u(ζ, t), v(ζ, t) for Gaussian initial function for Example 6.2(a)

Table 8 Effects on the norms due to domain for Example 6.2(a) with �t = 0.01 and N = 50 and ε = 0.0001

Time � = [−4, 4] � = [−10, 10]
L2-norm L∞-norm L2-norm L∞-norm

0.0 5.62590e−02 9.96992e−01 1.40648e−01 9.96992e−01
1.0 1.28174e−01 9.55642e−01 2.93265e−01 8.68283e−01
2.0 1.32535e−01 9.80254e−01 3.21779e−01 9.51480e−01
3.0 1.34241e−01 9.93923e−01 3.32150e−01 9.82345e−01
4.0 1.34822e−01 9.98877e−01 3.35790e−01 9.94613e−01
5.0 1.34938e−01 9.99848e−01 3.36935e−01 9.98470e−01

(b) u(ζ, 0) = −10−3 exp(−ζ 2) ζ ∈ [− a, a] and boundary conditions
u(−a, t) = −1 u(a, t) = −1,
uζ ζ (−a, t) = 0 uζ ζ (a, t) = 0.

For case (a), computations for �t = 0.01, N = 50, and ε = 0.0001 has been considered. Corresponding
to different time steps, up-to T = 5, for the domain [−4, 4] and up to T = 8 for the spatial domain [−10, 10],
the numerical profiles are shown in Fig. 6. With the passage of time, the solution decays to the stable state
boundary value 1. With the change in domain from [−4, 4] to [−10, 10], the behaviour of u(ζ, t) delays in
the stable state value 1 with increments in the path length for the solution waves at different time. When the
initial function is u(ζ, 0) = exp(−ζ 2) the solution moves to the stable state faster.

Case(b) In this case,�t = 0.01, N = 50 and ε = 0.0001 has been taken. Corresponding to different values of
time, up-to T = 5 for the domain [−4, 4] and up to T = 8 for the domain [−10, 10], the behavior of computed
values at the node points has been shown in Fig. 7. In this case also, the solution moves towards the stable
state boundary value −1 as the time progresses. For both the cases Examples 6.2(a) and 6.2(b) with change
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Fig. 7 Behavior of solution u(ζ, t), v(ζ, t) for Example 6.2(b)

Table 9 Effects on the norms due to domain for Example 6.2(b) with �t = 0.01 and N = 64 and ε = 0.01

Time � = [−4, 4] � = [−10, 10]
L2-norm L∞-norm L2-norm L∞-norm

0.0 4.39524e−02 9.96992e−01 1.09881e−01 9.96992e−01
1.0 1.03420e−01 9.48203e−01 2.38273e−01 9.27997e−01
2.0 1.03640e−01 9.81968e−01 2.55112e−01 9.85379e−01
3.0 1.04187e−01 1.00231e+00 2.60960e−01 9.98986e−01
4.0 1.04572e−01 1.00737e+00 2.62897e−01 1.00066e+00
5.0 1.04813e−01 1.00650e+00 2.63448e−01 9.99607e−01

in domain, L2-norm gets effected as compared to L∞-norm signifying the delay in stable state as shown in
Tables 8 and 9.

Example 6.3 Consider the Eq. (1) for non-linear function f (u) as Fisher’s reaction–diffusion type function:

ut + εuζ ζ ζ ζ − uζ ζ + u2 − u = 0 (ζ, t) ∈ [−4, 4] × (0, T ], (53)

with initial and boundary conditions u(ζ, 0) = (1 + exp(
ζ√
6
))−2,

u(0, t) =
(
1 + exp

(
(−5t)√

6

))−2
, u(1, t) =

(
1 + exp

(
(1−5t)√

6

))−2
,

uζ ζ (0, t) = 0, uζ ζ (1, t) = 0.

With �t = 0.01 up to t = 5 and N = 50. It has been observed that for different values of perturbation
parameter the solution wave profile remained same. Corresponding to the different bounded domains with
ε = 1 the computed solution has been reported in Fig. 8. It is observed that for the domain [−4, 4], the solution
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Fig. 8 Behavior of solution profile u(ζ, t) for Example 6.3 for ε = 1 corresponding to different domain

Table 10 Variations in L2-norm and L∞-norm due to domain for Example 6.3 with �t=0.01 and N = 64 and ε = 0.01

Time � = [−4, 4] � = [−10, 10] � = [−30, 30]
L2-norm L∞-norm L2-norm L∞-norm L2-norm L∞-norm

0.0 3.05161e−03 6.87209e−01 9.18392e−05 9.62431e−01 3.72923e−11 9.99986e−01
1.0 3.50404e−02 9.31452e−01 2.32795e−03 9.89406e−01 3.48395e−10 9.99968e−01
2.0 8.60787e−02 9.84613e−01 4.66779e−02 9.96130e−01 1.37028e−08 9.99973e−01
3.0 1.01901e−01 9.95334e−01 1.74040e−01 9.97860e−01 7.79145e−07 9.99982e−01
4.0 1.04762e−01 9.98226e−01 2.37816e−01 9.98421e−01 4.49760e−05 9.99989e−01
5.0 1.05277e−01 9.99239e−01 2.55671e−01 9.98918e−01 2.25922e−03 9.99993e−01

approaches the stable state and attains stable value 1. For the domain [−10, 10] an uplifting wave at right
boundary has been observed within same time range. While for the domain [−30, 30], the solution behaviour
is wavy like a fluid falling down an inclined plane. The effect of domain on the wave behaviour at any time
can also be observed from L2-norm and L∞-norm along the row in Table 10.

Example 6.4 Consider the EFK equation

ut + εuζ ζ ζ ζ − uζ ζ + u3 − u = 0 (ζ, t) ∈ [0, 1] × (0, T ], (54)

with initial and boundary conditions are defined as:
(a) u(ζ, 0) = ζ 2(1 − ζ )2, (b) u(ζ, 0) = ζ 3(1 − ζ )3,
u(0, t) = 0 u(1, t) = 0,
uζ ζ (0, t) = 0 uζ ζ (1, t) = 0.
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Fig. 9 Behavior of solution profile u(ζ, t) for Example 6.4(a) for different ε

Table 11 Presentation of L2-norm and L∞-norm with �t = 0.01 and N = 50 for Example 6.4

Time ε = 1 ε = 0.001

L2-norm L∞-norm L2-norm L∞-norm

0.00 1.06747e−07 1.56246e−02 1.06747e−07 1.56246e−02
0.03 1.02705e−05 4.03076e−03 8.83277e−06 1.08170e−02
0.05 1.04213e−05 2.90052e−03 8.43253e−06 8.73905e−03
0.07 9.69180e−06 2.67816e−03 7.19451e−06 7.26425e−03
0.1 8.26858e−06 2.22327e−03 5.05261e−06 5.06879e−03
0.3 4.11284e−06 9.31101e−04 8.30286e−07 8.42396e−04
0.5 2.49526e−06 4.75279e−04 1.29601e−07 1.40001e−04
0.7 1.81930e−06 3.07393e−04 1.54302e−08 2.32675e−05
0.8 1.63271e−06 2.65424e−04 2.93852e−09 9.48525e−06
0.9 1.49806e−06 2.36168e−04 2.60093e−09 3.86667e−06
1.0 1.39612e−06 2.15282e−04 4.04688e−09 1.57621e−06

With �t = 0.01, N = 50 and ε = 0.01, 0.1 and 1. For initial condition (a) the behaviour of solution profile
corresponding to different time steps and different values of ε has been shown in Fig. 9. For initial condition (b)
with ε = 0.1 and with ε = 0.01 the behavior of solution profile u(ζ, t) and v(ζ, t) corresponding to different
time steps has been shown in Fig. 10a, b, c and d, respectively.

For ε = 0.01 the solution profile moves to stable state value uniformly, but with a slight increment in
the value of perturbation parameter the solution approaches to its stable state with alternating waves having
different amplitudes, one with a slight oscillation. Further, when ε = 1, the stable state value has been attained
but again the waves’ behaviour is alternating, one oscillatory wave with above the stable state and another
oscillatory wave below the stable state value. It is observed from the Table 11 that the perturbation parameter
effects the nature of waves as compared to the technique parameters for both space and time discretization.
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Fig. 10 Behavior of solution u(ζ, t) and v(ζ, t) for ε = 0.1 and 0.01 for Example 6.4(b)

Table 12 Parameter uniform convergence rate at T = 0.04 for Example 6.4

ε N = 8 N = 16 N = 32 N = 64

20 6.41841E−06 3.22272E−06 1.60909E−06 8.03679E−07
2−1 1.80796E−05 8.98549E−06 4.68089E−06 2.34057E−06
2−2 0.00010412 0.00005501 2.78666E−05 1.39476E−05
2−3 6.41841E−06 3.22272E−06 1.60909E−06 8.05E−07
2−4 8.66285E−05 4.60583E−05 2.31932E−05 1.15962E−05
2−6 0.00010412 0.00005501 2.78666E−05 1.39476E−05
2−8 0.00010412 0.00005501 2.78666E−05 1.39476E−05
En 0.00010412 0.00005501 2.78666E−05 1.39476E−05
Rn 0.920481409 0.981156913 0.998520095 –

Parameter uniform rate of convergence of order one for Example 6.4(b) has been reported in Table 12 with
�t = 10−3.

Example 6.5 Consider the fourth order differential equation

ut + γ uζ ζ ζ ζ − uζ ζ = αu5 + βu3 + κu2 (ζ, t) ∈ [a, b] × [0, T ], (55)

For α = 24, β = −2 and κ = −2 and γ = 1 the exact form of solution of Eq. (55) is

u(ζ, t) = 1

ζ + 2t
(ζ, t) ∈ [a, b] × [0, T ]. (56)

The absolute error has been shown in Fig. 11. There is no major improvement in the error as time step
decreases from �t = 0.01 to �t = 0.001 with N = 50 as in Table 13. The effect of time on the L2 norm
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Fig. 11 Absolute error profile of Example 6.5

Table 13 L2-norm and L∞-norm for error at �t = 0.01 and �t = 0.001 for Example 6.5

Time �t = 0.01 �t = 0.001

L2-norm L∞-norm L2-norm L∞-norm

0.1 8.56447e−06 1.06174e−03 8.33926e−06 1.14140e−03
0.2 1.13259e−05 1.80386e−03 1.11443e−05 1.87280e−03
0.3 1.34809e−05 2.46325e−03 1.33529e−05 2.52667e−03
0.4 1.54954e−05 3.07668e−03 1.54042e−05 3.13596e−03
0.5 1.74075e−05 3.64429e−03 1.73374e−05 3.69857e−03
0.6 1.91941e−05 4.16207e−03 1.91346e−05 4.21119e−03
0.7 2.08362e−05 4.62956e−03 2.07809e−05 4.67387e−03
0.8 2.23256e−05 5.04855e−03 2.22705e−05 5.08817e−03
0.9 2.36619e−05 5.42156e−03 2.36049e−05 5.45689e−03
1.0 2.46120e−05 5.78314e−03 2.47896e−05 5.78346e−03

Table 14 Comparison of L2-norm L∞-norm and GRE with respect to space and time partitions for Example 6.5 at T = 0.5

Time N = 20 N = 40 N = 60 N = 80

�t = 0.1 L2-norm 2.69111e−04 3.41167e−05 1.20233e−05 6.11513e−06
L∞-norm 5.88431e−03 3.91978e−03 3.59510e−03 3.48590e−03
GRE 5.37349e−02 3.58310e−02 3.25095e−02 3.13709e−02

�t = 0.01 L2-norm 2.38562e−04 3.04466e−05 1.09433e−05 5.63647e−06
L∞-norm 5.93525e−03 3.91185e−03 3.58612e−03 3.47732e−03
GRE 5.36526e−02 3.57576e−02 3.24471e−02 3.13131e−02

�t = 0.001 L2-norm 2.39638e−04 3.08817e−05 1.11036e−05 5.71202e−06
L∞-norm 5.93765e−03 3.91218e−03 3.58625e−03 3.47738e−03
GRE 5.36635e−02 3.57629e−02 3.24500e−02 3.13151e−02

and L∞ norm can be observed along the column of Table 13. Again, the effect of perturbation parameters
on L2-norm, L∞-norm and GRE has been studied in Table 14. It is observed that the increment in the non-
linearity of polynomial f (u) does not effect the approximation efficiency and accuracy. Parameter uniform
rate of convergence of order two has been reported in Table 15 with �t = 10−2.

Example 6.6 Consider the fourth order differential equation having bistable cubic non-linearity

ut + εuζ ζ ζ ζ − uζ ζ = u(u − α)(1 − u) (ζ, t) ∈ [a, b] × [0, T ], (57)
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Table 15 Parameter uniform convergence rate at T = 0.2 for Example 6.5

ε N = 5 N = 10 N = 20 N = 40 N = 80

100 0.027097829 0.006278871 0.001656379 0.000414531 0.000103733
10−1 0.04799501 0.016872231 0.004031238 0.001016282 0.000255155
10−2 0.045440459 0.024649882 0.007400184 0.001811592 0.000454294
10−3 0.045353053 0.025807968 0.008589973 0.002413281 0.000598185
10−4 0.045512133 0.025971564 0.008671138 0.002484271 0.000689575
10−5 0.045528756 0.025983209 0.008669169 0.002492881 0.000685876
En 0.04799501 0.025983209 0.008671138 0.002492881 0.000689575
Rn 0.885304799 1.583286368 1.798407329 1.854034639 –

Fig. 12 Solution profile of Example 6.6 for different values of γ and α

with the initial and boundary conditions

u(ζ, 0) = 1
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Table 16 L2-norm and L∞-norm with �t = 0.01 and N = 32, α = 1 for Example 6.6

Time ε = 1 ε = 0.1 ε = 0.001

L2-norm L∞-norm L2-norm L∞-norm L2-norm L∞-norm

0.0 1.75315e−02 6.64514e−01 1.75315e−02 6.64514e−01 1.75315e−02 6.64514e−01
0.1 1.72000e−02 6.51753e−01 1.70980e−02 6.47390e−01 1.69815e−02 6.42528e−01
0.2 1.69010e−02 6.40410e−01 1.67894e−02 6.35634e−01 1.66406e−02 6.29654e−01
0.3 1.65980e−02 6.28916e−01 1.64890e−02 6.24250e−01 1.63325e−02 6.18006e−01
0.4 1.62911e−02 6.17275e−01 1.61859e−02 6.12772e−01 1.60308e−02 6.06588e−01
0.5 1.59806e−02 6.05495e−01 1.58793e−02 6.01159e−01 1.57281e−02 5.95136e−01
0.6 1.56667e−02 5.93590e−01 1.55692e−02 5.89418e−01 1.54229e−02 5.83585e−01
0.7 1.53498e−02 5.81571e−01 1.52561e−02 5.77561e−01 1.51147e−02 5.71925e−01
0.8 1.50302e−02 5.69451e−01 1.49402e−02 5.65600e−01 1.48039e−02 5.60161e−01
0.9 1.47083e−02 5.57246e−01 1.46220e−02 5.53549e−01 1.44906e−02 5.48306e−01
1.0 1.43845e−02 5.44968e−01 1.43017e−02 5.41423e−01 1.41752e−02 5.36373e−01

Table 17 Computed L2-norm and L∞-norm with �t = 0.01 and N = 50 and α = −1 for Example 6.6

Time ε = 1 ε = 0.1 ε = 0.0001

L2-norm L∞-norm L2-norm L∞-norm L2-norm L∞-norm

0.0 1.12484e−02 6.66408e−01 1.12484e−02 6.66408e−01 1.12484e−02 6.66408e−01
0.1 1.17873e−02 6.98307e−01 1.17722e−02 6.97298e−01 1.17533e−02 6.96037e−01
0.2 1.23016e−02 7.28806e−01 1.22826e−02 7.27537e−01 1.22555e−02 7.25730e−01
0.3 1.27819e−02 7.57292e−01 1.27609e−02 7.55890e−01 1.27291e−02 7.53767e−01
0.4 1.32265e−02 7.83668e−01 1.32038e−02 7.82148e−01 1.31688e−02 7.79813e−01
0.5 1.36350e−02 8.07897e−01 1.36105e−02 8.06262e−01 1.35729e−02 8.03753e−01
0.6 1.40074e−02 8.29995e−01 1.39812e−02 8.28245e−01 1.39412e−02 8.25580e−01
0.7 1.43448e−02 8.50014e−01 1.43169e−02 8.48152e−01 1.42747e−02 8.45341e−01
0.8 1.46485e−02 8.68042e−01 1.46191e−02 8.66073e−01 1.45749e−02 8.63125e−01
0.9 1.49206e−02 8.84189e−01 1.48896e−02 8.82118e−01 1.48435e−02 8.79042e−01
1.0 1.51630e−02 8.98581e−01 1.51306e−02 8.96414e−01 1.50827e−02 8.93220e−01

For ε = 1 and α = 1 and−1, the travelling wave configuration has been observed. For ε = 1 the travelling
wave have a constant phase but as γ decreases i.e. for ε = 0 the wave configuration has some phase turning
point as can be observed from the Fig. 12 which shows the boundary layer effect due to perturbation parameter
ε. It has also been observed that for positive α the solution profile has decreasing nature while for negative α
the wave profile is increasing with time, can be observed along the column in Tables 16 and 17. The effect of
perturbation parameter can be observed from any row of the Tables 16 and 17 for both the cases α = 1 and
α = −1.

7 Conclusions and discussion

The proposed technique has been implemented to various forms of fourth order semi-linear dissipative,
reaction–diffusion equations which are analysed with fairly known initial functions. Travelling wave behaviour
propagating in reaction–diffusion dissipative media has been studied using the proposed hybrid technique. For
problems having exact form of solution the error in the form of L2 norm and L∞ norm has been reported in
tables. These equations have mono-stable and bi-stable non-linearity.

Error analysis shows that the hybrid technique is significantly effective for higher order problems with
higher degree of non-linearity.

The equations exhibited wave behaviour and the effect of perturbation parameter has been studied. In
Example 3 non-linear fourth order problem with Fisher equation type non-linearity has been considered.
Effect of the bounded domain on the wave behaviour has also been observed. In Example 6 fourth order
equation with bi-stable cubic non-linearity has been considered. The effect of perturbation parameter ε and the
parameter α has been studied. Both the equations model the problems in population dynamics. These mono-
stable and bi-stable non-linear problems have travelling wave configurations. Parameter Uniform convergence
rate has been studied for analysing the effect of perturbation parameter ε and the rate of convergence in certain
cases found to be greater than 1.
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