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Abstract In this work, we obtain fixed point theorems and convergence theorems for Suzuki-generalized
nonexpansive mappings in complete CATp(0) metric spaces for p ≥ 2. Our results extend and improve many
results in the literature.
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1 Introduction

In 1965, Browder [3], Göhde [15], and Kirk [17] independently discovered a fundamental existence theorem
for fixed points of nonexpansive mappings. Since then, fixed point theory for nonexpansive and related classes
of mappings has been studied intensively. In particular, Suzuki [29] substantially weakened the assumption of
nonexpansiveness in uniformly convex Banach spaces.

Let (M, d) be a metric space. Recall a mapping T : M → M is said to be Lipschitzian if there is a constant
k ≥ 0, such that for all x, y ∈ M , we have

d(T (x), T (y)) ≤ k d(x, y).

The smallest number k for which the above holds is called the Lipschitz constant of T .Nonexpansivemappings
are those mappings which have Lipschitz constant equal to one. In fact, Browder [3] and Göhde [15] proved
the following fixed point theorem for nonexpansive mappings

Theorem 1.1 (Browder–Göhde’s Theorem) If K is a nonempty bounded closed convex subset of a uniformly
convex Banach space E and T : K → K is a nonexpansive mapping, then T has a fixed point. Moreover, the
fixed point set of T is a closed and convex subset of K .

After that, Suzuki [29] introduced a condition onmappings, which is weaker than nonexpansiveness. Let K
be a nonempty subset of a metric space. A mapping T : K → K is called a Suzuki-generalized nonexpansive
mapping if 1

2d(x, T x) ≤ d(x, y) implies d(T x, T y) ≤ d(x, y) for all x, y ∈ K . It is interesting to note
that nonexpansive mappings are continuous on their domains, but Suzuki-generalized nonexpansive mappings
need not be continuous. In Theorem 5 of [29], Suzuki generalized the fixed point result of Browder [3] and
Göhde [15].

Theorem 1.2 (Suzuki Theorem) If K is a weakly compact convex subset of a uniformly convex in every
direction Banach space E and T : K → K is a Suzuki-generalized nonexpansive mapping, then T has a fixed
point. Moreover, the set of fixed points Fix(T ) of T is closed and convex subset of K .
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Nearly, all scientific disciplines deal with nonlinear problems. Therefore, it is essential to find nonlinear
versions of results from linear domains. Furthermore, investigation of numerous problems in metric spaces
without linear structure has its own importance in pure and applied sciences. As nonlinear examples of metric
spaces, one can consider CAT (0) metric spaces [18,19,22], which are considered to be a nonlinear version of
Hilbert spaces.

Recently, Nanjaras et al. [24] have obtained fixed point theorems and convergence theorems for Suzuki-
generalized nonexpansive mappings in CAT (0) metric spaces.

Theorem 1.3 (Nanjaras Theorem) Let K be a nonempty bounded closed convex subset of a complete C AT (0)
metric space M. Suppose T : K → K is a Suzuki-generalized nonexpansive mapping, then T has a fixed
point.

On the other hand, Khamsi and Shukri in [16] have extended the Gromov geometric definition of CAT (0)
metric spaces. The authors of [16] called these more general metric spaces “generalized CATp(0)”.

In this work, we continue investigating the fixed point property for Suzuki-generalized nonexpansive
mappings and its approximations in CATp(0) metric spaces’ setting. Our results will extend and improve the
results of Suzuki, Nanjaras et. al., Khamsi and Shukri, Browder, Göhde, and Kirk.

2 CATp(0)metric spaces

Let (M, d) be a metric space and let R denote the real line. We say that a mapping c : R → M is a metric
embedding of R into M if

d(c(s), c(t)) = |s − t |,
for all real s, t ∈ R. The image of R under a metric embedding will be called a metric line. The image
c([a, b]) ⊂ M of a real interval under a metric embedding will be called a metric segment. Let x, y ∈ M .
A metric segment c([a, b]) is said to join x and y if c(a) = x and c(b) = y. We will say that (M, d) is
of hyperbolic type in the sense of [12] if M contains a family of metric segments, such that for each pair of
distinct points x and y in M , there is a unique metric line which joins x and y. We will denote by [x, y] or
[y, x] the unique metric segment joining the two points x and y from M . Clearly, we have [x, x] = {x}, for any
x ∈ M . Next, we give some basic facts about metric spaces of hyperbolic type which shows to some extent
their natural similarity to the normed vector spaces.

Lemma 2.1 [20] Let x, y ∈ M, x �= y and z, w ∈ [x, y]. Then
(i) d(x, z) ≤ d(x, y);
(ii) if d(x, z) = d(x, w), then z = w.

The next result brings us closer to the definition of a convex combination in metric spaces of hyperbolic
type.

Lemma 2.2 [20] Let c : R → M be a metric embedding, a ≤ b ∈ R and t ∈ [0, 1]. Then
(i) d(c(a), c((1 − t)a + tb)) = t d(c(a), c(b));
(ii) d(c(b), c((1 − t)a + tb)) = (1 − t) d(c(a), c(b)).

Proposition 2.3 [20] Let (M, d) be a metric space of hyperbolic type. Let x, y ∈ M. For each α ∈ [0, 1],
there is a unique point z ∈ [x, y], such that

d(x, z) = α d(x, y) and d(y, z) = (1 − α) d(x, y).

Such point will be denoted by (1 − α)x ⊕ αy.

Obviously, we have (1−α)x ⊕αx = x , and if x �= y, then for any z ∈ [x, y], we have z = (1−α)x ⊕αy,

with α = d(x, z)

d(x, y)
. This will imply that for any z ∈ [x, y], we have d(x, z) + d(z, y) = d(x, y). Also if, for

some α, β ∈ [0, 1], we have (1 − α)x ⊕ αy = (1 − β)x ⊕ βy, then α = β provided x �= y. Moreover, we
have (1 − α)x ⊕ αy = αy ⊕ (1 − α)x . The following is a direct consequence of all these properties:

[x, y] = {
(1 − α)x ⊕ αy; α ∈ [0, 1]}.
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Definition 2.4 [13] We say that (M, d) is a hyperbolic metric space if

d ((1 − α)x ⊕ αy, (1 − α)x ⊕ αz) ≤ αd(y, z),

for any α ∈ [0, 1] and all x, y, z ∈ M

In particular, every hyperbolic space is a space of hyperbolic type [20]. Note that (M, d) is hyperbolic if and
only if

d ((1 − α)x ⊕ αy, (1 − α)z ⊕ αw) ≤ (1 − α)d(x, z) + αd(y, w),

for any α ∈ [0, 1] and all x, y, z, w ∈ M [13,20,22,26]. Recall that a subset C of a hyperbolic metric space
M is said to be convex whenever [x, y] ⊂ C for any x, y ∈ C .

Obviously, normed linear spaces are hyperbolic metric spaces. As nonlinear examples, one can consider the
Hadamard manifolds [5], the Hilbert open unit ball equipped with the hyperbolic metric [13], and theCATp(0)
metric spaces [16] (see Example 2.6).

Definition 2.5 Let (M, d) be a hyperbolic metric space. We say that M is uniformly convex if for any a ∈ M ,
for every r > 0, and for each ε > 0

δ(r, ε) = inf
{
1 − 1

r
d
(1
2
x ⊕ 1

2
y, a

)
; d(x, a) ≤ r, d(y, a) ≤ r, d(x, y) ≥ rε

}
> 0.

The definition of uniform convexity finds its origin in Banach spaces [7]. To the best of our knowledge, the
first attempt to generalize this concept to metric spaces was done in [14]. The reader may also consult [13,26].
In the next example, we discuss CATp(0) metric spaces.

Example 2.6 Let (M, d) be a metric space. A continuous mapping from the interval [0, 1] into M is called a
path. A path γ : [0, 1] → M is called a geodesic or (metric segment) if d(γ (s), γ (t)) = |s − t |d(γ (0), γ (1)),
for every s, t ∈ [0, 1]. We will say that (M, d) is a geodesic metric space if every two points x, y ∈ M are
connected by a geodesic, i.e., there exists a geodesic γ : [0, 1] → M , such that γ (0) = x and γ (1) = y. In
this case, we denote such geodesic by [x, y]. Note that, in general, such geodesic is not uniquely determined
by its endpoints. The metric space (M, d) is called uniquely geodesic if every two points of M are connected
by a unique geodesic. In this case, [x, y] will denote the unique geodesic connecting x and y in M .

Recently, Khamsi and Shukri in [16] have extended the Gromov geometric definition of CAT (0) metric
spaces [2] to the case when the comparison triangles belong to a general Banach space. In particular, the case
when the Banach space is �p, p ≥ 2.

Recall that a geodesic triangle � (x1, x2, x3) in a geodesic metric space (M, d) consists of three points
x1, x2, x3 in M (the vertices of �) and a geodesic segment between each pair of vertices (the edges of �). A
comparison triangle for geodesic triangle� (x1, x2, x3) in (M, d) is a triangle� (x1, x2, x3) := � (x̄1, x̄2, x̄3)
in the Banach space l p, for p ≥ 2, such that ‖xi − x j‖ = d

(
xi , x j

)
for i, j ∈ {1, 2, 3}. A point x̄ ∈ [x̄1, x̄2]

is called a comparison point for x ∈ [x1, x2] if d(x1, x) = ‖x̄1 − x̄‖.
Definition 2.7 [16] Let (M, d) be a geodesic metric space. M is said to be a CATp(0) metric space if, for
any geodesic triangle � in M , there exists a comparison triangle � in �p, such that the comparison axiom is
satisfied, i.e., for all x, y ∈ � and comparison points x, y ∈ �, we have

d(x, y) ≤ ‖x − y‖.
It is obvious that CAT2(0) metric space is exactly the classical CAT (0) metric space. Note �p, p �= 2, is a
CATp(0) metric space which is not a CAT (0) metric space [16].

Let x, y1, y2 be in M , and
y1 ⊕ y2

2
is the midpoint of the geodesic [y1, y2], then for p ≥ 2, the comparison

axiom implies that

d p
(
x,

y1 ⊕ y2
2

)
≤ 1

2
d p(x, y1) + 1

2
d p(x, y2) − 1

2p
d p(y1, y2). (2.1)
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This inequality is the (CNp) inequality of Khamsi and Shukri [16]. As for �p, for p > 2, the (CNp) inequality
implies that CATp(0) metric spaces are uniformly convex with

δ(r, ε) ≥ 1 −
(
1 − ε p

2p

)1/p

,

for every r > 0 and for each ε > 0.
When p = 2, the (CNp) inequality reduces to the classical (CN ) inequality of Bruhat and Tits [4].

3 Suzuki-generalized nonexpansive mappings

In this section, we extend Theorem 1.2 of Suzuki and Theorem 1.3 of Nanjaras et al. for Suzuki-generalized
nonexpansive mappings in the setting of CATp(0) metric spaces.

Let us discuss the behavior of type functions in a completeCATp(0)metric space M , for p ≥ 2. It is worth
mentioning that these functions are very useful when trying to prove the existence of fixed points of mappings.
Recall that τ : M → R+ is called a type if there exists a bounded sequence {xn} in M , such that

τ(x) = lim sup
n→∞

d(x, xn).

Theorem 3.1 [16] Let (M, d) be a complete C ATp(0) metric space, with p ≥ 2. Let C be any nonempty,
closed, convex, and bounded subset of M. Let τ be a type defined on C. Then, any minimizing sequence
{xn} ⊂ C of τ is convergent. Its limit x is the unique minimum of τ , which is called the asymptotic center of
{xn}, and satisfies

τ p(x) + 1

2p−1 d p(x, z) ≤ τ p(z), (3.1)

for any z ∈ C.

Next, we need the following lemma

Lemma 3.2 [29]LetC be a nonempty subset of ametric space M. Suppose T : C → C is a Suzuki-generalized
nonexpansive mapping. Then

d(x, T y) � 3d(T x, x) + d(x, y),

for all x, y ∈ C.

Now, we discuss the existence of fixed points of Suzuki-generalized nonexpansive mappings in CATp(0)
metric spaces.

Theorem 3.3 Let C be a nonempty bounded closed convex subset of a complete C ATp(0) metric space M,
with p ≥ 2. Suppose T : C → C is a Suzuki-generalized nonexpansive mapping, then T has a fixed point.

Proof Define a sequence {xn} by x1 ∈ C and xn+1 = αnT xn ⊕ (1 − αn)xn for all n ∈ N, where {αn} ⊂[ 1
2 , 1

)
, such that lim supn→∞ αn < 1. By the convexity and boundedness assumptions of C , we deduce

that {xn} is a bounded sequence in C . Furthermore, {xn} is an approximate fixed point sequence of T , i.e.,
limn→∞ d(xn, T xn) = 0. Indeed, since 1

2d(xn, T xn) ≤ αnd(xn, T xn) = d(xn, xn+1) and since T is Suzuki-
generalized nonexpansive mapping, then

d(T xn, T xn+1) � d(xn, xn+1).

Note that the sequence {d(xn, T xn} is decreasing. In fact

d(xn+1, T xn+1) ≤ d(xn+1, T xn) + d(T xn+1, T xn)

≤ d(xn+1, T xn) + d(xn+1, xn)

= d(xn, T xn).
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For any i, n ∈ N by an induction argument on i [27], we have

(1 + nαn) d(T xi , xi ) ≤ d(T xn+i , xi )

−(1 − αn)
−n

(
d(T xn+i , xi+n) − d(T xi , xi )

)
.

Set R = limn→+∞ d(T xn, xn). Fix n ∈ N and let i → +∞ to get

(1 + nαn) R ≤ δ(C),

where δ(C) = sup{d(x, y); x, y ∈ C} < +∞. Thiswill obviously imply R = 0, i.e., limn→+∞ d(xn, T xn) =
0. Next, consider the type function τ generated by the sequence {xn}. Let x be the minimum point of τ which
exists using Theorem 3.1. We claim that x is a fixed point of T . Indeed, by Lemma 3.2, we have

d(T x, xn) � 3d(T xn, xn) + d(x, xn).

Hence,

lim sup
n→∞

d(T x, xn) � 3 lim sup
n→∞

d(T xn, xn) + lim sup
n→∞

d(x, xn).

Since {xn} is an approximate fixed point sequence of T , we get

lim sup
n→∞

d(T x, xn) � lim sup
n→∞

d(x, xn).

i.e., τ(T x) � τ(x). By the uniqueness of the asymptotic center, we have T x = x .
��

Next, we study the convergence of the approximate fixed point sequence established in the above theorem.
As we have seen, we were able to extend many linear properties to the case of hyperbolic metric spaces. The
weak topology is still hard to capture in the nonlinear case. Note that the inequality (3.1) is similar to Opial’s
condition defined in Banach spaces, which is introduced in [25], to give a characterization for weak convergent
sequences. Following the approach was offered by Kuczumow [21] and Lim [23] in the case ofCAT (0)metric
spaces, an analogue to the weak convergence in �p spaces is introduced in complete CATp(0) metric spaces,
for p ≥ 2 as follows.

Definition 3.4 [27] We shall say that {xn} ⊂ M weakly converges to a point x ∈ M if x is the asymptotic
center of each subsequence of {xn}. We use the notation xn

ω−→ x .

Clearly, if xn → x , then xn
ω−→ x . If there is a subsequence {xnk } of {xn}, such that xnk

ω−→ x for some
x ∈ M , we say that x is a weak cluster point of the sequence {xn}.
Lemma 3.5 [1] Each bounded sequence {xn} in a complete C ATp(0) metric space M, with p ≥ 2, has a
weakly convergent subsequence, or in other words, each bounded sequence has a weak cluster point.

The following result is similar to the demi-closed principle discovered by Göhde [15] in uniformly convex
Banach spaces.

Proposition 3.6 Let C be a nonempty bounded closed convex subset of a complete C ATp(0) metric space
M, with p ≥ 2. Suppose T : C → C is a Suzuki-generalized nonexpansive mapping. If {xn} ⊂ C is an
approximate fixed point sequence of T , i.e., limn→∞ d(xn, T xn) = 0, such that xn

ω−→ x, then x is a fixed point
of T .

Proof Since xn
ω−→ x , then x is the asymptotic center of each subsequence {un} of {xn}. Furthermore, {un} is

an approximate fixed point sequence of T . Finally, in Theorem 3.3, we have seen that the asymptotic center
of {un} is a is a fixed point of T . Therefore, we obtain the desired result. ��

Now, we are ready to prove our weak convergence result.

Theorem 3.7 Let C be a nonempty bounded closed convex subset of a complete C ATp(0) metric space M,
with p ≥ 2. Suppose T : C → C is a Suzuki-generalized nonexpansive mapping. Define a sequence {xn} by
x1 ∈ C and xn+1 = αnT xn ⊕ (1 − αn)xn for all n ∈ N, where {αn} ⊂ [ 1

2 , 1
)
, such that lim supn→∞ αn < 1.

Then, {xn} weakly converges to a fixed point of T .
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Proof As {xn} is bounded, so by Theorem 3.1, {xn} has a unique asymptotic center x ∈ C. Let {un} be any
subsequence of {xn} having a unique asymptotic center u ∈ C. Furthermore, since {un} is bounded, by Lemma
3.5, there exists ω ∈ C a weak cluster point of {un}, i.e., there exists a subsequence {vn} of {un} which weakly
converges to ω ∈ C . Furthermore, by Theorem 3.3, {xn} is an approximate fixed point sequence of T . Hence,
the subsequence {vn} is an approximate fixed point sequence of T . Therefore, by Proposition 3.6, ω is a fixed
point of T . Moreover, since 1

2d(ω, Tω) = 0 ≤ d(xn, ω), we have

d(T xn, ω) = d(T xn, Tω) ≤ d(xn, ω).

Hence

d(xn+1, ω) = d(αnT xn ⊕ (1 − αn)xn, ω)

≤ αnd(T xn, ω) + (1 − αn)d(xn, ω)

≤ d(xn, ω).

This proves that {d(xn, ω)} is decreasing which implies that limn→∞ d(xn, ω) exists.
Suppose u �= ω. By the uniqueness of asymptotic centers

lim sup
n→∞

d(vn, ω) < lim sup
n→∞

d(vn, u)

≤ lim sup
n→∞

d(un, u)

< lim sup
n→∞

d(un, ω)

= lim sup
n→∞

d(xn, ω)

= lim sup
n→∞

d(vn, ω),

a contradiction. Hence, u = ω. Since {un} is an arbitrary subsequence of {xn}, therefore, ω is the asymptotic
center of each subsequence of {un} of {xn}. This proves that {xn} converges weakly to the fixed point ω of T .

��
If we assume compactness, then Theorem 3.7 implies the following result.

Theorem 3.8 Let C be a nonempty compact convex subset of a complete C ATp(0) metric space M, with
p ≥ 2. Suppose T : C → C is a Suzuki-generalized nonexpansive mapping. Define a sequence {xn} by x1 ∈ C
and xn+1 = αnT xn ⊕ (1 − αn)xn for all n ∈ N, where {αn} ⊂ [ 1

2 , 1
)
, such that lim supn→∞ αn < 1. Then,

{xn} strongly converges to a fixed point of T .

Proof Since C is compact, then {xn} has a convergent subsequence {un} in C . Let x be the limit of {un}.
Furthermore, Theorem 3.3 implies that {un} is an approximate fixed point sequence of T . Clearly, since
un → x , then un

ω−→ x . As a consequence to Proposition 3.6, x is a fixed point of T . Finally, according
to the proof of Theorem 3.7, we conclude that {d(xn, x)} is bounded and decreasing which implies that
limn→∞ d(xn, x) exists. In fact

lim
n→∞ d(xn, x) = lim

n→∞ d(un, x) = 0.

Thus, x is the strong limit of the sequence {xn} itself. ��
Recall that a mapping T : C → C is semi-compact if any bounded sequence {xn} satisfying d(xn, T xn) →

0 as n → ∞, has a convergent subsequence. A sequence {xn} ⊂ C is said to be Fejér monotone with respect
to C if d(xn+1, p) ≤ d(xn, p) for any fixed point p of T .

Next, we extend Theorem 3.8 as follows.

Theorem 3.9 Let C be a nonempty bounded closed convex subset of a complete C ATp(0) metric space M,
with p ≥ 2. Suppose T : C → C is a Suzuki-generalized nonexpansive mapping, such that T is semi-compact.
If {xn} ⊂ C is an approximate fixed point sequence of T , such that {xn} is Fejér monotone with respect to C .
Then, {xn} strongly converges to a fixed point of T .
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Proof By the convexity and boundedness assumptions of C , we deduce that {xn} is a bounded sequence in C .
Moreover, since {xn} is an approximate fixed point sequence of the semi-compact mapping T , then {xn} has a
convergent subsequence {un} in C . Let x be the limit of {un}. Furthermore, Lemma 3.2 implies that

d(T x, un) � 3d(Tun, un) + d(x, un).

Letting n −→ ∞, we have {un} converges to T x . This implies T x = x . Furthermore, since {xn} is a Fejér
monotone sequence with respect to C , then the sequence {d(xn, x)} is decreasing. Finally, since {xn} is a
bounded, we conclude that {d(xn, x)} is bounded which implies that limn→∞ d(xn, x) exists. In fact

lim
n→∞ d(xn, x) = lim

n→∞ d(un, x) = 0.

Thus, x is the strong limit of the sequence {xn} itself. ��

4 Quasi-nonexpansive mappings

Let C be a nonempty subset of a metric space M . A mapping T : C → C is called a quasi-nonexpansive
mapping if the set of fixed points Fix(T ) of T is not empty and d(T x, y) ≤ d(x, y), for all x ∈ C and
y ∈ Fix(T ). The condition of quasi-nonexpansiveness was introduced in 1916 by Tricomi [30] for real
functions, and was relaunched 50 years later by Diaz and Metcalf [8,9]. After that, the condition of quasi-
nonexpansiveness was studied by Dotson [10,11], Senter and Dotson [28], and many others, for mappings in
Hilbert and Banach spaces.

Clearly, the condition of Suzuki-generalized nonexpansiveness is weaker than nonexpansiveness and
stronger than quasi-nonexpansiveness [24]. The following proposition is easy to verify.

Proposition 4.1 Let C be a nonempty subset of a CATp(0) metric space M, with p ≥ 2. Let T : C → C be a
Suzuki-generalized nonexpansive mapping. If T has a fixed point, then T is a quasi-nonexpansive mapping.

Moreover, in [6], Chaoha and Phon-on delivered a complete description of the fixed point set of quasi-
nonexpansive mappings on nonempty convex subsets of a CAT(0) metric space. Next, we try to generalize the
work of Chaoha and Phon-on into CATp(0) metric spaces.

Theorem 4.2 Let C be a nonempty bounded closed convex subset of a complete CATp(0) metric space M,
with p ≥ 2. If T : C → C is a quasi-nonexpansive mapping, then Fix(T ) is a closed and convex subset of C.

Proof First, we show that Fix(T ) is a closed subset of C . Let {xn} ⊂ Fix(T ) be such that xn → x . Then, for

each ε > 0, there exists N ∈ N, such that d(xN , x) <
ε

2
. Hence

d(x, T x) ≤ d(x, xN ) + d(xN , T x) ≤ 2d(x, xN ) < ε.

Since ε is arbitrary, we must have d(x, T x) = 0, i.e., x ∈ Fix(T ). Therefore, Fix(T ) is closed.
To show the convexity of the set Fix(T ), it is sufficient to prove that z = 1

2 x ⊕ 1
2 y ∈ Fix(T ), for all

x, y ∈ Fix(T ). By the (CNp) inequality, we have

d p (T z, z) ≤ 1

2
d p(T z, x) + 1

2
d p(T z, y) − 1

2p
d p(x, y).

Since d(x, T z) ≤ d(x, z) = 1
2d(x, y), and d(y, T z) ≤ d(y, z) = 1

2d(x, y),
we have d p (T z, z) = 0. Hence, T z = z. Therefore, Fix(T ) is convex.

��
Using the above result along with Proposition 4.1 and Theorem 3.3 in the situation where the existence of

a fixed point is assumed, we can obtain the following corollary.

Corollary 4.3 Let C be a nonempty bounded closed convex subset of a complete CATp(0) metric space M,
with p ≥ 2. Suppose T : C → C is a Suzuki-generalized nonexpansive mapping, then the set Fix(T ) is
nonempty closed and convex subset of C.
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Finally, we close our study of convergence of fixed point theorems of Suzuki-generalized nonexpansive
mappings in CATp(0) metric spaces, with p ≥ 2, using the concept of the nearest point projection. Let us
define the nearest point projection PC : M → 2C by

PC (x) =
{
c ∈ C; d(x, c) = inf{d(x, c) : c ∈ C}

}
.

If PC (x) is reduced to one point, for every x in M , then C is said to be a Chebyshev (or proximinal) set. In this
case, the mapping PC is not seen as a multivalued mapping but a single-valued mapping, i.e., PC : M → C
defined by

d(x, PC (x)) = inf{d(x, c) : c ∈ C},
for any x ∈ M .

Next, we need the following lemma

Lemma 4.4 [27] Let (M, d) be a complete CATp(0) metric space, p ≥ 2. Then any nonempty, closed, and
convex subset C of M is a Chebyshev subset.

Applying the above result to Corollary 4.3, we conclude the following.

Corollary 4.5 Under the assumptions of Corollary 4.3, the set Fi x(T ) is a Chebyshev subset.

Next, we establish the following convergence result.

Theorem 4.6 Let C be a nonempty bounded closed convex subset of a complete CATp(0) metric space M,
with p ≥ 2. Suppose T : C → C is a Suzuki-generalized nonexpansive mapping. Define a sequence {xn} by
x1 ∈ C and xn+1 = αnT xn ⊕ (1 − αn)xn for all n ∈ N, where {αn} ⊂ [ 1

2 , 1
)
, such that lim supn αn < 1. Let

PFix(T ) be the nearest point projection of C onto Fix(T ). Then,
{
PFix(T )(xn)

}
converges strongly to a fixed

point of T .

Proof According to Theorem 3.7, {xn} converges weakly to x ∈ Fix(T ), such that x is the unique asymptotic
center of {xn}. On the other hand, by Corollary 4.5, the sequence

{
PFix(T )(xn)

}
is well defined. We claim that{

PFix(T )(xn)
}
converges strongly to x . To prove the claim, assume for contrary that there exist ε > 0 and a

subsequence {PFix(T )(xni )}, such that d(PFix(T )(xni ), x) ≥ ε, for any ni ≥ 1.
Since M is a uniformly convex hyperbolic space, then for every s ≥ 0 and ε ≥ 0, there exists η(s, ε) > 0,

such that δ(r, ε) > η(s, ε) > 0, for any r > s. On the other hand, it is clear thatwemust have R = d(x1, x) > 0,

otherwise {xn} is a constant sequence. Hence, δ
(
d(xni , x),

ε

R

)
> η, for any ni ≥ 1. Furthermore, since

d

(
xni ,

1

2
x ⊕ 1

2
PFix(T )(xni )

)
≤ d(xni , x)

(
1 − δ

(
d(xni , x),

ε

R

))
,

then we have

d

(
xni ,

1

2
x ⊕ 1

2
PFix(T )(xni )

)
≤ d(xni , x)(1 − η),

for any ni ≥ 1. By Corollary 4.3, the convexity of Fix(T ) implies that 1
2 x ⊕ 1

2 PFix(T )(xni ) ∈ Fix(T ). Using
the definition of the nearest point projection PFix(T ), we get

d
(
xni , PFix(T )(xni )

) ≤ d(xni , x)(1 − η),

for any ni ≥ 1. For any m ≥ 1, ni ≥ 1 by an induction argument on m, we have

d
(
xni+m, PFix(T )(xni )

) ≤ d
(
xni , PFix(T )(xni )

)
.

Thus, we get

d
(
xni+m, PFix(T )(xni )

) ≤ d(xni , x)(1 − η),
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for any ni ≥ 1. Since PFix(T )(xni ) ∈ Fix(T ), we know that {d(xn, PFix(T )(xni ))} is decreasing (in n and fixed
ni ). Hence

lim sup
m→∞

d
(
xni+m, PFix(T )(xni )

) = lim
n→∞ d

(
xn, PFix(T )(xni )

) ≤ d(xni , x)(1 − η),

for any ni ≥ 1. Since x is the asymptotic center of {xn}, we get
lim
n→∞ d(xn, x) ≤ lim

n→∞ d
(
xn, PFix(T )(xni )

) ≤ d(xni , x)(1 − η),

for any ni ≥ 1. Finally, since x ∈ Fix(T ), if we let ni → ∞, we get

lim
n→∞ d(xn, x) ≤ lim

n→∞ d(xn, x)(1 − η).

Since ε ≤ d
(
xni , PFix(T )(xni )

) ≤ d
(
xni , x

)
, we conclude that ε ≤ limn→∞ d(xn, x), which implies 1 ≤ 1−η

which is our desired contradiction. Therefore,
{
PFix(T )(xn)

}
converges strongly to x .
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