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Abstract The aim of the present paper is to analyze sharp type inequalities including the scalar and Ricci
curvatures of anti-invariant Riemannian submersions in Kenmotsu space forms K;(¢). We give non-trivial
examples for anti-invariant Riemannian submersions, investigate some curvature relations between the total
space and fibres according to vertical and horizontal cases of £. Moreover, we acquire Chen-Ricci inequalities
on the ker ¢, and (ker 9,)" distributions for anti-invariant Riemannian submersions from Kenmotsu space
forms according to vertical and horizontal cases of &.
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1 Introduction

In [6], Chen defised the intrinsic (the Ricci curvature and the scalar curvature) and extrinsic (the squared mean
curvature) invariants in a real space form R¥(g) that determinated an inequality containing Ricci curvature, the
scalar curvature and squared mean curvature of a submanifold. A generalization of this inequality for arbitrary
submanifolds in an arbitrary Riemannian manifold was proved by Chen in [7]. Later, this inequality has been
extensively studied for different ambient spaces by some authors with some results ([1-3,12,13,15,16,19,20,
22-25]). Chen published a book containing all the work in this direction in 2011 [8].

As pointed out in [9, 17], an important interest in Riemannian geometry is that some geometrical properties
of suitable map types between Riemannian manifolds. In this manual, O’Neill [21] and Gray [10] defined the
concept of Riemannian submersions as follows:

A differentiable map ¥ : (K, gx,) = (Ru, gr,,) between Riemannian manifolds is called a Riemannian
submersion if ¥, is onto and gg,, (U« x1, Vxx2) = gk, (X1, x2) for vector fields x1, x2 € (ker ﬁ*)l. Sahin
investigated anti-invariant Riemannian submersions from almost Hermitian manifolds in [18]. In [4], Berri et
al. investigated anti-invariant submersions from Kenmotsu manifolds. In [11], Giilbahar et al. acquired sharp
inequalities involving the Ricci curvature for invariant Riemannian submersions. Inspired by the above studies,
in this study we take into account anti-invariant Riemannian submersions (AIRS) from Kenmotsu manifolds
to Riemannian manifolds and get sharp inequalities involving scalar curvature and Ricci curvature.

The aim of the present article is to examine the sharp type inequalities of AIRSs in Kenmotsu space forms
including scalar and Ricci curvatures. The systematic of the article is prepared as follows: After remembering
some basic formulas and definitions in the second section, we explore various inequalities including Ricci and
scalar curvatures on ker 9, and (ker ¥,)* distributions of AIRSs in Kenmotsu space forms in the third section
and finally, we acquire Chen-Ricci inequalities on ker 9, and (ker ) of AIRSs in Kenmotsu space forms.
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2 Preliminaries

Let K be a (2n + 1)—dimensional smooth manifold. Then, K has an almost contact structure if there exist a
tensor field endomorphism P of type—(1, 1), a vector field &, and 1-form 7 on K such that

P’Ey = —E1 +n(ED§, P§ = 0,00 P =0,7() = 1. @.1)
If there exists a Riemannian metric gg, on an almost contact manifold K satisfying:

gk, (PE1, PEy) = gk, (E1, E2) — n(E)n(E?),
gk, (E1, PEy) = —gk, (PEq, E), (2.2)
n(Ey) = gk, (E1, &), (2.3)

where E1, E; are any vector fields on K, then Kj is called an almost contact metric manifold [5] with an almost
contact structure (P, &, n, gg,) and is symbolized by (K, P, &, 1, gk, ). An almost contact metric manifold
is called Kenmotsu if the Riemannian connection V! of gk, satisfies [14]

(Vi P)Ey = —gk,(E1, PE3)§ — n(E3) PE,
Vi & = E —n(E)E. (2.4)

A Kenmotsu manifold with constant P —holomorphic sectional curvature ¢ is called a Kenmotsu space
form and is denoted by K, (¢). Then its curvature tensor Rg, is given by [14]

e =3[ gk, (Ea, E3)gk,(E1, Es)
4 —8k,(E1, E3)gk,(E2, E4)

n(EDn(E3)gk, (E2, Eq)

—n(E2)n(E3)gk, (E1, E4)

e+ 1 +n(E2)n(E4)gk,(E1, E3)

1 —n(EDn(E4) gk, (E2, E3) , (2.5)
—gk,(PE1, E3)gk,(PE2, Ey)
+8k,(PE>, E3)gk,(PE}, E4)

| +2¢k,(E1, PE2)gk,(PE3, Ey) |

RN (E\, Ea, E3, Ey) =

for all Eq, E3, E3 € T'(Kj).

Let (K, gk,) and (R, gr,,) be Riemannian manifolds such thatasmoothmap 9 : (K, gx,) — (R, gr,,)
is a Riemannian submersion which is onto and provides the following conditions:

1.0y : TpKs — Ty Ry is onto for all t € K;

ii. the fibres ¥ lse R,,, are Riemannian submanifolds of Kj;

iii. ¥4 preserves the length of the horizontal vectors.

A Riemannian submersion ¢ : K; — Ry, defines two (1, 2) tensor fields 7 and A on K, by the formulae
[21]:

Tg By = T(E1, E2) = hV} g vEy + vV, g hEs, (2.6)
and

Ag, Ey = A(E1, Ez) = vV hEy + hVp vE;, 2.7)
forall Ey, E» € I'(Ky). Where i and v the horizontal and vertical projections, respectively.

Lemma 2.1 ([21]) Let ¥ : (K, gk,) = (Ru. &r,,) be a Riemannian submersion. Then, we have:

Axix2 = —Agpxi,

T,y =Tyy, (2.8)
gk, (T, E1, E2) = —gk, (T, E2, EY),
gk, (Ax E1, E2) = —gk,(Ay E2, EY), (2.9)

for x1, x2 € T((ker 9:)1), y1, y2 € T(ker ), E1, Ez € T(Ky).
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1 . . . . .
Let RXs, RRm Rkerth gnd glkerds) represent the Riemannian curvature tensors of Riemannian manifolds
Ky, Ry, ker 9, and (ker 9L, respectively.

Lemma 2.2 ([21]) Let ¥ : (K, gk,) — (R, gr,,) be a Riemannian submersion. Then, we have:

RE (v1, vas v3, va) = R (1, v, v, va) + gk, (T va, Ty v3)

=8k, (T, v4, Ty v3) (2.10)
1
R& (x1, x25 135 x4) = RET%97 (1, x2, X3, x4) — 28k, (Ayy x2, Ay xa)
+8k, (A, X3, Ay xa) — 8k, (Ay X3, Ayy X4) (2.11)
RS G, vis x2, v2) = gk, (VY (1, v2), x2) + 8k, (V) A (1, x2), v2)
=8k, Ty x1, Ty x2) + 8k, (Ax, v2, Ay V1) (2.12)

forall x1, x2. x3. x4 € T((ker 9,)1) and y1, ya, 3, va € T'(ker 9,).

Also, the H mean curvature vector field of all fiber of ¢ stated
1 K
H=—N, N=> 1T,y (2.13)
p=1

where {y1, y2, ..., ¥p} creates an orthonormal basis for ker .. Further, if 7 = 0 on ker ¥, and (ker 19*)l

then ¥ has totally geodesic fibres.

)

Definition 2.3 [18] Let (K, gk,, P) and (R,,, gr,,) be a Kaehler manifold and a Riemannian manifold,
repectively. ¥ : (K, gk,. P) — (R, gr,,) 1s called anti-invariant, if ker 9, is anti-invariant with respect to
P, ie. P(ker9,) C (ker 9,)t.

From above definition, we get P (ker #,) N (ker %)+ # {0}). We denote the complementary orthogonal
distribution to P (ker 9) in (ker 9,)+ by ¢. Then, we obtain

(ker 9,)" = P(ker 9,) ® ¢.

It is straightforward to show that ¢ is an invariant distribution of (ker 9+

for x; € I'(ker 9,)L, we can state

under the endomorphism P. So,

Pxi=axi+Bxi, (2.14)
here ax1 € I'(ker 9,) and Bx1 € I'(¢).

Lemma 2.4 Let? : (K, gk,) = (R, &R
Then following statements are true:
i. If € is vertical, then B> x1 = —x1 — Pay) and aff = 0,
ii. If € is horizontal, then B%x1 = —x1 + n(x1)&é — Pay, = P>x1 — Pay; and aff = 0,
iii. gk, (x1, PCs) gk, (PCqs, x1) = gk, (X1, X1) + gk, (X1, Pax1).

) be an AIRS from a Kenmotsu manifold to a Riemannian manifold.

m

Example 2.5 LetKg = R2"*1 pe an Euclidean space with the standard coordinate functions (u1, ...up, vy, ...V, t)
and its usual Kenmotsu structure (P, &, n, g, ) stand for

n =dt,
d
S_Ea

n
gk, = ¥ :Zdut ® du, + dv, ®dvt} +dt ®dt,

=1
9 9 9 " 9 9
PlU—+V,—+T—} = —V,— +U—|.
{ B T T az} Z( B T )

1=
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Then (R, P, &, 1, 8k,) is a Kenmotsu space form with constant P— sectional curvature ¢ = 3. The
vector fields

ad ad ad a
El=e_r—,Et+n:PUt=e_t —tv—=).E§=—,
ay, au, at at

create a gg, —orthonormal basis for the contact metric structure.
Example 2.6 Let K; = R3(3) be Kenmotsu space form with the structure given in Example 2.5. The Rie-

mannian metric gg,, = g2 stand for g2 = e? (du ® du + dv ® dv). Let 9 : R3(3) — R? be a map given
by

uy—vyp uz —v2
ﬁ(uz,uz,VJ,Vz,t)=< )

V2 2
Then the kernel of ¥ is

1 1
kerﬂ*=Span{yl =E(E1+E3),V2=E(E2+E4),V3=E5=E},

and

(ker )= = Span {Xl = % (E1—E3), o= % (Ex — E4)} .

Thus, ¥ is a Riemannnian submersion. Furthermore, Py; = —x1, Py> = —x2 and Py3 = P& = 0 imply that
P (ker 9,) = (ker 9%,)-. Hence ¥ is an anti-invariant Riemannnian submersion such that £ is vertical.

Example 2.7 Let Ky = R>(3) be Kenmotsu space form with the structure given in Example 2.5. The Rieman-
nian metric gg, = gg3 stand for g2 = e (du @ du+dv®dv) +dt @dt. Let 9 : R°(3) - R3bea map
given by

Uy —vy uz —v2
U (uy, uz, vy, v2, t) = ( f)-

AN

Then the kernel of ¥, is

1 1
ker ¥, = Span{)ﬂ =—(E1+E3), = 75 (E> + E4)

V2 V2 } ’

and

1 1
(kerﬁ*)lzspan{m = — (k£ —E3),X2=—(Ez—E4)’X3=E5=§}-

NG NG

Thus, ¢ is a Riemannnian submersion. Furthermore, Py; = —x1, Py» = —x» imply that P(ker ¥,) C
(ker 9,)t = P(ker 9,) @ {£}. Thus, ¢ is an anti-invariant Riemannnian submersion such that & is horizontal.

3 Basic inequalities

For basic inequalities, we first give the following result. Since ¢ is an AIRS, and using (2.10) and (2.5) we
obtain:

@ Springer
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Lemma 3.1 (K(¢), gk,) and (R, gr,,) indicate a Kenmotsu space form and a Riemannian manifold and
let ¥ : (Ks(€), gk,) — (Rm. &Rr,,) be an AIRS such that & is vertical . Then, any for y1, v2, v3, v4 € I' (kertt
«) we obtain

-3
R (yy, y2, y3, va) = (oK, vgk, (72, v3) = 8, (11, v9)gK, (72, V)

1
+ %{n(yl)n%)gm (v2, va) = n(r2)n(v3)gk, (1, va)

+ n(y2)n(ya) gk, (v1, v3) — n(yOn(va) gk, (v2, ¥3)}
— gk, (T va, T, v3) + gk, (T, v4. Ty v3), (3.1

&
KX (1, y2) = — gk, 1, v2) = InlPllv2l?)

L etd { 1D y2D? = 20(rDn(v2)gk, (1, ¥2) }
4 +n()*Inl?

— T 2l + gk, (T v2, Ty v1)s (3.2)

here K¥'%« is called bi-sectional curvature of ker? .

Lemma 3.2 (K;(¢), gk,) and (Ry, gr,,) indicate a Kenmotsu space form and a Riemannian manifold and let
U (Ks(e), gk,) — (Ru, gr,,) be an AIRS such that & is horizontal . Then, any for y1, y2, v3, va € I'(kerd
«) we obtain

e—3

R (y1, y2, y3, va) = (oK, s vgk, (72, v3) = 8, (1, v3)gK, (72, 7))

- gKS‘ (,];/1 y47 7;/23/3) +ng (/];/2)/4’ ,];/1 V3), (3.3)
e—3

KN 0, v) = =gk, 01 v) = In P llP)
— T2 l” + gk, (T 72, Ty v1), GH

here K¥'« is called bi-sectional curvature of vertical distribution ker? .

For (ker 9,)*, since ¢ is an anti-invariant Riemannian submersion, and using (2.5), (2.8), (2.11) and (2.14)
we obtain:

Lemma 3.3 (K;(¢), gk,) and (Ry,, gr,,) denote a Kenmotsu space form and a Riemannian manifold and let
U (Ks(e), gk,) = (Rm, gr,,) be an AIRS such that § is vertical. Then, for x1, x2, x3, x4 € I'((ker? 25
we have

8_
4

Lf 1 [ —gx, (Bxi. x3)8x, (Bx2. x4) + gk, (Bx2. x3)8x, (Bx1. x4)
4 +2gk, (X1, Bx2) gk, (BX3: X4)

+ 28k, (Ay X2, Ays x4) — 8k, (Axo X3, Ay X4)
+ gk, (Ay X3, Ayy X4), (3.5)

3
{8k, (X1, x) gk, (X2, x3) — 8k, (X1, X3)8K, (X2, X4) }

iR
RECTPI7 (51 2, X3 x4) =

1 -3
BET G, 10) = = gk, s ) = I Pl

e+1
4

{=3g%. (1. Bx2)} + 311 A, x2 %,

here B&r99)™ s called bi-sectional curvature of horizontal distribution (kerd ).

Lemma 3.4 (K;(¢), gk,) and (Ry, gr,,) denote a Kenmotsu space form and a Riemannian manifold and let
U (Ks(e), gk,) = (Rm, &R,,) be an AIRS such that § is horizontal . Then, for x1, x2, x3, x4 € I'((ker?d
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) we have

L e—3
(X1, X2s X3 X4) = 1 {gx, (x1, xa) gk, (X2, x3) — 8k, (X1, X3)8K, (X2. Xa) }

R (ker 9

nxn(x3)gk, (x2, x4) — n(x2)n(x3)8k, (X1, x4)
e+1 +n(x2)n(xa) gk, (X1, x3) — n(xN(x4) gk, (X2, X3)
4 —gk,(Bx1, x3)8k, (Bx2, x4) + gk, (Bx2, x3)&k, (BXx1. X4)
+2gk, (X1, Bx2) 8k, (Bx3: X4)
+ 28k, (A x2, Ay xa) — gk, (A X3, Ay x4)
+ gk, (Ay, X3, Ay X4)s (3.6)
e—3

1
BETT G, o) = = gk, (o ) = I Pl )

e+ 1 nG)xD? = 2n()n(x2)gx (XI»XZ):| ,
- s 3 A ,
4 |: +n(x2)*Ix11D?* — 3gk, (x1. Bx2)* + 3l Ax x2ll

where B&e'9)™ s called bi-sectional curvature of horizontal distribution (kerd 4)*.

Let ¥: Ks(¢) — R, be an AIRS from a Kenmotsu space form to a Riemannian manifold. For any
point k € K, let {By,..., By, Cy,...,Cg} be an orthonormal basis of Ty K(e) such that ker ¢, =
Span{By, ..., B,}, (ker Pt = Span{C1y, ..., C4}.

Lemma 3.5 Let v : (K,(¢), gx,) — (Rn, gr, ) be an AIRS from a Kenmotsu space form to a Riemannian
manifold. Then, we have

8k, (X1, PCs)gk,(PCs, x1) = gk, (X1, X1) + 8k, (x1, Pax1),
8k, (Cs, PCs)gk,(PCs, x1) =d +tr(Pa)).

Case 1: Assume that £ is vertical
Now, for the ker ¥, if we take y4 = y1and y» = y3 =B, t=1,2,...,k in (3.1), and using (2.13) then
we get

& —

3 +1
Rick " (y1) = ——(kc = Dgi1(r1. 1) + 87 {@=0m0)? =gk, 1. 1)

K
— k8K, (Ty 1. H) + Y gk, (T y1. Ty B). (3.7)
=1

From here, we get:

Proposition 3.6 Let 9 : (Ks(¢€), gk,) = (R, gr,,) be an AIRS from a Kenmotsu space form to a Riemannian
manifold such that & is vertical. Then, we have

e — e+ 1

3
1 k—1)+

Ric® % () > {@—©on)? = D} —kgk, (T, H).

For a unit vertical vector y1 € T'(ker? ), the equality status of the inequality is valid if and only if every fiber
is totally geodesic.

If wetake y; = By,0 =1, ...,k in (3.7) and using (2.8), then we acquire
-3 1
2pkerlh — ETK(K—I)—S-; k — 1)

K
—2|HI*+ ) gk, (T5,Bo. Ts, B.),

t,o=1

where pker?s — > Ri cker% (B, B,, B,, B,). Therefore, we can state the following result.
1<t,0<k
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Proposition 3.7 Let ¥ : (K,(e), gx,) — (R, &r,,) be an AIRS from a Kenmotsu space form to a Riemannian
manifold such that & is vertical. Then, we have

_3 1
ek — 1) — °F

2pkerds > & (e — 1) — &2 H]2.

The equality status of the inequality is valid if and only if every fiber is totally geodesic.

Now, for the horizontal distribution if we take x4 = 1 and xp = x3 = C», o = 1,2,...,d in (3.5),
using (2.8), Lemma (3.5) and Lemma (2.4) then we get

. L —
Ric®er 97 () = 22{(d — gk, (X1, x1)}
+358 Lok (x1, x1) + gk, (x1, Pax1)}
=337 gk, (Ay, Cor Ay Co). (3.8)
Taking x1 =C,,t =1,2,...,d in (3.8) and using Lemma (3.5) then we have:
1 e—3 e+1 d
2pkervt A=) +3— —{d +1r(Pa)} =3 > 81(A¢,Co Ac,Co), (3.9)
t,o=1
where pker 2t = Zﬁa:l Rickervo* (C,, Cy, Cs, C,). Then, we can write
-3 1

2ptkerdt < STd(d -1+ 3% {(d +tr(Pa)}. (3.10)

Thus, we can give:

Proposition 3.8 Let ¥ : (K;(¢), gx,) — (R, &r,,) be an AIRS from a Kenmotsu space form to a Riemannian
manifold such that & is vertical. Then, we have

-3 1
2ptkerd’ < STd(d -1+ 3% {d +tr(Pa)}.
The equality status of (3.10) satisfies if and only if (ker9 )" is integrable.

Case 2: Assume that £ is horizontal.
Now, for the vertical distribution if we take y4 = y; and y» = y3 = B,, t = 1,2,...,k in (3.3), and
using (2.13) then we arrive at

£ —

. 3
Ricke % () = (x — Dgi(y1, 1)

K
— k8K, (Ty v, H) + Y gk, (Tpy1. Ty B). (3.11)

=1
From here, we have:

Proposition 3.9 Let 9 : (K,(¢), gx,) = (R, &r,,) be an AIRS from a Kenmotsu space form to a Riemannian
manifold such that & is horizontal. Then, we have

8_
4

For a unit vertical vector y| € I (ker?d ), the equality status of the inequality is valid if and only if each fiber
is totally geodesic.

3
Ricker () > (k — 1) —kgr, (T, 1, H).

If wetake y1 = By,0 =1, ...,k in (3.11) and using (2.8), then we acquire

e—3 .
2'0](61‘19* — Z K(K _ 1) _ KZHH“Z + Z ng(TBLBU’ TBO B[)s

,o=1

where pker?s — > Ri cker% (B, B,, B,, B,). Therefore, we can state the following result.
1<t,0<k
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Proposition 3.10 Let 9 : (K (¢), gx,) = (R, gr,,) be an AIRS from a Kenmotsu space form to a Riemannian
manifold such that & is horizontal. Then, we have

-3

&
2pker v > K — 1) — K2 H|I%.

The equality status of the inequality is valid if and only if each fiber is totally geodesic.

Now, for the horizontal distribution if we take x4 = 1 and xp = x3 = C», o = 1,2,...,d in (3.6),
using (2.8), Lemma (3.5) and Lemma (2.4) then we get

. 1 g—13
RickeroD® () = — (@ = Dgg, (. x))

L et { —1(Co)*gk, (X1, X1) + 20(x)N(Co)gk, (x1. Co) }
4 —dn(xD)? + 3 {gx, (x1. x1) + gk, (x1, Paxi)}
d

- 3Zgl(x(~/4x1caa AX1C(7)~ (3.12)
o=1

Taking x1 =C,,t =1,2,...,d in (3.12) using Lemma (3.5) then we have:

2p0er 0 = 230 — 1) + £ (d 4 3tr(Pa) =350 21(Ac,Co, Ac,Co), (3.13)

)L

where pkerd= — Zi(r:l Ric®ker 2% (¢, Cy, C,, C,). Then, we can write

£ : L+ 3r(Pa. (3.14)

2ptert < £ 2@~ 1y 4

Thus, we can give:

Proposition 3.11 Let 9 : (Ks(¢), gx,) = (Ru, gr,,) be an AIRS from a Kenmotsu space form to a Riemannian
manifold such that & is horizontal. Then, we have

-3 1
Zp(kerﬁ*)J‘ < € I did—-1)+ %(d + 3tr(Pa).

The equality status of (3.14) is valid if and only if (kerd )" is integrable.

4 Chen-Ricci inequalities

In this section, we aim to derive the Chen-Ricci inequality in vertical and horizontal distributions for AIRSs
from Kenmotsu space forms to Riemannian manifold. Equality situations will also be evaluated.

Let (K(¢), gk,) be a Kenmotsu space form, (R,,, gr,,) @ Riemannian manifold and ¥ : K;(¢) — R,, be
an AIRS. For every point k € K, let{Bq, ..., By, Cy, ..., Cq} be an orthonormal basis of Ty K (&) such that
ker ¥, = span{By, ..., B} and (ker 19*)l = span{Cy, ..., C4}. Let’s denote T2 by

7:(1: = gl (TB, B(Ta Cp)a (4'1)
where 1 <(,0 <k and1 < p <d. Similarly, let’s denote A% by

Aixo' = gl(ACLCO'v Ba)v (4'2)
inwhich 1 <,0 <dand 1 <« < k and we employee

K d
SN =" ((VET)p By, C). (4.3)

k=1 (=1
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Case 1: Assume that & is vertical
Now, from (3.1), we acquire

-3 e+ 1 ‘
ke —D) = ——k = 1) =M+ > gk, (Ts Bs, Tn, B).

,o=1

Zpker Dy —

Using (2.8) and (4.1), we obtain

d K

e—3 e+1

2087 = e = 1) = o= 1) =PI Y YT 44
p=11,0=1

On the other hand, from [11], we know that

d K d
22 1= %KZIIHIIZ + % NITh-1h -~ 18]
p=1t,0=1 p=1
d « d K
+2) TP -2) 0 Y [TLL”TU”G - (Tu’?)z] : (4.5)
p=lo=2 p=12<i<o <k

If we put (4.5) in (4.4), we get

-3 1
kerﬁ*zg K(K—l)—8+

4

1 d 5 d «
52 T - Th - - TR 2 Y @)
1 p=1lo=2

2p (e = 1) = = IIH|

From here, we get

e—3 e+1 ?
2pker0*ZTK(K_1)_ 5 (K—l)—7||H”2

d K
2y Y [T - @) (4.6)
p=12<i<0<k

Also, from (2.10), taking y; = y4 = B,, y» = y3 = B, and using (4.1), we get

2 > RNBLBe By B)=2 Y R“(B. By, Be,B)

2<i<0o <k 2<i<o <K
d K
2
pTpP _ 14
+2 Z Z |:7ZL 7:70 (IZZU) ] :
p=12<i<o0<k

From the last equality, (4.6) can be written as

-3 1 :
2pkerds > 84 K(K_l)_g—; (/c—l)—%IIHH2
12 Z Rkel‘l?*(B“ By, By, B) —2 Z RK.Y (B, By, By, B)). 4.7

2<i<o <k 2<i<0o <k
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Furthermore, we know that

2pkerz9* -9 Z Rke“?*(B“ B,;, B,, B)

2<i<o <k

K
+2) " R"(By, By, By, B)). (4.8)

o=1

If we put the last equality in (4.7) and taking trace, then we get

c—3 e+1 2
2Ric*T (By) > K — 1) — ; (c — 1) — %”an
_2 Z RKX(BMBOWBO'»B[)‘
2<i<o <Kk

Since K is a Kenmotsu space form, then curvature tensor RXs of K satisfies equation (2.5), so, we obtain

2

-3 1
-+ e [e—on@? - 1] - iR

4
So, we can construct the following theorem:

Rick " (B)) >

Theorem 4.1 (K;(¢), gk,) and (R, gr,,) denote a Kenmotsu space form and a Riemannian manifold and
let ¥ : (Ks(¢e), gk,) — (R, gr,,) be an AIRS such that § is vertical. Then we have

e+1

4
2

K 2
n I+~

Rick?+(B)) > £ 3(;< - D+ [2—KnB)* —1]

The equality status of the inequality is valid if and only
p P
I =T+ +1%
TP =0,0=2,...k.

From (3.9), we have

d
e—3 e+1
2 plkervat —dd =) +3——(d+1r(Pa)} =3 > g1(Ac,Cor Ac,Co).

t,o=1

Using (2.14) and (4.2), then we get

K d
kero )t €3 e+1 ZZ @2
2/) = Td(d - 1) + 3T {d + tr(Poe)} -3 (A[o') . (49)

a=11,0=1

From (2.8), then (4.9) turns into

-3 1
200000" = £20(d — 1) 4357 (d + 1r (Pao)

k d K
=63 D (AP =6) " > (A% (4.10)
a=1o=2 a=12<i<o<d

Furthermore, from (2.11), taking x1 = x4 = C,, x2 = x3 = Cs and using (4.2) we obtain

2 Y RE(C.CoCoCH=2 Y RETN(C,Ch CrlC))

2<i<o<d 2<i<o<d

+6) Y (AR (4.11)

a=12<i<o<d
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If we consider (4.11) in (4.10), then we have

d
e—3 e+1 -
2pkervot — ;AW =D +3— —{d +1r(Pa)} ~ 6 S’
a=1o0=2
+2 Y RN, CpCr C) -2 Y RK(C.LCol ol C).
2<i<o<d 2<i<o<d

Since K is a Kenmotsu space form, curvature tensor RXs of K, satisfies (2.5), thus we obtain
. 1 _
2Ric* T T(Cy) = £ d - D+ 3L BCHIP - 635 T (AL
Then, we can write
) 1 e—3 e+ 1
Ric® I (C) < == (d = 1) +3—— IBC1I1*.

So, we can construct the following theorem:

Theorem 4.2 (K;(¢), gk,) and (R, gr,,) denote a Kenmotsu space form and a Riemannian manifold and
let ¥: (Ks(¢), gk,) = (Rm, &r,,) be an AIRS such that & is vertical. Then we have

. e—3 e+1
Ric®™ ™ (Cp) = —=(d = ) + — =3 CIIP.

the equality status of the inequality is valid if and only
A]()’ ZO,O- =2,...,d.

Next, for the case of £ is vertical, we can specify the inequality of Chen Ricci between the ker ¢, and
(ker 9,) . The p scalar curvature of K () is given by

d K
2p =Y Ric(Cp.Cp) + Y Ric(By. Cp),

p=1 k=1
K d «
2p= Y RN(By,Bi.Bi.Bs)+ Y Y R¥(C. B Bi.C)
o,k=1 =1 k=1
d d «
+ Y RM(CLCp.Cp.C)+ DD RN(B,. Cp. Cp. By). 4.12)
t,p=1 p=lo=1

Using (4.12), (2.5) and since K (¢) is a Kenmotsu space form, we get

2 = # {(c+d)(k +d — D} + # {4k +d — 4+ 3tr(Pa)} . (4.13)
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Furthermore, using (2.10), (2.11) and (2.12), we acquire the p scalar curvature of K;(¢) as:

K d
+ Y &1(T5.Bo. T, Bo) +3 ), g1(Ac,Cp. Ac,Cp)
o,k=1 t,p=1
d «
=3 " &1V, T, Bi. C))
=1 k=1
d «
+ Z Z {81(7B,C., Tp,C\) — g1(Ac,Br, Ac, By) }
=1 k=1
d «

—> > a1((Ve, Tp, Bos Cp)

p=lo=1

d K
+ Z Z {41(T5,Cp. T, Cp) — g1(Ac, Bs. Ac, Bs)} .
p=lo=1

Using (4.8), (4.3), (4.11) and (4.13), we obtain

1
2p =2p"" " 4 2p 0 4 i (4.15)
1 & 2
— 32 [T T - - TE]
p=1

K

LYY @yeeyY Y [ )]

p=lo=2 p=12<0<k<k
Kk d K d
2 2
FOY Y6 Y
a=1 p=2 a=12<i<p<d
d «

+ Y {81(T5,C.. T5,C.) — g1(Ac, Br. Ac,Bu)
=1 k=1

d «
—26(\)+ Y > {81(75,Cp. T5,Cp) — 81(Ac, Bo. Ac, Bo)} -

p=1lo=I
Using (4.7), (4.11) and (4.13) in the (4.15) then we have
e—3 e+ 1
5 kd + > {3k —3 —d}

K d
+2Y RSBy, B.B.B))+2) R¥(Cy,Cy.Cy. Cy)

=1 o=1

I
= 2RI (By) + 2Ric™ ™ (C1) + Sk M

d d «
1 2 2
[T T TR 23 ()
p=l1 p=lo=2
Kk d
+6) Y (AP HITVIP = AP =28\,
a=1 p=2

; = @ Springer
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here

d «
LA 12 =" " e1(Ac, Bk, Ac, Br)
=1 k=1

and

d «
1TV 12 =" &1(T3,C., T5,C).
=1 k=1

From (2.5), since K (¢) is a Kenmotsu space form, then we obtain the result:

Theorem 4.3 (K;(¢), gk,) and (R, gr,,) denote a Kenmotsu space form and a Riemannian manifold and
let ¥ : (Kg(e), gx,) = (R, gr,,) be an AIRS such that § is vertical. Then we have

8+1{ 3k —d—4 }

e—3
g e dded =Db+ =1 L0 onB)? +3118C1 1P

Kk d
< RIS (B) 4 Ric®r 0 (€) +3 30 3 (A,)?
a=1 p=2

1
+ 32 IHI2 1TV = AT = 5
the equality status of the inequality is valid if and only if
=Tt AT
TII:T =0,0=2,...,kK.

Corollary 4.4 Let ¥ : (K(e), gk,) = (Ru, &r,)(Ks(¢), gk,) be an AIRS from a Kenmotsu space form to a
Riemannian manifold such that each fiber is totally geodesic and & is vertical. Then we have

e—3 e+1
e+ d rd =)+ == {3 —d — 4+ @ = ©On(B)’ +3BC1 )
N Kk d
< Ric* " (B)) + Ric®T )7 (C) +3) "> (Af,)? — IAF)? (4.16)
a=1p=2
Equality case of (4.16) holds if and only if Aj; = Aj1 = ... = Aggand Ay =0, fort =0 €{1,2,...d}.

Corollary 4.5 Let ¥ : (K;(e), gx,) = (Ru, &r,,)(Ks(¢), gk,) be an AIRS from a Kenmotsu space form to a
Riemannian manifold such that horizontal distribution is integrable and & is vertical. Then we have

e—3 e+1

— (+d+xd =2p+ —— {3k —d — 4+ Q2 — i)n(B)* + 3IBC11}

1
< Ric® % (By) + Ric® 9" () + [TV |2 = s + Z<IHIP. (4.17)

Equality case of (4.17) holds if and only if the fibre of ¥ is a totally geodesic submanifold of K;(¢).
Case 2: Assume that £ is horizontal
From (3.3), similar to Theorem (4.1), we can give the following result:

Theorem 4.6 (K, (¢), gk,) and (R, gr,,) denote a Kenmotsu space form and a Riemannian manifold and

let ¥ : (Ks(e), gk,) = (R, gr,,) be an AIRS such that & is horizontal. Then we have
-3 2|1H)2
Ric® (B > 2 =1 - £ ”4 7,

The equality status of the inequality is valid if and only

KK

7'11;=0,o:2,...,/<.
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Similar to Theorem (4.2), from (3.6), we can give the result:

Theorem 4.7 (K;(¢), gk,) and (R, gr,,) denote a Kenmotsu space form and a Riemannian manifold and
let ¥ : (Ks(¢), gk,) = (Rm, &r,,) be an AIRS such that & is horizontal . Then we have

e+1

1 c—3
Ric®er )7 (C)) < ——@-D+ [@—nEC)? +31IBC1I* -1},

the equality status of the inequality is valid if and only
AIO' :0,0 =2,...,d.

For the case of & is horizontal, we can express the inequality of Chen Ricci between the ker 9, and (ker 9,) .

From (4.12) we get
2p = % {k +d)k +d — 1)} + # {4 +d =7+ 3tr(Pa)}. (4.18)
Using (4.18), (4.3), (4.5), (4.11), (4.8) and (4.14), then we have
d

e+ 1 X
kd + —— (= 3) + ZZIR’WB[, B, B, B)) + 221 RX(Cy, Cy, Cy, C)
= o=

e—3
2

1
— 2RIk P (B)) 4 2Ric e O () + 5;<2||H||2

1 d d K
~ 3T - -T2 (1)

p=1 p=lo=2

Z Z — AT >+ 1TV |1 = 28(V).

[\.)

Then, from (2.5), we can give the following result:

Theorem 4.8 (K, (¢), gk,) and (R, gr,,) denote a Kenmotsu space form and a Riemannian manifold and
let 9 : (Kg(e), 8x,) = (R, gr,,) be an AIRS such that § is horizontal. Then we have

#{(K +d+kd—2))+ # 2k =44+ 2 — B> +3IBC1I1%)

Kk d
< Ric*(By) + Ric® ™) (C) +3 )Y (A%))?
a=1 p=2

1
HITV 2+ szanz — A2 = 5N

the equality status of the inequality is valid if and only if

p p
T =Tn+ +Th

Tl =0,0=2,...,k

Corollary 4.9 Let ¥ : (K(e), gk,) = (Ru, &r,)(Ks(¢), gk,) be an AIRS from a Kenmotsu space form to a
Riemannian manifold such that each fiber is totally geodesic and & is horizontal. Then we have

#{(K +d+xd —2)} + # {2k =44+ @ = ©n(B)* +3BC1 1%}

k d
< Ric™ 7 (B) + Ric® 707 (€ +3 ) Y (Af,)2 — AT (4.19)
a=1 p=2

Equality case of (4.19) holds if and only if Aj; = A1 = ... = Aggand A,; =0, fort 20 € {1,2,...d}.
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Corollary 4.10 Let v : (Ks(¢), 8k,) = (Rm. &R, )(Ks(¢), gk,) be an AIRS from a Kenmotsu space form to
a Riemannian manifold such that horizontal distribution is integrable and & is horizontal. Then we have

#{(K +d+Kd —2)} + # {2k —4 4+ @ —©n(B)* +3BC1I1%}

1
< Ric®™ % (By) + Ric® )" () + | TV |2 = () + szanz (4.20)

Equality case of (4.20) holds if and only if the fibre of ¥ is a totally geodesic submanifold of K (¢).
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