Tarek Saanouni © - Qihong Shi

A note on the inhomogeneous fractional nonlinear Schrödinger equation

Received: 14 March 2023 / Accepted: 15 November 2023
© The Author(s) 2023

Abstract

This paper investigates some well-posedness issues of the fractional inhomogeneous Schrödinger equation

$$
i \dot{u}-(-\Delta)^{\gamma} u= \pm|x|^{\rho}|u|^{p-1} u
$$

where $0<\gamma<1$ and $\rho<0$. Here, one considers the inter-critical regime $0<s_{c}:=\frac{N}{2}-\frac{2 \gamma+\rho}{p-1}<\gamma$, where s_{c} is the energy critical exponent, which is the only one real number satisfying $\left\|\kappa^{\frac{2 \gamma+\rho}{p-1}} u_{0}(\kappa \cdot)\right\|_{\dot{H}^{s_{c}}}=\left\|u_{0}\right\|_{\dot{H}^{s_{c}}}$. In order to avoid a loss of regularity in Strichartz estimates, one assumes that the datum is spherically symmetric. First, using a sharp Gagliardo-Nirenberg-type estimate, one develops a local theory in the space $\dot{H}^{\gamma} \cap \dot{H}^{s_{c}}$. Then, one investigates the $L^{\frac{N(p-1)}{\rho+2 \gamma}}$ concentration of finite-time blow-up solutions bounded in $\dot{H}^{s_{c}}$. Finally, one proves the existence of non-global solutions with negative energy. Since one considers the homogeneous Sobolev space $\dot{H}^{s_{c}}$, the main difficulty here is to avoid the mass conservation law.

Mathematics Subject Classification 35Q55

1 Introduction

This work deals with the initial value problem for an inhomogeneous nonlinear Schrödinger equation

$$
\left\{\begin{array}{c}
i \dot{u}-(-\Delta)^{\gamma} u+\epsilon|x|^{\rho}|u|^{p-1} u=0 \tag{1.1}\\
u_{\mid t=0}=u_{0}
\end{array}\right.
$$

The nonlinear equations of Schrödinger type have a deep influence in physical modeling. The fractional Schrödinger equation was derived in Refs. [8,9] by extending the Feynman path integral from the Brownianlike to the Lévy-like quantum mechanical paths. It is a fundamental equation of fractional quantum mechanics. If $\rho=0$, the homogeneous fractional Schrödinger equation (1.1) arises in plasma physics, fluid mechanics and nonlinear optics [1]. If $\rho \neq 0$, it can model the laser beam propagation in some inhomogeneous medium [2,6,11,19].

[^0]Here and hereafter, $N \geq 2$ and u is a complex valued function of the variable $(t, x) \in \mathbb{R}_{+} \times \mathbb{R}^{N}$. The defocusing or focusing regime is given by $\epsilon \in\{ \pm 1\}$. The fractional Laplacian exponent is $\gamma \in(0,1)$. The inhomogeneous unbounded term is $|\cdot|^{\rho}, \rho<0$. The equation (1.1) satisfies the scaling invariance

$$
u_{\kappa}:=\kappa^{\frac{2 \gamma+\rho}{p-1}} u\left(\kappa^{2 \gamma} \cdot, \kappa \cdot\right), \quad \kappa>0
$$

The following homogeneous Sobolev norm gives the critical Sobolev index:

$$
\left\|u_{\kappa}\right\|_{\dot{H}^{s}}=\kappa^{s-\frac{N}{2}+\frac{2 \gamma+\rho}{p-1}}\left\|u\left(\kappa^{2 \gamma} \cdot\right)\right\|_{\dot{H}^{s}}:=\kappa^{s-s_{c}}\left\|u\left(\kappa^{2 \gamma} \cdot\right)\right\|_{\dot{H}^{s}} .
$$

The mass-critical case $s_{c}=0$ corresponds to $p=p_{*}=: 1+\frac{2(2 \gamma+\rho)}{N}$, which is related to the mass conservation law

$$
M[u(t)]:=\int_{\mathbb{R}^{N}}|u(t, x)|^{2} \mathrm{~d} x=M\left[u_{0}\right]
$$

The energy-critical case $s_{c}=\gamma$ which corresponds to $p=p^{*}=: 1+\frac{2(2 \gamma+\rho)}{N-2 \gamma}$ is related to the energy conservation law

$$
E[u(t)]:=\int_{\mathbb{R}^{N}}\left(\frac{1}{2}\left|(-\Delta)^{\frac{\gamma}{2}} u(t, x)\right|^{2}-\frac{\epsilon}{1+p}|x|^{\rho}|u(t, x)|^{1+p}\right) \mathrm{d} x=E\left[u_{0}\right]
$$

It is standard that if $\epsilon<0$, the energy is non-negative and the problem (1.1) is said to be defocusing. In such a case, an energy sub-critical solution is claimed to be a global one. Otherwise, it is focusing and the Sobolev norm $\|\cdot\|_{\dot{H}^{\gamma}}$ of a local solution is no longer estimated with use of the conserved laws. In such a case, a local solution may concentrate in finite time.

To the authors knowledge, the inhomogeneous nonlinear fractional Schrödinger equation was considered in few papers. Indeed, for $\rho<0$, the first author [15] developed a local theory in the energy space H^{γ}. Indeed, using a sharp Gagliardo-Nirenberg estimate, the existence of energy local solutions was established. Moreover, taking account of the Potential-well theory, the local solution extends to a global one, via the existence of ground states. In the complementary case $\rho<0$, the local theory was considered in Ref. [13]. In fact, using an inhomogeneous Gagliardo-Nirenberg-type inequality, the ground-state threshold of global existence versus finite tine blow-up was obtained. Moreover, the existence of non-global solutions was proved, for negative energy and spherically symmetric data, following the method of Ref. [3]. Some blow-up dynamics of mass-critical focusing inhomogeneous fractional nonlinear Schrödinger equation, with a mass larger than the ground-state one, were investigated in Ref. [14].

The purpose of this manuscript is to develop a local theory of the fractional Schrödinger problem (1.1) in the space $\dot{H}^{\gamma} \cap \dot{H}^{s_{c}}$. The main difference with the previous work [13] is the lack of a mass conservation, which gives some technical problems. The limiting case $s=1$ was considered in a recent note [4]. Finally, one needs to deal with the non-local free operator and the unbounded inhomogeneous term $|\cdot|^{\rho}$. Note that in the previous work [16], the first author studied similar questions for the non-fractional regime, namely $\gamma=1$ and a non-local source term. Here, one needs to deal with the non-local fractional Laplacian operator which gives serious complications. In particular, there is no classical variance identity and one uses a localized one in the spirit of Ref. [3].

The note is organized as follows. In Sect. 2, one gives the contribution and some standard estimates. Section 3 contains a Gagliardo-Nirenberg estimate. Section 4 deals with the local well-posedness. Sections 5 and 6 deal with the finite-time blow-up of solutions.

Here and hereafter, one denotes for simplicity the Lebesgue and Sobolev spaces and their standard norms by

$$
\begin{aligned}
L^{p} & :=L^{p}\left(\mathbb{R}^{N}\right), \quad\|\cdot\|_{p}:=\|\cdot\|_{L^{p}} \quad \text { and } \quad\|\cdot\|:=\|\cdot\|_{2} \\
\dot{H}^{\gamma, p} & :=(-\Delta)^{-\frac{\gamma}{2}} L^{p}, \quad \dot{H}^{\gamma}:=\dot{H}^{\gamma, 2} \quad \text { and } \quad\|\cdot\|_{\dot{H}^{\gamma}}:=\left\|(-\Delta)^{\frac{\gamma}{2}} \cdot\right\| .
\end{aligned}
$$

If $T>0$ and Y is a Lebesgue or Sobolev space, one defines

$$
\begin{aligned}
C_{T}(Y) & :=C([0, T], Y), \quad L_{T}^{p}(Y):=L^{p}([0, T], Y) \\
\dot{H}_{r d}^{\gamma} & :=\left\{f \in \dot{H}^{\gamma}, \quad f(\cdot)=f(|\cdot|)\right\}
\end{aligned}
$$

Eventually, $\left[0, T^{*}\right)$ is the maximal existence interval of an eventual solution of (1.1).

2 Main results and background

This section contains the contribution of this work and some standard estimates needed in the sequel.

2.1 Notations

One denotes, here and hereafter, the real numbers

$$
\begin{aligned}
B & :=B(N, p, b, s):=\frac{N p-N-2 b}{2 s} \\
A & :=A(N, p, b, s):=1+p-B(p, b) \\
p_{c} & :=\frac{2 N}{N-2 s_{c}}=\frac{N(p-1)}{\rho+2 \gamma} .
\end{aligned}
$$

In the spirit of [3], denote $\zeta_{R}:=R^{2} \zeta(\dot{\bar{R}})$, where $\zeta \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ is spherically symmetric and

$$
\zeta: r \longmapsto\left\{\begin{array}{ll}
\frac{1}{2} r^{2}, & r \leq 1 ; \\
0, & r \geq 10,
\end{array} \quad \text { and } \quad \zeta^{\prime \prime} \leq 1\right.
$$

With a direct calculus

$$
\zeta_{R}^{\prime}(r) \leq r, \quad \zeta_{R}^{\prime \prime} \leq 1 \quad \text { and } \quad \Delta \zeta_{R} \leq N
$$

Moreover, $\left|\nabla^{j} \zeta_{R}\right| \lesssim R^{2-j}$ for $0 \leq j \leq 4$ and

$$
\operatorname{supp}\left(\nabla^{j} \zeta_{R}\right) \subset \begin{cases}|x| \leq 10 R, & j=1,2 \\ R \leq|x| \leq 10 R, & j=3,4\end{cases}
$$

Denote the localized Virial

$$
M_{\zeta}[u]:=2 \mathfrak{s} \int_{\mathbb{R}^{N}} \bar{u} \nabla \zeta \cdot \nabla u \mathrm{~d} x=2 \mathfrak{\Im} \int_{\mathbb{R}^{N}} \bar{u} \partial_{k} \zeta \partial_{k} u \mathrm{~d} x
$$

Let the differential operator acting on functions as follows:

$$
\Gamma_{\zeta} u:=-i[\nabla \zeta \cdot \nabla u+\nabla \cdot(u \nabla \zeta)] .
$$

Thus, $\left\langle u, \Gamma_{\zeta} u\right\rangle=M_{\zeta}[u]$. Eventually, one denotes the sequence of functions

$$
u_{n}=\left(\frac{\sin (\pi s)}{\pi}\right)^{\frac{1}{2}} \mathcal{F}^{-1}\left(\frac{\mathcal{F} u}{|\cdot|^{2}+n}\right)
$$

2.2 Main results

Let us give the Theorems established in this note. First, one derives an inhomogeneous Gagliardo-Nirenberg estimate.

Theorem 2.1 Let $N \geq 2, \gamma \in(0,1),-2 \gamma<\rho<0$ and $p>1$. Then,

1. there exists a positive constant $C(N, p, \rho, \gamma)$, such that for any $u \in \dot{H}^{\gamma} \cap L^{p_{c}}$,

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}|u|^{1+p}|x|^{\rho} d x \leq C(N, p, \rho, \gamma)\|u\|_{p_{c}}^{p-1}\left\|(-\Delta)^{\frac{\gamma}{2}} u\right\|^{2} . \tag{2.1}
\end{equation*}
$$

2. Moreover, if $1+\frac{2 \rho}{N}<p<p^{*}$, then
a. The minimization problem

$$
\frac{1}{C_{o p t}}=\inf \left\{\frac{\|u\|_{p_{c}}^{p-1}\left\|(-\Delta)^{\frac{\gamma}{2}} u\right\|^{2}}{\int_{\mathbb{R}^{N}}|u|^{1+p}|x|^{\rho} d x}, \quad 0 \neq u \in \dot{H}^{\gamma} \cap L^{p_{c}}\right\}
$$

is attained in some $\psi \in H^{\gamma}$ satisfying $C_{\text {opt }}=\int_{\mathbb{R}^{N}}|u|^{1+p}|x|^{\rho} d x$ and

$$
\begin{equation*}
2(-\Delta)^{\gamma} \psi-(p-1)|\psi|^{p_{c}-2} \psi+\frac{p+1}{C_{o p t}}|x|^{\rho}|\psi|^{p-1} \psi=0 \tag{2.2}
\end{equation*}
$$

b. Furthermore

$$
\begin{equation*}
C_{o p t}=\frac{1+p}{2}\|\phi\|_{p_{c}}^{-(p-1)} \tag{2.3}
\end{equation*}
$$

where ϕ is a ground-state solution to

$$
\begin{equation*}
(-\Delta)^{\gamma} \phi+|\phi|^{p_{c}-2} \phi-|x|^{\rho}|\phi|^{p-1} \phi=0, \quad 0 \neq \phi \in \dot{H}^{\gamma} \cap L^{p_{c}} \tag{2.4}
\end{equation*}
$$

Remarks 2.2 1. The proof follows the method of Ref. [20];
2. A comparable estimate using the L^{2} in the place of $L^{p_{c}}$ was proved in Ref. [13, Theorem 2.2];
3. Thanks to the Sobolev embedding $\dot{H}^{s_{c}} \hookrightarrow L^{p_{c}}$, the above estimate is adapted to the study of (1.1) in $\dot{H}^{\gamma} \cap \dot{H}^{s_{c}}$.

The Schrödinger problem (1.1) is locally well posed in $\dot{H}_{r d}^{\gamma} \cap \dot{H}^{s_{c}}$.
Theorem 2.3 Let $N \geq 2, \gamma \in\left(\frac{N}{2 N-1}, 1\right),-2 \gamma<\rho<0, p_{*}<p<p^{*}$ and $u_{0} \in \dot{H}_{r d}^{\gamma} \cap \dot{H}^{s_{c}}$. Then, there is a unique local solution to (1.1),

$$
u \in C_{T}\left(\dot{H}_{r d}^{\gamma} \cap \dot{H}^{s_{c}}\right) \cap L_{T}^{q}\left(\dot{W}^{\gamma, r} \cap \dot{W}^{s_{c}, r}\right) \cap L_{T}^{q_{1}}\left(L^{r_{1}}\right)
$$

where $(q, r) \in \Gamma$ and $\left(q_{1}, r_{1}\right) \in \Gamma_{s_{c}}$. Moreover, the energy is conserved and u is global

1. In the defocusing case;
2. If $\|u\|_{L_{T^{*}}^{\infty}\left(\dot{H}^{s_{c}}\right)}<\|\phi\|_{p_{c}}$, where ϕ is a ground state of (2.4).

Remarks 2.4 1. The sets Γ and $\Gamma_{s_{c}}$ are defined in Remark 2.11;
2. The proof is based on a fixed point argument via Strichartz estimates and the fractional chain rules;
3. The main difficulty is to estimate the source term in some Sobolev norms;
4. The spherically symmetric assumption avoids a loss of regularity in Strichartz estimates [7].

Now, one investigates the finite-time blow-up of solutions in the repulsive regime.
Theorem 2.5 Take $\epsilon=1$. Let $N \geq 2, \gamma \in\left(\frac{N}{2 N-1}, 1\right),-2 \gamma<\rho<0, p_{*}<p<p^{*}$ and $u_{0} \in \dot{H}_{r d}^{\gamma} \cap \dot{H}^{s_{c}}$. Let u be the maximal solution to (1.1) given by the above result. Assume that $T^{*}<\infty$ and $\|u\|_{L_{T^{*}}^{\infty}\left(\dot{H}^{s_{c}}\right)}<\infty$. If

$$
\lim _{t \rightarrow T^{*}} \lambda(t)\left\|(-\Delta)^{\frac{\gamma}{2}} u(t)\right\|^{\frac{1}{\gamma-s_{c}}}=\infty
$$

then,

$$
\liminf _{t \rightarrow T^{*}} \int_{|x| \leq \lambda(t)}|u(t, x)|^{p_{c}} d x \geq\|\phi\|_{p_{c}}^{p_{c}}
$$

where ϕ is a ground state of (2.4).
Remarks 2.6 1. The above result studies the $L^{p_{c}}$ concentration of the non-global solutions, which blow-up for finite time in \dot{H}^{γ};
2. Take for $0<t<T^{*}$, the scaled function $v_{t}(\tau, x):=(\mu(t))^{\frac{2 \gamma+\rho}{p-1}} u\left(t+(\mu(t))^{2 \gamma} \tau, \mu(t) x\right)$, defined for $0<\tau<\frac{1}{(\mu(t))^{2 \gamma}}\left(T^{*}-t\right)$. Thus, v_{t} satisfies (1.1) with datum $v_{t}(0, x)=(\mu(t))^{\frac{2 \gamma+\rho}{p-1}} u(t, \mu(t) x)$. Therefore, $\left\|v_{t}(0)\right\|_{\dot{H}^{\gamma}}=(\mu(t))^{\gamma-s_{c}}\|u(t)\|_{\dot{H}^{\gamma}}$. Let us choose $\mu(t):=\|u(t)\|_{\dot{H}^{\gamma}}^{\frac{1}{s_{c}-\gamma}}$ so that $\left\|v_{t}(0)\right\|_{\dot{H}^{\gamma}}=1$. The local existence theory gives the existence of $0<\tau_{1}<\frac{1}{(\mu(t))^{2 \gamma}}\left(T^{*}-t\right)$ such that v_{t} is defined on [$0, \tau_{1}$]. This gives the blow-up rate

$$
\|u(t)\|_{\dot{H}^{\gamma}} \geq \frac{C}{\left(T^{*}-t\right)^{\frac{\gamma-s_{c}}{2 \gamma}}}
$$

3. the concentration happens at the origin because of the radial assumption.

Finally, one gives a finite-time blow-up solutions result in $L_{T^{*}}^{\infty}\left(\dot{H}^{s_{c}}\right)$ for negative energy.
Theorem 2.7 Take $\epsilon=1$. Let $N \geq 2, \gamma \in\left(\frac{N}{2 N-1}, 1\right),-2 \gamma<\rho<0, p_{*}<p<\min \left\{1+4 \gamma, p^{*}\right\}$ and a solution of (1.1) denoted by $u \in C_{T}\left(\dot{H}_{r d}^{\gamma} \cap \dot{H}^{s_{c}}\right)$ such that $u \in L_{T^{*}}^{\infty}\left(\dot{H}^{s_{c}}\right)$. Then,

1. For any $R>0$ and any $\beta>0$, holds in $[0, T)$,

$$
\frac{d}{d t} M_{\zeta_{R}}[u] \leq 4 B E\left(u_{0}\right)+4(\gamma-B)\|u\|_{\dot{H}^{\gamma}}^{2}+\beta\|u\|_{\dot{H}^{\gamma}(|x|>R)}^{2}+C_{\beta} R^{-2\left(\gamma-s_{c}\right)}
$$

2. If $E\left(u_{0}\right)<0$, then $T^{*}<\infty$.

Remarks 2.8 . 1. The above result gives some sufficient conditions to have the existence of blowing-up solutions in \dot{H}^{γ}, which are bounded in $\dot{H}^{s_{c}}$;
2. The extra assumption $p<1+4 \gamma$ is due to the lack of a variance identity for the Schrödinger equation with fractional Laplacian;
3. The above result gives a meaning to Theorem 2.5.

2.3 Tools

Here, one lists some standard estimates needed along this manuscript.
Definition 2.9 One call admissible pair $(q, r) \in[2, \infty]^{2}$ if

$$
q \in\left[\frac{4 N+2}{2 N-1}, \infty\right], \quad \frac{2}{q}+\frac{2 N-1}{r} \leq N-\frac{1}{2}
$$

or

$$
q \in\left[2, \frac{4 N+2}{2 N-1}\right], \quad \frac{2}{q}+\frac{2 N-1}{r}<N-\frac{1}{2}
$$

Recall the so-called Strichartz estimate [7].
Proposition 2.10 Let $N \geq 2, s \in \mathbb{R}, \frac{N}{2 N-1}<\gamma<1$ and $u_{0} \in H_{r d}^{s}$. Then,

$$
\|u\|_{L_{t}^{q}\left(L^{r}\right) \cap L_{t}^{\infty}\left(\dot{H}^{s}\right)} \lesssim\left\|u_{0}\right\|_{\dot{H}^{s}}+\left\|i \dot{u}-(-\Delta)^{\gamma} u\right\|_{L_{t}^{\tilde{q}^{\prime}}\left(L^{\tilde{r}^{\prime}}\right)},
$$

if (q, r) and (\tilde{q}, \tilde{r}) are s-admissible pairs such that $(\tilde{q}, \tilde{r}, N) \neq(2, \infty, 2)$ or $(q, r, N) \neq(2, \infty, 2)$ and satisfy the condition

$$
\frac{2 \gamma}{q}+s=N\left(\frac{1}{2}-\frac{1}{r}\right), \quad \frac{2 \gamma}{\tilde{q}}-s=N\left(\frac{1}{2}-\frac{1}{\tilde{r}}\right)
$$

Remark 2.11 For simplicity, one denotes the sets $\Gamma_{s}:=\{(q, r), s$-admissible $\}, \Gamma:=\Gamma_{0}$ and the norms

$$
\|\cdot\|_{S\left(\dot{H}^{s}\right)}:=\sup _{(q, r) \in \Gamma_{s}}\|\cdot\|_{L^{q}\left(L^{r}\right)}, \quad\|\cdot\|_{S^{\prime}\left(\dot{H}^{-s}\right)}:=\inf _{(q, r) \in \Gamma_{-s}}\|\cdot\|_{L^{q^{\prime}}\left(L^{r^{\prime}}\right)}
$$

The next fractional chain rule [5] will be useful.
Lemma 2.12 Let $N \geq 1,0<\gamma \leq 1, \frac{1}{p}=\frac{1}{p_{i}}+\frac{1}{q_{i}}, i=1,2$ and $F \in C^{1}(\mathbb{C})$. Then,

$$
\begin{equation*}
\left\|(-\Delta)^{\frac{\gamma}{2}} F(u)\right\|_{p} \lesssim\left\|(-\Delta)^{\frac{\gamma}{2}} u\right\|_{q_{1}}\left\|F^{\prime}(u)\right\|_{p_{1}} \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|(-\Delta)^{\frac{\gamma}{2}}(u v)\right\|_{p} \lesssim\left\|(-\Delta)^{\frac{\gamma}{2}} u\right\|_{p_{1}}\|v\|_{q_{1}}+\left\|(-\Delta)^{\frac{\gamma}{2}} v\right\|_{p_{2}}\|u\|_{q_{2}} . \tag{2.6}
\end{equation*}
$$

Let us give a fractional Gagliardo-Nirenberg inequality [12].
Lemma 2.13 Let $1<p, p_{2}<\infty, 0<\gamma<N, 0<\theta<p<\infty$, and $1<p_{1}<\frac{N}{\gamma}$. Then, the fractional inequality

$$
\|u\|_{p} \lesssim\|u\|_{p_{2}}^{1-\frac{\theta}{p}}\left\|(-\Delta)^{\frac{\nu}{2}} u\right\|_{p_{1}}^{\frac{\theta}{p}},
$$

holds whenever

$$
1=\frac{p-\theta}{p_{2}}+\theta\left(\frac{1}{p_{1}}-\frac{\gamma}{N}\right)
$$

Let us recall a fractional Strauss type inequality [18].
Lemma 2.14 Let $N \geq 2$ and $\frac{1}{2}<\gamma<\frac{N}{2}$. Then,

$$
\begin{equation*}
\sup _{x \neq 0}|x|^{\frac{N}{2}-\gamma}|u(x)| \leq C(N, \gamma)\left\|(-\Delta)^{\frac{\gamma}{2}} u\right\|, \tag{2.7}
\end{equation*}
$$

for any $u \in \dot{H}_{r d}^{\gamma}\left(\mathbb{R}^{N}\right)$, where Γ is the Gamma function and

$$
C(N, \gamma)=\left(\frac{\Gamma(2 \gamma-1) \Gamma\left(\frac{N}{2}-\gamma\right) \Gamma\left(\frac{N}{2}\right)}{2^{2 \gamma} \pi^{\frac{N}{2}} \Gamma^{2}(\gamma) \Gamma\left(\frac{N}{2}-1+\gamma\right)}\right)^{\frac{1}{2}}
$$

The next Sobolev injections $[10,17]$ will be useful.
Lemma 2.15 Let $N \geq 1$ and $1<p \leq q<\infty$.

1. If $0<s<N$ and $\mu \geq 0$ such that

$$
\mu<\frac{N}{q} \text { and } s=\frac{N}{p}-\frac{N}{q}+\mu .
$$

Then, for any $u \in W^{s, p}$, one has

$$
\left\||x|^{-\mu} u\right\|_{q} \leq C(\mu, p, q, N, s)\left\|(-\Delta)^{\frac{s}{2}} u\right\|_{p} .
$$

2. If $0<2 s<N$, then
a. $H^{s} \hookrightarrow L^{q}$ for any $q \in\left[2, \frac{2 N}{N-2 s}\right]$;
b. $H_{r d}^{s} \hookrightarrow \hookrightarrow L^{q}$ is compact for $q \in\left(2, \frac{2 N}{N-2 s}\right)$.

Finally, the next Sobolev injection is proved in the appendix.
Lemma 2.16 Let $N \geq 2, \gamma \in(0,1),-2 \gamma<\rho<0$ and $1+\frac{2 \rho}{N}<p<p^{*}$. Then, the following injection is compact:

$$
\begin{equation*}
\dot{H}_{r d}^{\gamma} \cap L^{p_{c}} \hookrightarrow \hookrightarrow L^{1+p}\left(|x|^{\rho} d x\right) . \tag{2.8}
\end{equation*}
$$

3 Proof of Theorem 2.1

One proceeds in three steps.

3.1 Proof of the interpolation inequality (2.1)

Thanks to Lemma 2.15, one has

$$
\begin{aligned}
\int_{\mathbb{R}^{N}}|u(x)|^{1+p}|x|^{\rho} d x & \leq\left\||x|^{\frac{\rho}{2}} u\right\|_{\frac{2 p_{c}}{p_{c}-(p-1)}}^{2}\|u\|_{p_{c}}^{-1+p} \\
& \lesssim\left\|(-\Delta)^{\frac{\gamma}{2}} u\right\|^{2}\|u\|_{p_{c}}^{-1+p}
\end{aligned}
$$

The proof is ended.
3.2 Proof of the equation (2.2)

One denotes by

$$
\inf _{\dot{H}^{\gamma} \cap L^{s_{c}}} \frac{\left\|(-\Delta)^{\frac{\gamma}{2}} u\right\|^{2}\|u\|_{p_{c}}^{-1+p}}{\int_{\mathbb{R}^{N}}|u(x)|^{1+p}|x|^{\rho} d x}:=\frac{1}{C_{o p t}}:=\beta .
$$

Taking account of (2.1), there is a sequence $\left(v_{n}\right)$ in $\dot{H}^{\gamma} \cap L^{s_{c}}$ satisfying

$$
\beta=\lim _{n} \frac{\left\|(-\Delta)^{\frac{\gamma}{2}} u_{n}\right\|^{2}\left\|u_{n}\right\|_{p_{c}}^{-1+p}}{\int_{\mathbb{R}^{N}}|x|^{\rho}\left|u_{n}(x)\right|^{1+p} d x}:=\lim _{n} I\left(v_{n}\right)
$$

Letting $u^{a, b}:=a u(b \cdot)$, one computes

$$
\begin{aligned}
a^{2} b^{2 \gamma-N}\left\|(-\Delta)^{\frac{\gamma}{2}} u\right\|^{2} & =\left\|(-\Delta)^{\frac{\gamma}{2}} u^{a, b}\right\|^{2} ; \\
a b^{-\frac{N}{p_{c}}}\|u\|_{p_{c}} & =\left\|u^{a, b}\right\|_{p_{c}} ; \\
a^{1+p} b^{-N-\rho} \int_{\mathbb{R}^{N}}|u(x)|^{1+p}|x|^{\rho} \mathrm{d} x & =\int_{\mathbb{R}^{N}}\left|u^{a, b}(x)\right|^{1+p}|x|^{\rho} \mathrm{d} x .
\end{aligned}
$$

Thus $I(u)=I\left(u^{a, b}\right)$. Let us pick

$$
\mu_{n}:=\left(\frac{\left\|v_{n}\right\|_{p_{c}}}{\left\|(-\Delta)^{\frac{\gamma}{2}} v_{n}\right\|}\right)^{\frac{1}{\gamma-s_{c}}} \text { and } \lambda_{n}:=\frac{\left\|v_{n}\right\|^{\frac{N-2 \gamma}{2\left(\gamma-s_{c}\right)}}}{\left\|(-\Delta)^{\frac{\gamma}{2}} v_{n}\right\|^{\frac{2 \gamma+\rho}{(p-1)\left(\gamma-s_{c}\right)}}}
$$

Thus, $\psi_{n}:=v_{n}^{\lambda_{n}, \mu_{n}}$ satisfies

$$
\left\|\psi_{n}\right\|_{p_{c}}=\left\|(-\Delta)^{\frac{\gamma}{2}} \psi_{n}\right\|=1 \quad \text { and } \quad \beta=\lim _{n} I\left(\psi_{n}\right)
$$

Therefore, $\psi_{n} \rightharpoonup \psi$ in $\dot{H}^{\gamma} \cap L^{p_{c}}$ and (2.8) implies that for a sub-sequence denoted also $\left(\psi_{n}\right)$, as $n \rightarrow \infty$,

$$
I\left(\psi_{n}\right)=\frac{1}{\int_{\mathbb{R}^{N}}\left|\psi_{n}\right|^{1+p}|x|^{\rho} \mathrm{d} x} \rightarrow \frac{1}{\int_{\mathbb{R}^{N}}|\psi|^{1+p}|x|^{\rho} \mathrm{d} x}
$$

The lower semi-continuity of the $\dot{H}^{\gamma} \cap L^{p_{c}}$ norm gives

$$
\max \left\{\|\psi\|_{p_{c}},\left\|(-\Delta)^{\frac{\gamma}{2}} \psi\right\|\right\} \leq 1
$$

Then, $I(\psi)<\beta$ if $\|\psi\|\left\|(-\Delta)^{\frac{\gamma}{2}} \psi\right\|<1$. Thus,

$$
\|\psi\|_{p_{c}}=1=\left\|(-\Delta)^{\frac{\gamma}{2}} \psi\right\|
$$

Therefore,

$$
\lim _{n}\left\|\psi_{n}-\psi\right\|_{\dot{H}^{\gamma} \cap L^{p c}}=0, \quad \beta=I(\psi)=\frac{1}{\int_{\mathbb{R}^{N}}|\psi|^{1+p}|x|^{\rho} \mathrm{d} x}
$$

Let us write the Euler-Lagrange equation satisfied by the minimizer

$$
\partial_{\varepsilon} I(\psi+\varepsilon \eta)_{\mid \varepsilon=0}=0, \quad \forall \eta \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right) .
$$

Hence, ψ satisfies

$$
2(-\Delta)^{\gamma} \psi+(p-1)|\psi|^{p_{c}-2} \psi-\beta(1+p)|x|^{\rho}|\psi|^{p-1} \psi=0 .
$$

This proof is complete.

3.3 Proof of the equation (2.3)

One keeps the notations in the previous subsection ψ satisfies (2.2) and $C_{o p t}=\frac{1}{\beta}=\int_{\mathbb{R}^{N}}|\psi(x)|^{1+p}|x|^{\rho} \mathrm{d} x$. Let $\psi=\phi^{a, b}:=a \phi(b \cdot)$. Then, the equation

$$
2(-\Delta)^{\gamma} \psi+(p-1)|\psi|^{p_{c}-2} \psi-\beta(1+p)|x|^{\rho}|\psi|^{p-1} \psi=0
$$

gives

$$
\frac{2}{p-1} a^{2-p_{c}} b^{2 \gamma}(-\Delta)^{\gamma} \phi+|\phi|^{p_{c}-2} \phi-\frac{\beta(1+p)}{p-1} a^{p-p_{c}+1} b^{-\rho}|x|^{\rho}|\phi|^{p-1} \phi=0 .
$$

Choosing

$$
\begin{aligned}
a & :=\left(\beta \frac{1+p}{2}\left(\frac{2}{p-1}\right)^{\frac{\rho+2 \gamma}{2 \gamma}}\right)^{\frac{2 N_{\gamma}}{(\rho+2 \gamma)\left(p p_{c}(N-2 \gamma)-2 N\right]}} ; \\
b & :=\left(\frac{p-1}{2} a^{p_{c}-2}\right)^{\frac{1}{2 \gamma}} \\
& =\left(\frac{p-1}{2}\right)^{\frac{1}{2 \gamma}}\left(\beta \frac{1+p}{2}\left(\frac{2}{p-1}\right)^{\frac{\rho+2 \gamma}{2 \gamma}}\right)^{\frac{N\left(p_{c}-2\right)}{(\rho+2 \gamma)(p c(N-2 \gamma)-2 N]}} .
\end{aligned}
$$

It follows that

$$
-(-\Delta)^{\gamma} \phi+|\phi|^{p_{c}-2} \phi-|x|^{\rho}|\phi|^{p-1} \phi=0 .
$$

Finally, $\|\psi\|_{p_{c}}=1=a b^{-\frac{N}{p_{c}}}\|\phi\|$ gives $\beta=\frac{2}{1+p}\|\phi\|_{p_{c}}^{p-1}$ and finishes the proof.

4 Proof of Theorem 2.3

This section establishes the local well-posedness of the fractional inhomogeneous Schrödinger equation (1.1) in $\dot{H}_{r d}^{\gamma} \cap \dot{H}^{s_{c}}$.

4.1 Local existence

One starts with some nonlinear estimates.
Lemma 4.1 Let $N \geq 2,0<-\rho<2 \gamma$ and $p_{*}<p<p^{*}$. Then, there exist $c, \theta, \theta_{1}>0$ and $0<\theta_{2}<p-1$ such that

1. $\left\|(-\Delta)^{\frac{\gamma}{2}}\left(|x|^{\rho}|u|^{p-1} u\right)\right\|_{S^{\prime}\left(I, L^{2}\right)} \leq c\left(T^{\theta}+T^{\theta_{1}}\right)\left\|(-\Delta)^{\frac{\gamma}{2}} u\right\|_{S\left(I, L^{2}\right)}^{p}$;
2. If $N=2$ and $p<1+\frac{\gamma-\sqrt{\gamma^{2}-4(2+\rho) \gamma-4 \rho}}{2(1-\gamma)}$ or $N \geq 3$, one has

$$
\left\|(-\Delta)^{\frac{s_{c}}{2}}\left(|x|^{\rho}|u|^{p-1} u\right)\right\|_{S^{\prime}\left(I, L^{2}\right)} \leq c\left(T^{\theta}+T^{\theta_{1}}\right)\left\|(-\Delta)^{\frac{s_{c}}{2}} u\right\|_{S\left(I, L^{2}\right)}^{p-1}\left\|(-\Delta)^{\frac{\gamma}{2}} u\right\|_{S\left(I, L^{2}\right)}
$$

3. $\left\||x|^{\rho}|u|^{p-1} u\right\|_{S^{\prime}\left(I, \dot{H}^{-s_{c}}\right)} \leq c\left(T^{\theta}+T^{\theta_{1}}\right)\left\|(-\Delta)^{\frac{\gamma}{2}} u\right\|_{L^{\infty}\left(I, L^{2}\right)}^{\theta}\|u\|_{S\left(I, \dot{H}^{s_{c}}\right)}^{p-\theta}$.

Proof 1. Let the admissible pair

$$
(q, r):=\left(\frac{4 \gamma(1+p)}{(N-2 \gamma)(p-1)}, \frac{N(1+p)}{N+\gamma(p-1)}\right) \in \Gamma .
$$

One denotes here and hereafter the centered unit ball of \mathbb{R}^{N} by $B(1)$ and its complementary by $B^{c}(1)$. By Lemma 2.12 about the fractional chain rule, via Hölder estimate and Sobolev injections

$$
\begin{aligned}
\left\|(-\Delta)^{\frac{\gamma}{2}}\left(|x|^{\rho}|u|^{p-1} u\right)\right\|_{L^{r^{\prime}\left(B^{c}(1)\right)}} \lesssim & \left\||x|^{\rho}\right\|_{L^{a}\left(B^{c}(1)\right)}\left\|(-\Delta)^{\frac{\gamma}{2}} u\right\|_{r}\|u\|_{\frac{N r}{N-r \gamma}}^{p-1} \\
& +\left\||x|^{\rho-\gamma}\right\|_{L^{c}\left(B^{c}(1)\right)}\|u\|_{\frac{N r}{N-r \gamma}}^{p} \\
& \lesssim\left(\left\||x|^{\rho}\right\|_{L^{a}\left(B^{c}(1)\right)}+\left\||x|^{\rho-\gamma}\right\|_{L^{c}\left(B^{c}(1)\right)}\right)\left\|(-\Delta)^{\frac{\gamma}{2}} u\right\|_{r}^{p} .
\end{aligned}
$$

Here,

$$
\frac{1}{r^{\prime}}=\frac{1}{a}+\frac{1}{r}+\frac{(p-1)(N-r \gamma)}{N r}=\frac{1}{c}+\frac{p(N-r \gamma)}{N r}
$$

Thus,

$$
\begin{aligned}
& 1=\frac{1}{a}+\frac{2}{r}+\frac{(p-1)(N-r \gamma)}{N r} \\
& 1=\frac{1}{c}+\frac{1}{r}+\frac{p(N-r \gamma)}{N r}
\end{aligned}
$$

This gives $\frac{N}{c}=\gamma+\frac{N}{a}$. Choosing a such that $\frac{N}{a}<-\rho$, then we have

$$
\left\|(-\Delta)^{\frac{\gamma}{2}}\left(|x|^{\rho}|u|^{p-1} u\right)\right\|_{L_{T}^{q^{\prime}}\left(L^{r^{\prime}}\left(B^{c}(1)\right)\right)} \lesssim T^{\theta}\left\|(-\Delta)^{\frac{\gamma}{2}} u\right\|_{L_{T}^{q}\left(L^{r}\right)}^{p} .
$$

Here, $\theta:=1-\frac{1+p}{q}>0$. Now, one estimates the term on the complementary of the unit ball. Let the admissible pair

$$
\left(q_{1}, r_{1}\right):=\left(\frac{2(\rho+N)}{N-2 \gamma}, \frac{2 N(\rho+N)}{N(N-2 \gamma)+4 \gamma^{2}+\rho N}\right) \in \Gamma
$$

By Lemma 2.12 about the fractional chain rule and Hölder estimates via Sobolev injections

$$
\begin{aligned}
\left\|(-\Delta)^{\frac{\gamma}{2}}\left(|x|^{\rho}|u|^{p-1} u\right)\right\|_{L^{r_{1}^{\prime}(B(1))}} \lesssim & \left\||x|^{\rho}\right\|_{L^{a_{1}}(B(1))}\left\|(-\Delta)^{\frac{\gamma}{2}} u\right\|_{r_{1}}\|u\|_{\frac{N r_{1}}{N-r_{1} \gamma}}^{p-1} \\
& +\left\||x|^{\rho-\gamma}\right\|_{L^{c_{1}(B(1))}}\|u\|_{\frac{N r_{1}}{N-r_{1} \gamma}}^{p} \\
& \lesssim\left(\left\||x|^{\rho}\right\|_{L^{a_{1}}(B(1))}+\left\||x|^{\rho-\gamma}\right\|_{L^{c_{1}(B(1))}}\right)\left\|(-\Delta)^{\frac{\gamma}{2}} u\right\|_{r_{1}}^{p} .
\end{aligned}
$$

Here,

$$
\frac{1}{r_{1}^{\prime}}=\frac{1}{a_{1}}+\frac{1}{r_{1}}+\frac{(p-1)\left(N-r_{1} \gamma\right)}{N r_{1}}=\frac{1}{c_{1}}+\frac{p\left(N-r_{1} \gamma\right)}{N q_{1}}
$$

The integrability condition $\left\||x|^{\rho}\right\|_{L^{a_{1}}(B(1))}<\infty$ and $\left\||x|^{\rho-\gamma}\right\|_{L^{c_{1}}\left(B^{c}(1)\right)}<\infty$ read

$$
N\left(1-\frac{1+p}{r_{1}}\right)+\gamma(p-1)>-\rho .
$$

A direct computation via the fact that $p<p^{*}$ gives the above condition and so

$$
\left\|(-\Delta)^{\frac{\gamma}{2}}\left(|x|^{\rho}|u|^{p-1} u\right)\right\|_{L_{T}^{q_{1}^{\prime}}\left(L^{r_{1}^{\prime}}(B(1))\right)} \lesssim T^{\theta_{1}}\left\|(-\Delta)^{\frac{\gamma}{2}} u\right\|_{L_{T}^{q_{1}}\left(L_{1}^{r}\right)}^{p},
$$

where one takes $\theta_{1}:=1-\frac{1+p}{q_{1}}>0$. This first point is proved.
2. Using Sobolev injections, Strichartz and Hölder estimates, one has

$$
\begin{aligned}
& \left\|(-\Delta)^{\frac{s_{c}}{2}}\left(|x|^{\rho}|u|^{p-1} u\right)\right\|_{L^{\frac{2 N}{2 \gamma+N}}(B(1))} \\
& \lesssim\left\|(-\Delta)^{\frac{\gamma}{2}}\left(|x|^{\rho}|u|^{p-1} u\right)\right\|_{L^{\frac{2 \gamma(p-1)-1)}{}+2 \gamma+\rho}(B(1))} \\
& \lesssim\left\||x|^{\rho}\right\|_{L^{a}(B(1))}\left\|(-\Delta)^{\frac{\gamma}{2}} u\right\|_{r}\|u\|_{\substack{N r \\
N-r s_{c}}}^{p-1} \\
& +\left\||x|^{\rho-\gamma}\right\|_{L^{c}(B(1))}\|u\|_{\frac{N r}{N-r s c_{c}}}^{p-1}\|u\|_{\frac{N r}{N-r \gamma}} \\
& \lesssim\left(\left\||x|^{\rho}\right\|_{L^{a}(B(1))}+\left\||x|^{\rho-\gamma}\right\|_{L^{c}(B(1))}\right)\left\|(-\Delta)^{\frac{\gamma}{2}} u\right\|_{r}\|u\|_{\frac{N r}{N-s_{c}}}^{p-1} .
\end{aligned}
$$

Here,

$$
-\rho>\frac{N}{a}=2 \gamma+\frac{2 \gamma+\rho}{p-1}-\frac{N p}{r}+(p-1) s_{c}, \quad N>r \gamma
$$

Denote by x^{+}a real number near to x such that $x^{+}>x$ and x^{-}a real number near to x such that $x^{-}<x$. Let us pick $(q, r) \in \Gamma$ such that

$$
\left(\frac{N p(p-1)}{2 \gamma+\rho+\frac{N}{2}(p-1)^{2}}\right)^{-}:=r, \quad\left(\frac{4 \gamma p(p-1)}{N(p-1)-2(2 \gamma+\rho)}\right)^{+}:=q .
$$

A direct calculus gives $2<r<\frac{2 N}{N-2 \gamma}$. Therefore, for $N \geq 4$, one has $\gamma r<\frac{2 N}{N-2 \gamma} \leq N$. For $N \in\{2,3\}$, the condition $N>\gamma r$ is equivalent to

$$
\begin{equation*}
(N-2 \gamma) x^{2}-2 \gamma x+2(2 \gamma+\rho)>0, \quad x:=p-1 . \tag{4.1}
\end{equation*}
$$

- First case $N=2$. Then, the previous inequality reads

$$
P(x):=(1-\gamma) x^{2}-\gamma x+2 \gamma+\rho>0 .
$$

The discriminant is

$$
\begin{aligned}
\Delta(P) & :=\gamma^{2}-4(2 \gamma+\rho)(1-\gamma) \\
& =9 \gamma^{2}-4 \gamma(2+\rho)-4 \rho \\
& :=Q(\gamma) .
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
\Delta(Q) & :=4\left[(2+\rho)^{2}+9 \rho\right] \\
& :=R(\rho) .
\end{aligned}
$$

Now, $\Delta(Q)<0$ for $\rho \in\left(-2 \gamma, \frac{-13+\sqrt{153}}{2}\right)$ and $\Delta(Q)>0$ for $\rho \in\left(\frac{-13+\sqrt{153}}{2}, 0\right)$. Thus, $\Delta(P)>0$ for $\rho \in\left(-2 \gamma, \frac{-13+\sqrt{153}}{2}\right.$) and, because $P(1)>0, \Delta(P)>0$ for $\rho \in\left(\frac{-13+\sqrt{153}}{2}, 0\right)$. Thus, $P(x)>0$ iif $p<1+\frac{\gamma-\sqrt{\gamma^{2}-4(2+\rho) \gamma-4 \rho}}{2(1-\gamma)}$.

- Second case $N=3$. Then, the inequality (4.1) reads

$$
P(x):=(3-2 \gamma) x^{2}-2 \gamma x+2(2 \gamma+\rho)>0 .
$$

The discriminant is

$$
\begin{aligned}
\Delta(P) & :=\gamma^{2}-2(2 \gamma+\rho)(3-2 \gamma) \\
& =9 \gamma^{2}-4(3-\rho) \gamma-6 \rho \\
& :=Q(\gamma)
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
\Delta(Q) & :=2\left[2(3-\rho)^{2}+27 \rho\right] \\
& :=R(\rho)
\end{aligned}
$$

Now, $\Delta(Q)<0$ for $\rho \in\left(-2 \gamma,-\frac{3}{2}\right)$ and $\Delta(Q)>0$ for $\rho \in\left(-\frac{3}{2}, 0\right)$. Thus, $\Delta(P)>0$ for $\rho \in\left(-2 \gamma,-\frac{3}{2}\right)$ and, since $Q(1)<0$ and $Q\left(-\frac{\rho}{2}\right)>0, \Delta(P)>0$ for $\left[\gamma \in\left(-\frac{\rho}{2}, \frac{2(3-\rho)-\sqrt{4(3-\rho)^{2}+54 \rho}}{9}\right.\right.$) and $\left.\rho \in\left(-\frac{3}{2}, 0\right)\right]$ and $\Delta(P)<0$ for $\left[\gamma \in\left(\frac{2(3-\rho)-\sqrt{4(3-\rho)^{2}+54 \rho}}{9}, 1\right)\right.$ and $\left.\rho \in\left(-\frac{3}{2}, 0\right)\right]$. If $\Delta(P)<0$, we are done. Otherwise, the roots of P are positive and the smallest one $\frac{\gamma-\sqrt{Q(\gamma)}}{3-2 \gamma}<1$. Thus, because $P(1)>0$, the two roots are less than one. We are done. Moreover, the admissibility condition reads $\frac{2}{q}+\frac{2 N-1}{r}<N-\frac{1}{2}$ and is equivalent to $p>p_{*}$. In conclusion,

$$
\begin{aligned}
\left\|(-\Delta)^{\frac{s_{c}}{2}}\left(|x|^{\rho}|u|^{p-1} u\right)\right\|_{L^{2}\left(I, L^{\frac{2 N}{2 \gamma+N}}(B(1))\right)} & \lesssim\left\|\left\|(-\Delta)^{\frac{\gamma}{2}} u\right\|_{r}\right\|(-\Delta)^{\frac{\gamma}{2}} u\left\|_{r}^{p-1}\right\|_{L^{2}(I)} \\
& \lesssim T^{\frac{1}{2}-\frac{p}{q}}\left\|(-\Delta)^{\frac{\gamma}{2}} u\right\|_{L^{q}\left(I, L^{r}\right)}\left\|(-\Delta)^{\frac{\gamma}{2}} u\right\|_{L^{q}\left(I, L^{r}\right)}^{p-1} .
\end{aligned}
$$

The condition $p<p^{*}$ gives $\frac{1}{2}-\frac{p}{q}>0$. The estimation of the term on the complementary of the unit ball follows similarly by taking

$$
\left(\frac{N p(p-1)}{2 \gamma+\rho+\frac{N}{2}(p-1)^{2}}\right)^{+}:=r, \quad\left(\frac{4 \gamma p(p-1)}{N(p-1)-2(2 \gamma+\rho)}\right)^{-}:=q
$$

3. Letting $(\tilde{q}, r) \in \Gamma_{-s_{c}}$ and $(q, r) \in \Gamma_{s_{c}}$, Hölder and Sobolev estimates give

$$
\begin{aligned}
\left\||u|^{p}|x|^{\rho}\right\|_{L_{T}^{\tilde{q}^{\prime}}\left(L^{r^{\prime}(B(1))}\right.} & \leq c\left\||x|^{\rho}\right\|_{L^{a}(B(1))}\|u\|_{L_{T}^{\infty}\left(L^{\frac{2 N}{N-2 \gamma}}\right)}^{\theta}\|u\|_{L^{q}\left(L^{r}\right)}^{p-\theta} \\
& \leq c T^{\frac{1}{\bar{q}^{\prime}}-\frac{p-\theta}{q}}\left\||x|^{\rho}\right\|_{L^{a}(B(1))}\left\|(-\Delta)^{\frac{\gamma}{2}} u\right\|_{L_{T}^{\infty}\left(L^{2}\right)}^{\theta}\|u\|_{L_{T}^{q}\left(L^{r}\right)}^{p-\theta} \\
& \leq c T^{\frac{1}{\bar{q}^{\prime}}-\frac{p-\theta}{q}}\left\|(-\Delta)^{\frac{\gamma}{2}} u\right\|_{L_{T}^{\infty}\left(L^{2}\right)}^{\theta}\|u\|_{L_{T}^{q}\left(L^{r}\right)}^{p-\theta} .
\end{aligned}
$$

Here, $\frac{1}{\tilde{q}^{\prime}}-\frac{p-\theta}{q}>0$ and

$$
\begin{equation*}
\frac{N}{a}=N-\frac{\theta(N-2 \gamma)}{2}-\frac{N(1+p-\theta)}{r}>-\rho . \tag{4.2}
\end{equation*}
$$

The first inequality is equivalent to $q>\frac{\gamma(1+p-\theta)}{\gamma-s_{c}}$. Let us take $0<\theta \ll 1$ and

$$
q:=\left(\frac{\gamma(1+p-\theta)}{\gamma-s_{c}}\right)^{+}, \quad r:=\left(\frac{2 N(1+p-\theta)}{\left(N-2 s_{c}\right)(1+p-\theta)-4\left(\gamma-s_{c}\right)}\right)^{-}
$$

A direct computation gives (4.2). The estimation of the term on the complementary of the unit ball follows similarly by taking

$$
(q, r)=\left(\infty, \frac{2 N}{N-2 s_{c}}\right)
$$

This closes the proof.
Now, using Strichartz estimates, Duhamel formula and a fixed point method, one proves Theorem 2.3. One defines the function

$$
f(u):=e^{i \cdot(-\Delta)^{\frac{\gamma}{2}}} u_{0}+\int_{0} e^{i(-s)(-\Delta)^{\frac{\gamma}{2}}}|x|^{\rho}|u|^{p-1} u d s
$$

One denotes by $B_{T}(R)$ the centered ball with radius $R>0$ of the space

$$
X_{T}:=\left(\cap_{(q, r) \in \Gamma} L_{T}^{q}\left(\dot{W}^{\gamma, r} \cap \dot{W}^{s_{c}, r}\right)\right) \cap\left(\cap_{\left(q_{1}, r_{1}\right) \in \Gamma_{s_{c}}} L_{T}^{q_{1}}\left(L^{r_{1}}\right)\right)
$$

endowed with the complete distance

$$
\begin{aligned}
d(u, v):= & \sup _{(q, r) \in \Gamma}\left\|(-\Delta)^{\frac{\gamma}{2}}(u-v)\right\|_{L_{T}^{q}\left(L^{r}\right)}+\sup _{(q, r) \in \Gamma}\left\|(-\Delta)^{\frac{s_{c}}{2}}(u-v)\right\|_{L_{T}^{q}\left(L^{r}\right)} \\
& +\sup _{(q, r) \in \Gamma_{s_{c}}}\|u-v\|_{L_{T}^{q}\left(L^{r}\right)} .
\end{aligned}
$$

Thanks to the previous Lemma via Strichartz estimate, one has for $w:=u-v$,

$$
\begin{aligned}
d(f(u), f(v)) \lesssim & \left\|(-\Delta)^{\frac{\gamma}{2}}\left[|x|^{\rho}\left(|u|^{p-1}+|v|^{p-1}\right) w\right]\right\|_{S^{\prime}\left((0, T), L^{2}\right)} \\
& +\left\|(-\Delta)^{\frac{s_{c}}{2}}\left[|x|^{\rho}\left(|u|^{p-1}+|v|^{p-1}\right) w\right]\right\|_{S^{\prime}\left((0, T), L^{2}\right)} \\
& +\left\||x|^{\rho}\left(|u|^{p-1}+|v|^{p-1}\right) w\right\|_{S^{\prime}\left((0, T), \dot{H}^{s c}\right)} \\
\leq & c\left(T^{\theta}+T^{\theta_{1}}\right)\left[\left\|(-\Delta)^{\frac{\gamma}{2}} u\right\|_{S\left(I, L^{2}\right)}^{p-1}+\left\|(-\Delta)^{\frac{s_{c}}{2}} u\right\|_{S\left(I, L^{2}\right)}^{p-1}\right. \\
& \left.+\left\|(-\Delta)^{\frac{\gamma}{2}} u\right\|_{L^{\infty}\left(I, L^{2}\right)}^{\theta}\|u\|_{S\left(I, \dot{H}^{\left.s_{c}\right)}\right.}^{p-1-\theta}\right] d(u, v) \\
\leq & c\left(T^{\theta}+T^{\theta_{1}}\right) R^{p-1} d(u, v) .
\end{aligned}
$$

Moreover, taking $v=0$ in the above lines and taking account of Strichartz estimates, one writes

$$
\begin{aligned}
& \sup _{(q, r) \in \Gamma}\left\|(-\Delta)^{\frac{\gamma}{2}} f(u)\right\|_{L_{T}^{q}\left(L^{r}\right)}+\sup _{(q, r) \in \Gamma}\left\|(-\Delta)^{\frac{s_{c}}{2}} f(u)\right\|_{L_{T}^{q}\left(L^{r}\right)}+\sup _{(q, r) \in \Gamma_{s_{c}}}\|f(u)\|_{L_{T}^{q}\left(L^{r}\right)} \\
& \quad \leq c\left\|u_{0}\right\|_{\dot{H}^{\gamma} \cap \dot{H}^{s} c}+c\left(T^{\theta}+T^{\theta_{1}}\right) R^{p} .
\end{aligned}
$$

Choose $R:=2 c\left\|u_{0}\right\|_{\dot{H}^{\gamma} \cap \dot{H}^{s_{c}}}$ and $T>0$ such that $c\left(T^{\theta}+T^{\theta_{1}}\right)<\frac{1}{2 R^{p-1}}$. Thus, f is a contraction of $B_{T}(R)$. One concludes the proof by a fixed point Theorem.

4.2 Global existence

Here, one assumes that $\|u\|_{L_{T^{*}}^{\infty}\left(\dot{H}^{s_{c}}\right)}<\|\phi\|_{p_{c}}$ and $T^{*}<\infty$. Then, by Theorem 2.1, one has

$$
\begin{aligned}
2 E(t) & =\left\|(-\Delta)^{\frac{\gamma}{2}} u\right\|^{2}-\frac{2 \epsilon}{p+1} \int_{\mathbb{R}^{N}}|u|^{1+p}|x|^{\rho} \mathrm{d} x \\
& \geq\left\|(-\Delta)^{\frac{\gamma}{2}} u\right\|^{2}-\frac{2 C_{o p t}}{p+1}\|u\|_{p_{c}}^{p-1}\left\|(-\Delta)^{\frac{\gamma}{2}} u\right\|^{2} \\
& \geq\left(1-\left[\frac{\|u\|_{p_{c}}}{\|\phi\|_{p_{c}}}\right]^{p-1}\right)\left\|(-\Delta)^{\frac{\gamma}{2}} u\right\|^{2} .
\end{aligned}
$$

Thus, $\sup _{0 \leq t<T^{*}}\left\|(-\Delta)^{\frac{\gamma}{2}} u(t)\right\|<\infty$. This contradiction closes the proof.

5 Proof of Theorem 2.5

Let the sequences

$$
t_{n} \rightarrow T^{*}, \quad \beta_{n}:=\left\|(-\Delta)^{\frac{\gamma}{2}} u\left(t_{n}\right)\right\|^{-\frac{1}{\gamma-s_{c}}}, \quad v_{n}:=\beta_{n}^{\frac{2 \gamma+\rho}{p-1}} u\left(t_{n}, \beta_{n} \cdot\right)
$$

and compute

$$
\begin{aligned}
\left\|(-\Delta)^{\frac{s_{c}}{2}} v_{n}\right\| & =\left\|(-\Delta)^{\frac{s_{c}}{2}} u_{n}\right\| \\
\left\|(-\Delta)^{\frac{\gamma}{2}} v_{n}\right\| & =1 \\
E\left(v_{n}\right) & =\beta_{n}^{2\left(\gamma-s_{c}\right)} E\left(u_{0}\right)
\end{aligned}
$$

Thus,

$$
\sup _{n}\left\|v_{n}\right\|_{\dot{H}^{s_{c} \cap \dot{H}^{\gamma}}}<\infty, \quad E\left(v_{n}\right) \rightarrow 0 .
$$

Denote by $B(R)$ the centered ball of \mathbb{R}^{N} with radius $R>0$ and $B(R)^{c}$ its complementary. Take $v_{n} \rightharpoonup v$ in $\dot{H}^{s_{c}} \cap \dot{H}^{\gamma}$. Since $\lambda\left(t_{n}\right) \gg \beta_{n}$, the weak limit lower semi-continuity gives for any $R>0$,

$$
\begin{aligned}
\int_{B(R)}|v|^{p_{c}} \mathrm{~d} x & \leq \liminf _{n} \int_{B(R)}\left|v_{n}\right|^{p_{c}} \mathrm{~d} x \\
& =\liminf _{n} \int_{B\left(R \beta_{n}\right)}\left|u\left(t_{n}\right)\right|^{p_{c}} \mathrm{~d} x \\
& \leq \liminf _{n} \int_{B\left(\lambda\left(t_{n}\right)\right)}\left|u\left(t_{n}\right)\right|^{p_{c}} \mathrm{~d} x .
\end{aligned}
$$

Finally, (2.8) gives

$$
0=\liminf _{n} E\left(v_{n}\right) \geq \frac{1}{2}\left(1-\left[\frac{\|v\|_{p_{c}}}{\|\phi\|_{p_{c}}}\right]^{p-1}\right)\left\|(-\Delta)^{\frac{\gamma}{2}} v\right\|^{2} .
$$

Therefore,

$$
\liminf _{n} \int_{|x|<\lambda\left(t_{n}\right)}\left|u\left(t_{n}\right)\right|^{p_{c}} \mathrm{~d} x \geq\|\phi\|_{p_{c}}^{p_{c}}
$$

The proof is achieved.

6 Proof of Theorem 2.7

This section is devoted to prove Theorem 2.7. Take for simplicity $\epsilon=1$ and denote the inhomogeneous nonlinear term

$$
\mathcal{I}:=\mathcal{I}_{p}:=-|x|^{\rho}|u|^{p-1} u
$$

1. Localized variance identity.

Lemma 6.1 One has

$$
\begin{aligned}
\frac{d}{d t} M_{\zeta}[u(t)]= & \int_{0}^{\infty} m^{\gamma} \int_{\mathbb{R}^{N}}\left(4 \overline{\partial_{k} u_{m}} \partial_{k l}^{2} \zeta \partial_{l} u_{m}-\Delta^{2} \zeta\left|u_{m}\right|^{2}\right) d x d m \\
& +\frac{4 \rho}{1+p} \int_{\mathbb{R}^{N}} x \cdot \nabla \zeta|u|^{1+p}|x|^{\rho-2} d x-\frac{2(p-1)}{1+p} \int_{\mathbb{R}^{N}} \Delta \zeta|u|^{1+p}|x|^{\rho} d x
\end{aligned}
$$

Proof Compute using (1.1),

$$
\frac{\mathrm{d}}{\mathrm{~d} t} M_{\zeta}[u(t)]=\left\langle u(t),\left[(-\Delta)^{s}, i \Gamma_{\zeta}\right] u(t)\right\rangle+\left\langle u(t),\left[-\frac{\mathcal{I}}{u}, i \Gamma_{\zeta}\right] u(t)\right\rangle
$$

Here, the commutator reads $A B-B A:=[A, B]$. According to computation done in [3], one has

$$
\left\langle u(t),\left[(-\Delta)^{s}, i \Gamma_{\zeta}\right] u(t)\right\rangle=\int_{0}^{\infty} m^{\gamma} \int_{\mathbb{R}^{N}}\left(4 \overline{\partial_{k} u_{m}} \partial_{k l}^{2} \zeta \partial_{l} u_{m}-\Delta^{2} \zeta\left|u_{m}\right|^{2}\right) \mathrm{d} x \mathrm{~d} m
$$

Let us write

$$
\begin{aligned}
\left(N_{p}\right): & =\left\langle u,\left[-\frac{\mathcal{I}_{p}}{u}, i \Gamma_{\zeta}\right] u\right\rangle=\left\langle u,\left[-|u|^{p-1}|x|^{\rho}, i \Gamma_{\zeta}\right] u\right\rangle \\
= & \left\langle u,\left[-|u|^{p-1}|x|^{\rho}, \operatorname{div}(\nabla \zeta \cdot)+\nabla \zeta \nabla \cdot\right] u\right\rangle \\
= & \left.-\left.\langle u,| x\right|^{\rho}|u|^{p-1}(\operatorname{div}(\nabla \zeta u)+\nabla \zeta \nabla u)\right\rangle \\
& +\left\langle u, \operatorname{div}\left(\nabla \zeta|x|^{\rho}|u|^{p-1} u\right)+\nabla \zeta \nabla\left(|x|^{\rho}|u|^{p-1} u\right)\right\rangle .
\end{aligned}
$$

Then,

$$
\begin{aligned}
\left(N_{p}\right) & \left.\left.=-\left.\langle u,| x\right|^{\rho}|u|^{p-1}(\Delta \zeta u+2 \nabla \zeta \nabla u)\right\rangle+\left.\langle u, \Delta \zeta| x\right|^{\rho}|u|^{p-1} u+2 \nabla \zeta \nabla\left(|x|^{\rho}|u|^{p-1} u\right)\right\rangle \\
& \left.=\left.\langle u, \Delta \zeta| x\right|^{\rho}|u|^{p-1} u+2 \nabla \zeta \nabla\left(|x|^{\rho}|u|^{p-1} u\right)-|x|^{\rho}|u|^{p-1}(\Delta \zeta u+2 \nabla \zeta \nabla u)\right\rangle \\
& \left.=\left.2\left\langle u, \nabla \zeta \nabla\left(|x|^{\rho}|u|^{p-1} u\right)-\right| x\right|^{\rho}|u|^{p-1} \nabla \zeta \nabla u\right\rangle \\
& =2\left\langle u, \nabla \zeta\left(\nabla\left(|x|^{\rho}\right)|u|^{p-1} u+|x|^{\rho} \nabla\left(|u|^{p-1}\right) u\right)\right\rangle .
\end{aligned}
$$

An integration by parts gives

$$
\begin{aligned}
\left(N_{p}\right) & =2 \int_{\mathbb{R}^{N}} \nabla \zeta \nabla\left(|x|^{\rho}\right)|u|^{1+p} \mathrm{~d} x+2 \int_{\mathbb{R}^{N}}|x|^{\rho} \nabla \zeta \nabla\left(|u|^{p-1}\right)|u|^{2} \mathrm{~d} x \\
& =2 \int_{\mathbb{R}^{N}} \nabla \zeta \nabla\left(|x|^{\rho}\right)|u|^{1+p} \mathrm{~d} x+\frac{2(p-1)}{1+p} \int_{\mathbb{R}^{N}} \nabla \zeta \nabla\left(|u|^{1+p}\right)|x|^{\rho} \mathrm{d} x \\
& =2 \int_{\mathbb{R}^{N}} \nabla \zeta \nabla\left(|x|^{\rho}\right)|u|^{1+p} \mathrm{~d} x-\frac{2(p-1)}{1+p} \int_{\mathbb{R}^{N}}|u|^{1+p}\left(\nabla\left(|x|^{\rho}\right) \nabla \zeta+|x|^{\rho} \Delta \zeta\right) \mathrm{d} x \\
& =\frac{4}{1+p} \int_{\mathbb{R}^{N}} \nabla \zeta \nabla\left(|x|^{\rho}\right)|u|^{1+p} \mathrm{~d} x-\frac{2(p-1)}{1+p} \int_{\mathbb{R}^{N}} \Delta \zeta|x|^{\rho}|u|^{1+p} \mathrm{~d} x \\
& =\frac{4 \rho}{1+p} \int_{\mathbb{R}^{N}} x \cdot \nabla \zeta|u|^{1+p}|x|^{\rho-2} \mathrm{~d} x-\frac{2(p-1)}{1+p} \int_{\mathbb{R}^{N}} \Delta \zeta|u|^{1+p}|x|^{\rho} \mathrm{d} x .
\end{aligned}
$$

This finishes the proof.
Now, one establishes Theorem 2.7. Using the identities

$$
\begin{aligned}
& \int_{0}^{\infty} m^{\gamma} \int_{\mathbb{R}^{N}}\left|\nabla u_{m}\right|^{2} \mathrm{~d} x \mathrm{~d} m=\gamma\left\|(-\Delta)^{\frac{\gamma}{2}} u\right\|^{2} \\
& \zeta_{R}=\frac{|\cdot|^{2}}{2}, \text { for }|x|<R
\end{aligned}
$$

one has

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} & M_{\zeta_{R}}[u(t)] \\
= & \int_{0}^{\infty} m^{\gamma} \int_{\mathbb{R}^{N}}\left(4 \overline{\partial_{k} u_{m}} \partial_{k l}^{2} \zeta_{R} \partial_{l} u_{m}-\Delta^{2} \zeta_{R}\left|u_{m}\right|^{2}\right) \mathrm{d} x \mathrm{~d} m \\
& +\frac{4 \rho}{1+p} \int_{\mathbb{R}^{N}} x \cdot \nabla \zeta_{R}|u|^{1+p}|x|^{\rho-2} d x-\frac{2(p-1)}{1+p} \int_{\mathbb{R}^{N}} \Delta \zeta_{R}|u|^{1+p}|x|^{\rho} \mathrm{d} x \\
= & 4 \gamma\|u\|_{\dot{H}^{\gamma}}^{2}-\frac{4 \gamma B}{1+p} \int_{\mathbb{R}^{N}}|u|^{1+p}|x|^{\rho} d x-4 \gamma\|u\|_{\dot{H}^{\gamma}(|x|>R)}^{2} \\
& -\int_{0}^{\infty} m^{\gamma} \int_{|x|>R} \Delta^{2} \zeta_{R}\left|u_{m}\right|^{2} d x d m+4 \int_{0}^{\infty} m^{\gamma} \int_{|x|>R} \overline{\partial_{k} u_{m}} \partial_{k l}^{2} \zeta_{R} \partial_{l} u_{m} \mathrm{~d} x \mathrm{~d} m \\
& -\frac{2(p-1)}{1+p} \int_{|x|>R}\left(\Delta \zeta_{R}-N\right)|u|^{1+p}|x|^{\rho} d x+\frac{4 \rho}{1+p} \int_{|x|>R}\left(|x|^{2}-x \cdot \nabla \zeta_{R}\right)|u|^{1+p}|x|^{\rho-2} \mathrm{~d} x \\
= & 4 \gamma B E\left(u_{0}\right)-2 \gamma(B-2)\|u\|_{\dot{H}^{\gamma}}^{2}-4 \gamma\|u\|_{\dot{H}}{ }^{\gamma}(|x|>R) \\
& -\int_{0}^{\infty} m^{\gamma} \int_{|x|>R}^{\infty} \Delta^{2} \zeta_{R}\left|u_{m}\right|^{2} d x d m+4 \int_{0}^{\infty} m^{\gamma} \int_{|x|>R} \overline{\partial_{k} u_{m}} \partial_{k l}^{2} \zeta_{R} \partial_{l} u_{m} \mathrm{~d} x \\
& -\frac{2(p-1)}{1+p} \int_{|x|>R}\left(\Delta \zeta_{R}-N\right)|u|^{1+p}|x|^{\rho} d x+\frac{4 \rho}{1+p} \int_{|x|>R}\left(|x|^{2}-x . \nabla \zeta_{R}\right)|u|^{1+p}|x|^{\rho-2} \mathrm{~d} x .
\end{aligned}
$$

Thanks to the radial derivative formula

$$
\partial_{j k}^{2}=\left(\delta_{j k}-\frac{x_{j} x_{k}}{r^{2}}\right) \frac{\partial_{r}}{r}+\frac{x_{j} x_{k}}{r^{2}} \partial_{r}^{2},
$$

one has

$$
\int_{0}^{\infty} m^{\gamma} \int_{|x|>R} \overline{\partial_{k} u_{m}} \partial_{k l}^{2} \zeta_{R} \partial_{l} u_{m} \mathrm{~d} x=\int_{0}^{\infty} m^{\gamma} \int_{|x|>R} \zeta_{R}^{\prime \prime}\left|\nabla u_{m}\right|^{2} \mathrm{~d} x \leq \gamma\|u\|_{\dot{H}^{\gamma}}^{2}
$$

Moreover, Lemma A. 2 in Ref. [3] gives via Hölder estimate and Sobolev injection via the properties of ζ,

$$
\begin{aligned}
\int_{0}^{\infty} m^{\gamma} \int_{|x|>R} \Delta^{2} \zeta_{R}\left|u_{m}\right|^{2} \mathrm{~d} x \mathrm{~d} m & \lesssim\left\|\Delta^{2} \zeta_{R}\right\|_{\infty}^{\gamma}\left\|\Delta \zeta_{R}\right\|_{\infty}^{1-\gamma}\|u\|_{L^{2}(|x| \leq 10 R)}^{2} \\
& \lesssim R^{-2\left(\gamma-s_{c}\right)}\|u\|_{\dot{H}^{s_{c}}}^{2}
\end{aligned}
$$

Then,

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} t} M_{\zeta_{R}}[u(t)] \\
& \quad=4 \gamma B E\left(u_{0}\right)-2 \gamma(B-2)\|u\|_{\dot{H}^{\gamma}}^{2}-4 \gamma\|u\|_{\dot{H}^{\gamma}(|x|>R)}^{2} \\
& \quad-\int_{0}^{\infty} m^{\gamma} \int_{|x|>R} \Delta^{2} \zeta_{R}\left|u_{m}\right|^{2} \mathrm{~d} x \mathrm{~d} m+4 \int_{0}^{\infty} m^{\gamma} \int_{|x|>R} \overline{\partial_{k} u_{m}} \partial_{k l}^{2} \zeta_{R} \partial_{l} u_{m} \mathrm{~d} x
\end{aligned}
$$

$$
\begin{aligned}
& \quad-\frac{2(p-1)}{1+p} \int_{|x|>R}\left(\Delta \zeta_{R}-N\right)|u|^{1+p}|x|^{\rho} d x+\frac{4 \rho}{1+p} \int_{|x x|>R}\left(|x|^{2}-x \cdot \nabla \zeta_{R}\right)|u|^{1+p}|x|^{\rho-2} \mathrm{~d} x \\
& \leq 4 \gamma B E\left(u_{0}\right)-2 \gamma(B-2)\|u\|_{H^{\gamma}}^{2}+R^{-2\left(\gamma-s_{c}\right)}\|u\|_{H^{s c}}^{2}+c \int_{|x|>R}|u|^{1+p}|x|^{\rho} \mathrm{d} x .
\end{aligned}
$$

In order to estimate the last term, one denotes the annulus $C_{A}:=C(A, 2 A)$ with respective small radius $A>0$ and large one $2 A$. Thus, thanks to Strauss inequality (2.7) and the properties of ζ_{R}, one gets for $0<s<\frac{N}{2}$,

$$
\begin{aligned}
\int_{C_{A}}|u|^{1+p}|x|^{\rho} \mathrm{d} x & \lesssim\left\||u|^{-1+p}|x|^{\rho}\right\|_{L^{\infty}\left(C_{A}\right)} \int_{C_{A}}|u|^{2} \mathrm{~d} x \\
& \lesssim\left\||x|^{-(p-1)\left(\frac{N}{2}-s\right)+\rho}\right\|_{L^{\infty}\left(C_{A}\right)}\|u\|_{\dot{H}^{s}}^{p-1} \int_{C_{A}}|u|^{2} \mathrm{~d} x .
\end{aligned}
$$

Using the interpolation inequality for $\frac{1}{2}<s<\gamma<\frac{N}{2}$ and the Sobolev estimate

$$
\begin{align*}
& \left\|(-\Delta)^{\frac{e q 1}{2}} \cdot\right\| \lesssim\|\cdot\|^{1-\frac{s}{\gamma}}\left\|(-\Delta)^{\frac{\nu}{2}} \cdot\right\|^{\frac{s}{\gamma}}, \tag{6.1}\\
& \|\cdot\|_{L^{2}(|x| \lesssim R)} \lesssim R^{s_{c}}\left\|(-\Delta)^{\frac{s_{c}}{2}} \cdot\right\|_{L^{2}(|x| \lesssim R)}, \tag{6.2}
\end{align*}
$$

one gets

$$
\begin{aligned}
\int_{C_{A}}|u|^{1+p}|x|^{\rho} \mathrm{d} x & \lesssim A^{-(p-1)\left(\frac{N}{2}-s\right)+\rho}\|u\|_{\dot{H}^{\gamma}}^{\frac{s(p-1)}{\gamma}}\left(\int_{C_{A}}|u|^{2} \mathrm{~d} x\right)^{1+\frac{p-1}{2}\left(1-\frac{s}{\gamma}\right)} \\
& \lesssim A^{-(p-1)\left(\frac{N}{2}-s\right)+\rho}\|u\|_{\dot{H}^{\gamma}}^{\frac{s(p-1)}{\gamma}}\left(A^{s_{c}}\left\|(-\Delta)^{\frac{s_{c}}{2}} u\right\|_{L^{2}(|x| \lesssim R)}\right)^{2+(p-1)\left(1-\frac{s}{\gamma}\right)} \\
& \lesssim A^{-(p-1)\left(\frac{N}{2}-s\right)+\rho+s_{c}\left(2+(p-1)\left(1-\frac{s}{\gamma}\right)\right)}\|u\|_{\dot{H}^{\gamma}}^{\frac{s(p-1)}{\gamma}} \\
& \lesssim A^{-2\left(\gamma-s_{c}\right)\left(1-\frac{s(p-1)}{2 \gamma}\right)}\|u\|_{\dot{H}^{\gamma}}^{\frac{s(p-1)}{\gamma}} .
\end{aligned}
$$

Since $p<1+4 \gamma$, one takes $s=\left(\frac{1}{2}\right)^{+}$, so that $\frac{s(p-1)}{\gamma}<2$. Therefore, by Young Lemma, for any $\beta>0$,

$$
\int_{C_{A}}|u|^{1+p}|x|^{\rho} \mathrm{d} x \lesssim \beta\|u\|_{\dot{H}^{\gamma}}^{2}+C_{\beta} A^{-2\left(\gamma-s_{c}\right)} .
$$

Now, using a series expansion

$$
\begin{aligned}
\int_{\mathbb{R}^{N}}|u|^{1+p}|x|^{\rho} \mathrm{d} x & =\sum_{k=0}^{\infty} \int_{C_{2^{k} R}}|u|^{1+p}|x|^{\rho} \mathrm{d} x \\
& \lesssim \beta \sum_{k=0}^{\infty}\|u\|_{H^{\gamma}\left(C_{2^{k} R}\right)}^{2}+C_{\beta} \sum_{k=0}^{\infty}\left(2^{k} R\right)^{-2\left(\gamma-s_{c}\right)} \\
& \lesssim \beta\|u\|_{H^{\gamma}(|x|>R)}^{2}+C_{\beta} R^{-2\left(\gamma-s_{c}\right)} .
\end{aligned}
$$

Finally, since $u \in L_{T^{*}}^{\infty}\left(\dot{H}^{s_{c}}\right)$, one gets

$$
\frac{\mathrm{d}}{\mathrm{~d} t} M_{\zeta R}[u(t)] \leq 4 \gamma B E\left(u_{0}\right)-2 \gamma(B-2)\|u\|_{\dot{H}^{\gamma}}^{2}+\beta\|u\|_{\dot{H}^{\gamma}}^{2}+C_{\beta} R^{-2\left(\gamma-s_{c}\right)} .
$$

2. Finite time blow-up. Since $p>p_{*}$ and $E\left(u_{0}\right)<0$, taking $0<\beta \ll 1 \ll R$, there is $c>0$ such that

$$
\frac{\mathrm{d}}{\mathrm{~d} t} M_{\zeta_{R}}[u(t)]<-c\|u\|_{\dot{H}^{\gamma}}^{2}
$$

Assume, with contradiction that $T^{*}=\infty$. Since $E\left(u_{0}\right)<0$, by Theorem 2.1, one gets $\inf _{\left[0, T^{*}\right)}\|u(t)\|_{\dot{H}^{\gamma}}>0$. Thus, by integrating in time, there is $t_{0}>0$ such that

$$
\begin{aligned}
& M_{\zeta_{R}}[u(t)]<0, \quad \forall t \geq t_{0} \\
& M_{\zeta_{R}}[u(t)]<-c \int_{t_{0}}^{t}\|u(\tau)\|_{\dot{H}^{\gamma}} \mathrm{d} \tau, \quad \forall t \geq t_{0} .
\end{aligned}
$$

Moreover, by Lemma 4.1 in Ref. [3], via the fact that $\operatorname{supp}\left(\zeta_{R}\right) \subset\{|x| \leq 10 R\}$ and (6.1)-(6.2), there is $c:=c_{N, R}$ such that

$$
\begin{aligned}
M_{\zeta_{R}}[u] \leq & c\left(\left\|(-\Delta)^{\frac{1}{4}} u\right\|_{L^{2}(|x| \lesssim R)}^{2}+\|u\|_{L^{2}(|x| \lesssim R)}\left\|(-\Delta)^{\frac{1}{4}} u\right\|_{L^{2}(|x| \lesssim R)}\right) \\
\leq & c\left(\|u\|_{L^{2}(|x| \lesssim R)}^{2-\frac{1}{\gamma}}\left\|(-\Delta)^{\frac{\gamma}{2}} u\right\|_{L^{2}(|x| \lesssim R)}^{\frac{1}{\gamma}}+\|u\|_{L^{2}(|x| \lesssim R)}^{2-\frac{1}{2 \gamma}}\left\|(-\Delta)^{\frac{\gamma}{2}} u\right\|_{L^{2}(|x| \lesssim R)}^{\frac{1}{2 \gamma}}\right) \\
\leq & c\left(\left\|(-\Delta)^{\frac{\frac{s c}{2}}{2}} u\right\|_{L^{2}(|x| \lesssim R)}^{2-\frac{1}{\gamma}}\left\|(-\Delta)^{\frac{\gamma}{2}} u\right\|_{L^{2}(|x| \lesssim R)}^{\frac{1}{\gamma}}\right. \\
& \left.+\left\|(-\Delta)^{\frac{s c}{2}} u\right\|_{L^{2}(|x| \lesssim R)}^{2-\frac{1}{2 \gamma}}\left\|(-\Delta)^{\frac{\gamma}{2}} u\right\|_{L^{2}(|x| \lesssim R)}^{\frac{1}{2 \gamma}}\right) \\
\leq & c\left(\left\|(-\Delta)^{\frac{\gamma}{2}} u\right\|_{L^{2}(|x| \lesssim R)}^{\frac{1}{\gamma}}+\left\|(-\Delta)^{\frac{\gamma}{2}} u\right\|_{L^{2}(|x| \lesssim R)}^{\frac{1}{2 \gamma}}\right) \\
\leq & c\left\|(-\Delta)^{\frac{\gamma}{2}} u\right\|_{L^{2}(|x| \lesssim R)}^{\frac{1}{\gamma}} .
\end{aligned}
$$

In the last line, one uses

$$
\inf _{0 \leq t<T^{*}}\|u(t)\|_{\dot{H}^{\gamma}}>0 \quad \text { and } \sup _{0 \leq t<T^{*}}\|u(t)\|_{\dot{H}^{s_{c}}}<\infty
$$

Then, for $\gamma>\frac{1}{2}$ and a finite $t_{1}>0$,

$$
M_{\zeta_{R}}[u(t)] \leq-C_{R}\left|t-t_{1}\right|^{1-2 \gamma} \rightarrow-\infty, \quad \text { when } \quad t \rightarrow t_{1} .
$$

Finally, $T^{*}<\infty$.

7 Proof of Lemma 2.16

Take a functional sequence satisfying

$$
\sup _{n}\left(\left\|(-\Delta)^{\frac{\gamma}{2}} u_{n}\right\|+\left\|u_{n}\right\|_{p_{c}}\right)<\infty \quad \text { and } \quad u_{n} \rightharpoonup 0 \quad \text { in } \dot{H}^{\gamma} \cap L^{p_{c}}
$$

One will prove that

$$
\int_{\mathbb{R}^{N}}|x|^{\rho}\left|u_{n}\right|^{1+p} \mathrm{~d} x \rightarrow 0
$$

Since $p_{c}<\frac{2 N}{N-2 \gamma}$, with an interpolation argument, one has

$$
\sup _{n}\left\|u_{n}\right\|_{q}<\infty, \quad \forall q \in\left(p_{c}, \frac{2 N}{N-2 \gamma}\right) .
$$

Let $0<\varepsilon \ll 1$. Using Hölder estimate and Sobolev injection via $p<p^{*}$, one has

$$
\begin{aligned}
\int_{|x|>R}|x|^{\rho}\left|u_{n}\right|^{1+p} \mathrm{~d} x & \leq\left\||x|^{\rho}\right\|_{L^{\frac{N+\varepsilon}{|\rho|}}}^{(|x|>R)} \\
& \leq C u_{n}\left\|_{\left(\frac{N+\varepsilon}{|\rho|}\right)^{\prime}(1+p)}^{1+p}\right\| u_{n} \|_{\left(\frac{N+\varepsilon}{|\rho|}\right)^{\prime}(1+p)}^{1+p} \\
& \leq C R^{-\varepsilon} .
\end{aligned}
$$

Here, one needs

$$
\frac{N(p-1)}{\rho+2 \gamma}=p_{c}<\left(\frac{N+\varepsilon}{|\rho|}\right)^{\prime}(1+p)=\frac{\varepsilon+N}{\varepsilon+N+\rho}(1+p)<\frac{2 N}{N-2 \gamma}
$$

Indeed, the above condition read

$$
\begin{aligned}
\varepsilon((N-\rho-2 \gamma) p-(N+\rho+2 \gamma)) & <N(N-2 \gamma)\left(p^{*}-p\right) \\
\varepsilon\left(p-\frac{N+2 \gamma}{N-2 \gamma}\right) & <0<N\left(p-p^{*}\right)
\end{aligned}
$$

Take $R>\left(\frac{1}{\varepsilon}\right)^{\frac{1}{\varepsilon}}$ and gets

$$
\begin{equation*}
\int_{B(R)^{c}}\left|u_{n}\right|^{1+p}|x|^{\rho} d x \leq c \varepsilon \tag{7.1}
\end{equation*}
$$

Now, Poincare inequality and the compact Sobolev injections give for all $2<q<\frac{2 N}{N-2 \gamma}$,

$$
\lim n \rightarrow \infty\left\|u_{n}\right\|_{L^{q}(B(R))}=0
$$

Moreover, by Hölder estimate

$$
\int_{B(R)}\left|u_{n}\right|^{1+p}|x|^{\rho} \mathrm{d} x \leq\left\||x|^{\rho}\right\|_{L^{a}(B(R))}\left\|u_{n}\right\|_{a^{\prime}(1+p)}^{1+p}
$$

Here, one picks $a:=\frac{N}{|\rho|}-\varepsilon$. This gives $2<a^{\prime}(1+p)<\frac{2 N}{N-2 \gamma}$ if $2\left(1+\frac{\rho}{N}\right)<1+p<\frac{2(N+\rho)}{N-2 \gamma}$. Taking account of (7.1), the proof id achieved because $1+\frac{2 \rho}{N}<p<p^{*}$.

Acknowledgements Q. Shi is grateful to the support of the National Natural Science Foundation of China (No. 12061040) and Natural Science Foundation of Gansu Province (No. 23JRRA754).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Funding No funding was received.
Data availability No datasets were generated or analyzed during the current study.

Declarations

Author contributions Both the authors wrote and revised the paper.
Conflict of interest The authors have not disclosed any competing interests.

Arab. J. Math.

References

1. Akrivis, G.D., Dougalis, V.A., Karakashian, O.A., Mckinney, W.R.: Numerical Approximation of Singular Solution of the Damped Non-linear Schrödinger Equation, ENUMATH 97 (Heidelberg). World Scientific River Edge, NJ, pp. 117-124 (1998)
2. Barashenkov, I.V.; Alexeeva, N.V.; Zemlianaya, E.V.: Two and three dimensional oscillons in non-linear Faradey resonance. Phys. Rev. Lett. 89(10), 101-104 (2002)
3. Boulenger, T.; Himmelsbach, D.; Lenzmann, E.: Blow-up for fractional NLS. J. Funct. Anal. 271, 2569-2603 (2016)
4. Cardoso, M.; Farah, L.G.; Guzman, C.M.: On well-posedness and concentration of blow-up solutions for the intercritical inhomogeneous NLS equation. J. Dyn. Diff. Equ. 35, 1337-1367 (2023)
5. Christ, M.; Weinstein, M.: Dispersion of small amplitude solutions of the generalized Korteweg-de Vries equation. J. Funct. Anal. 100, 87-109 (1991)
6. Gill, T.S.: Optical guiding of laser beam in nonuniform plasma. Pramana J. Phys. 55, 845-852 (2000)
7. Guo, Z.; Wang, Y.: Improved Strichartz estimates for a class of dispersive equations in the radial case and their applications to non-linear Schrödinger and wave equations. J. Anal. Math. 124(1), 1-38 (2014)
8. Laskin, N.: Fractional quantum mechanics and Lévy path integrals. Phys. Lett. 268 A, 298-304 (2000)
9. Laskin, N.: Fractional Schrödinger equation. Phys. Rev. E66, 056108 (2002)
10. Lions, P.L.: Symetrie et compacité dans les espaces de Sobolev. J. Funct. Anal. 49, 315-334 (1982)
11. Liu, C.S.; Tripathi, V.K.: Laser guiding in an axially nonuniform plasma channel. Phys. Plasmas 1, 3100-3103 (1994)
12. Nirenberg, L.: On elliptic partial differential equations. Ann. Sc. Norm. Super Pisa Cl. Sci. 13, 116-162 (1955)
13. Peng, C.; Zhao, D.: Global existence and blow-up on the energy space for the inhomogeneous fractional non-linear Schrödinger equation. Discr. Continuous Dyn. Syst. B 24(7), 3335-3356 (2019)
14. Peng, C.; Zhang, Y.; Ma, C.: Blow-up dynamics of L^{2}-critical inhomogeneous fractional non-linear Schrödinger equation. Math. Methods Appl. Sci. 42(18), 6896-6905 (2019)
15. Saanouni, T.: Remarks on the inhomogeneous fractional non-linear Schrödinger equation. J. Math. Phys. 57, 081503 (2016)
16. Saanouni, T.; Alharbi, T.: On the inter-critical inhomogeneous generalized Hartree equation. Arab. J. Math. 11, 557-583 (2022)
17. Stein, E.; Weiss, G.: Fractional integrals on n-dimensional Euclidean space. J. Math. Mech. 4(7), 503-514 (1958)
18. Strauss, W.: Existence of solitary waves in higher dimensions. Commun. Math. Phys. 55(2), 149-162 (1977)
19. Tsurumi, T.; Waditi, M.: Collapses of wave functions in multidimensional non-linear Schrödinger equations under harmonic potential. J. Phys. Soc. Jpn. 66, 3031-303 (1997)
20. Weinstein, M.I.: Non-linear Schrödinger equations and sharp interpolation estimates. Commun. Math. Phys. 87(4), 567-576 (1983)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer

[^0]: T. Saanouni (\boxtimes)

 Department of Mathematics, College of Science and Arts in Uglat Asugour, Qassim University, Buraydah, Kingdom of Saudi Arabia
 E-mail: t.saanouni@qu.edu.sa
 Q. Shi

 Department of Mathematics, Lanzhou University of Technology, Lanzhou 730000, China
 E-mail: shiqh03@163.com

