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Abstract In this paper, we consider skew-Hermitian solution of coupled generalized Sylvester matrix equa-
tions encompassing ∗-hermicity over complex field. The compact formula of the general solution of this system
is presented in terms of generalized inverses when some necessary and sufficient conditions are fulfilled. An
algorithm and a numerical example are provided to validate our findings. A numerical example is carried out
using determinantal representations of the Moore–Penrose inverse.
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1 Introduction

Throughout, A ∈ C
m×n stays for a m × n matrix over a complex number field C. Additionally, the rank of

a matrix A ∈ C is denoted by r(A). The conjugate transpose of A is written by A∗. An identity matrix with
plausible shape is denoted by I . The Moore–Penrose inverse of A is represented by A† = T and is defined as
a solution to the following system:

AT A = A, T AT = T, (AT )∗ = AT, (T A)∗ = T A.

Furthermore, L A = I − A∗A and RA = I − AA∗ are projectors onto the kernel of A, such that ALA = 0 and
RAA = 0, where I and 0 stand for the identity matrix and a zero matrix, respectively. Moreover,

L A = (L A)∗ = (L A)2 = L†
A, RA = (RA)2 = (RA)∗ = R†

A.

The solution of matrix equations have backbone position in different fields of sciences and engineering like
system design [49], singular system control [13], linear descriptor system [11], and sensitivity analysis [5]. For
instance, Bai computed the iterative solution of A1X + X A2 = B in [2] and A1X +Y A2 = B was considered
by different researchers in [3,45].

Similarly, the solution of system of Sylvester matrix equations also has been observed by different
researchers with different techniques. Recently, the general solution of

A1X1 + Z1B1 = C1, A2X2 + Z1B2 = C2 (1.1)
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was computed in [50] when this system is consistent. Some solvability conditions and condition number to
(1.1) were also given in [25,27]. Wang et al. in [52] evaluated the constraint solution of (1.1). When X2 = X1
in (1.1), then some necessary and sufficient conditions of (1.1) were given in [54]. Wang and He also gave
some necessary and sufficient conditions for

A1X1 + Z1B1 = C1, A2Z1 + X2B2 = C2,

to have a solution with its general solution in [15]. Some latest research papers related to the general solution
of different types of Sylvester matrix equations can be viewed in [7,29–31,33–44,52,53,55–59]

The numerical solution of two-sided Sylvester matrix equation was explored in [6]. A researcher in [16]
discussed the triangular two-sided Sylvester matrix equation. The Hermitian solution of

A1X A∗
1 + B1Y B∗

1 = C1 (1.2)

is presented in [28]. Some findings on (1.2) can be viewed in [12]. Very recently, an algorithm to find out the
solution of

A1XB1 + C1Y D1 = E1,

A2Z B2 + C2Y D2 = E2
(1.3)

was constructed in [14], and recently, the Hermitian solution to (1.3) has been carried out in [36] with its
general solution when this system is consistent.

Very recently, the authors in [43] researched the skew-Hermitian solution of the system

A1U A∗
1+B1V B∗

1 = C1, C1 = −C∗
1 ,

A2W A∗
2+B2V B∗

2 = C2, C2 = −C∗
2 ,

(1.4)

when it is consistent. They also presented the closed form of formula for the general solution when this system
is consistent over the complex plane C.

Motivated by the above research and the formidable applications of generalized Sylvester matrix equations
in the fields like feedback [48] and perturbation theory [26], we, in this paper, consider the skew-Hermitian
system of Sylvester matrix equations

D1X1 − (D1X1)
∗ + E1Y1E

∗
1 + F1Z1F

∗
1 = G1, G1 = −G∗

1,

D2X2 − (D2X2)
∗ + E2Y2E

∗
2 + F2Z1F

∗
2 = G2, G2 = −G∗

2,
(1.5)

over the complex number field C. By solving (1.5) will definitely reinforce the application of system of skew-
Hermitian Sylvester matrix equations into a variety of number of fields of sciences and engineering and their
allied areas.

To start with, we give some significant results which will be used in the construction of the main result of
this paper.

Lemma 1.1 [32]. Let K ∈ C
m×n, P ∈ C

m×t , Q ∈ C
l×n. Then

r

[
K
Q

]
−r(QLK ) = r(K ), r

[
K P

] − r(RPK ) = r(P),

r

[
K P
Q 0

]
− r(P) − r(Q) = r(RPK LQ).

Lemma 1.2 [51]. Let A, B, and C be given matrices with right sizes over C. Then

(1) A† = (A∗A)†A∗ = A∗(AA∗)†.
(2) L A = L2

A = L∗
A, RA = R2

A = R∗
A.

(3) L A(BLA)† = (BLA)†, (RAC)†RA = (RAC)†.

In obtaining the general solution to (1.5), we need the general solution of

AX − (AX)∗ + BY B∗ + CZC∗ = D, D = −D∗, Y = −Y ∗, Z = −Z∗. (1.6)

123



Arab. J. Math. (2023) 12:587–600 589

Lemma 1.3 [40]. Let A, B, C, and D = −D∗ be given coefficient matrices in (1.6) overC with conformable
sizes. Denote

A1 = RAB, B1 = RAC, C1 = RADRA, M = RA1B1, S = B1LM .

Then

(1) Eq. (1.6) has a solution (X, Y, Z), where Y = −Y ∗ and Z = −Z∗.
(2) The coefficient matrices in (1.6) satisfy

RM RA1C1 = 0, RA1C1R
∗
B1 = 0.

(3) MM†RA1C1 = RA1C1 = RA1C1(B
†
1 )

∗B∗
1 .

(4)

r

[
D C B A
A∗ 0 0 0

]
= r

[
C B A

] + r(A),

r

⎡
⎣ D B A
A∗ 0 0
C∗ 0 0

⎤
⎦ = r

[
B A

] + r
[
A C

]

are equivalent statements. Under these conditions, the general solution to the system (1.6) can be demonstrated
as

Y = −Y ∗ = A†
1C1(A

†
1)

∗ − 1

2
A†
1B1M

†C1[I + (B†
1 )

∗S∗](A†
1)

∗

−1

2
A†
1[I + SB†

1 ]C1(M
†)∗B∗

1 (A†
1)

∗ − A†
1SW2S

∗(A†
1)

∗ − L A1U +U∗L∗
A1

,

Z = −Z∗ = 1

2
M†C1(B1

†)∗[I + S†S] + 1

2
[I + S†S]B†

1C1(M
†)∗

+LMW2L
∗
M − V L∗

B1 + LB1V
∗ + LMLSW1 − W ∗

1 (LMLS)
∗,

X = A†[D − BY B∗ − CZC∗] − 1

2
A†[D − BY B∗ − CZC∗](A†)∗A∗

−L AU1 +U∗
2 (A†)∗A∗ + A†U2A

∗,

where U1, U2, W1, U, V , and W ∗
2 = −W2 are arbitrary matrices over C.

The skew-Hermitian solution to the system (1.5) will be expressed in terms of the Moore–Penrose (MP-)
inverse. Thanks to the important role of generalized inverses in many application fields, considerable effort has
been exerted toward the numerical algorithms for fast and accurate calculation of matrix generalized inverse.
In general, most existing methods for their obtaining are iterative algorithms for approximating generalized
inverses of complex matrices (some recent papers, see, e.g., [1,46]). There are only several direct methods
finding MP-inverse for an arbitrary complex matrix. The most famous is method based on singular value
decomposition (SVD), i.e., if A = U�V ∗, then A† = V�†U∗. Another approach is constructing determinantal
representations of the MP-inverse A†. There are various determinantal representations of generalized inverses
(for the MP-inverse, see, e.g., [4,47]). Because of the complexity of the previously obtained expressions of
determinantal representations of the MP-inverse, they do not found a wide applicability.

In this paper, it is used the determinantal representations of the MP-inverse recently derived by one of
authors in [17].

Lemma 1.4 [17, Theorem 2.2] If A ∈ C
m×n
r , then the MP-inverse A† =

(
a†i j

)
∈ C

n×m possesses the

following determinantal representations:

a†i j =
∑

β∈Jr,n{i}
∣∣∣(A∗A).i

(
a∗
. j

)∣∣∣β
β∑

β∈Jr,n |A∗A|ββ
=

∑
α∈Ir,m{ j}

∣∣(AA∗) j.(a∗
i.)

∣∣α
α∑

α∈Ir,m |AA∗|αα
. (1.7)
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Here, |A|αα denotes a principal minor of A whose rows and columns are indexed by α := {α1, . . . , αk} ⊆
{1, . . . ,m}

Lk,m := {α : 1 ≤ α1 < · · · < αk ≤ m}, and Ir,m{i} := {
α : α ∈ Lr,m, i ∈ α

}
.

Also, a∗
. j and a

∗
i. denote the j th column and the i th row of A∗, and Ai. (b) and, respectively, and A. j (c) stand

for the matrices obtained from A by replacing its i th row with the row vector b ∈ C
1×n and its j th column

with the column vector c ∈ C
m .

The formulas (1.7) mean calculations of sum of all principal minors of r order of the matrices A∗A or
AA∗ in denominators and sum of principal minors of r order of the matrices (A∗A).i (a∗

. j ) or (AA∗) j.(a∗
i.) that

contain the i th column or the j th row, respectively, in numerators.
Note that these new determinantal representations of the Moore–Penrose inverse have been extended

over quaternion matrices [18] as well. This method was successfully applied for constructing determinantal
representations of other generalized inverses in both cases for complex and quaternion matrices (see, e.g.,
[20,21]). It also yields Cramer’s rules of various matrix equations [19,22–24,34,41,42].

Our paper is composed of four sections. The general solution to (1.5) is constituted in Sect. 2 with a special
case. The algorithm and numerical example of finding the anti-Hermitian solution of (1.5) are presented in
Sect. 3. A conclusion to this paper is given in Sect. 4.

2 Main result

Now, we present the main Theorem of this paper.

Theorem 2.1 Given D1, D2, E1, E2, F1, F2, G1 = G∗
1, G2 = −G∗

2 be matrices of conformable shapes
over C. Assign

A1 = RD1E1, B1 = RD1F1, C1 = RD1G1RD1 , A2 = RD2E2, B2 = RD2F2, C2 = RD2G2RD2 ,

M1 = RA1B1, S1 = B1LM1, M2 = RA2B2, S2 = B2LM2 , A4 = RA3LM1, A5 = RA3LM2 ,

W ∗ = [
U∗
2 U3 U∗

22 U33
]
, A3 = [

LM1LS1 LB1 −LM2LS2 −LB2

]
, M3 = RA4 A5,

S3 = A5LM3, Z02 = 1

2
M†

2C2(B
†
2 )

∗(I + S†2 S2) + 1

2
(I + S†2 S2)B

†
2C2(M

†
2 )

∗, E11 = Z02 − Z01,

Z01 = 1

2
M†

1C1(B
†
1 )

∗(I + S†1 S1) + 1

2
(I + S†1 S1)B

†
1C1(M

†
1 )

∗, E22 = RA3E11RA3 .

(2.1)

Then, the following conditions are equivalent:

(1) System (1.5) is consistent.
(2) The following equalities hold:

RA1C1R
∗
B1 = 0, RM1RA1C1 = 0,

RA2C2R
∗
B2 = 0, RM2RA2C2 = 0,

RA4E22R
∗
A5

= 0, RM3RA4E22 = 0.

(2.2)

(3) The following rank equalities hold:

r

⎡
⎣G1 E1 D1
F∗
1 0 0

D∗
1 0 0

⎤
⎦ = r [D1 E1] + r [D1 F1], (2.3)

r

[
G1 E1 F1 D1
D∗
1 0 0 0

]
= r

[
D1 E1 F1

] + r(D1), (2.4)

r

⎡
⎣G2 E2 D2
F∗
2 0 0

D∗
2 0 0

⎤
⎦ = r [D2 E2] + r [D2 F2], (2.5)
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r

[
G2 E2 F2 D2
D∗
2 0 0 0

]
= r

[
D2 E2 F2

] + r(D2), (2.6)

r

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 B∗
2 0 0 B∗

2 0 0

0 0 B∗
1 0 B∗

2 0 0

0 0 0 B∗
1 B2∗ 0 0

0 0 −C1 0 0 B1 A1

B2 −C2 0 0 0 0 0

0 A∗
2 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= r

⎡
⎢⎣
B1 0 0 A1
0 B1 0 0
0 B2 −B2 0
B2 0 B2 0

⎤
⎥⎦ + r

⎡
⎣ B2 B2 −A2
B1 0 0
0 B1 0

⎤
⎦ , (2.7)

r

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 B∗
1 0 0 B∗

2 0 0

0 0 0 B∗
1 0 B∗

2 0 0

0 0 0 0 B∗
2 −B∗

2 0 0

−B2 −B2 0 0 0 −C2 A2 0

B1 0 C1 0 0 0 0 A1

0 B1 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= r

⎡
⎣ B2 B2 −A2 0
B1 0 0 A1
0 B1 0 0

⎤
⎦ + r

⎡
⎣ B1 B1
B2 0
0 B2

⎤
⎦ . (2.8)

Under these conditions, the general solution to (1.5) is

X1 = D†
1(G1 − E1Y1E

∗
1 − F1Z1F

∗
1 ) − 1

2
D†
1(G1 − E1Y1E

∗
1 − F1Z1F

∗
1 )D1D

†
1

+ D†
1T1D

∗
1 + T ∗

2 D1D
†
1 − LD1T3,

X2 = D†
2(G2 − E2Y2E

∗
2 − F2Z1F

∗
2 ) − 1

2
D†
2(G2 − E2Y2E

∗
2 − F2Z1F

∗
2 )D2D

†
2

+ D†
2T11D

∗
2 + T ∗

22D2D
†
2 − LD2T33,

Y1 = −Y ∗
1 = A†

1C1(A
†
1)

∗ − 1

2
A†
1B1M

†
1C1[I + (B†

1 )
∗S∗

1 ](A†
1)

∗

− 1

2
A†
1[I + S1B

†
1 ]C1(M

†
1 )

∗B∗
1 (A†

1)
∗ − A†

1S1U1S
∗
1 (A

†
1)

∗ − L A1V1 + V ∗
1 L A1,

Y2 = −Y ∗
2 = A†

2C2(A
†
2)

∗ − 1

2
A†
2B2M

†
2C2[I + (B†

2 )
∗S∗

2 ](A†
2)

∗

− 1

2
A†
2[I + S2B

†
2 ]C2(M

†
2 )

∗B∗
2 (A†

2)
∗ − A†

2S2U11S
∗
2 (A

†
2)

∗ − L A2V11 + V ∗
11L A2 ,

Z1 = 1

2
M†

1C1(B
†
1 )

∗(I + S†1 S1) + 1

2
(I + S†1 S1)B

†
1C1(M

†
1 )

∗ + LM1U1LM1

+ LM1LS1U2 −U∗
2 LS1LM1 +U33LB1 − LB1U33

∗,

(2.9)

or

Z1 = 1

2
M†

2C2(B
†
2 )

∗(I + S†2 S2) + 1

2
(I + S†2 S2)B

†
2C2(M

†
2 )

∗ + LM2U11LM2

+ LM2LS2U22 −U∗
22LS2LM2 +U3LB2 − LB2U

∗
3 , (2.10)
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with

U∗
2 = [ Im 0 0 0 ]W,

U∗
3 = [0 Im 0 0 ]W,

U22 = [0 0 Im 0 ]W,

U33 = [0 0 0 Im ]W, (2.11)

W = A†
3(E11 − LM1U1LM1 − LM2U11LM2) − 1

2
A†
3(E11 − LM1U1LM1

− LM2U11LM2)A3A
†
3 − A†

3W1A
∗
3 + W ∗

1 A3A
†
3 + L A3W5,

U1 = −U∗
1 = A†

4E22(A
†
4)

∗ − 1

2
A†
4A5M

†
3 E22(I + (A†

5)
∗S∗

3 )(A
†
4)

∗

−1

2
A†
4(I + S3A

†
5)E22(M

†
3 )

∗A∗
5(A

†
4)

∗ − A†
4S3W6(A

†
4S3)

∗ + L A4W7 − W ∗
7 L A4 ,

U11 = −U∗
11 = 1

2
M†

3 E22(A
†
5)

∗(I + S†3 S3) + 1

2
(I + S†3 S3)A

†
5E22(M

†
3 )

∗ + LM3W6LM3

+LM3LS3W8 − W ∗
8 LS3LM3 − W9L A5 + L A5W

∗
9 , (2.12)

where T1, T2, T3, and W1, W5, · · · ,W9, W ∗
6 = −W6 are any matrices of acceptable shapes over C.

Proof By writing the equations in (1.5) as follows:

D1X1 − (D1X1)
∗ + E1Y1E

∗
1 + F1Z1F

∗
1 = G1, G∗

1 = −G1 (2.13)

and

D2X2 − (D2X2)
∗ + E2Y2E

∗
2 + F2Z1F

∗
2 = G2, G∗

2 = −G2. (2.14)

By the support of Lemma 1.3, Eqs. (2.13–2.14) have solution if and only if

RA1C1R
∗
B1, = 0, RM1RA1C1 = 0,

RA2C2R
∗
B2 , = 0, RM2RA2C2 = 0,

RA4E22R
∗
A5

= 0, RM3RA4E22 = 0.

In this case, the general solution to (2.13) and (2.14) can be described as

X1 = D†
1(G1 − E1Y1E

∗
1 − F1Z1F

∗
1 ) − 1

2
D†
1(G1 − E1Y1E

∗
1 − F1Z1F

∗
1 )D1D

†
1

+ D†
1T1D

∗
1 + T ∗

2 D1D
†
1 − LD1T3,

Y1 = A†
1C1(A

†
1)

∗ − 1

2
A†
1B1M

†
1C1[I + (B†

1 )
∗S∗

1 ](A†
1)

∗

−1

2
A†
1[I + S1B

†
1 ]C1(M

†
1 )

∗B∗
1 (A†

1)
∗ − A†

1S1U1S
∗
1 (A

†
1)

∗ − L A1V1 + V ∗
1 L A1,

Z1 = 1

2
M†

1C1(B
†
1 )

∗(I + S†1 S1) + 1

2
(I + S†1 S1)B

†
1C1(M

†
1 )

∗

+LM1U1LM1+LM1LS1U2−U∗
2 LS1LM1 +U33LB1 − LB1U

∗
33, (2.15)

X2 = D†
2(G2 − E2Y2E

∗
2 − F2Z1F

∗
2 ) − 1

2
D†
2(G2 − E2Y2E

∗
2 − F2Z1F

∗
2 )D2D

†
2

+D†
2T11D

∗
2 + T ∗

22D2D
†
2 − LD2T33,

Y2 = A†
2C2(A

†
2)

∗ − 1

2
A†
2B2M

†
2C2[I + (B†

2 )
∗S∗

2 ](A†
2)

∗

−1

2
A†
2[I + S2B

†
2 ]C2(M

†
2 )

∗B∗
2 (A†

2)
∗−A†

2S2U11S
∗
2 (A

†
2)

∗ − L A2V11 + V ∗
11L A2 ,

Z1 = 1

2
M†

2C2(B
†
2 )

∗(I + S†2 S2) + 1

2
(I + S†2 S2)B

†
2C2(M

†
2 )

∗
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+LM2U11LM2+LM2LS2U22−U∗
22LS2LM2+U3LB2−LB2U

∗
3 , (2.16)

where V1, U∗
1 = −U1, U2, U3, U∗

11 = −U11, U22, U33 and T1, T2, T3 are free matrices of plausible sizes
over C.

Equating (2.15) and (2.16), we get

A3W − (A3W )∗ + LM1U1LM1 + LM2U11LM2 = E11. (2.17)

Solving Eq. (2.17) with respect to unknownsW ,U1, andU11 by Lemma 1.3, we have that it has a solution
(2.12) if and only if (2.2) is satisfied. In this case, its general solution can be expressed by (2.9–2.10).
(2) ⇔ (3) : From Lemma 1.3, we have

RA1C1R
∗
B1

= 0 ⇔ r

[
C1 A1
B∗
1 0

]
= r(A1) + r(B1),

⇔ r

[
RD1G1R

∗
D1

RD1E1
F∗
1 R

∗
D1

0

]
= r(RD1E1) + r(RD1F1)

⇔ r

⎡
⎣ G1 E1 D1
F∗
1 0 0

D∗
1 0 0

⎤
⎦ = r [D1 E1] + r [D1 F1],

RM1 RA1C1 = 0 ⇔ r
[
RA1C1 M1

] = r(M1) ⇔ r
[
RA1C1 RA1 B1

] = r(RA1 B1)

⇔ r
[
C1 B1 A1

] = r
[
A1 B1

]
⇔ r

[
RD1G1R

∗
D1

RD1E1 RD1F1
]

= r [RD1E1 RD1F1]

⇔ r

[
G1 E1 F1 D1
D∗
1 0 0 0

]
= r [D1 E1 F1] + r(D1),

RA2C2R
∗
B2

= 0 ⇔ r

[
C2 A2
B∗
2 0

]
= r(A2) + r(B2)

⇔ r

[
RD2G2R

∗
D2

RD2 E2
F∗
2 R

∗
D2

0

]
= r(RD2 E2) + r(RD2 F2)

⇔ r

⎡
⎣ G2 E2 D2
F∗
2 0 0

D∗
2 0 0

⎤
⎦ = r [D2 E2] + r [D2 F2],

RM2 RA2C2 = 0 ⇔ r
[
RA2C2 M2

] = r(M2) ⇔ r
[
RA2C2 RA2 B2

] = r(RA2 B2)

⇔ r
[
C2 B2 A2

] = r
[
A2 B2

]
⇔ r

[
RD2G2R

∗
D2

RD2 E2 RD2 F2
]

= r [RD2E2 RD2 F2]

⇔ r

[
G2 E2 F2 D2
D∗
2 0 0 0

]
= r [D2 E2 F2] + r(D2),

RA4E22RA5 = 0 ⇔ r(RA4E22RA5) = 0

⇔ r

[
E22 A4
A∗
5 0

]
= r(A4) + r(A5)

⇔ r

[
RA3E11RA3 RA3 LM1
LM2 R

∗
A3

0

]
= r(RA3LM1 ) + r [(RA3LM2 )

∗]

⇔ r

⎡
⎣ E11 LM1 A3
LM2 0 0
A∗
3 0 0

⎤
⎦ = r

[
LM1 A3

] + r
[
LM2 A3

]

⇔ r

⎡
⎢⎢⎢⎢⎢⎣

Z02 − Z01 LM1 LM1LS1 LB1 −LM2LS2 −LB2
LM2 0 0 0 0 0

LS1LM1 0 0 0 0 0
LB1 0 0 0 0 0

−LS2LM2 0 0 0 0 0
−LB2 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦
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= r
[
LM1 LB1 −LB2 LM1LS1 −LM2LS2

] + r
[
LM2 LM1LS1 LB1 −LM2LS2 −LB2

]

⇔ r

⎡
⎢⎢⎢⎣
Z02 − Z01 LM1 LB1 −LM2LS2 −LB2

LM2 0 0 0 0
LS1LM1 0 0 0 0
LB1 0 0 0 0

−LB2 0 0 0 0

⎤
⎥⎥⎥⎦

= r
[
LM1 LB1 −LM2LS2 −LB2

] + r
[
LM2 LM1LS1 LB1 −LB2

]

⇔ r

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Z02 − Z01 I I −LM2 −I 0 0 0 0
I 0 0 0 0 B∗

2 L A2
∗ 0 0 0

LM1 0 0 0 0 0 S∗
1 0 0

I 0 0 0 0 0 0 B∗
1 0

−I 0 0 0 0 0 0 0 B∗
2

0 RA1B1 0 0 0 0 0 0 0
0 0 B1 0 0 0 0 0 0
0 0 0 B2LM2 0 0 0 0 0
0 0 0 0 B2 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= r

⎡
⎢⎢⎢⎣

I I −LM2 −I
M1 0 0 0
0 B1 0 0
0 0 B2LM2 0
0 0 0 B2

⎤
⎥⎥⎥⎦ + r

⎡
⎢⎣

I LM1 I −I
M2 0 0 0
0 B1LM1 0 0
0 0 0 B2

⎤
⎥⎦

⇔ r

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Z02 − Z01 I I −LM2 −I 0 0 0 0 0
I 0 0 0 0 B∗

2 L A2
∗ 0 0 0 0

LM1 0 0 0 0 0 LM1B
∗
1 0 0 0

I 0 0 0 0 0 0 B∗
1 0 0

−I 0 0 0 0 0 0 0 B∗
2 0

0 B1 0 0 0 0 0 0 0 A1
0 0 B1 0 0 0 0 0 0 0
0 0 0 B2LM2 0 0 0 0 0 0
0 0 0 0 B2 0 0 0 0 0
0 0 0 0 B2 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= r

⎡
⎢⎢⎢⎣

I I −LM2 −I
RA1B1 0 0 0

0 B1 0 0
0 0 B2LM2 0
0 0 0 B2

⎤
⎥⎥⎥⎦ + r

⎡
⎢⎢⎢⎣

I LM1 I −I
RA2B2 0 0 0

0 B1LM1 0 0
0 0 B1 0
0 0 0 B2

⎤
⎥⎥⎥⎦

⇔ r

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Z02 − Z01 I I −I −I 0 0 0 0 0 0 0 0
I 0 0 0 0 B∗

2 0 0 0 0 0 0 0
I 0 0 0 0 0 B∗

1 0 0 0 M∗
1 0 0

I 0 0 0 0 0 0 B∗
1 0 0 0 0 0

−I 0 0 0 0 0 0 0 B∗
2 0 0 0 0

0 B1 0 0 0 0 0 0 0 B1 0 A1 0
0 0 B1 0 0 0 0 0 0 0 0 0 0
0 0 0 B2 0 0 0 0 0 0 0 0 0
0 0 0 0 B2 0 0 0 0 0 0 0 0
0 0 0 0 0 A2

∗ 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= r

⎡
⎢⎢⎢⎣

I I −I −I 0
B1 0 0 0 A1
0 B1 0 0 0
0 0 B2 0 0
0 0 0 B2 0

⎤
⎥⎥⎥⎦ + r

⎡
⎢⎢⎢⎣

I I I −I 0
B2 0 0 0 A2
0 B1 0 0 0
0 0 B1 0 0
0 0 0 B2 0

⎤
⎥⎥⎥⎦
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⇔ r

⎡
⎢⎢⎢⎢⎢⎣

0 −B∗
2 0 0 B∗

2 0 0
0 0 B∗

1 0 B∗
2 0 0

0 0 0 B∗
1 B∗

2 0 0
0 0 −C1 0 0 B1 A1
B2 −C2 0 0 0 0 0
0 A∗

2 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

= r

⎡
⎢⎣
B1 0 0 A1
0 B1 0 0
0 B2 −B2 0
B2 0 B2 0

⎤
⎥⎦ + r

⎡
⎣ B2 B2 −A2
B1 0 0
0 B1 0

⎤
⎦ ⇔ (2.7).

On the same lines, RM3RA4E22 = 0 can be proved to be same as (2.8).
Hence, the theorem is finished. ��

Comment 2.2 The application of extremal rank in the area of control theory can be viewed in [8–10]. We may
carry out the extremal rank of the general solution of the system (1.5).

Now, we discuss some particular cases of our system.
Using Theorem 2.1, the general solution and the solvability conditions to (1.4) can be obtained as follows.

Corollary 2.3 Let A1 ∈ C
m×n, A2 ∈ C

m×q , Bi ∈ C
m×k , and Ci = −C∗

i ∈ C
m×m for i = 1, 2. Assign

M1 = RA1B1, S1 = B1LM1, M2 = RA2B2, S2 = B2LM2 , A4 = RA3LM1, B4 = RA3LM2 ,

A3 = [
L∗
B2

−LB1 LM1LS1 −LM2LS2
]
, M3 = RA4B4, S3 = B4LM3,

C3 = V02 − V01, V02 = 1

2
M†

2C2(B
†
2 )

∗(I + S†2 S2)+
1

2
(I + S†2 S2)B

†
2C2(M

†
2 )

∗,

V01 = 1

2
M†

1C1(B
†
1 )

∗(I + S†1 S1)+
1

2
(I + S†1 S1)B

†
1C1(M

†
1 )

∗, C4 = RA3C3RA3 .

Then, the following conditions are equivalent:

(1) System (1.4) is consistent.
(2) The following equalities hold:

RA1C1RB1 = 0, RM1RA1C1 = 0,

RA2C2RB2 = 0, RM2RA2C2 = 0,

RA4C4RB4 = 0, RM3RA4C4 = 0.

(3) The following rank equalities hold:

r

[
C1 A1
B∗
1 0

]
= r(A1) + r(B1), r

[
C1 B1 A1

] = r
[
A1 B1

]
,

r

[
C2 A2
B∗
2 0

]
= r(A2) + r(B2), r

[
C2 B2 A2

] = r
[
A2 B2

]
,

⇔ r

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 B∗
2 B1 0 0

0 0 0 −B∗
2 0 B∗

1 0
B1 0 0 0 0 C1 A1
0 B2 0 −C2 0 0 0

−B2 −B2 B2 0 0 0 0
0 0 0 A∗

2 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

= r

⎡
⎢⎣

−B1 0 −B1 A1
B2 B2 0 0
0 B1 0 0
0 0 B2 0

⎤
⎥⎦ + r

⎡
⎢⎣

B2 0 0 A2
−B2 B2 −B2 0
0 B1 0 0
0 0 B1 0

⎤
⎥⎦ ,
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r

⎡
⎢⎢⎢⎢⎢⎣

0 0 −B∗
1 B∗

2 0 0 0 0
0 0 −B∗

1 0 B∗
1 0 0 0

0 0 −B∗
1 0 0 B∗

2 0 0
−B∗

1 −B∗
1 0 0 −C1 0 A1 0

B2 0 0 0 0 C2 A2 0
0 B2 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

= r

⎡
⎢⎣

−B1 0 −B1 A1
B2 B2 0 0
0 B1 0 0
0 0 B2 0

⎤
⎥⎦ + r

⎡
⎣B2 0
B1 0
0 B2

⎤
⎦ + r(B1).

Under these conditions, the general solution to (1.4) is

U = A†
1C1(A

†
1)

∗ − 1

2
A†
1B1M

†
1C1[I + (B†

1 )
∗S∗

1 ](A†
1)

∗

−1

2
A†
1[I + S1B

†
1 ]C1(M

†
1 )

∗B∗
1 (A†

1)
∗ − A†

1S1U1S
∗
1 (A

†
1)

∗ + L A1V1 − V ∗
1 L A1,

W = −W ∗ = A†
2C2(A

†
2)

∗ − 1

2
A†
2B2M

†
2C2[I + (B†

2 )
∗S∗

2 ](A†
2)

∗

−1

2
A†
2[I + S2B

†
2 ]C2(M

†
2 )

∗B∗
2 (A†

2)
∗ − A†

2S2U4S
∗
2 (A

†
2)

∗ + L A2V2 − V ∗
2 L A2 ,

V = −V ∗ = 1

2
M†

1C1(B
†
1 )

∗(I + S†1 S1)+
1

2
(I + S†1 S1)B

†
1C1(M

†
1 )

∗

+LM1U1LM1 + LM1LS1U2 −U∗
2 LS1LM1 +U3LB1 − LB1U

∗
3 ,

or

V = −V ∗ = 1

2
M†

2C2(B
†
2 )

∗(I + S†2 S2)+
1

2
(I + S†2 S2)B

†
2C2(M

†
2 )

∗

+LM2U4LM2 + LM2LS2U5−U∗
5 LS2LM2 +U6LB2 − LB2U

∗
6 ,

with

U∗
6 = [ Ik 0 0 0 ]Z ,

U∗
3 = [0 Ik 0 0 ]Z ,

U2 = [0 0 Ik 0 ]Z ,

U5 = [0 0 0 Ik ]Z ,

where

Z = A†
3(C3 − LM1U1LM1 − LM2U4LM2) − 1

2
A†
3(C3 − LM1U1LM1 − LM2U4LM2)A3A

†
3

− A†
3U7A

∗
3 −U∗

7 A3A
†
3 + L A3U8,

U1 = −U∗
1 = A†

4C4(A
†
4)

∗ − 1

2
A†
4B4M

†
3C4(I + (B†

4 )
∗S∗

3 )(A
†
4)

∗

−1

2
A†
4(I + S3B

†
4 )C4(M

†
3 )

∗B∗
4 (A†

4)
∗ − A†

4S3U9(A
†
4S3)

∗ + L A4U10 −U∗
10L A4 ,

U4 = −U∗
4 = 1

2
M†

3C4(B
†
4 )

∗(I + S†3 S3)+
1

2
(I + S†3 S3)B

†
4C4(M

†
3 )

∗ + LM3U11LM3

+ LM3LS3U12 −U∗
12LS3LM3 +U13LB4 − LB4U

∗
13,

where V1, V2, U7, . . . ,U13, U9 = −U∗
9, U11 = −U∗

11 are any matrices of acceptable shapes over C.
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3 Algorithm with example

In this section, we construct the algorithm for finding solutions to (1.5) that is inducted by Theorem 2.1.

Algorithm 3.1 (1) Feed the values of Di , Ei , Fi , Gi , (i = 1, 2) with conformable shapes over C.
(2) Compute the matrices determined by (2.1).
(3) Verify the consistence equalities expressed by matrix equations (2.2) or rank equalities (2.3)-(2.8). If no,

then return “inconsistent".
(4) If the consistence equalities are true, then we compute auxiliary matrices U1, U11, and W by (2.12), and

U2, U3, U22, and U3 by (2.11).
(5) Finally, we find the solution Xi , Yi , (i = 1, 2) and Z1 by (2.9), or another formula for Z1 is (2.10).

Using Algorithm 3.1, we consider the following example. Note that our goal is both to confirm correctness of
main results from Theorem 2.1 and to demonstrate the technique of applying the determinantal representations
of the MP-inverse from Lemma 1.4.

Example 3.2 Given the matrices:

E1 =
⎡
⎢⎣

4i 4 − 4i 4 4 + 4i
−4 4 + 4i 4i 4i − 4

4i − 4 8 4i + 4 8i
8 −8i − 8 −8i 8 − 8i

⎤
⎥⎦ , F1 =

⎡
⎢⎣

4 + 8i 8 + 4i −8 + 4i
−8 + 4i 8i − 4 −4 − 8i
−4 + 12i 12i + 4 −12 − 4i
−8 − 16i −16 − 8i 16 − 8i

⎤
⎥⎦ , (3.1)

D1 =
⎡
⎢⎣

1 + i −1 + i
−1 + i −1 − i
1 − i 1 + i

−1 − i 1 − i

⎤
⎥⎦ ,G1 = 92160

⎡
⎢⎣

i 1 1 + i −2
−1 i −1 + i −2i

−1 + i 1 + i 2i −2 − 2i
2 −2i 2 − 2i 4i

⎤
⎥⎦ , (3.2)

E2 =
⎡
⎢⎣

−i + 1 −1 + i
1 + i −i − 1
3 + i −3 − i
2 + 2i −2i − 2

⎤
⎥⎦ , F2 =

⎡
⎢⎣

3i −3 3 + 3i
3 3i 3 − 3i

−6i 6 −6i − 6
−6 −6i −6 + 6i

⎤
⎥⎦ , (3.3)

D2 =
⎡
⎢⎣

2 + i 2 − i −1 + 2i
−1 + 2i 2i + 1 −2 − i
1 + 3i 3 + i −3 + i
3 − i 1 − 3i 1 + 3i

⎤
⎥⎦ ,G2 = 96

⎡
⎢⎣

i 1 2 + i 2
−1 i −1 + 2i 2i

−2 + i 1 + 2i 5i 2 + 4i
−2 2i −2 + 4i 4i

⎤
⎥⎦ . (3.4)

1. Thanks to Lemma 1.4, we calculate the Moore–Penrose inverses of given matrices and using them for
compute all needed matrices from (2.1). For example

D†
1 = 1

16

[
1 − i −1 − i 1 + i −1 + i

−i − 1 −1 + i −i + 1 1 + i

]
, A1 =

⎡
⎢⎣

3 + 3i −6i 3 − 3i 6]
−3 + 3i 6 3 + 3i 6i
−5 + i 6 + 4i 1 + 5i −4 + 6i
5 + i −6i − 4 1 − 5i 6 − 4i

⎤
⎥⎦ ,

B1 =
⎡
⎢⎣

3 + i 3 − i −1 + 3i
−1 + 3i 1 + 3i −3 − i

−11 + 13i −1 + 17i −13 − 11i
−7 − 9i −11 − 3i 9 − 7i

⎤
⎥⎦ , D†

2 = 1

90

⎡
⎣ 2 − i −1 − 2i 1 − 3i 3 + i

2 + i 1 − 2i 3 − i 1 + 3i
−1 − 2i −2 + i −3 − i 1 − 3i

⎤
⎦

A2 =
⎡
⎢⎣

−i i
1 −1
2 −2

1 + 3i −3i − 1

⎤
⎥⎦ , B†

2 =
⎡
⎢⎣
5i + 2 −5 + 2i 7 + 3i
2i + 1 −2 + i 3 + i
−2i 2 −2i − 2
−2 −2i −2 + 2i

⎤
⎥⎦ ,

M1 = 1

11

⎡
⎢⎣

−24 + 32i 40i −32 − 24i
−32 − 24i −40 24 − 32i
−104 + 72i −40 + 120i −72 − 104i
−120 − 40i −120 + 40i 40 − 120i

⎤
⎥⎦ , LM1 = 1

15

⎡
⎣ 10 4 + 3i −5i

−4 − 3i 10 3 − 4i
5i 3 + 4i 10

⎤
⎦ ,

M2 = 1

8

⎡
⎢⎣
13 + 37i −37 + 13i 50 + 24i
11 + 13i −13 + 11i 24 + 2i
8 − 22i 22 + 6i −16 − 28i
−4 + 6i −6 − 4i 2 + 10i

⎤
⎥⎦ , LM2 = 1

4

⎡
⎣ 3 −i −1 + i

i 3 1 + i
−1 − i 1 − i 2

⎤
⎦ ,
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etc. In particular, we obtain S1, S2, A4, A5, and E11, are zero matrices.
2. Confirm that (2.2) are true for given matrices.
3. To avoid a trivial singular case, we put

W6 =
⎡
⎣ 4i 4 −4i

−4 8i −4
−4i 4 4i

⎤
⎦ , W7 =

⎡
⎣i i 2
i 1 i
1 i i

⎤
⎦ , V11 =

[
1 + i −1 + 2i

−i − 1 2 − i

]
,

V1 =
⎡
⎢⎣

1 + i −1 + i −2 + i 2 + qi
−1 + i −i − 1 −1 − 2i −1 + 2i
2i −2 −3 − i 1 + 3i
2 2i −1 + 3i 3 − qi

⎤
⎥⎦ , T3 =

[
1 + i −1 + i −3 + i 3 + qi

−1 + i −i − 1 −1 − 3i −1 + 3i

]
.

4. Finally, we have

Z1 = 1

1200

⎡
⎣ 2700i 1916 − 312i 3345 − 1315i

−1916 − 312i 2700i 1257 + 3299i
−3345 − 1315i −1257 + 3299i 5460i

⎤
⎦ , Y2 = 1

2

[
24i 1 − 23i

−1 − 23i 26i

]
,

Y1 = 1

6

⎡
⎢⎣

974i 953 − 963i 951 958 + 965i
−953 − 963i 1920i −952 + 960i −1927 + i

−951 952 + 960i 952i −966 + 977i
−958 + 965i 1927 + i 966 + 977i 1898i

⎤
⎥⎦ ,

X1 =
[
1 + i −1 + i −3 + i 3 + qi

−1 + i −i − 1 −1 − 3i −1 + 3i

]
,

X2 = 1

2250

[
33497 + 20254i 20254 + 13243i −39729 − 13243i 13243 − 39729i
3895 + 38950i 1558 + 24149i −13243 − 39729i 39729i − 13243i

]
.

Note that Maple 2021 was used to perform the numerical experiment.

4 Conclusion

The compact form of formula for the general solution of system of skew-Hermitian generalized Sylvester
matrix equations (1.5) is established in this paper when this system obeys some solvable conditions over a
complex number field C. The Moore–Penrose inverse and the rank equalities of the coefficient matrices are
used to obtain our main result. A particular case of this system is also discussed. We provide an algorithm
and a numerical example to compute the general solution to (1.5) based on determinantal representations of
generalized inverses.
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