
Arab. J. Math. (2023) 12:667–684
https://doi.org/10.1007/s40065-023-00433-0 Arabian Journal of Mathematics

Lino F. Reséndis O · Luis M. Tovar S · Yesenia Bravo O

Conjugate complex harmonic functions

Received: 14 June 2022 / Accepted: 27 May 2023 / Published online: 15 June 2023
© The Author(s) 2023

Abstract This paper presents several properties and relations that satisfy the components of a bicomplex
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1 Introduction

One of the best-known extensions of complex numbers to four dimensions is the algebra of quaternions,
introduced by Hamilton [16,17], which, although is almost a field, loses the commutativity property. This fact
makes it difficult to extend the theory of holomorphic functions. Another attempt was made in 1848 by Cockle
following Hamilton’s ideas. He studied an algebra called tessarines [13] where the role of the imaginary units
is different from the bicomplex case. Thus, an attempt has been made to consider four-dimensional algebras
which preserve commutativity and contain C as a subalgebra, and in which it is possible to extend the theory
of holomorphic functions. Not surprisingly, this can be done by considering, for example, two imaginary units
i and j such that i2 = j2 = −1 and introducing ij = ji = k. This makes k an imaginary hyperbolic unit, i.e., an
element such that k2 = 1. It was not until 1892 that themathematician Corrado Segre, also inspired by the work
of Hamilton and Clifford, introduced what he called bicomplex numbers [31]. Segre observed that (1 − ij)/2
and (1 + ij)/2 are idempotent and play a central role in the theory of bicomplex number. After Segre, other
mathematicians, in particular Spampinato [33,34] and Scorza Dragoni [30], developed the first rudiments of a
theory of functions over bicomplex numbers. The next great impulse in the study of bicomplex analysis was the
work of Riley, in 1953 with his doctoral thesis [28], in which the theory of bicomplex functions is deepened.
But the most important contribution was undoubtedly the work of Price [25], where the theory of bicomplex
(as well as multicomplex) holomorphic functions is extensively developed. However, in recent years, there has
been a resurgence of interest in the study of bicomplex holomorphic functions in one and several variables
[2,7,10,14,20,21,24], as well as bicomplex meromorphic functions [5,11] and more recently there has been
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a remarkable activity in this field, dealing with the study of the bicomplex Bergman and Bloch [26] spaces,
the bicomplex Stolz condition [27], the Möbius transformations in the bicomplex space [12] and the Cousin
problems for the bicomplex case [8].

In this paper, we study several properties of the components of a bicomplex holomorphic function. Propo-
sition 7.5.1 of [2] says that F = F1+ j F2 is a bicomplex holomorphic function on a domain ofBC, if and only
if, their components F1 and F2 are related to each other by a complex Cauchy–Riemann type of conditions,
very similar to the complex case. If F is expressed by its idempotent form F = G1 e + G2e†, Sect. 3 shows
how the Cauchy–Riemann type of conditions of F1 and F2 determine some relations between G1 and G2.

In classical complex analysis, it is well known that if u is a real harmonic function on a domain D in the
complex plane, there exists a harmonic conjugate function v on the same domain such that f = u + iv is
holomorphic in D, and except for a constant this function f is unique and one has a classical integral formula
to obtain v in terms of u. Sect. 4 shows that a similar result is true for the bicomplex case. In addition, two
different ways of obtaining its complex harmonic conjugate F2 are presented and illustrated with examples.

The orthogonality between the contour lines of the components of an analytic function and their corre-
sponding gradients are well known. Section5 shows that similar results exist for the different level sets of the
components of a holomorphic bicomplex function and illustrate this with an example.

In complex analysis if f = u + iv, there exists a relationship between the magnitude of the square of the
derivative of f and the norm of the square of the gradient of u and v. Section6 shows what happens in the
bicomplex holomorphic case. That is, if F = F1 + j F2, we exhibit various relations between the norm of the
bicomplex derivative of F and the complex gradients of F1 and F2, even if F is expressed in its idempotent
form.

In complex analysis, the conformal transplants are used to obtain various relations on the gradient, Lapla-
cian, and integral from the conformal transplantation of an analytic bijective mapping. These results are very
useful to obtain important classical applications in Physics ([18], Chapter 5). Section7 shows that also in the
bicomplex case, it is possible to generalize such relationships.

We expect that the generalizations to the bicomplex case presented in this article of classical results in
complex analysis will lead to applications in mathematics and physics in the immediate future.

2 Preliminaries

This section presents several common facts about bicomplex numbers and bicomplex holomorphic functions.
We will use freely results and notation of [2].

The set of bicomplex numbers BC is defined as

BC := { z1 + jz2 z1, z2 ∈ C(i), j2 = −1}.
The sum and product of bicomplex numbers are made in the expected way. A bicomplex number Z = z1 + jz2
admits several other forms of writing; however, in this work we use only two representations: their normal
form Z = z1 + jz2, with zl = xl + iyl ∈ C(i), l = 1, 2, and their idempotent form, that is,

Z = β1 e + β2e† (2.1)

where

e := 1 + ij
2

, e† := 1 − ij
2

and

β1 = z1 − iz2 , β2 = z1 + iz2. (2.2)

Observe that e e† = 0; 1 = e + e† or more general λ = λ( e + e†) with λ ∈ C(i). Moreover,

z1 = β1 + β2

2
and z2 = β2 − β1

2i
. (2.3)

In the special case that Z = β1 e + β2e† and W = γ1 e + γ2e†, with βl , γl real numbers, we consider the
partial order

W � Z if and only if γl ≤ βl , l = 1, 2.
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There are several conjugations of bicomplex numbers; however, we consider here only two conjugations
Z† = z1 − jz2 and Z∗ = z1 − jz2 = β1 e + β2e†, where z1 and z2 are the usual complex conjugates of
z1, z2 ∈ C(i). With these conjugations,

|Z |2i = Z · Z† = z21 + z22 , |Z |2k = Z · Z∗ = |β1|2 e + |β2|2e†

and the inverse

Z−1 = Z†

|Z |2i
, Z−1 = Z∗

|Z |2k
,

when 0 �= Z is not a zero-divisor, that is, Z /∈ {β e + 0 e†} ∪ {0 e + β e†} for 0 �= β ∈ C(i).
The i-norm and k-norm of Z are defined as (see Sections 1.4 and 2.7 in [20])

|Z |i =
√

Z · Z† =
√

z21 + z21 , |Z |k = √
Z · Z∗ = |β1| e + |β2|e†.

Let � be a domain in BC and F : � → BC a bicomplex function. The complex partial derivatives of F
at Z0 are defined by the following limits (if they exist):

F ′
z1(Z0) := lim

h1→0

F(Z0 + h1) − F(Z0)

h1
,

F ′
z2(Z0) := lim

h2→0

F(Z0 + jh2) − F(Z0)

h2
,

where h1 and h2 are complex increments and Z0 + h1, Z0 + jh2 ∈ �.
The bicomplex derivative F ′(Z0) of the function F at a point Z0 ∈ � is the following limit, if it exists that

F ′(Z0) := lim
Z→Z0

F(Z) − F(Z0)

Z − Z0
= lim

H→0

(Z0 + H) − F(Z0)

H
, Z ∈ �

such that H = Z − Z0 is an invertible bicomplex number, or equivalently is not a zero divisor.
If F is derivable for all Z ∈ �, then F is a bicomplex holomorphic function on �.
If F = F1 + jF2 is bicomplex derivable at Z0, the next result follows.

Theorem 2.1 ([20], Theorem 7.3.6) Consider a bicomplex function F derivable at Z0. Then we have

• The C(i)−complex partial derivatives F ′
zl

exist, for l = 1, 2.
• The complex partial derivatives verify the identity

F ′(Z0) = F ′
z1(Z0) = −jF ′

z2(Z0),

which is the C(i)−complex Cauchy–Riemann system for F, that is,

∂ F1

∂z1
= ∂ F2

∂z2
and

∂ F1

∂z2
= −∂ F2

∂z1
. (2.4)

We would also like to mention the next comment and definition ([20], Definition 7.4.1, p. 153) The
C(i)−complex partial derivatives are denoted by the symbols F ′

zl
for l = 1, 2, instead of the symbols ∂ F

∂z1
(Z)

and ∂ F
∂z2

(Z), because the first ones define the limits of suitable difference quotients, while the latter ones are

operators acting on C1 functions. The relationship between these two notations is justified by the following
definition: a bicomplex C1− function F is called C(i)−bicomplex differentiable if

F(Z + H) − F(Z) = F ′
z1(Z) · h1 + F ′

z2(Z) · h2 + o(H),

where o(H) denotes a function of the form α(H)|H | with lim
H→0

α(H) = 0, ([20] Remark[7.2.3]).

Theorem 2.2 ([20], Theorem 7.4.2) A C1−bicomplex function F is C(i)−bicomplex differentiable if and only
if both the components F1, F2 are holomorphic functions in the sense of two complex variables.
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Consider the following bicomplex differential operators:

∂

∂ Z
:= 1

2

(
∂

∂z1
− j

∂

∂z2

)
,

∂

∂ Z† := 1

2

(
∂

∂z1
+ j

∂

∂z2

)
.

Theorem 2.3 ([20], Theorem 7.4.3) Let F ∈ C1(�,BC). If F is a bicomplex holomorphic function, then
∂ F
∂ Z† (Z) = 0.

In bicomplex analysis, there are different ways of characterizing the bicomplex holomorphic functions as
shown in the following result.

Theorem 2.4 ([20], Theorem 7.6.3) Let � ⊂ BC be a domain. A bicomplex function F : � → BC of class
C1 on � with idempotent representation

F = G1 e + G2 e† (2.5)

is BC-holomorphic if and only if the following two conditions hold:

(a) The component G1, seen as a C(i)-valued function of the complex variables (β1, β2), is holomorphic;
moreover it does not depend on the variable β2 and thus G1 is a holomorphic function of the variable β1.

(b) The component G2, seen as a C(i)-valued function of the complex variables (β1, β2) is holomorhic;
moreover, it does not depend on the variable β1 and thus G2 is a holomorphic function of the variable β2.

Its derivatives of any order are given by

F (n)(Z) = G(n)
1 (β1) e + G(n)

2 (β2)e†, n = 0, 1, 2 . . . . (2.6)

The rules of derivability are the usual ones.

3 Relations between the idempotent components of a bicomplex holomorphic function

If we express the BC-holomorphic function F in its idempotent form (2.5), what kind of relationships must
satisfy G1 and G2 between them?

Aswecanobtain aBC-holomorphic function F = G1 e+G2e† : �1 e+�2 e† → BCby just taking anypair
of holomorphic functionsG1 : �1 → C andG2 : �2 → C and setting F = G1 e+G2e† : �1 e+�2 e† → BC,
then we cannot expect some relation like (2.4). However, we will see that the complex Cauchy–Riemann type
of condition of F1 and F2 determines some relationship between G1 and G2.

Theorem 3.1 Let � ⊂ BC be a domain and F = F1 + jF2 : � → BC a bicomplex function of class C1 with
idempotent representation

F = G1 e + G2 e†.

Then, F is a bicomplex holomorphic function on � if and only if

∂G1

∂z1
+ ∂G2

∂z1
= i

(
∂G1

∂z2
− ∂G2

∂z2

)
and

∂G1

∂z2
+ ∂G2

∂z2
= i

(
∂G2

∂z1
− ∂G1

∂z1

)
. (3.7)

In particular,

∂G1

∂z1
+ ∂G2

∂z2
= i

(
∂G1

∂z2
+ ∂G2

∂z1

)
. (3.8)

Proof By (2.2),

G1 = F1 − iF2 and G2 = F1 + iF2.

Then,

∂G1

∂z1
= ∂ F1

∂z1
− i

∂ F2

∂z1
,

∂G2

∂z1
= ∂ F1

∂z1
+ i

∂ F2

∂z1
,
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which implies that

∂ F1

∂z1
= 1

2

(
∂G1

∂z1
+ ∂G2

∂z1

)
; ∂ F2

∂z1
= 1

2i

(
∂G2

∂z1
− ∂G1

∂z1

)
.

Similarly,

∂ F1

∂z2
= 1

2

(
∂G1

∂z2
+ ∂G2

∂z2

)
; ∂ F2

∂z2
= 1

2i

(
∂G2

∂z2
− ∂G1

∂z2

)
.

If F is a bicomplex holomorphic function, from (2.4), we have

∂ F1

∂z1
= 1

2

(
∂G1

∂z1
+ ∂G2

∂z1

)
= 1

2i

(
∂G2

∂z2
− ∂G1

∂z2

)
= ∂ F2

∂z2

∂ F1

∂z2
= 1

2

(
∂G1

∂z2
+ ∂G2

∂z2

)
= 1

2i

(
∂G1

∂z1
− ∂G2

∂z1

)
= −∂ F2

∂z1

and from here we get (3.7). Reciprocally, if (3.7) holds, then (2.4) is satisfied and F is a bicomplex holomorphic
function. If we add the equalities in (3.7) and associate them, we get

(1 + i)
(

∂G1

∂z1
+ ∂G2

∂z2

)
+ (1 − i)

(
∂G1

∂z2
+ ∂G2

∂z1

)
= 0;

therefore, (3.8) follows. �

4 The conjugate of a C(i) complex harmonic function

This section defines the concepts ofC(i)−complex harmonic and bicomplex harmonic function. We will show
that there is a connection between them.

Let D ⊂ C
2 be an open subset and f : D → C a holomorphic function. A function f is said to be a

C(i)−complex harmonic function if it satisfies a Laplace-type equation

∂2 f

∂z21
+ ∂2 f

∂z22
= 0.

Let � be an open subset of BC. A function F = F1 + jF2 : � → BC is bicomplex harmonic if F has
continuous second partial derivatives and

∂2F

∂z21
+ ∂2F

∂z22
= 0. (4.9)

This equation is a bicomplex C(i)−Laplace-type equation in two complex variables z1 and z2. The opera-
tor ∂2

∂z21
+ ∂2

∂z22
is denoted by �C(i)2 and is called C(i)−Laplacian. C(i)−Laplace equation is abbreviated as

�C(i)2 f = 0 or �C(i)2 F = 0.

With this notation,

�C(i)2 [F] = �C(i)2 [F1] + j�C(i)2 [F2].
Moreover, if F is a bicomplex holomorphic function, then it satisfies the Cauchy–Riemann type of system
given by (2.4) and so it is clear that each component is a C(i)−complex harmonic function, that is,

�C(i)2 F1 = 0 and �C(i)2 F2 = 0.

Given aC(i)−complex harmonic function on a domain ofC2, wewant to determine its bicomplex conjugate
harmonic function. Then the following results appear to be natural generalizations of the complex cases. Recall
that a closed form is locally exact.
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Theorem 4.1 Let � ⊂ C
2 be a domain and Fi : � → C, i = 1, 2 be two holomorphic functions. If

∂ F1

∂z2
= ∂ F2

∂z1
, (4.10)

then the differential form

ω = F1 dz1 + F2 dz2 (4.11)

is closed.

Proof Let Fi = ui + ivi be the real and imaginary parts of Fi for i = 1, 2. If zi = xi + iyi , i = 1, 2, the
Cauchy–Riemann relations are written as

∂ui

∂x j
= ∂vi

∂y j
and

∂ui

∂y j
= − ∂vi

∂x j
for i, j = 1, 2

and (4.10) rewritten as

∂u1

∂x2
= ∂u2

∂x1
and

∂u1

∂y2
= ∂u2

∂y1
.

Now, the differential form (4.11) is

w = F1 dz1 + F2 dz2 = (u1 + iv1)(dx1 + idy1) + (u2 + iv2)(dx2 + idy2)

= u1dx1 − v1dy1 + u2dx2 − v2dy2 + i(v1dx1 + u1dy1 + v2dx2 + u2dy2).

To prove that the real part of ω is closed, it is necessary to verify

∂u1

∂y1
= −∂v1

∂x1
,

∂u1

∂x2
= ∂u2

∂x1
,

∂u1

∂y2
= −∂v2

∂x1
,

−∂v1

∂x2
= ∂u2

∂y1
, −∂v1

∂y2
= −∂v2

∂y1
,

∂u2

∂y2
= −∂v2

∂x2
.

These equalities are a straightforward consequence from the previous Cauchy–Riemann relations and the
hypothesis. In the same way, one can prove that the imaginary part of ω is closed. �
Corollary 4.2 Let � ⊂ C

2 be a domain. Let F1 : � → C be a C(i)−complex harmonic function, that is,

∂2F1

∂z21
+ ∂2F1

∂z22
= 0.

Then the differential form

ω = −∂ F1

∂z2
dz1 + ∂ F1

∂z1
dz2 (4.12)

is closed.

The curves involved in the following formulas (4.13) and (4.15) are subsets of �.

Theorem 4.3 Let � ⊂ C
2 be a domain and F1 : � → C a C(i)−complex harmonic function. If the first

homotopy group of � is trivial, then all the conjugate complex harmonic functions of F1 are given by

F2(z1, z2) =
∫ (z1,z2)

(z01,z
0
2)

−∂ F1

∂ζ2
(ζ1, ζ2) dζ1 + ∂ F1

∂ζ1
(ζ1, ζ2) dζ2 + c, (4.13)

where Z0 = z01 + jz02 = (z01, z02) ∈ � is a fixed point and c ∈ C. In particular, F1 + jF2 is a bicomplex
holomorphic function on �.
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Proof By Corollary 4.2 and the hypothesis, the function F2 is well defined, that is, it does not depend on the
path joining Z0 with Z . Then we can suppose that Z , Z0 ∈ Br (z1, z0) ⊂ �, and if h ∈ C is small enough,
the differential quotient can be written as (omiting evaluations)

F2(z1 + h, z2) − F2(z1, z2)

h
=

∫ (z1+h,z2)

(z01,z
0
2)

−∂ F1

∂ζ2
dζ1 + ∂ F1

∂ζ1
dζ2 −

∫ (z1,z2)

(z01,z
0
2)

−∂ F1

∂ζ2
dζ1 + ∂ F1

∂ζ1
dζ2

h

=

∫ (z1+h,z2)

(z1,z2)
−∂ F1

∂ζ2
dζ1 + ∂ F1

∂ζ1
dζ2

h
,

where the last integral is calculated using the path γ : [0, 1] → � defined by γ (t) = (z1 + th, z2). Since
γ ′(t) = (h, 0), we have

∫ (z1+h,z2)

(z1,z2)
−∂ F1

∂ζ2
(ζ1, ζ2) dζ1 + ∂ F1

∂ζ1
(ζ1, ζ2) dζ2 =

∫ 1

0
−∂ F1

∂ζ2
(z1 + th, z2)h dt.

Thus,

∂ F2

∂z1
(z1, z2) = lim

h→0

F2(z1 + h, z2) − F2(z1, z2)

h
= lim

h→0

∫ 1

0
−∂ F1

∂ζ2
(z1 + th, z2) dt = −∂ F1

∂z2
(z1, z2),

since F1 is uniformly continuous on the segment.Using the pathη : [0, 1] → � defined by η(t) = (z1, z2+th),
we obtain

∂ F2

∂z2
(z1, z2) = ∂ F1

∂z1
(z1, z2).

�
Example 4.4 Let F1(z1, z2) = z31 − 3z1z22 and Z0 = z01 + jz02 = (z01, z02) ∈ BC. Clearly, F1 is complex
harmonic. Thenwe integrate ∂ F1

∂z1
from (z01, z02) to (z1, z2), through integrals in segments from (z01, z02) to (z01, z2)

and from (z01, z2) to (z1, z2). As in the first integral dζ1 = 0, while in the second integral dζ2 = 0, we have

∫ (z01,z2)

(z01,z
0
2)

−∂ F1

∂ζ2
(ζ1, ζ2) dζ1 + ∂ F1

∂ζ1
(ζ1, ζ2) dζ2 =

∫ (z01,z2)

(z01,z
0
2)

∂ F1

∂ζ1
(ζ1, ζ2) dζ2

=
∫ (z01,z2)

(z01,z
0
2)

(3ζ 2
1 − 3ζ 2

2 )dζ2 = 3ζ 2
1 ζ2

](z01,z2)
(z01,z

0
2)

− ζ 3
2

](z01,z2)
(z01,z

0
2)

= 3(z01)
2(z2) − 3(z01)

2(z02) − (z2)
3 + (z02)

3.

Likewise,
∫ (z1,z2)

(z01,z2)
−∂ F1

∂z2
(ζ1, ζ2)dζ1 =

∫ (z1,z2)

(z01,z2)
(6ζ1ζ2)dξ1 = 3ζ2ζ

2
1

](z1,z2)
(z01,z2)

= 3z21z2 − 3(z01)
2z2.

Therefore, F2(z1, z2) = 3z1z22 − z32 + c with c ∈ C. Moreover, F(Z) = z31 − 3z1z22 + j(3z1z22 − z32 + c) is a
bicomplex holomorphic function, more precisely F(Z) = (z1 + jz2)3 + jc.

Now, we are going to present a second way to calculate the conjugate of a complex harmonic function. For
that, we need the following equality:

∫ (z1,z2)

(z01,z
0
2)

−∂ F1

∂ζ2
dζ1 =

∫ (z01,z2)

(z01,z
0
2)

−∂ F1

∂ζ2
dζ1 +

∫ (z1,z2)

(z01,z2)
−∂ F1

∂ζ2
dζ1 =

∫ (z1,z2)

(z01,z2)
−∂ F1

∂ζ2
dζ1. (4.14)
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Proposition 4.5 Let � ⊂ C
2 be a domain such that the first homotopy group of � is trivial. Let F1 : � → C

be a C(i)−complex harmonic function. Then there exists an infinite number of conjugate complex harmonic
functions of F1 defined in �, given by

F2(z1, z2) =
∫ (z1,z2)

(z01,z2)
−∂ F1

∂ζ2
(ζ1, ζ2) dζ1+

∫ (z1,z2)

(z01,z
0
2)

(
∂ F1

∂ζ1
(ζ1, ζ2) + ∂

∂ζ2

∫ (ζ1,ζ2)

(z01,z2)

∂ F1

∂η2
(η1, η2) dη1

)
dζ2 + c, (4.15)

where (z01, z02), (z1, z2) ∈ � and c ∈ C. Moreover,

F1(Z) + jF2(Z)

is a family of bicomplex holomorphic functions.

Proof Let (z01, z02), (z1, z2) ∈ �, using (4.14) define

F2(z1, z2) =
∫ (z1,z2)

(z01,z2)
−∂ F1

∂τ2
(τ1, τ2) dτ1 + ϕ(z2), (4.16)

where ϕ is a holomorphic function that must be determined. Since the first homotopy group of � is trivial,
we have that the integral in the definition of the function F2 is well defined and by uniform continuity on the
linear path

∂ F2

∂z1
(z1, z2) = lim

h→0

∫ (z1+h,z2)

(z1,z2)
−∂ F1

∂τ2
(τ1, τ2) dτ1

h
= lim

h→0

∫ 1

0
−∂ F1

∂τ2
(z1 + th, z2)h dt

h

= − ∂ F1

∂z2
(z1, z2).

In particular, F2 is holomorphic on z1 and since
∂ F2
∂z1

is holomorphic on z2, then F2 is also holomorphic on z2.

Since ϕ is a holomorphic function on z2 only, its derivative
dϕ
dz2

must also be independent of z1. Since we need

that ∂ F2
∂z2

= ∂ F1
∂z1

, we get

∂

∂z1

(
∂ F2

∂z2
(z1, z2) + ∂

∂z2

∫ (z1,z2)

(z01,z2)

∂ F1

∂τ2
(τ1, τ2) dτ1

)

= ∂2F1

∂z1∂z1
(z1, z2) + ∂2

∂z1∂z2

∫ (z1,z2)

(z01,z2)

∂ F1

∂τ2
(τ1, τ2) dτ1

= ∂2F1

∂z21
(z1, z2) + ∂2

∂z2∂z1

∫ (z1,z2)

(z01,z2)

∂ F1

∂τ2
(τ1, τ2) dτ1

= ∂2F1

∂z21
(z1, z2) + ∂2F1

∂z22
(z1, z2) = 0,

since F1 is a C(i)−complex harmonic function. Thus,

ϕ(z2) =
∫ (z1,z2)

(z01,z
0
2)

(
∂ F1

∂ζ1
(ζ1, ζ2) + ∂

∂ζ2

∫ (ζ1,ζ2)

(z01,ζ2)

∂ F1

∂τ2
(τ1, τ2) dτ1

)
dζ2 + c.
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Substituting ϕ in (4.16), we have

∂ F2

∂z2
(ζ1, ζ2) = ∂

∂z2

∫ (z1,z2)

(z01,z2)
−∂ F1

∂τ2
(τ1, τ2) dτ1 + ∂

∂z2
ϕ(z2)

= ∂

∂z2

∫ (z1,z2)

(z01,z2)
−∂ F1

∂τ2
(τ1, τ2) dτ1 + ∂ F1

∂z1
(z1, z2)

+ ∂

∂z2

∫ (z1,z2)

(z01,z2)

∂ F1

∂η2
(η1, η2) dη1

= ∂ F1

∂z1
(z1, z2).

Thus, F2 is a harmonic complex conjugate of F1. �
The previous result gives us a classical way to calculate the harmonic conjugate of one function.

Example 4.6 Let F1(z1, z2) = z31 − 3z1z22. We know that F1 is a C(i)−complex harmonic function. Since
∂ F1
∂z2

= − ∂ F2
∂z1

, then

F2(z1, z2) =
∫

6z1z2 dz1 = 3z21z2 + ϕ(z2).

Since ∂ F1
∂z1

= ∂ F2
∂z2

, we have

∂ F2

∂z2
(z1, z2) = 3z21 + ϕ′(z2) = 3z21 − 3z22.

Therefore, ϕ′(z2) = −3z22 and ϕ(z2) = −z32 + c. Finally,

F2(z1, z2) = 3z21z2 − z32 + c,

and the formula

z31 − 3z1z22 + j(3z21z2 − z32 + c) = (z1 + jz2)3 + jc

gives a family of bicomplex holomorphic functions, see Example 4.4.

5 Bicomplex level sets of bicomplex harmonic conjugate

In complex analysis, one of the consequences of holomorphicity is that the level curves of the harmonic
components result in orthogonals among them, see [37]. We will see what happens in the bicomplex case.

Definition 5.1 Let F(Z) = F1(Z) + jF2(Z) be a bicomplex function in some domain � ⊂ BC, where
Z = x1 + iy + j(x2 + iy2). Suppose that Fl = ul + ivl where ul , vl are real functions for l = 1, 2. The
equations:

ul(x1, y1, x2, y2) = al , vl(x1, y1, x2, y2) = bl , l = 1, 2,

where al , bl are arbitrary real constants, which define the level sets of ul and vl , l = 1, 2, respectively.

Consider the following basic fact that characterizes the tangent space of hypersurfaces, see [35].

Theorem 5.2 Let U be an open set in R
n and let f : U → R in C∞(U ). Let p ∈ U such that ∇ f (p) �= 0,

and let c = f (p). Then the set of all vectors tangent to the level set f −1(c) is equal to [∇ f (p)]⊥, where
∇ f (p) denotes the usual gradient. In particular if ∇ f (p) �= 0 for all p ∈ U, f −1(c) is a hypersurface.
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Two hypersurfaces M and N are orthogonal if for each p ∈ M ∩ N , their respective tangent spaces Tp(M) =
Tp(N ) are orthogonal, ([6], formula (3.2.4)).

Theorems 5.3 and 5.4 may be summarized by saying that the level sets of the real parts of F1 and F2 are
two orthogonal families as well as the level sets of the imaginary parts of them. Corollary 5.5describes the
intersection of these orthogonal families in BC.

Theorem 5.3 Let F(Z) = F1(Z) + jF2(Z) be a bicomplex holomorphic function in some domain � ⊂ BC.
Suppose that Fl = ul + ivl for l = 1, 2 and ∇u1(p) �= 0, p ∈ �. Then

∇u1(p) ⊥ ∇u2(p)

and

∇v1(p) ⊥ ∇v2(p).

Proof From (7.18 ) [2], ∇u1(p) = 0 if and only if any of the other gradients is 0. We omit the evaluation at
p. Since Fl = ul + ivl , then

∇ul =
(

∂ul

∂x1
,
∂ul

∂y1
,
∂ul

∂x2
,
∂ul

∂y2

)
�= 0 (5.17)

with l = 1, 2. As F(Z) = F1(Z) + jF2(Z) is a bicomplex holomorphic function, then F1 and F2 satisfy the
Cauchy–Riemann equations (2.4). Thus,

∂u1

∂x1
= ∂u2

∂x2
,

∂u1

∂y1
= ∂u2

∂y2
(5.18)

∂u1

∂x2
= −∂u2

∂x1
,

∂u1

∂y2
= −∂u2

∂y1
. (5.19)

Applying (5.18) and (5.19) to (5.17) with l = 2, we obtain

∇u2 =
(

−∂u1

∂x2
, −∂u1

∂y2
,
∂u1

∂x1
,
∂u1

∂y1

)
.

It follows that

∇u1 · ∇u2 =
(

∂u1

∂x1
, −∂u1

∂y1
,
∂u1

∂x2
,
∂u1

∂y2

)
·
(

−∂u1

∂x2
, −∂u1

∂y2
,
∂u1

∂x1
,
∂u1

∂y1

)

= − ∂2u1

∂x1∂x2
− ∂2u1

∂y1∂y2
+ ∂2u1

∂x2∂x1
+ ∂2u1

∂y2∂y1
= 0.

Hence, ∇u1 ⊥ ∇u2. In the same way, we can see that ∇v1 ⊥ ∇v2 using

∇vl =
(

∂vl

∂x1
,

∂vl

∂y1
,

∂vl

∂x2
,

∂vl

∂y2

)
. (5.20)

�
Theorem 5.4 Let F(Z) = F1(Z) + jF2(Z) be a bicomplex holomorphic function in some domain � ⊂ BC

Suppose that Fl = ul + ivl , where ul , vl are real functions and l = 1, 2. Then,

∇u1 ⊥ ∇v1

and

∇u2 ⊥ ∇v2.
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Proof As F(Z) = F1(Z) + jF2(Z) is a bicomplex holomorphic function, then F1 and F2 are holomorphic
as functions of two complex variables. Then they are holomorphic on each variable separately. Thus by using
Cauchy–Riemann equations, we obtain

∂v2

∂x1
= −∂v1

∂x2
= ∂u1

∂y2
; (5.21)

∂v2

∂x2
= ∂v1

∂x1
= −∂u1

∂y1
; (5.22)

∂v2

∂y1
= ∂u2

∂x1
= −∂u1

∂x2
= −∂v1

∂y2
; (5.23)

∂v2

∂y2
= ∂u2

∂x2
= −∂u1

∂x1
= −∂v1

∂y1
. (5.24)

Aplying (5.21), (5.22), (5.23) and (5.24) to (5.20) when l = 1, we have

∇v1 =
(

−∂u1

∂y1
,
∂u1

∂x1
, −∂u1

∂y2
,−∂u1

∂x2

)
.

Then,

∇u1 · ∇v1 =
(

∂u1

∂x1
,
∂u1

∂y1
,
∂u1

∂x2
,
∂u1

∂y2

)
·
(

−∂u1

∂y1
,
∂u1

∂x1
, −∂u1

∂y2
, −∂u1

∂x2

)

= − ∂2u1

∂x1∂y1
+ ∂2u1

∂y1∂x1
− ∂2u1

∂x2∂y2
+ ∂2u1

∂y2∂x2
= 0.

Hence, ∇u1 ⊥ ∇v1. In the same way, we can see that ∇u2 ⊥ ∇v2. �
However, ∇u1 and ∇v2 are not orthogonal in general, because

∇u1 · ∇v2 =
(

− ∂2u1

∂x1∂y2
− ∂2u1

∂y1∂x2
− ∂2u1

∂x2∂y1
+ ∂2u1

∂y2∂x1

)

= 2

[(
∂2u1

∂x1∂y2

)
−

(
∂2u1

∂y1∂x2

)]
.

We can see also that ∇u2 and ∇v1 are not orthogonal in general, because

∇u1 · ∇v2 =
(

− ∂2u1

∂x1∂y2
− ∂2u1

∂y1∂x2
− ∂2u1

∂x2∂y1
+ ∂2u1

∂y2∂x1

)

= 2

[(
∂2u1

∂x1∂y2

)
−

(
∂2u1

∂y1∂x2

)]
.

In the same way, it is possible to see that ∇u2 and ∇v1 are not orthogonal in general.
The following result permits us to describe the intersection of the pairs of hypersurfaces u1 = a1 and

u2 = a2; v1 = b1 and v2 = b2; u1 = a1 and v1 = b1; u2 = a2 and v2 = b2.
It is well known that we can get an n-surface as the non-empty subset of Rn+k obtained by the inter-

section ∩k
i=1 f −1

i (ci ) , ci ∈ R
k, where the fi : D → R (D open in R

n+k) are smooth functions such that
{∇ f1(p), . . . , ∇ fk(p)} is linearly independent for each p ∈ S. This n− surface in R

n+k results in the inter-
section of k, (n + k − 1)−surfaces which meet “clearly” in the sense that the normal directions are linearly
independent at each point of the intersection, see [35]. Since BC ≈ R

4, we have the next corollary.

Corollary 5.5 Let F(Z) = F1(Z) + jF2(Z) be a bicomplex holomorphic function in some domain � ⊂ BC

with Fl = ul + ivl , where ul , vl are real functions for l = 1, 2. If ∇u1(p) �= 0 for all p ∈ u−1(a1) and
S = u−1

1 (a1) ∩ u−1
2 (a2) is not empty. Then, S is a 2−surface in BC obtained by the orthogonal intersection

of two hypersurfaces in BC.

123



678 Arab. J. Math. (2023) 12:667–684

Proof By Definition (5.1) ui : BC ≈ R
2+2 → R with i = 1, 2. By Theorem (5.3): ∇u1 ⊥ ∇u2. This implies

that {∇u1(Z0), ∇u2(Z0)} is linearly independent for each Z0 ∈ S. Therefore, S is a 2−surface in BC obtained
as the intersection of two orthogonal hypersurfaces. �

We get the same results if we use {∇v1, ∇v2} (and ({∇ui ,∇vi } with i = 1, 2)).

Example 5.6 Consider the bicomplex holomorphic function

F(Z) = (z1 + jz2)2 = (
x1 + iy1 + j(x2 + iy2)

)2

= x21 − y21 − x22 + y22 + i(2x1y1 − 2x2y2) + j
(
2x1x2 − 2y1y2 + i(2x1y2 + 2x2y1)

)2
.

To simplify our analysis, we suppose y1 > 0 and so ∇u1(x1, y1, x2, y2) = 2(x1, −y1,−x2, y2) �= 0 and
∇u2(x1, y1, x2, y2) = 2(x2, −y2, x1,−y1) �= 0, and they are orthogonal. We consider F(1, 0, 0, 0) = 1 and
we have the orthogonal 3-surfaces:

u−1
1 (1) = {

(x1, y1, x2, y2) : x21 + y22 = 1 + y21 + x22
}
,

u−1
2 (0) = {(x1, y1, x2, y2) : x1x2 = y1y2} .

Their intersection is the 2-surface:

S = u−1
1 (1) ∩ u−1

2 (0) =
⎧
⎨
⎩

⎛
⎝ y1

√
1 + y21 + x22√
y21 + x22

, x2, y1,
x2

√
1 + y21 + x22√
y21 + x22

⎞
⎠

⎫
⎬
⎭ .

6 Bicomplex gradients

In complex analysis, we have that the following relationship exists between the modulus of derivatives and the
gradients of the real and imaginary parts of an analytic function: | f ′(z)|2 = ‖∇u‖22 = ‖∇v‖22 . Now, we show
what happens in the bicomplex case.

Let F be a bicomplex function in some open subset � of BC. We define the bicomplex gradient of F
denoted by gradF : � → BC as

gradF = ∂ F

∂z1
+ j

∂ F

∂z2
.

Let F = F1 + jF2 be a bicomplex holomorphic function in some domain � ⊂ BC. By Theorem 2.1, F ′
zl

exists for l = 1, 2 and verify the identity

F ′(Z) = F ′
z1(Z) = −jF ′

z2(Z) , Z ∈ �.

Since F1 and F2 satisfy the Cauchy–Riemann type of equations (2.4), F ′ can be represented as

F ′ = ∂ F1

∂z1
− j

∂ F1

∂z2
= ∂ F2

∂z2
+ j

∂ F2

∂z1
,

where the partial derivatives are all evaluated at Z = z1 + jz2. Thus, we obtain

|F ′|2
BC

=
∣∣∣∣
∂ F1

∂z1

∣∣∣∣
2

+
∣∣∣∣
∂ F1

∂z2

∣∣∣∣
2

=
∣∣∣∣
∂ F2

∂z1

∣∣∣∣
2

+
∣∣∣∣
∂ F2

∂z2

∣∣∣∣
2

, (6.25)

where | · |BC is the Euclidean norm in BC and | · | is the Euclidean norm in C. On the other hand, by definition
of bicomplex gradient, we have

gradF1 = ∂ F1

∂z1
+ j

∂ F1

∂z2
,

and

gradF2 = ∂ F2

∂z1
+ j

∂ F2

∂z2
,
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then

|gradF1|2BC =
∣∣∣∣
∂ F1

∂z1

∣∣∣∣
2

+
∣∣∣∣
∂ F1

∂z2

∣∣∣∣
2

, (6.26)

and

|gradF2|2BC =
∣∣∣∣
∂ F2

∂z1

∣∣∣∣
2

+
∣∣∣∣
∂ F2

∂z2

∣∣∣∣
2

, (6.27)

where | · | is the norm in C. Thus,

|F ′|2
BC

= |gradF1|2BC = |gradF2|2BC.

If we write F1 = u1 + iv1 where u1 and v1 are real functions, by Cauchy–Riemann equations ∂ F1
∂z1

can be
written as

∂ F1

∂z1
= ∂u1

∂x1
− i

∂u1

∂y1
= ∂v1

∂y1
− i

∂v1

∂x1
,

which implies that
∣∣∣∣
∂ F1

∂z1

∣∣∣∣
2

=
(

∂u1

∂x1

)2

+
(

∂u1

∂y1

)2

=
(

∂v1

∂y1

)2

+
(

∂v1

∂x1

)2

(6.28)

and
∣∣∣∣
∂ F1

∂z2

∣∣∣∣
2

=
(

∂u1

∂x2

)2

+
(

∂u1

∂y2

)2

=
(

∂v1

∂y2

)2

+
(

∂v1

∂x2

)2

. (6.29)

On the other hand, we know that

‖�u1‖2R4 =
(

∂u1

∂x1

)2

+
(

∂u1

∂y1

)2

+
(

∂u1

∂x2

)2

+
(

∂u1

∂y2

)2

,

where ‖·‖2
R4 is the norm in R4. By (6.26), (6.28) and (6.29), we have

|gradF1|2BC = ‖�u1‖2R4 = ‖�v1‖2R4 .

In the same way, if F2 = u2 + jv2 and using (6.27),

|gradF2|2BC = ‖�u2‖2R4 = ‖�v2‖2R4 ;
therefore,

|F ′|2
BC

= |gradF1|2BC = |gradF2|2BC
= ‖�u1‖2R4 = ‖�v1‖2R4

= ‖�u2‖2R4 = ‖�v2‖2R4 .

Now, if we consider the i−norm, we have

|F ′|2i =
(

∂ F1

∂z1

)2

+
(

∂ F1

∂z2

)2

=
(

∂ F2

∂z1

)2

+
(

∂ F2

∂z2

)2

.

On the other hand,

(gradF1)
† = ∂ F1

∂z1
− j

∂ F1

∂z2
, (gradF2)

† = ∂ F2

∂z1
− j

∂ F2

∂z2
.
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Then,

∣∣(gradF1)
†
∣∣2
i =

(
∂ F1

∂z1

)2

+
(

∂ F1

∂z2

)2

and

∣∣(gradF2)
†
∣∣2
i =

(
∂ F2

∂z1

)2

+
(

∂ F2

∂z2

)2

,

however,

|F ′|2i = ∣∣(gradF1)
†
∣∣2
i = ∣∣(gradF2)

†
∣∣2
i = |(gradF1)|2i = |(gradF2)|2i .

Suppose that F = G1 e + G2 e† is a bicomplex holomorphic function in � ⊂ BC. By (2.6),

F ′(Z) = G ′
1(β1) e + G ′

2(β2) e†.

If we consider the k−norm, we get

|F ′(Z)|2k = |G ′
1(β1)|2 e + |G ′

2(β2)|2 e†,

where | · | is the norm in C.
Since G1 and G2 are complex holomorphic functions, Gl has the form Gl = μl + iνl and satisfies the

following relations for l = 1, 2 :
|G ′

1|2 = ‖�μ1‖22 = ‖�ν1‖22
and

|G ′
2|2 = ‖�μ2‖22 = ‖�ν2‖22 .

Consequently,

|F ′|2k = ‖�μ1‖22 e + ‖�μ2‖22 e†

= ‖�μ1‖22 e + ‖�ν2‖22 e†

= ‖�ν1‖22 e + ‖�μ2‖22 e†

= ‖�ν1‖22 e + ‖�ν2‖22 e†.

7 Bicomplex conformal transplants

In this section, we will give the generalization to the bicomplex case of the complex conformal transplants,
which are very useful in Physics, to facilitate the calculation of potentials (temperature, electricity, stress, etc.).
For more information, see [18].

Let D, E be domains in BC and F, a bijective bicomplex holomorphic function from D to E, with inverse
F−1 also bijective and F ′(Z) �= 0 for all Z ∈ D.

Let φ be a C(i)−valued function of class C2(D). We define in E a function ψ as follows: for any W ∈ E,
let

ψ(W ) = φ(F−1(W )) = φ(z1(w1, w2), z2(w1, w2)).

The function ψ will be called the bicomplex conformal transplant of φ under the mapping F and its process
of construction is given by the bicomplex conformal transplantation. See the diagram.

E F−1

ψ=φ◦F−1

D

φ

C

.
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By definition

φ(z1, z2) = ψ(w1(z1, z2), w2(z1, z2)),

we have F(Z) = F(z1 + jz2) = F1(z1, z2) + jF2(z1, z2) = W = w1 + jw2.

Then we have the following results:

Theorem 7.1 If ψ results from φ by bicomplex conformal transplantation by means of the mapping F, then

gradφ(Z) = gradψ(W ) · F ′(Z).

Proof Applying the chain rule and the Cauchy–Riemann system given by (2.4), we obtain

gradφ = ∂ψ

∂w1

∂w1

∂z1
+ ∂ψ

∂w2

∂w2

∂z1
+ j

(
− ∂ψ

∂w1

∂w2

∂z1
+ ∂ψ

∂w2

∂w1

∂z1

)

= ∂ψ

∂w1

∂w1

∂z1
+ ∂ψ

∂w2

∂w2

∂z1
− j

∂ψ

∂w1

∂w2

∂z1
+ j

∂ψ

∂w2

∂w1

∂z1

= ∂ψ

∂w1

(
∂w1

∂z1
− j

∂w2

∂z1

)
+ ∂ψ

∂w2

(
∂w2

∂z1
+ j

∂w1

∂z1

)

=
(

∂ψ

∂w1
+ j

∂ψ

∂w2

)(
∂w1

∂z1
− j

∂w2

∂z1

)

= gradψ(W )

(
∂w1

∂z1
− j

∂w2

∂z1

)
,

since by Theorem 2.1 F ′(Z) = F ′
z1(Z), which completes the proof. �

We will see what is the relationship between the C(i)−Laplacian of φ and the C(i)− Laplacian of ψ. By
definition of C(i)−Laplacian, we have

�C(i)2φ = ∂2φ

∂z21
+ ∂2φ

∂z22
, (7.30)

�C(i)2ψ = ∂2ψ

∂w2
1

+ ∂2ψ

∂w2
2

. (7.31)

Theorem 7.2 Under the hypotheses of the preceeding theorem,

�C(i)2φ(Z) = �C(i)2ψ(W )|F ′(Z)|2i .
Proof Applying the chain rule again, we obtain

∂2φ

∂z21
= ∂

∂z1

(
∂φ

∂z1

)

= ∂

∂z1

(
∂ψ

∂w1

∂w1

∂z1
+ ∂ψ

∂w2

∂w2

∂z1

)

= ∂

∂z1

(
∂ψ

∂w1

)
· ∂w1

∂z1
+ ∂ψ

∂w1
· ∂

∂z1

(
∂w1

∂z1

)

+ ∂

∂z1

(
∂ψ

∂w2

)
· ∂w2

∂z1
+ ∂ψ

∂w2
· ∂

∂z1

(
∂w2

∂z1

)

=
(

∂2ψ

∂w2
1

· ∂w1

∂z1
+ ∂2ψ

∂w2∂w1
· ∂w2

∂z1

)
· ∂w1

∂z1
+ ∂ψ

∂w1
· ∂2w1

∂z21

+
(

∂2ψ

∂w1∂w2
· ∂w1

∂z1
+ ∂2ψ

∂w2
2

· ∂w2

∂z1

)
· ∂w2

∂z1
+ ∂ψ

∂w2
· ∂2w2

∂z21
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= ∂2ψ

∂w2
1

·
(

∂w1

∂z1

)2

+ ∂2ψ

∂w2∂w1

∂w2

∂z1

∂w1

∂z2
+ ∂ψ

∂w1

∂2w1

∂z21

+ ∂2ψ

∂w1∂w2

∂w1

∂z1

∂w2

∂z1
+ ∂2ψ

∂w2
2

·
(

∂w2

∂z1

)2

+ ∂ψ

∂w2

∂2w2

∂z21
.

Since ψ ∈ C2(E), we have

∂2φ

∂z21
= ∂2ψ

∂w2
1

·
(

∂w1

∂z1

)2

+ 2

(
∂2ψ

∂w1∂w2

∂w1

∂z1

∂w2

∂z1

)
+ ∂2ψ

∂w2
2

·
(

∂w2

∂z1

)2

+ ∂ψ

∂w1

∂2w1

∂z21
+ ∂ψ

∂w2

∂2w2

∂z21
. (7.32)

Analogously,

∂2φ

∂z22
= ∂2ψ

∂w2
1

·
(

∂w1

∂z2

)2

+ 2

(
∂2ψ

∂w1∂w2

∂w1

∂z2

∂w2

∂z2

)
+ ∂2ψ

∂w2
2

·
(

∂w2

∂z2

)2

+ ∂ψ

∂w1

∂2w1

∂z22
+ ∂ψ

∂w2

∂2w2

∂z22
. (7.33)

Substituting (7.32) and (7.33) in (7.30) we get

�C(i)2φ = ∂2ψ

∂w2
1

[(
∂w1

∂z1

)2

+
(

∂w1

∂z2

)2
]

+ ∂2ψ

∂w2
2

[(
∂w2

∂z1

)2

+
(

∂w2

∂z2

)2
]

+ 2
∂2ψ

∂w1∂w2

[(
∂w1

∂z1

∂w2

∂z1
+ ∂w1

∂z2

∂w2

∂z2

)]
+ ∂ψ

∂w1

(
∂2w1

∂z21
+ ∂2w1

∂z22

)

+ ∂ψ

∂w2

(
∂2w2

∂z21
+ ∂2w2

∂z22

)
,

and by Cauchy–Riemann type of equations we have

∂w1

∂z1

∂w2

∂z1
+ ∂w1

∂z2

∂w2

∂z2
= 0.

Furthermore,

�C(i)2(w1) = ∂

∂z1

(
∂w2

∂z2

)
+ ∂

∂z2

(
−∂w2

∂z1

)
= ∂2w2

∂z1∂z2
− ∂2w2

∂z2∂z1
.

Sincew1 andw2 represent the components F1 and F2 of F, it follows that�C(i)2(w1) = 0 and�C(i)2(w2) = 0.
Hence,

�C(i)2φ = ∂2ψ

∂w2
1

[(
∂w1

∂z1

)2

+
(

∂w1

∂z2

)2
]

+ ∂2ψ

∂w2
2

[(
∂w2

∂z1

)2

+
(

∂w2

∂z2

)2
]

= ∂2ψ

∂w2
1

[(
∂w1

∂z1

)2

+
(

∂w2

∂z1

)2
]

+ ∂2ψ

∂w2
2

[(
∂w1

∂z2

)2

+
(

∂w2

∂z2

)2
]

.

As F ′(z) = F ′
z1 = −jF ′

z2(Z), we have |F ′(z)|2i = |F ′
z1 |2i = |F ′

z2(Z)|2i , then

�C(i)2φ =
(

∂2ψ

∂w2
1

+ ∂2ψ

∂w2
2

)
· |F ′(z)|2i ,

which proves the theorem. �
The next result gives the relationship between the integral of φ over D and the integral of ψ over E .

Theorem 7.3 Under the hypotheses of Theorem (7.1),
∫

D
φ(Z)dz1dz2 =

∫

E
ψ(W )|(F−1)′(W )|2i dw1dw2.
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Proof Notice that

|det(F−1)′| = ∂(z1, z2)

∂(w1, w2)
=

∣∣∣∣∣
∂z1
∂w1

∂z1
∂w2

∂z2
∂w1

∂z2
∂w2

∣∣∣∣∣

= ∂z1
∂w1

∂z2
∂w2

− ∂z2
∂w1

∂z1
∂w2

= ∂z1
∂w1

∂z1
∂w1

+ ∂z1
∂w2

∂z1
∂w2

=
(

∂z1
∂w1

)2

+
(

∂z1
∂w2

)2

= |(F−1)′(W )|2i ,
since D and E are domains in BC ≈ R

4, and F−1 is a bijective bicomplex function so, in particular, it is a
diffeomorphism of class C1. Moreover if φ ∈ L1(D,C), then

(
φ ◦ F−1

) |det(F−1)′| ∈ L1(E,C) and
∫

D
φ(Z)dz1dz2 =

∫

E

(
φ ◦ F−1) |det(F−1)′|dw1dw2.

�
Important applications of bicomplex analysis in physics have appeared in several works during the present

century, for example, toMaxwell’s equations in bicomplex analysis [1], in applications of bicomplex algebra to
electromagnetism [3], as well as works on bicomplex quantum mechanics [29] and on the bicomplex quantum
Coulomb potential problem [22], among others. We expect that the results presented in this work will be
applied in the near future to physics problems in higher dimensions.

In a forthcoming paper, we will present some consequences of the results of this paper related to Cauchy’s
bicomplex integral theorem and Morera’s bicomplex theorem.
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