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Abstract In this paper, we consider a weighted fractional stochastic integro-differential equation with infinite
delay and nonzero initial values involving a Riemann-Liouville fractional derivative of order 1/2 < o < 1.
The existence of a mild solution is investigated using fractional calculus, stochastic analysis, and the fixed
point theorem. An example is also provided to illustrate the obtained result.
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1 Introduction

Fractional calculus provides an excellent set of tools for describing memory and hereditary properties of many
materials and processes, allowing for the modeling of non-local and diffuse effects that frequently occur in
natural phenomena. The application of fractional calculus tools and techniques is widespread in almost all
areas of engineering and science in general. Viscoelasticity, robotics, control theory, and other fields have
numerous applications (see [2,4,12,13,21]).

Phenomena are precisely modeled when the influences that processes may encounter along their course are
considered. For example, it is well known that time delays may exist in a variety of technical systems where
the derivative of a state variable depends not only on its current state but also on information from the past.

When investigating fractional differential equations, the properties of the derivative type, such as the
condition at the initial moment, are of interest. In a fractional differential equation with the Caputo derivative,
the initial condition is the same as in an ordinary differential equation, whereas for the Riemann-Liouville
derivative, the initial condition must be well taken. In this regard, before addressing our problem, we will go
over some papers that deal with Riemann-Liouville fractional differential equations with delay. Benchohra et
al. [4] studied the following model with a zero initial condition:

EDgly(t) — gt, y)l= ft,y), t€(0,b], 0 <a <1, W
Y(1) = (1), t € (—00,0], '

where LDS‘ is the standard Riemann—Liouville derivative, ¢ € B with ¢(0) = 0, where B is the phase space
defined axiomatically by Hale and Kato. Several other papers have investigated the case where y(0) = 0 witha
finite or infinite delay (see [1,2,4,10,11,13,16,21]). It is well known that when the initial condition is nonzero,
i.e., y(0) # 0, the solution to the equations discussed in the preceding papers may not be bounded at some
neighborhood of the initial point # = 0. As a result, some researchers have considered weighted fractional
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differential equations; for example, Dong [10] studied the weighted functional fractional differential equation
with infinite delay of the form

LDgy(t) = ft,5), t€(0,b], 0 <a<l,
(1.2)
Yo=¢€B, te(—00,0],

where the existence and continuous dependence results of solutions are obtained, Dong et al. [11] investigated
the model (1.2) in an abstract Banach space and obtained the existence and uniqueness results using the
measure of non-compactness and the fixed point theorems, Abdo et al. [1] studied the weighted fractional
neutral functional differential equation of the form

ED§ly) — g6, 301 = f(t,5), 1 €(0,b], 0 <a <1,
(1.3)
y() =9, re (—O0,0]

The Banach and Schauder fixed point theorems were used to achieve the required results.

Since the presence of the stochastic term (random term) is important due to the possibility of unpredictability
in the characteristics of natural systems, stochastic differential equations are more adaptable to real-world
phenomena than deterministic ones. Fractional stochastic differential equations, in particular, are used to
study the memory and genetic properties of stochastic systems and have become a hot topic in recent decades.
Numerous academics have shown interest in these equations due to their applications in many fields of research,
such as disease transmission, option pricing, quantitative finance, and so on (see [8,9,15,16,18,20]).

Inspired by the works mentioned above, we consider the weighted fractional stochastic integro-differential
equation of the form

LDgu(t) = f(t. 10, [y a(t, s, @)ds) + g(t, @) 952, 1 € (0, ],
(1.4)
o=@ €B, e (—o0,0],

where LD(O)‘ denotes the Riemann-Liouville derivative of order 1/2 < o < 1, ¢ € (0, b], u(-) is a random
variable takes its values in a separable real Hilbert space H. f, a and g are appropriate functions to be specified
later. B is the phase space of functions mapping from (—oo, 0] into H described axiomatically in Sect. 2. The
notation #, represents the function defined by #,(0) = 7(t + 0) for 6 € (—o0,0]. (t) = t'~%u(r) and
@) = @) fort € (—o0,0].

The purpose of this study is to prove the existence of a solution to the model (1.4) with nonzero initial
values using the Kuratowski measure of non-compactness and the Monch fixed point theorem.

The paper is organized as follows: Section?2 introduces some fundamental notations and preliminaries.
Section 3 provides some sufficient conditions for the existence of a mild solution for the model (1.4). Section4
includes an example to demonstrate the obtained result.

2 Preliminaries

In this section, we introduce some basic definitions, lemmas, and notations that will be used to answer the
existence problem for our model (1.4).

Let H and K two real separable Hilbert spaces, and L (/C, ) the space of all linear and bounded operators
from IC to H, we use the same notation ||-|| to denote the norms in K, H and L(IC, H), and we use (-, -) to
denote the inner product of K and H. L }DC((O, b), 'H) is the space of Bochner integrable functions from (0, b)
into ‘H. Let (2, F, {F;};>0, P) be a complete probability space equipped with a normal filtration {F;};>0
satisfying the usual conditions. An H-valued random variable is an F-measurable function u(¢, -) : 2 — H;
in the rest of the paper, we write u(¢) instead of u(¢, @) for all w € Q.

Let {w(#)};>0 be a Q-Wiener process defined on (2, F, {F;};>0, P) with the covariance operator Q such
that Tr(Q) < oo. It is assumed that there exists a complete orthonormal system ¢ in K, and positive real
numbers A such that Q¢ = Aksk, k = 1,2, ..., and a sequence of independent Brownian motions such that

(Ww(t),e) =Y 72 Vrk(sk, e)fi(t), e€ K, t = 0.

@ Springer



Arab. J. Math. (2023) 12:499-511 501

The space of all strongly measurable, square integrable, H-valued random variables, denoted by

1
L>(£2,'H),is a Banach space equipped with the norm [lu(-)llz,@.#) = (E ||u(-)||2) 2, where Eu =
fQ u(w)dP. The family of all Fp-measurable, H-valued random variables u(0) is denoted by cg(sz, H).
Let C1_4((0, b]; £2(2, H)) be the Banach space of all continuous F;-adapted measurable process from (0, b]
1

into £5(2, H) such that lim, .o ¢'~*u (1) exists, with the norm lullc, , = sup,e.1 (E /! =u()]*).

In this paper, we consider the phase space 5, which fulfills the following fundamental axioms, which are
similar to those introduced by Hale and Kato [12] and Hino et al. [14]:

Definition 2.1 [1] B is a linear space of Fp-measurable functions mapping (—oo, 0] into H endowed with the
semi-norm |-|| g, which satisfies the following axioms:

(1) if x : (—oo, b] = H (b > 0) is continuous on (0, b] and xo € B, then for each ¢ € (0, b] the following
conditions hold
(@) x; € B;
() lx@®I < Llx/lg, where L > 0 is a constant;
©) llxtllp < K@)sup{llx(s)]| : 0 <s <t} + N(@) |lxollg, where K, N : [0, 0c0) — [0, 00), K is contin-
uous, N is locally bounded and K, N are independent of x(-). Denote

K =sup{K(t):1€(0,b]} and N =sup{N():1 € (0,b]};

(ii) for the function x(-) in (i), the function ¢t — x; is continuous from (0, »] into B;
(iii) the space B is complete.

Now, consider the following space P:

P={u:(—00,b] - H: ul(—c0,01 € B, ul©,p € C1-«((0, b]; L2(2, H))},
where u] (g, is the restriction of u over (0, b].
Lemma 2.2 [20] Foro € (0, 1]and 0 < a < b, we have |a® — b° | < (b — a)°.

Lemma 2.3 [5] Let the space M(IC,H) = {®(,) : ® isan L(K, H)-valued process on [0, b] X
Q such that ®(t) is Fi-measurable for all t € [0, bl}. If & € M(KC, H) with fob E | ®()|?ds < oo, then

b b
E| / @ (t, wydw(®)|* < Tr(Q) f E||®(1)]|*dr.
0 0

Let us now present some fundamental fractional calculus definitions and lemmas (see [7,17]).

Definition 2.4 [7] Let E be a Banach space. The Riemann—Liouville fractional integral of order « > 0 of a
function u : [a, b] — E is defined by

1

Ié:_ll(t) = m

t
/ (t — ) u(s)ds, t€la,bl,
0

provided that the right hand-side is point-wise defined on [0, co), where I'(-) denotes the Euler’s Gamma
function defined by I'(@) = [~ 1%~ le~"dr.

Definition 2.5 [7] Let « > 0 be fixed and n = [«a] + 1. The Riemann-Liouville fractional derivative of order

a of u : [0, 00) — E at the point ¢ is defined by

1 d” t
L —a—1
D8l+u(l‘) = m@/o ([ —S)n o M(S)ds, t e [Cl, b],

provided the right side is point-wisely defined, where [«] denotes the integer part of the real number «.
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Lemma 2.6 [7] Let 0 < a < 1, then the unique solutions to the equation Diu(t) = 0 are given by the
formula

ut) = ct*!

fort > 0, where ¢ € R is a constant, provided u € C(0,b] N L}OC(O, b). Further, if f € C(0,b] N LlloC (0, b]
such that D f € C((0,b]) N LL (0, b], then

loc
IEDEf(t) = f(t) +ct®!
fort > 0 and some constant ¢ € R.

Next, we introduce the concept of a measure of non-compactness.

Definition 2.7 [3] The Kuratowski measure of non-compactness 1 (-) defined on a bounded subset A of a
Banach space E is:

k
w(A) = inf {e >0:A=|_JA; and diam(4;) < e} .
i=1

Definition 2.8 [3] Let 1« denote the Kuratowski measure of non-compactness on the real Banach space X and

A, B C X be bounded. The following properties are satisfied:

(1) nw(A) = 0if and only if A is relatively compact,

(i1) w(A) = u(A), where A denotes the closure of A,

(iii) n(AU B) = max(u(A), u(B)),

@iv) If A C B, then u(A) < u(B),

v) H(AA) = |A|u(A), with A € R,

(vi) u(A+ B) < u(A) + pu(B),where A+ B={x+y:x €A,y € B},
(vii) w(A 4+ x9) < u(A) forall xg € E,
(viii) p(conv(A)) = u(A), where conv(A) is the closed convex hull of A.

Lemma 2.9 [3]If D C C([0, b], E) is bounded, then
w(D(t)) < uc(D)

forallt € [0, b], where D(t) = {u(t) : u € D} C E. Furthermore, if D is equicontinuous on [0, b], then
w(D(t)) is continuous on [0, b], and

nc(D) = sup wu(D(1)).
t€(0,b]

Lemma 2.10 [8] Let D = {u,} C C([0, b], E) be a bounded and countable set. Then u(D(t)) is the Lebesgue

integral on [0, b], and
b b
1% ({/ u,(t)dt|n € N}) < 2/ w (D(t))dr.
0 0

Theorem 2.11 [19] Let D be a bounded, closed and convex subset of E and xo € D. Let A : D — D be a
continuous mapping. If the implication

C =conv({xo UA(C)}) = u(C) =0

holds for every subset C C D, then A has a fixed point in D.
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3 Existence result

The mild solution of model (1.4) can be defined as follows:

Definition 3.1 A stochastic process u € P is called a mild solution of model (1.4) if

(1) u satisfies the equation LDg‘u(z‘) = f(t, Uy, fota(t, s, ug)ds) + g(t, ﬁ,)dﬁy), t € (0, b], with initial

condition uy = ¢ € B;
(i1) u(t) is measurable and F;-adapted for each ¢ € (0, b].

Using Lemma 2.6, the solution u to our model (1.4) satisfies the following stochastic integral equation

t
[ (t — ) g(s, Hy)dw(s).
0

t S
u<r>=t°‘—‘¢<0>+#/ <r—s)°‘—‘f<s,ﬁx,/ a(s,r,iz»clr)dwL
0 0 I'(@)

I'a)

Before demonstrating our existence result for the model (1.4), we will make a list of hypotheses that will be

enforced in our main theorem.
(H1) The function f : (0, b] x B x 'H — H satisfies the following conditions:

(i) f(,-,-) : BxH — H is continuous for each ¢ € (0, b], and for every (¢, ) € B x H, the function
t — f(t, ¢, ¥) is strongly measurable;

(ii) there exists pyr € L'((0, b1, [0, 00)) and a continuous non-decreasing function 6 : [0, c0) — [0, c0)
such that for all (¢, x, y) € (0, b] x B x H, we have

E £, x, WI* < pr)0rlxg +Ellyll*);

1
(iii) there exists a function ¢y € L« ((0, b], [0, 00)), @1 € (0, &) such that for each bounded set D; € B
and D> € H,

p(f(t, D1, D2)) < £p(0) ( sup  pu(D1(0)) + M(D2)> .

—00<6<0

(H2) The function g : (0, b] x B — L(K, H) satisfies the conditions:

(i) g, ) : B— L(K,H) is continuous for each ¢t € (0, b], and for every ¢ € B, the function t — g(¢, ¢)
is strongly measurable;
1

(i) there exists p, € L% ((0, b], [0, 00)), a2 € (0,2c — 1) and a continuous non-decreasing function
0, : [0, 00) — [0, 00) such that for all (¢, x) € (0, b] x B, we have

E [lg(t, )II* < pe()8e(Ilx11%);

s
(iii) there exists a function ¢, € L ((0, b], [0, 00)), a3 € (0, 2“2_ L such that for each bounded set D3 € B,

w(g(t, D3)) < &g(r) sup  u(D3(0)).

—00<6<0

(H3) The function a : (0, b] x [0, b] x B — 'H satisfies:

(i) for each (¢,s) € (0, b] x [0, b], the function a(t, s, -) : B — H is continuous and for each x € B, the
function (¢, s) — a(t, s, x) is strongly measurable;
(i1) there exists L1 > 0 such that

t 2
JEH/ a5, 0ds| " < Ly + e I);
0

(iii) there exists Lo > 0 such that for each bounded set D4 € B,

w(a(t,s, Dg)) < Ly sup u(D4(0)).
—00<6<0
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Theorem 3.2 Assume that the hypotheses (H1)—(H3) hold, then the model (1.4) has a solution on (—o0, b] if
the following condition holds:

2011 (1+2bLy) |y ”Lﬁ (I —apt~™

TrQ) [ge] o (1 =200+
[(e) (e — o)~ " r = =t
(@)Q2a —1—2a3) 2

lp =

(3.1)

Proof According to the Definition 3.1, u is a mild solution to (1.4) if

t N
r“-1<o<0)+ﬁ/ (t—S)"‘_lf(s,LTs,/ a(s, T, iy )dr)ds
0 0

_ 1
u(t) = +ﬁ/ (t —5)% Lg(s, T5)dw(s), 1 €(0,b],
0

(1), t € (—o00,0].
Let ¢ be a function defined by

_ [0, re.b],
() = {(p(t), t € (—00,0].

We extend 7 to (—oo, b], which is defined as

~n |t %z(@), te€(0,b],
Zm—{ 0, e (—o0,0]

It is obvious that if u satisfies the integral equation

u(t) = 19- 1¢(0)+m/ t — )% f (s, us,/‘ as, 7, i2)d7)ds

r( )/ (r —)* g(s, wy)dw(s), t e (0,b],

then we can decompose u(-) as u(t) = z(t) +¢(r), which implies that (z) = Z(t) +@(t), and thus u; = Z; +¢;,
where z(t) satisfies,

t s
2(t) = 147! (0)+— (t—s)""lf(s,z'}-l—@,/ a(s, t, Z1 + @2 )dr)ds
I'(a) 0

+ %/0 (t — ) g(s, 25 + @s)dw(s), 1 > 0.

Set Pp = {z: (=00, b] — H, zl(0,p) € C1-«((0, b]; H), zo = 0}. For z € Py, and let ||z||p, be the seminorm
in Py defined by

1

— 2\ 2

lzllp, = lzlle,, +lzolls = sup (E[r'=z]")
te(0,b]

Then (Po, ||[lp,) is a Banach space. Let B, defined by B; = {z € Po ; ||z||73 q}. The set B, is clearly
bounded, closed, and convex.
Choose ¢ satisfies

3b i 3b!0Tr(Q) = T—an T
Ga =D M prlu + = 9g(M2)<2a——1—052> Pl

q = 3E o)) +
L%

where

My =2K%q +2N llol% + Li(1 +2K2g + 2N [|ol%),
M, =2K?q +2N llgl}.
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Define the operator ¥ : Py — Py as follows:
s

(W2)(1) = 1~ 1<p<0)+mf< > fs, 2 +<p1fo a(s, t, 2y + @r)dr)ds

1 )f (1 — 9% g(s, 5 + G0 dw(s).

We will prove by Monch’s fixed point theorem that W has a fixed point.
Step 1: ¥ maps By into itself.
Using Holder’s inequality and Lemma 2.3, we obtain for ¢ € (0, b],

E |~ wz)0)|’

—o t S

! /(r—s)“—lf(s,fer@,/ a(s, t, 2y +go~,)dr)ds||2
I'(a) Jo 0

Tt /t(t — )% Lg(s, 2y + @o)dw(s) ||2
() Jo B

<3E (e +

t2(l—oz)
I (a E

t s
Hf t =9 fis. 5 +¢;,f als, v, 2 + g)do)ds|?
0
32(1-a)

")

E| f (t — )" g(s, 5 + Goduw(s) |
2(1 o)
r2(a)

3:20=9Tr(Q) _ -~
e /0 (t — ) DE|Ig(s, 25 + @)lI* ds.

<3E [lp0)[I* + f (t — )@ 1>dsf E|| £ s, zs+gos,f as,t, % + ¢ndo) | ds

Moreover, we have

12513 + 2 19: 115

K? sup EZ(@0))% +2N?1%0ll% + 2K? sup E (@)1 + 2N Igol%
7€[0,s] 7€[0,s]

<2K? sup E[Z(0)1? + 2N llgl%
7€[0,s]

< 2K +2N llol. (3.2)

12+ @ l% <2
<2

As aresult of hypotheses (H1, H2, H3)-(ii) and inequality (3.2), we get
_ 2
E w0
<3E eI + pr @607 (15 + G+ E| [ ats. .5+ Gde s
X Qo — 1)F2(Ol) 0 f f K sl B 0 » Uy Ly s

3r21-0Tr(Q)
2 (e)

3t ! ’N ~ - -~
3RO+ ——— 07 (2K*q + 2N [lliz + L1(1 + 2K*g + 2N [¢ll3))d
IO + s [ Py, (2R +27 Lol + Li(1 +2R% + 28 I I))ds

32T r(Q)
()

) 3t ~ /’ )
< 3E o)l +—( I )9f(M1)< pr(s)ds

32090700 ) ([ uenias)
B 5 ([0 ([

t
/0 (t — )2V ()8, (125 + G5ll%) ds

t
/0 (t — )@ Vp, ()0, (2K*q + 2N llplg) ds
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3t ~
<ENOF + 5o % 0 [psl

3t2(1—0t)Tr(Q) ~ 1—a 1—ay ey
i 2ol () Il

Finally, we conclude,

1Wzld, = sup E ¢~ wa)n)|*
te(0,b]

3b ~
SEIOI + oo O [ [

3plImRTrQ) ~ l—ay '™
e 20 ) (725 el

<q.

Step 2: W(By) is equicontinuous.
Letz € By and t1, 1, € (0, b] such that 0 < #; < 1, < b, then we have
1—« l—a 2
E |7 W) @) - W)
11—« ) l—« 1 s
t2 / (th — )% 1 = tl—/ (t —s)"‘_l)f(s Zs + @ / a(s, T, 2+ —}-(Z)V)ah:)dsH2
F( ) F((X) » L8 S » LH KT T

1 o
/ CEDESE (a)/ R ORI At

r() r

HF( )/ —8)%" 1 _ 1 Y —S)a—l)f(S,Z?+(/3;,‘/() a(s, T, 2. +9;f)d‘17)dsH2
- F(a)/ e —HDS’/Sa(Sa T, Zr +§0~r)dr)dsH2

11 2
s [ (17 = 9 = = ) 6.5+ du)|
@ Jo

L[, a1 o = | ~ 2
+4E % ty “(—9)" "g(s,zs + @s)dw(s) H
141

(3.3)

N
.M#
=

i=1

First, we calculate /1 and I, using hypotheses (H1, H3)-(ii), inequality (3.2), and Holder’s inequality.

1 1 - - Ky - - 2
I o=4E|—— / (30— = = ") f 6. 5 + / a(s, 7, & + odoyds |
I'(x) Jo 0

4 o
ST )/
rz(a)/

S 2
X/ EHf(s,Z}Jrﬁs,/ a(s,t, 2z +q3})df)H ds
0 0

8 n 2(1—a) _ _1\2 _ —_a\? h —
< o N2 N2 | l—a _  l-o N 2(ax—1)
< P (/o 1 (2 —9) (1 —s)* ") ds + (t2 1 ) 5 (t; —s) ds>

n K 2
X/ E“f(s,z'?vL@,/ a(s, r,z~1+¢2)dr)H ds
0 0

2
ds

2 141 K
(=) — 1/ 7%y —s)“_1| dS/ E’f(s,z?rﬁs,/ a(s, t, zr + @)dr)
0 0

2
ds

(2= 9" = (=9 (=) (17— 1)
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8 20-a) [ a1 a1 - La\2 [ ot
S Fz(a)<[2 ) A (1 — )2V — (1 — 5)*@ )ds—|—<t2 * 1 “) i (1) — 5)2@ )ds)

51 ~
X /0 pr(s)0r(My)ds

2(1-a) (201 2a—1 20—1
1 <tl + (tp — t1) ) ) t12a—1(t21—a _ tll—a)z

<
2 (o) 200 — 1 200 — 1

 8lpsly 05
Qa — DI («)

|27 65 (MY)

(bz(l—oc) (t12a71 + (IZ _ tl)Za—l _ t220171> + bZa—l(tzlfa _ t]l*Ol)Z) ,

and

N

1 f2 - - 2
L= 4EH —/ B %t — ) (s, 5+ <ps,/ a(s, 7, zr + @7 )dr)ds H
F((X) 1 0

4t2(17a) t ) s 2
2  \20@=1) ~ |~ ~ | o~

. f (12— ) dsf E“f(s,zs+<ps,/ als, 7. % +¢do)| ds
r (C() 1 n 0

4t22(1_0‘) (th — t1)205—1
Qo — DI (a)

4b2(17(x)(t2 _ t1)2a71
Qa — DI (a)

Second, we calculate I3 and /4 using hypothesis (H2)-(ii), Lemma 2.3, and inequality (3.2).

|27 07 (M)

[P0 65D,

AN

1 g l—a a—1 l—a a—1 o ~ 2
’“‘”EHW)/O (57 = = = 1) 65, 5 + Gdus) |

43% On =9 o0 = 97 Blgts, 5 4+ g1 ds
< % 0” 1 (09— 9 ) -9 (47— ) R llgs. 5+ 01 ds
< %{gl_w /O (1 =9~ = (2 = 9)"7") Ellg(s. & + @) ds
8Tr(0) (;21—“ - tf—“)z |
+ @) /O (11 =) DEllg(s. & + @)l ds
T () ) ]y o

+

2
l—a _ -« 1—
STe(0) (17 =) /1 4 ) i
() —w ! Sllpa; 8

BTH(Q)(1 —@2)' ™2 [ pg]| 1 0(M2)
M@)Qa — 1 —ay)l—®
% (bZ(lfot) (t12a717a2 F oty — 1)1 12201717012) 4 pRoe—l-m (tzl—a _ tll—oz>2 )

~

and

1y =4E| /tzrl‘“(t (s 5 + godus) |
= _— —s S, w(s
T ), T s e

2(1—a)
_ AT

[5)
_20@—1) ~ | ~2
R f (tr — )2 DR |lg(s, & + )12 ds

1

@ Springer



508 Arab. J. Math. (2023) 12:499-511

4Tr ()5

~

1— 1—an e
( = ) (tr — )21 HPgHL% 0o (M)

2(a) 20 —1—a
20=0) (] _ gyl (gy — gy)20- 1@ 2
 ATHQR 0 — )21 — 1) el 1 05V,
M2(a)2a — 1 —ap)l—@ Hlem

Substituting (I1) — (I4) into (3.3), we get
2
E [ Wa)@) - W)

8 oyl 0 (D)
< . (bZ(l—a) (tZa—l — )21 _ t2a—l> pRa—ll-a _ -« 2)
(Za—l)FZ(a) 1 + (1 1) 2 + (2 1 )

4b2(1701)(t2 _ tl)ZOlfl || || ; (ﬁ)
Qa — D2y 1Pl P
8Tr(Q)(1 — )~ [ pg | 1 0 (W2)
M@)o — 1 —ap)l-
2
x (bz(““) (tlz"‘_l_” +(ty — 1) 172 tzza_'_‘“) + pPelme (tzl‘“ — tll“") )

ATr(Q)D*1 =0 (1 — o) 172 (1 — 1) 22172
M@)Ra — 1 —ap)l—

As a result, according to Lemma 2.2, the right hand side of the previous inequality tends to zero as t; — 1.
Thus, W (B,) is equicontinuous.

Step 3: W is continuous.

Let {z,}nen be a sequence such that {z,,} converges to z in B, as n — o0. It is clear from axiom (i) in the
Definition 2.1 that {z,s}ney — 2z uniformly for s € (0, b] as n — 00, and then {Zs}neny — Zs as n — o0,
we can deduce from hypotheses (H1, H2, H3)-(1),

+

[ s, 2 62(D).

a(s, T, Znr + @) = a(s, 7, 7r + ¢r), asn — oo,
S s

f(safzns +(15;7/ a(svfagn‘[ +§5"E)df)_>f(svgi‘ +{5’Y’/ a(svtafZT +(ﬁ[)df), asn_)ooy
0 0

8(s,Zns + @) — (5, %5 + @5), asn — oo.

From hypotheses (H1, H2, H3)-(ii), Holder’s inequality, Lemma 2.3, and the dominated convergence theorem,
we have

E 11wz, (1) — 1w 0|

(- t - - s . o s L 2
B[ [ (£6. Tt [ ats v T GOd0 -6 E [ atsw e gdn as|
I'(@) Jo 0 0
(- t | 2
428 o [ = 9 6B ) = 805, + 00 due)|
I'(@) Jo

b t " N N " " " " N - N 2
e / E|£65. 70+, / a(s, 7. Fae+@)AT)— £ (5, 5+ s, / a(s, 7. Ze+g)dn) | ds
a—DI (@) Jo 0 0

2Tr(Q)r>1=)
I2(a)

As a result, ¥ is continuous.

Step 4: W satisfies Monch’s condition.

Assume that D C B, be countable and D C conv({0} U W (D)). We prove that D is relatively compact,
that is, (D) = 0. -

From the above steps, it is easy to see that D = (-)!~®D is bounded and equicontinuous. According to
Lemma 2.9 and Definition 2.8, we can derive for ¢ € (0, b] the following,

u(D@) < sup w(D@) = sup pu(t'~*D(1))
te(0,b] te(0,b]

t
/ (t — )@ VR ||g(s, Zns + @) — g(5. %5 + @ l2ds — 0 as n — oo,
0
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< sup p(t' (W D)(1))
te(0,b]

t tl—oz - N s - N
< (@) + sup u (/ (t — )" f(s, Ds + @5, / a(s, 7, D + ‘Pr)df)ds)
1€(0,b] 0o I'@) 0

t tlfot — _
+ sup pu (/ (t — ) 'g(s, Dy + %)dw(S))
1€(0,b] 0o I'lw)

< I + b 3.4)
From Lemma 2.10, hypotheses (H1, H3)-(iii), we get

t tl—oz — - K — N
I = sup M(f (1 _S)a_lf(s’ D +(PSa/ a(s, 7, Dy +¢r)df)ds>
te.b] NJo T'(@) 0

a—1
ze(Ob]F(Ot) / =) (f(s D, +‘/’S’/0 a(s, 7, D +<Pr)df)>

<2 su

_ el
te(Ob]F(a)/(t SV (s)

><< sup M(Es(9)+</7s(9))+u(/ a(s,f,ﬁr(G)-i-(ﬁr(@))df))ds
0
<2 su

—00<6<0
a—1
te(Ob]F(Ol)/(t ST 6)

<(_sup_ pB@)+ 760 +2 [ Lo sup u(Bo®) +o)dr)ds
—00<6<0 0 —00<6<0

<2 f (t =) sup_ uDop) +2 /O Ly sup w(D@)dr)ds

—oo<n<s —00<VU<T

te(O b]F(Ol)

bl o - - t
< ( sup sup u(D(n))+ sup sup u(D()) x 2bL2) sup / (t — ) '¢p(s)ds
(o) No<r<p 0<p<s 0<1<b 0<9 <t 1€(0,61 J0

l—a 1—ay
sup p(D()(1 + 2bLy) (%) e er|

[(a) 0<v<h
2b'- (1 +2bL») ||§'f“ O% 1—ay l—ar
< T ( ) w(D) (3.5)
(@) a—a

For any u, v € B, applying Lemma 2.3, we obtain

Hr( )/ (t — )" (g(s, Ty + @) — g(s. vs-i-(ps))dw(s)H

?1=ITr(Q)

3 f (t — )" DE|lg(s, s + &) — gs, s + @5)II> ds.
I'“(a) 0

X

By the properties of the measure of the stochastic integral (see [6]) and (H2)-(iii), we have

t tl—oc | —
Iy = sup u / (t —5)“ " g(s, Dy + @5)dw(s)
0<1<b ( o I'(a) T )

lfoz

< sup
0<t<p (@)

, - }
) /0 (1t =572 (ug(s, Dy +§0)” ds )

< sup VTG / (t —s)*@ D (; (s) sup u(Dy(0) + @5(6))

o<t<h (@) —00<6<0
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2 1
< sup YD VTHO) /(f )2 ”<Q@>sm>udiu») m)2

o<t<p (@) Op<s
blfa /—T ~ / |
S e AL sup  sup p(D(u)) sup (/ (;_s)2<a—1>§ég(s)ds)z
(o) o<k o<psr 0<r<b N JO
1203
b'"*VTr(Q) 1 —2a3 2 201 Zamio2ay
S——F s MD<»(———__> R
F(Ot) 0</Lgb H 1 — 203 ” Cg ” 3
O &+, 1, B
s = = D). 3.6
F(Ol) (2&-1—20{3 M( ) ( )

Substituting (3.5) and (3.6) into (3.4), we get for ¢ € (0, b],

sup n(D(1))

t€(0,b]
1-2
26" (1 +2bLo) [gr| 1 (1 —ap)'™ WO [ o (=277
< 5 SE + 2 = (D).
(@) (@ —a1) T(@)Q2a — 1 — 2a3)
Hence

(D) < loju(D).

Since lp < 11in (3.1), we get w(D) = 0, which implies that (D) = 0, proving that the set D is relatively
compact. We conclude from Theorem 2.11 that W has a fixed point that is a mild solution to the model (1.4). O

4 Example

Consider the following weighted fractional stochastic integro-differential equation with infinite delay:

Lpguy = [ p(s — Dii(s)ds + [yt —s) [* 9 (x — 9)ii(r)drds
+ [ EGs = DE(s)ds 2 1 e (0, b, 4.1
uo(ty — =o(t), te(-00,0],

where % < a < 1. We denote by PC, x LP(h, H) the space of all functions ¢ : (—o00, 0] — H such that

@l[=r,0] € PC([—r, 0], H), ¢(-) is Lebesgue measurable on (—oo, —r), and h llo||? is Lebesgue integrable on
(=00, —r) (see [14] for details). The seminorm is given by

0 _ »
lolls = wpuww+</ mwwwm).

—r<s<0 —00

In addition, we assume that the following conditions hold:
The functions p, &, ¢ : R — R are continuous, with

O p2(s) 0 £2(s) 0 92(s)
cp=/ ——ds <00, g = ——ds < o0, 619:/ ——ds < oo,
—o0o h(s) —o0o h(s) —o0o h(s)

We choose B = PCy x Lz(fz, ‘H). Fort € (0, b] and ¢ € B, we give

t 0 t 0
f(t,go,/ a(t, s,go)ds) :/ p(S)e(s)ds —I—/ (t— s)f p(t)p(r)drds,
0 -0 0 —00

0
g, p) = / p(s)p(s)ds,

—00
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Obviously, 07(t) = 0,(t) = t. Under the above conditions, we can represent the Example (4.1) by the
model (1.4).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit
line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To
view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Funding No funding is availed for this research work.
Data availability statement Not applicable.
Declarations

Conflict of interest The author declares that he has no conflict of interest.

References

1. Abdo, M.S.; Panchal, S.K.: Weighted Fractional Neutral functional Differential equations. J. Sib. Fed. Univ. Math. Phys.
11(5), 535-549 (2018)

2. Aissani, K.; Benchohra, M.; Benkhettou, N.: On fractional integro-differential equations with state-dependent delay and
non-instantaneous impulses. CUBO Math. J. 21, 61-75 (2019)

3. Banas, J.; Goebel, K.: Measure of Noncompactness in Banach Spaces, Lecture Notes in Pure and Applied Mathematics.
Marcel Dekker, New York (1980)

4. Benchohra, M.; Henderson, J.; Ntouyas, S.K.; Ouahab, A.: Existence results for fractional order functional differential
equations with infinite delay. J. Math. Anal. Appl. 338, 1340-1350 (2008)

5. Curtain, R.F,; Falb, P.L.: Stochastic differential equations in Hilbert space. J. Differ. Equ. 10, 412-430 (1971)

6. Deng, S.; Shu, X-B.; Mao, J.: Existence and exponential stability for impulsive stochastic functional differential equations
driven by fBm with noncompact semigroup via Monch fixed point. J. Math. Anal. Appl. (2018)

7. Diethelm, K.: The Analysis of Fractional Differential Equations. Springer, Berlin (2010)

8. Ding, Y.; Li, Y.: Controllability of fractional stochastic evolution equations with nonlocal conditions and noncompact semi-
groups. Open Math. 18, 616-631 (2020)

9. Diop, A.; Diop, M.A.; Ezzinbi, K.; Mané, A.: Existence and controllability results for nonlocal stochastic integro-differential
equations. Int. J. Probab. Stoch. Process. (2020)

10. Dong, Q.: Existence and continuous dependence for weighted fractional differential equations with infinite delay. Adv. Differ.
Equ. 190 (2014)

11. Dong, Q.; Liu, C.; Fan, Z.: Weighted fractional differential equations with infinite delay in Banach spaces. Open Math. 14,
370-383 (2016)

12. Hale, J.K.; Kato, J.: Phase space for retarded equations with infinite delay. Funkcial. Ekvac 21(1), 11-41 (1978)

13. Henderson, J.; Ouahab, A.: Fractional functional differential inclusions with finite delay. Nonlinear Anal. 70, 2091-2105
(2009)

14. Hino, Y.; Murakami, S.; Naito, T.: Functional Differential Equations with Infinite Delay. Springer, Berlin (2006)

15. Hu, J.; Yang, J.; Yuan, C.: Controllability of fractional impulsive neutral stochastic functional differential equations via
Kuratowski measure of noncompactness. J. Nonlinear Sci. Appl. 10, 3903-3915 (2017)

16. Kalamani, P.; Baleanu, D.; Selvarasu, S.; Arjunan, M.M.: On existence results for impulsive fractional neutral stochastic
integro-differential equations with nonlocal and state-dependent delay conditions. Adv. Differ. Equ. 2016, 163 (2016). https://
doi.org/10.1186/s13662-016-0885-4

17. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier Science
B.V, Amsterdam (2006)

18. Li, Y.: Existence of solution of nonlinear second order neutral stochastic differential inclusions with infinite delay. Int. J.
Math. Comput. Sci. 8(8), 1142-1148 (2014)

19. Monch, H.: Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces.
Nonlinear Anal. 4, 985-999 (1980)

20. Yang, M.; Gu, H.: Riemann Liouville fractional stochastic evolution equations driven by both Wiener process and fractional
Brownian motion. J. Inequal. Appl. 8, 1-19 (2021)

21. Zhang, X.: Some results of linear fractional order time-delay system. Appl. Math. Comput. 197, 407411 (2008)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

@ Springer


http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1186/s13662-016-0885-4
https://doi.org/10.1186/s13662-016-0885-4

	Weighted fractional stochastic integro-differential equation with infinite delay
	Abstract
	1 Introduction
	2 Preliminaries
	3 Existence result
	4 Example
	References




