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Abstract This paper is devoted to the study of a class of impulsive nonlinear evolution partial differential
equations. We give new results about existence and multiplicity of global classical solutions. The method used
is based on the use of fixed points for the sum of two operators. Our main results will be illustrated by an
application to an impulsive Burgers equation.

Mathematics Subject Classification 35R12 · 47H10 · 47J35 · 35A01

1 Introduction

Mechanical systems with impact, heart beats, blood flows, population dynamics, industrial robotics, biotech-
nology, economics, etc are real world and applied science phenomena which are abruptly changed in their
states at some time instants due to short time perturbations whose duration is negligible in comparison with the
duration of these phenomena. They are called impulsive phenomena. A natural framework for mathematical
simulation of such phenomena are impulsive differential equations or impulsive partial differential equations
when more factors are taking into account.

Whereas impulsive differential equations are well studied, see for example the books [4,8,39,42] and
the references therein, the literature concerning impulsive partial differential equations does not seem to be
very rich. The history of impulsive partial differential equations starts at the end of the 20th century with
the pioneering work [15], in which, impulsive partial differential systems have been showed to be a natural
framework for the mathematical modeling of processes in ecology and biology, like population growth, see
also [10]. We can find studies of first order partial differential equations with impulses in [5,21,30,40].
Higher-order linear and nonlinear impulsive partial parabolic equations were considered in [19]. An initial
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boundary value problem for a nonlinear parabolic partial differential equation was discussed in [9]. The
approximate controllability of an impulsive semilinear heat equation was proved in [1]. A class of impulsive
wave equations was investigated in [18]. In [27] a class of impulsive semilinear evolution equations with delays
is investigated for existence and uniqueness of solutions. The investigations in [27] includes several important
partial differential equations such as the Burgers equation and the Benjamin–Bona–Mahony equation with
impulses, delays and nonlocal conditions. A class of semilinear neutral evolution equations with impulses and
nonlocal conditions in a Banach space is investigated in [2] for existence and uniqueness of solutions. To prove
the main results in [2] the authors use a Karakostas fixed point theorem. In [2] an example involving Burger’s
equation is provided to illustrate the application of themain results. Some studies concerning impulsiveBurgers
equation can be found in [14,25,33].

Many classical methods have been successfully applied for solving impulsive partial differential equa-
tions. By using variational method, the existence of solutions for a fourth-order impulsive partial differential
equations with periodic boundary conditions was obtained in [28]. The Krasnoselskii theorem is used to prove
existence and uniqueness of solutions for impulsive Hamilton–Jacobi equation in [34]. Some other references
on impulsive partial differential equations are: [3,7,11,16,17,22–24,26,32,35,38,41].

In this paper, we investigate the following class of nonlinear impulsive evolution partial differential equa-
tions

ut + (ψ(u))x = 0, t ∈ J\{t1, . . . , tk},
J = [0, T ], x ∈ R,

u(t+j , x) = u(t−j , x) + I j (x, u(t j , x)), j ∈ {1, . . . , k},
x ∈ R,

u(0, x) = u0(x), x ∈ R, (1.1)

where

u(t+j , x) = lim
t→t+j

u(t, x), u(t−j , x) = lim
t→t−j

u(t, x) x ∈ R, j ∈ {1, . . . , k}.

Note that for ψ(u) = 1
2u

2, we get impulsive Burgers equations. Assume that

(A1) 0 = t0 < t1 < · · · < tk < tk+1 = T , u0 ∈ C1(R), 0 < u0 ≤ B on R for some positive constant B,
(A2) ψ ∈ C1(R), and

|ψ ′(u(t, x)))| ≤ b1(t, x) + b2(t, x)|u(t, x)|l ,
(t, x) ∈ J × R, b1, b2 ∈ C(J × R), 0 ≤ b1, b2 ≤ B on J × R, l ≥ 0,

(A3) I j ∈ C(R2), |I j (x, v)| ≤ a j (x)|v|p j , x ∈ R, v ∈ R, a j ∈ C(R), 0 ≤ a j (x) ≤ B, x ∈ R, p j ≥ 0,
j ∈ {1, 2, . . . , k},

(A4) there exist a positive constant A and a function g ∈ C(J × R) such that g > 0 on (0, T ] × (R\{x = 0})
and

g(0, x) = g(t, 0) = 0, t ∈ [0, T ], x ∈ R,

and

2(1 + t) (1 + |x |)
∫ t

0

∣∣∣∣
∫ x

0
g(t1, s)ds

∣∣∣∣ dt1 ≤ A, (t, x) ∈ J × R.

In the last section, we will give an example for a function g that satisfies (A4). Assume that the constants
B and A which appear in the conditions (A1) and (A4), respectively, satisfy the following inequalities:

(A5) AB1 < B, where B1 = 2B + T
(
B2 + B2+l

) + ∑k
j=1 B

1+p j , and

(A6) AB1 < L
5 , where B1 = 2B + T

(
B2 + B2+l

) + ∑k
j=1 B

1+p j and L is a positive constant that satisfies
the following conditions:

r < L < R1 ≤ B, R1 + A

m
B1 >

(
1

5m
+ 1

)
L ,

with r and R1 are positive constants and m is the constant which appear in (A6).
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Our aim in this paper is to investigate the problem (1.1) for existence of classical solutions. Let J0 =
J\{t j }kj=1 and define the spaces PC(J ), PC1(J ) and PC1(J, C1(Rn)) by

PC(J ) = {g : g ∈ C(J0), ∃g(t+j ), g(t−j ) and g(t−j ) = g(t j ), j ∈ {1, . . . , k}},
PC1(J ) = {g : g ∈ PC(J ) ∩ C1(J0), ∃g′(t−j ), g′(t+j ) and g′(t−j ) = g′(t j ), j ∈ {1, . . . , k}}

and

PC1(J, C1(R)) = {u : J × R → R : u(·, x) ∈ PC1(J ), x ∈ R and u(t, ·) ∈ C1(R), t ∈ J }. (1.2)

Our main results are as follows.

Theorem 1.1 Under the hypotheses (A1), (A2), (A3), (A4) and (A5), problem (1.1) has at least one solution
in PC1(J, C1(R)).

Theorem 1.2 Assume that the hypotheses (A1), (A2), (A3), (A4) and (A6) are satisfied. Then the problem
(1.1) has at least two nonnegative solutions in PC1(J, C1(R)).

Our work is motivated by the interest of researchers for many mathematical questions related to impulsive
partial differential equations. In fact, some important applied problems reduce to the study of such equations,
see for example, [6,13,20,23,29,36,43]. Some applications of the impulsive PDEs in the quantum mechanics
can be found in [36]. The asymptotical synchronization of coupled nonlinear impulsive partial differential
systems in complex networks was considered in [43]. Applications are given to models in ecology in [20].
Applications to the population dynamics are given in [6,13,23]. A cell populationmodel described by impulsive
PDEs was studied in [29].

This paper is organized as follows. In the next section, we give some existence andmultiplicity results about
fixed points of the sum of two operators. Then in Sect. 3, we prove our main results. First, we give an integral
representation and a priori estimates related to solutions of problem (1.1). Then, we use these estimates to
prove Theorems 1.1 and 1.2 by using the results on the sum of operators recalled in Sect. 2. Finally, in Sect. 4,
we illustrate our main results by an application to an impulsive Burgers equation.

2 Fixed points for the sum of two operators

The following theorem concerns the existence of fixed points for the sum of two operators. Its proof can be
found in [18].

Theorem 2.1 Let E be a Banach space and

E1 = {x ∈ E : ‖x‖ ≤ R},
with R > 0. Consider two operators T and S, where

T x = −εx, x ∈ E1,

with ε > 0 and S : E1 → E be continuous and such that

(i) (I − S)(E1) resides in a compact subset of E and
(ii) {x ∈ E : x = λ(I − S)x, ‖x‖ = R} = ∅, for any λ ∈ (

0, 1
ε

)
.

Then there exists x∗ ∈ E1 such that

T x∗ + Sx∗ = x∗.

In the sequel, E is a real Banach space.

Definition 2.2 A closed, convex set P in E is said to be cone if

(i) αx ∈ P for any α ≥ 0 and for any x ∈ P ,
(ii) x,−x ∈ P implies x = 0.

Definition 2.3 A mapping K : E → E is said to be completely continuous if it is continuous and maps
bounded sets into relatively compact sets.
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Definition 2.4 Let X and Y be real Banach spaces. A mapping K : X → Y is said to be expansive if there
exists a constant h > 1 such that

‖Kx − Ky‖Y ≥ h‖x − y‖X
for any x, y ∈ X .

The following theorem concerns the existence of nonnegative fixed points for the sum of two operators.
The details of its proof can be found in [12] and [31].

Theorem 2.5 Let P be a cone of a Banach space E; � a subset of P and U1,U2 and U3 three open bounded
subsets of P such that U 1 ⊂ U 2 ⊂ U3 and 0 ∈ U1. Assume that T : � → P is an expansive mapping,
S : U 3 → E is a completely continuous and S(U3) ⊂ (I−T )(�). Suppose that (U2\U 1)∩� 
= ∅, (U3\U2)∩
� 
= ∅, and there exists w0 ∈ P\{0} such that the following conditions hold:

(i) Sx 
= (I − T )(x − λw0), for all λ > 0 and x ∈ ∂U1 ∩ (� + λw0),
(ii) there exists ε > 0 such that Sx 
= (I − T )(λx), for all λ ≥ 1 + ε, x ∈ ∂U2 and λx ∈ �,
(iii) Sx 
= (I − T )(x − λw0), for all λ > 0 and x ∈ ∂U3 ∩ (� + λw0).

Then T + S has at least two non-zero fixed points x1, x2 ∈ P such that

x1 ∈ ∂U2 ∩ � and x2 ∈ (U 3\U2) ∩ �

or

x1 ∈ (U2\U1) ∩ � and x2 ∈ (U 3\U 2) ∩ �.

3 Proof of the main results

3.1 Integral representation and a priori estimates related to solutions of problem (1.1)

In the sequel, we will denote the space PC1(J, C1(R)) defined in (1.2) by X and it will be endowed by the
following norm:

‖u‖ = sup

{
sup

(t,x)∈[t j ,t j+1]×R

|u(t, x)|, sup
(t,x)∈[t j ,t j+1]×R

|ux (t, x)|,

sup
(t,x)∈[t j ,t j+1]×R

|ut (t, x)|, j ∈ {1, . . . , k}, i ∈ {1, . . . , n}
}
,

provided it exists.

Lemma 3.1 Under hypothesis (A2) (respectively, (A3)) and for u ∈ X with ‖u‖ ≤ B, the following estimate
holds:

|ψ ′(u(t, x))| ≤ B(1 + Bl),

respectively,

|I j (x, u(t, x))| ≤ B pj+1, j ∈ {1, . . . , k},
∣∣∣∣∣∣

k∑
j=1

I j (x, u(t, x))

∣∣∣∣∣∣ ≤
k∑
j=1

B pj+1, (t, x) ∈ J × R).

Proof (i) The estimation of |ψ ′(u(t, x))|, (t, x) ∈ J × R :
|ψ ′(u(t, x))| ≤ b1(t, x) + b2(t, x)|u(t, x)|l

≤ B + Bl+1

= B(1 + Bl).

123



Arab. J. Math. (2023) 12:573–585 577

(ii) The estimation of |I j (x, u(t, x))|, (t, x) ∈ J × R, j ∈ {1, . . . , k} :
|I j (x, u(t, x))| ≤ a j (x)|u(t, x)|p j

≤ B pj+1.

(iii) The estimation of
∣∣∣∑k

j=1 I j (x, u(t, x))
∣∣∣ , (t, x) ∈ J × R :

∣∣∣∣∣∣
k∑
j=1

I j (x, u(t, x))

∣∣∣∣∣∣ ≤
k∑
j=1

|I j (x, u(t, x))|

≤
k∑
j=1

B pj+1.

This completes the proof. ��
For u ∈ X , define the operator

S1u(t, x) = u(t, x) +
∫ t

0
ψ ′(u(s, x))ux (s, x)ds

−u0(x) −
∑

0<tk<t

Ik(x, u(tk, x)), (t, x) ∈ J × R.

Lemma 3.2 Suppose (A1)–(A3). If u ∈ X satisfies the equation

S1u(t, x) = 0, (t, x) ∈ J × R, (3.1)

then it is a solution to the IVP (1.1).

Proof We have

0 = S1u(t, x)

= u(t, x) +
∫ t

0
ψ ′(u(s, x))ux (s, x)ds

−u0(x) −
∑

0<tk<t

Ik(x, u(tk, x)), (t, x) ∈ J × R.

Hence,

u(t, x) = −
∫ t

0
ψ ′(u(s, x))ux (s, x)ds

+u0(x) +
∑

0<tk<t

Ik(x, u(tk, x)), (t, x) ∈ J × R. (3.2)

We differentiate (3.2) with respect to t and we find

ut (t, x) = −ψ ′(u(t, x))ux (t, x), (t, x) ∈ J × R.

We put t = 0 in (3.2) and we get

u(0, x) = u0(x), x ∈ R.

Now, by (3.2), we obtain

u(t+j , x) = −
∫ t j

0
ψ ′(u(s, x))ux (s, x)ds

+u0(x) +
∑

0<tk<t+j

Ik(x, u(tk, x)), x ∈ R,
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j ∈ {1, . . . , k}, and
u(t−j , x) = −

∫ t j

0
ψ ′(u(s, x))ux (s, x)ds

+u0(x) +
∑

0<tk<t−j

Ik(x, u(tk, x)), x ∈ R,

j ∈ {1, . . . , k}, whereupon
u

(
t+j , x

)
− u

(
t−j , x

)
= I j (x, u(t j , x)), x ∈ R, j ∈ {1, . . . , k}.

This completes the proof. ��
Lemma 3.3 Suppose (A1)–(A3). If u ∈ X, ‖u‖ ≤ B, then

|S1u(t, x)| ≤ B1, (t, x) ∈ J × R,

where B1 = 2B + T
(
B2 + B2+l

) + ∑k
j=1 B

1+p j .

Proof We apply Lemma 3.1 and we get

|S1u(t, x)| =
∣∣∣∣u(t, x) +

∫ t

0
ψ ′(u(s, x))ux (s, x)ds

−u0(x) −
∑

0<tk<t

Ik(x, u(tk, x))

∣∣∣∣

≤ |u(t, x)| +
∫ t

0
|ψ ′(u(s, x))||ux (s, x)|ds

+|u0(x)| +
∑

0<tk<t

|Ik(x, u(tk, x))|

≤ 2B + T
(
B2 + B2+l

)
+

k∑
j=1

B1+p j

= B1, (t, x) ∈ J × R.

This completes the proof. ��
For u ∈ X , define the operator

S2u(t, x) =
∫ t

0

∫ x

0
(t − τ)(x − s)g(τ, s)S1u(τ, s)dsdτ, (t, x) ∈ J × R, (3.3)

with g is the function which appears in the condition (A4).

Lemma 3.4 Suppose (A1)–(A4). If u ∈ X and ‖u‖ ≤ B, then

‖S2u‖ ≤ AB1,

where B1 = 2B + T
(
B2 + B2+l

) + ∑k
j=1 B

1+p j .

Proof We have

|S2u(t, x)| =
∣∣∣∣
∫ t

0

∫ x

0
(t − t1)(x − s)g(t1, s)S1u(t1, s)dsdt1

∣∣∣∣
≤

∫ t

0

∣∣∣∣
∫ x

0
(t − t1)|x − s|g(t1, s)|S1u(t1, s)|ds

∣∣∣∣dt1
≤ B1t2|x |

∫ t

0

∣∣∣∣
∫ x

0
g(t1, s)ds

∣∣∣∣dt1
≤ B12(1 + t)(1 + |x |)

∫ t

0

∣∣∣∣
∫ x

0
g(t1, s)ds

∣∣∣∣dt1
≤ AB1, (t, x) ∈ J × R,
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and
∣∣∣∣ ∂

∂t
S2u(t, x)

∣∣∣∣ =
∣∣∣∣
∫ t

0

∫ x

0
(x − s)g(t1, s)S1u(t1, s)dsdt1

∣∣∣∣
≤

∫ t

0

∣∣∣∣
∫ x

0
|x − s|g(t1, s)|S1u(t1, s)|ds

∣∣∣∣dt1
≤ B12|x |

∫ t

0

∣∣∣∣
∫ x

0
g(t1, s)ds

∣∣∣∣dt1
≤ B12(1 + t)(1 + |x |)

∫ t

0

∣∣∣∣
∫ x

0
g(t1, s)ds

∣∣∣∣dt1
≤ AB1, (t, x) ∈ J × R,

and
∣∣∣∣ ∂

∂x
S2u(t, x)

∣∣∣∣ =
∣∣∣∣
∫ t

0

∫ x

0
(t − t1)g(t1, s)S1u(t1, s)dsdt1

∣∣∣∣
≤

∫ t

0

∣∣∣∣
∫ x

0
(t − t1)g(t1, s)|S1u(t1, s)|ds

∣∣∣∣dt1
≤ B1t

∫ t

0

∣∣∣∣
∫ x

0
g(t1, s)ds

∣∣∣∣dt1
≤ B1(1 + t)

∫ t

0

∣∣∣∣
∫ x

0
g(t1, s)ds

∣∣∣∣dt1
≤ AB1, (t, x) ∈ J × R.

Thus, ‖S2u‖ ≤ B. This completes the proof. ��
Lemma 3.5 Suppose (A1)–(A4). If u ∈ X satisfies the equation

S2u(t, x) = 0, (t, x) ∈ J × R, (3.4)

then u is a solution to the IVP (1.1).

Proof We differentiate two times with respect to t and two times with respect to x the Eq. (3.4) and we find

g(t, x)S1u(t, x) = 0, (t, x) ∈ J × R,

whereupon

S1u(t, x) = 0, (t, x) ∈ (0, T ] × (R\{x = 0}) .

Since S1u(·, ·) ∈ C(J × R), we get

0 = lim
t→0

S1u(t, x)

= S1u(0, x)

= lim
x→0

S1u(t, x)

= S1u(t, 0), (t, x) ∈ J × R.

Thus,

S1u(t, x) = 0, (t, x) ∈ [0, T ] × R.

Hence and Lemma 3.2, we conclude that u is a solution to the IVP (1.1). This completes the proof. ��
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3.2 Proof of Theorem 1.1

Suppose that the constants B, A and B1 are those which appear in the conditions (A1), (A4) and (A5),

respectively. Choose ε ∈ (0, 1), such that εB1(1 + A) < B. Let
˜̃̃
Y denotes the set of all equi-continuous

families in X = PC1(J, C1(R)) with respect to the norm ‖ · ‖. Let also, ˜̃Y = ˜̃̃
Y be the closure of

˜̃̃
Y ,

Ỹ = ˜̃Y ∪ {u0},
Y = {u ∈ Ỹ : ‖u‖ ≤ B}.

By the Ascoli–Arzelà theorem, it follows that Y is a compact set in X . For u ∈ X , define the operators

Tu(t, x) = −εu(t, x),

Su(t, x) = u(t, x) + εu(t, x) + εS2u(t, x), (t, x) ∈ J × R.

where S2 is the operator defined by formula (3.3). For u ∈ Y , using Lemma 3.4, we have

‖(I − S)u‖ = ‖ − εu − εS2u‖
≤ ε‖u‖ + ε‖S2u‖
≤ εB1 + εAB1

= εB1(1 + A)

< B.

Thus, S : Y → X is continuous and (I − S)(Y ) resides in a compact subset of X. Now, suppose that there is
u ∈ E so that ‖u‖ = B and

u = λ(I − S)u

or

1

λ
u = (I − S)u = −εu − εS2u,

or
(
1

λ
+ ε

)
u = −εS2u

for some λ ∈ (
0, 1

ε

)
. Hence, ‖S2u‖ ≤ AB1 < B,

εB <

(
1

λ
+ ε

)
B =

(
1

λ
+ ε

)
‖u‖ = ε‖S2u‖ < εB,

which is a contradiction. Hence and Theorem 2.1, it follows that the operator T + S has a fixed point u∗ ∈ Y .
Therefore

u∗(t, x) = Tu∗(t, x) + Su∗(t, x)
= −εu∗(t, x) + u∗(t, x) + εu∗(t, x) + εS2u

∗(t, x), (t, x) ∈ J × R,

whereupon

0 = S2u
∗(t, x), (t, x) ∈ J × R.

From here and from Lemma 3.5, it follows that u is a solution to the problem (1.1). This completes the proof.
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3.3 Proof of Theorem 1.2

Let X = PC1(J, C1(R)) and

P̃ = {u ∈ X : u ≥ 0 on J × R}.
With P we will denote the set of all equi-continuous families in P̃ . For v ∈ X , define the operators

T1v(t, x) = (1 + mε)v(t, x) − ε
L

10
,

S3v(t, x) = −εS2v(t, x) − mεv(t, x) − ε
L

10
, (t, x) ∈ J × R,

where ε is a positive constant, m > 0 is the constant which appear in (A6) and the operator S2 is given by
formula (3.3). Note that any fixed point v ∈ X of the operator T1 + S3 is a solution to the IVP (1.1). Now, let
us define

U1 = Pr = {v ∈ P : ‖v‖ < r},
U2 = PL = {v ∈ P : ‖v‖ < L},
U3 = PR1 = {v ∈ P : ‖v‖ < R1},
� = PR2 = {v ∈ P : ‖v‖ ≤ R2}, with R2 = R1 + A

m
B1 + L

5m
,

where r, L , R1, A, B1 are the constants which appear in condition (A6).

1. For v1, v2 ∈ �, we have

‖T1v1 − T1v2‖ = (1 + mε)‖v1 − v2‖,
whereupon T1 : � → X is an expansive operator with a constant h = 1 + mε > 1.

2. For v ∈ PR1 , we get

‖S3v‖ ≤ ε‖S2v‖ + mε‖v‖ + ε
L

10

≤ ε

(
AB1 + mR1 + L

10

)
.

Therefore S3(PR1) is uniformly bounded. Since S3 : PR1 → X is continuous, we have that S3(PR1) is
equi-continuous. Consequently S3 : PR1 → X is completely continuous.

3. Let v1 ∈ PR1 . Set

v2 = v1 + 1

m
S2v1 + L

5m
.

Note that S2v1 + L
5 ≥ 0 on J × R. We have v2 ≥ 0 on J × R and

‖v2‖ ≤ ‖v1‖ + 1

m
‖S2v1‖ + L

5m

≤ R1 + A

m
B1 + L

5m
= R2.

Therefore v2 ∈ � and

−εmv2 = −εmv1 − εS2v1 − ε
L

10
− ε

L

10
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or

(I − T1)v2 = −εmv2 + ε
L

10

= S3v1.

Consequently S3(PR1) ⊂ (I − T1)(�).
4. Assume that for any v0 ∈ P∗ = P\{0} there exist λ > 0 and v ∈ ∂Pr ∩ (�+λv0) or v ∈ ∂PR1 ∩ (�+λv0)

such that

S3v = (I − T1)(v − λv0).

Then

−εS2v − mεv − ε
L

10
= −mε(v − λv0) + ε

L

10
or

−S2v = λmv0 + L

5
.

Hence,

‖S2v‖ =
∥∥∥∥λmv0 + L

5

∥∥∥∥ >
L

5
.

This is a contradiction.

5. Let ε1 = 2
5m . Assume that there exist w ∈ ∂PL and λ1 ≥ 1 + ε1 such that λ1w ∈ PR2 and

S3w = (I − T1)(λ1w).

Since w ∈ ∂PL and λ1w ∈ PR2 , it follows that(
2

5m
+ 1

)
L < λ1L = λ1‖w‖ ≤ R1 + A

m
B1 + L

5m
.

Moreover,

−εS2w − mεw − ε
L

10
= −λ1mεw + ε

L

10
,

or

S2w + L

5
= (λ1 − 1)mw.

From here,

2
L

5
>

∥∥∥∥S2w + L

5

∥∥∥∥ = (λ1 − 1)m‖w‖ = (λ1 − 1)mL

and

2

5m
+ 1 > λ1,

which is a contradiction.

Therefore all conditions of Theorem 2.5 hold. Hence, the problem (1.1) has at least two solutions u1 and u2
so that

‖u1‖ = L < ‖u2‖ ≤ R1

or

r ≤ ‖u1‖ < L < ‖u2‖ ≤ R1.
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4 An Example

Below, we will illustrate our main results. Let k = 2,

T = B = 1, t1 = 1

4
, t2 = 1

2
, p1 = 2, p2 = 3.

and

R1 = 10, L = 5, r = 4, m = 1050, A = 1

10B1
, ε = 1

5B1(1 + A)
.

Then

B1 = 2 + 2 + 2 = 6

and

AB1 = 1

10
< B, εB1(1 + A) < 1,

i.e., (A5) holds. Next,

r < L < R1, ε > 0, R1 + A

m
B1 >

(
1

5m
+ 1

)
L , AB1 <

L

5
.

i.e., (A6) holds. Take

h(s) = ln
1 + s11

√
2 + s22

1 − s11
√
2 + s22

, l(s) = arctan
s11

√
2

1 − s22
, s ∈ R, s 
= ±1.

Then

h′(s) = 22
√
2s10(1 − s22)

(1 − s11
√
2 + s22)(1 + s11

√
2 + s22)

,

l ′(s) = 11
√
2s10(1 + s22)

1 + s44
, s ∈ R, s 
= ±1.

Therefore

−∞ < lim
s→±∞(1 + s + s2)3h(s) < ∞,

−∞ < lim
s→±∞(1 + s + s2)3l(s) < ∞.

Hence, there exists a positive constant C1 so that

(1 + s + s2)3
(

1
44

√
2
ln 1+s11

√
2+s22

1−s11
√
2+s22

+ 1
22

√
2
arctan s11

√
2

1−s22

)
≤ C1,

s ∈ R. Note that lim
s→±1

l(s) = π
2 and by [37, pp. 707, Integral 79], we have

∫
dz

1 + z4
= 1

4
√
2
ln

1 + z
√
2 + z2

1 − z
√
2 + z2

+ 1

2
√
2
arctan

z
√
2

1 − z2
.

Let

Q(s) = s10

(1 + s44)(1 + s + s2)2
, s ∈ R,

and

g1(t, x) = Q(t)Q(x), t ∈ J, x ∈ R.
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Then there exists a constant C > 0 such that

2(1 + t) (1 + |x |)
∫ t

0

∣∣∣∣
∫ x

0
g1(τ, z)dz

∣∣∣∣dτ ≤ C, (t, x) ∈ J × R.

Let

g(t, x) = A

C
g1(t, x), (t, x) ∈ J × R.

Then

2(1 + t) (1 + |x |)
∫ t

0

∣∣∣∣
∫ x

0
g(τ, z)dz

∣∣∣∣dτ ≤ A, (t, x) ∈ J × R,

i.e., (A4) holds. Therefore for the problem

ut + uux = 0, t ∈ [0, 1], x ∈ R,

u(t+1 , x) = u(t−1 , x) + (u(t1,x))2

1+x10
, x ∈ R,

u(t+2 , x) = u(t−2 , x) + (u(t2,x))3

1+x18
, x ∈ R,

u(0, x) = 1
1+x4

, x ∈ R,

are fulfilled all conditions of Theorems 1.1 and 1.2.
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