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Abstract We propose and analyze a new class of three dimensional space models that describes infectious
diseases caused by viruses such as hepatitis B virus (HBV) and hepatitis C virus (HCV). This work constructs
a Reaction–Diffusion-Ordinary Differential Equation model of virus dynamics, including absorption effect,
cell proliferation, time delay, and a generalized incidence rate function. By constructing suitable Lyapunov
functionals, we show that the model has threshold dynamics: if the basic reproduction number R0(τ ) ≤ 1,
then the uninfected equilibrium is globally asymptotically stable, whereas if R0(τ ) > 1, and under certain
conditions, the infected equilibrium is globally asymptotically stable. This precedes a careful study of local
asymptotic stability. We pay particular attention to prove boundedness, positivity, existence and uniqueness of
the solution to the obtained initial and boundary value problem. Finally,weperform somenumerical simulations
to illustrate the theoretical results obtained in one-dimensional space. Our results improve and generalize some
known results in the framework of virus dynamics.

Mathematics Subject Classification 34D23 · 92B25 · 37N25 · 35Axx · 35Kxx

1 Introduction

Today, viral infection is linked to global health problems. Many diseases caused by viruses, such as hepatitis
B virus (HBV), human immunodeficiency virus (HIV), hepatitis C virus (HCV), dengue virus, zika virus,
and Sars-Cov-2 virus have drawn the attention of researchers to the viral infection process within a host. The
mathematical modeling in a patient allows a better understanding of the transmission of diseases and thus
improves the strategies for their eradication. On the basis of the virus infection models proposed in [1–3,6,9–
13,17–22,24–35,35–37], several mathematical models were examined and that are valuable for obtaining
comprehensive knowledge about virus dynamics, for example models in the form of Ordinary Differential
Equations (ODEs) [19–21,34,37], DelayedDifferential Equations (DDE) [1,22], Partial Differential Equations
(PDE) [4,29,32,35] and Fractional Differential Equations (FODE) [2,3,17,25].
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The basic reaction-diffusion-ODE viral infection dynamics model consists of the following three-
dimensional system (see [4,32] and references therein):

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂ H

∂t
= λ − μH(x, t) − β H(x, t)V (x, t),

∂ I

∂t
= β H(x, t)V (x, t) − α I (x, t), (1)

∂V

∂t
= DΔV (x, t) + ηI (x, t) − γ V (x, t),

where the density of uninfected cells is represented by H(x, t) at position x at time t , the density of infected
cells is represented by I (x, t) at position x at time t and the density of free virus particles by V (x, t) at position
x at time t . The uninfected target cells are produced at a constant rate λ and are infected by free virus particles
at a rate β H(x, t)V (x, t) which follows mass action principle. The parameters μ, α and γ represent the death
rates of uninfected cells, infected host cells and free virus particles, respectively. Free virions are produced by
infected cells at the rate ηI (x, t). Δ is the Laplacian operator and D is the diffusion coefficient.

At this point it should be mentioned that in model (1) it is assumed that the infection rate is bilinear, that is
of the form β H(x, t)V (x, t). However, this hypothesis does not always have a biological meaning. Recently,
many researchers have performed virus dynamics models using various type of infection rate (or incidence
function) which each time generalizes the bilinear infection rate. For example, in [35], authors studied a
delayed model, in the case of HBV with diffusion and Holling-II infection rate, a virus infection model with
the Crowley-Martin infection function has been studied in [16,34,37]. The Beddington-DeAngelis infection
rate has been used in [10,26,36] to study a delayed in-host model with diffusion. Also in [27], authors studied
a PDE-model with standard infection rate. Therefore, it is necessary to study the virus infection models with
a more generalized infection rate, which can be represented by a function which has some properties and
generalizes the later infection rates mentioned above.

In this work, motivated by the work done in [4], we further neglect themobility of susceptible cells, infected
cells, and we consider a delayed virus infection model with a generalized infection rate given as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ H

∂t
= λ + r1H(x, t)

(

1 − H(x, t) + I (x, t)

k

)

−μH(x, t) − f (H(x, t), I (x, t), V (x, t))V (x, t)
∂ I

∂t
= e−τm f (H(x, t − τ), I (x, t − τ), V (x, t − τ))V (x, t − τ) (2)

+r2 I (x, t)

(

1 − H(x, t) + I (x, t)

k

)

− α I (x, t)

∂V

∂t
= DΔV (x, t) + ηI (x, t) − γ V (x, t) − a f (H(x, t), I (x, t), V (x, t))V (x, t),

for t > 0 and x ∈ Ω which is a bounded domain of Rn representing the liver with smooth boundary ∂Ω .
The original part of themodel lies in the fact that the proliferation of cells due tomitotic division, andmitotic

transmission obey a logistic growth. Thus the novelty of this model is that it includes both the intercellular
delay in virus production, the proliferation of cells and the general incidence rate which generalizes most
famous forms presented for instance in [14,16,26,27,34,36,37].

In model (2), we assume that the proliferation of cells due to mitotic division obeys a logistic growth

law. The mitotic proliferation of uninfected cells is described by r1H(x, t)
(
1 − H(x,t)+I (x,t)

k

)
, and mitotic

transmission occurs at a rate r2 I (x, t)
(
1 − H(x,t)+I (x,t)

k

)
, which represents the mitotic division of infected

cells. Some models supposed that infected hepatocytes do not proliferate; however, the effect of viral infection
on hepatocytes is controversial, with conflicting data showing both proliferation induction and inhibition.With
system of differential equations coupled to a reaction-diffusion equations models, we explore the impact of
proliferation among infected cells in the liver. Uninfected cells and infected cells grow at the constant rate r1
and r2 respectively, and k is themaximal number of total cell population proliferation. The parameter a ∈ {0, 1}
indicates if there is an absorption effect or not. The infection process in its general form is characterized by
the term f (H, I, V )V . In this case, the incidence function f = f (H, I, V ) is assumed to be continuously
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differentiable in the interior of R3+ and probes the three assumptions given by Hattaf et al. [9,15] and used in
[11,13,31], that are:

(H1) : f (0, I, V ) = 0 for all I, V ≥ 0;
(H2) : ∂ f

∂ H (H, I, V ) ≥ 0 for all H, I, V ≥ 0;

(H3) : ∂ f
∂ I (H, I, V ) ≤ 0 and ∂ f

∂V (H, I, V ) ≤ 0 for all I, V ≥ 0.

In the mathematical model (2) the immune response to infection is represented by an elevated death rate in
infected cells, μ ≤ α, and by the destruction of free virions at rate γ . Due to the burden of supporting virus
replication, infected cells may proliferate more slowly than uninfected cells, this implies that r1 ≤ r2. The
term e−τm f (H(x, t − τ), I (x, t − τ), V (x, t − τ))V (x, t − τ) describes the newly activated infected cells
at time t which are infected τ times ago. The recruitment of virus producing cells at time t is given by the
number of cells that were newly infected at time t − τ and are still alive at time t . Here, m is assumed to be
a constant death rate for infected but not yet virus-producing cells. Thus, the probability of surviving the time
period from t − τ to t is e−τm . We need a biologically reasonable history of the host for the system model. It
is why the model (2) is supplemented with the following non-negative initial conditions:

H(x, θ) = φ1(x, θ) ≥ 0, I (x, θ) = φ2(x, θ) ≥ 0,

V (x, θ) = φ3(x, θ) ≥ 0, θ ∈ [−τ, 0], x ∈ Ω, (3)

and homogeneous Neumann boundary condition

∂V

∂n
= 0 on ∂Ω × (0,+∞). (4)

It should be noted that the boundary condition in (4) imply that the free HCV virions do not move across the
boundary ∂Ω .

In this paper we investigate the dynamical properties of the new model giving by (2), specifically the
stability of the homogeneous equilibria. Our work is structured as follows. In the following section we discuss
the existence and uniqueness, positivity and the boundedness of the solution to the IBVP with respect to
the model. In Sect. 3, we start with the determination of the uninfected equilibrium, then followed by the
determination of basic reproduction numberR0(τ ) and end with the study of the local and global asymptotic
stability of this equilibrium. We first determine the infected equilibrium point and then we study the local and
global asymptotic stability of this point in Sect. 4. The two previous sections are followed each of them by
numerical simulations where we illustrate dynamic behaviour in more detail which reinforce the theoretical
results. In the last section we give brief conclusion and perspectives.

2 Preliminary results

This section is devoted to the study of existence, uniqueness, positivity and boundedness of solutions of
the initial and boundary value problem (IBVP) (2)–(4). For this purpose, we first introduce the following
spaces and definition: let X = C(Ω,R3) be a Banach space of continuous functions from Ω to R3 and
C = C([−τ, 0],X) be the Banach space of continuous functions from [−τ, 0] to X with the usual supremum
norm and let C+ = C([−τ, 0],X+) with X+ = C(Ω,R3+). We will say that Φ ∈ C if Φ is a function from
Ω ×[−τ, 0] toR3 and is defined by Φ(x, s) = Φ(s)(x). Also, we adopt the standard notation that for τ0 > 0,
a function ϕ: [−τ, τ0) −→ X induces functions ϕt ∈ C for each t ∈ [0, τ0), defined by ϕt (s) = ϕ(t + s),
s ∈ [−τ, 0].

2.1 Existence of local solution in time and positivity

For any data φ = (φ1, φ2, φ3) ∈ C3+, we define Fi : C+ −→ X, i = 1, 2, 3 as follows: for any x ∈ Ω ,

F1(φ)(x) = λ + r1φ1(x, 0)

(

1 − φ1(x, 0) + φ2(x, 0)

k

)

− μφ1(x, 0)

− f (φ1(x, 0), φ2(x, 0), φ3(x, 0))φ3(x, 0),
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F2(φ)(x) = e−τm f (φ1(x, −τ), φ2(x,−τ), φ3(x, −τ))φ3(x,−τ)

+r2φ2(x, 0)

(

1 − φ1(x, 0) + φ2(x, 0)

k

)

− αφ2(x, 0),

F3(φ)(x) = ηφ2(x, 0) − γφ3(x, 0) − f (φ1(x, 0), φ2(x, 0), φ3(x, 0))φ3(x, 0).

Let F = (F1, F2, F3). We first prove that F is locally Lipschitz in X.

Lemma 2.1 F is Lipschitz continuous on bounded subsets of C+.

Proof Let ϕ = (ϕ1, ϕ2, ϕ3) ∈ C3+. Using the definition of F1, we have:

F1 (φ1, φ2, φ3) (x) − F1 (ϕ1, ϕ2, ϕ3) (x)

= 1

2

(

( f (ϕ1(x, 0), ϕ2(x, 0), ϕ3(x, 0)) − f (φ1(x, 0), φ2(x, 0), φ3(x, 0))) (ϕ3(x, 0) + φ3(x, 0))

+(ϕ3(x, 0) − φ3(x, 0)) f (ϕ1(x, 0), ϕ2(x, 0), ϕ3(x, 0)) + f (φ1(x, 0), φ2(x, 0), φ3(x, 0))

)

+(r1 − μ)(φ1(x, 0) − ϕ1(x, 0)) + r1
k

(

(ϕ1(x, 0) − φ1(x, 0))(φ1(x, 0) + ϕ1(x, 0))

)

+r1
k

(

ϕ1(x, 0)ϕ2(x, 0) − ϕ1(x, 0)φ2(x, 0) + ϕ1(x, 0)φ2(x, 0) − φ1(x, 0)φ2(x, 0)

)

. (5)

From equality (5), it follows that

‖F1 (φ1, φ2, φ3) (x) − F1 (ϕ1, ϕ2, ϕ3) (x)‖X
= sup

x∈Ω

∣
∣
∣
∣
1

2

(

( f (ϕ1(x, 0), ϕ2(x, 0), ϕ3(x, 0)) − f (φ1(x, 0), φ2(x, 0), φ3(x, 0))) (ϕ3(x, 0) + φ3(x, 0))

+(ϕ3(x, 0) − φ3(x, 0)) f (ϕ1(x, 0), ϕ2(x, 0), ϕ3(x, 0)) + f (φ1(x, 0), φ2(x, 0), φ3(x, 0))

)

+(r1 − μ)(φ1(x, 0) − ϕ1(x, 0)) + r1
k

(

(ϕ1(x, 0) − φ1(x, 0))(φ1(x, 0) + ϕ1(x, 0))

)

+r1
k

(

ϕ1(x, 0)ϕ2(x, 0) − ϕ1(x, 0)φ2(x, 0) + ϕ1(x, 0)φ2(x, 0) − φ1(x, 0)φ2(x, 0)

)∣
∣
∣
∣.

According to the mean value theorem and assumptions made on f , there exists M > 0 and β > 0 such that
employing (5) yields

‖F1 (φ1, φ2, φ3) (x) − F1 (ϕ1, ϕ2, ϕ3) (x)‖X ≤
(

r1 + M Z + 3Pr1
k

)

‖φ1 − ϕ1‖C

+
(

Pr1
k

+ M Z

)

‖φ2 − ϕ2‖C
+(M Z + β)‖φ3 − ϕ3‖C,

with P and Z given in theorem2.4. In a similar manner, we get

‖F2 (φ1, φ2, φ3) (x) − F2 (ϕ1, ϕ2, ϕ3) (x)‖X
≤
(

P
r2
k

+ M Ze−mτ
)

‖φ1 − ϕ1‖C +
(

r2 + 3
r2
k

P + M Ze−mτ

)

‖φ2 − ϕ2‖C
+(M Z + β)e−mτ‖φ3 − ϕ3‖C,

and

‖F3 (φ1, φ2, φ3) (x) − F3 (ϕ1, ϕ2, ϕ3) (x)‖X ≤ aM P‖φ1 − ϕ1‖C + (η + aM Z)‖φ2 − ϕ2‖C
+(γ + a(M Z + β))‖φ3 − ϕ3‖C .

Thus, F is Lipschitz continuous on bounded subsets of C+. �	
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Now, IBVP (2)–(4) can be rewritten as the following abstract functional differential equation:
⎧
⎨

⎩

dω

dt
= Aω + F(ωt ), t > 0, ωt ∈ C,

ω(0) = φ ∈ C+,
(6)

where ω = (H, I, V ), φ = (φ1, φ2, φ3) and Aω = (0, 0, DΔV )
.

Let O = (0, 0, 0)
 and N = (T1, T2, T3)
 where T1 = (r1−μ)+
√

(r1−μ)2+4 r1
k λ

2r1
k

,

T2 = (r2−α)+
√

(r2−α)2+4e−mτ T1β2
r2
k

2r2
k

, T3 = T2η
γ

with J1 =
√

(r1 − μ)2 + 4λ r1
k ,

J2 =
√

(r2 − α)2 + 4e−mτ β2T1
r2
k . Let us also consider the following sets

[O, N ]X = {φ ∈ X
3+ : 0 ≤ φ(x) ≤ N : ∀ x ∈ Ω};

[O, N ]C = {φ ∈ C3+ : φ(θ) ∈ [O, N ]X : ∀ θ ∈ [−τ, 0]}.
We prove the following result:

Lemma 2.2 For any φ ∈ [O, N ]C , lim
ρ→+0

1

ρ
dist

(

φ(0) + ρF(φ), [O, N ]X
)

= 0.

Proof For φ ∈ [O, N ]C and for any 0 ≤ ρ ≤ min

{
1

μ+β
, 1

α
, 1

γ+aT1β
, 2

(r1+μ)+J1
, 2

(r2+α)+J2

}

, we have

φ(x, 0) + ρF(φ)(x) ≥
⎛

⎝
φ1(x, 0) − ρμφ1(x, 0) − ρβφ1(x, 0)

φ2(x, 0) − ραφ2(x, 0)
φ3(x, 0) − ργφ3(x, 0) − ρaβT1φ3(x, 0)

⎞

⎠

≥
⎛

⎝
(1 − ρ(μ + β2))φ1(x, 0)

(1 − ρα)φ2(x, 0)
(1 − ρ(γ + aT1β)φ3(x, 0)

⎞

⎠ ≥
⎛

⎝
0
0
0

⎞

⎠ = O.

Moreover, we can easily obtain:

φ(x, 0) + ρF(φ)(x)

≤

⎛

⎜
⎜
⎜
⎜
⎝

φ1(x, 0) + ρλ + ρr1φ1(x, 0)

(

1 − φ1(x, 0)

k

)

− ρμφ1(x, 0)

φ2(x, 0) + ρe−mτ β1φ1(x, 0) + ρr2φ2(x, 0)

(

1 − φ2(x, 0)

k

)

− ραφ2(x, 0)

φ3(x, 0) + ρηφ2(x, 0) − ργφ3(x, 0)

⎞

⎟
⎟
⎟
⎟
⎠

≤
⎛

⎝
T1
T2
T3

⎞

⎠ = N .

We have now shown that for ρ small enough,

φ(0) + ρF(φ) ∈ [O, N ]X,

from which we deduce that

lim
ρ→0+

1

ρ
dist (φ(0) + ρF(φ), [O, N ]X) = 0, ∀φ ∈ [O , N ]C .

�	
From the main results of the literature and the previous lemmas, we can state this following result.
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Theorem 2.3 For any φ = (φ1, φ2, φ3) ∈ [O, N ]C , there exists a unique nonnegative solution ϕ(t, x;φ) of
the IBVP (4)–(2) defined for t ∈ [0,+∞). Furthermore ϕt ∈ [O, N ]C for t ≥ 0.

Proof For D = (0, 0, D)
, according to Theorem1.5 of [5] the X-realisation of the operator DΔ generates an
analytical semi-group T (t) on X. Applying the Corollary4 of [18], we conclude that the IVBP (2)–(4) admits
a unique mild solution ϕ(t, φ) = (H(t, φ), I (t, φ), v(t, φ)) ∈ [O, N ]C for t ∈ [0, +∞). In addition,
Corollary2.5 of [33] ensures that the mild solution is classic for t ≥ τ. �	

2.2 Boundedness of the solutions of the IBVP (2)–(4)

In this section, we establish the boundedness in time of the global solution of the IBVP (2)–(4) for x ∈ Ω and
t ∈ [0, Tmax ) where Tmax > 0 is the maximal existence time for solution of the the IBVP (2)–(4).

Theorem 2.4 For any solution (H, I, V ) of problem (2)–(4),

H(x, t) ≤ P, I (x, t) ≤ P and V (x, t) ≤ Z

for all (x, t) ∈ Ω × [−τ, Tmax ) where

P = max

{
4λ + (r1 + r2)k

4b
;max

x∈Ω

{

φ1(x, 0) + φ2(x, 0) +
∫ 0

−τ

ems f (H(x, s), I (x, s), V (x, s))V (x, s)ds

}}

and

Z = max

{
ηP

γ
; max

x∈Ω

φ3(x, 0)

}

with

b = min {μ, α, m} .

Proof Let (H, I, V ) be a solution of problem (2)-(4). Let us define the following function

U (x, t) = H(x, t) + I (x, t) +
∫ t

t−τ

e−m(t−s) f (H(x, s), I (x, s), V (x, s))V (x, s)ds,

for x ∈ Ω and t ∈ [0, Tmax ). We obtain, after some lengthy calculations,

∂U (x, t)

∂t
= λ + ((H(x, t) + I (x, t)) (r1 + r2))

(

1 − H(x, t) + I (x, t)

k

)

− (r1 I (x, t) + r2H(x, t))

(

1 − H(x, t) + I (x, t)

k

)

− μH(t)

−m
∫ t

t−τ

e−m(t−s) f (H(x, s), I (x, s), V (x, s))V (x, s)ds − α I (x, t)

= λ +
(

r1 + r2
4

)

k −
(

r1 + r2
k

)[

H(x, t) + I (x, t) − k

2

]2

− (r1 I (t) + r2H(x, t))

(

1 − H(x, t) + I (x, t)

k

)

− μH(x, t)

−m
∫ t

t−τ

e−m(t−s) f (H(x, s), I (x, s), V (x, s))V (x, s)ds − α I (x, t).

Due to
(

r1 + r2
k

)[

H(x, t) + I (x, t) − k

2

]2

≥ 0,
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and

(r1 I (x, t) + r2H(x, t))

(

1 − H(x, t) + I (x, t)

k

)

≥ 0,

it follows that

∂U (x, t)

∂t
≤ λ +

(
r1 + r2

4

)

k − μH(x, t) − α I (x, t) − mβ

∫ t

t−τ

e−m(t−s) f (H(x, s), I (x, s), V (x, s))V (x, s)ds.

Hence

∂U (x, t)

∂t
≤ λ +

(
r1 + r2

4

)

k − bU (x, t). (7)

with

b = min {μ, α, m} .

From (7), we get:

U (x, t) ≤ max

{
4λ + (r1 + r2)k

4b
, max

x∈Ω

U (x, 0)

}

. (8)

Now to have the bounds of V , we consider the following problems

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂V (x, t)

∂t
− DΔV (x, t) = ηI (x, t) − γ V (x, t) − a f (H, I, V )V, on Ω × (0, +∞),

≤ DΔV (x, t) + ηP − γ V (x, t), on Ω × (0, +∞),
∂V (x,t)

∂n = 0, on ∂Ω × (0, +∞),

V (x, 0) = φ3(x, 0), x ∈ Ω,

and
⎧
⎪⎨

⎪⎩

∂V (t)

∂t
= ηP − γ V (t) on (0, +∞),

V (0) = max
x∈Ω

φ3(x, 0).

Using a comparison principle (see [23]), we infer that

V (x, t) ≤ V (t),

where

V (t) ≤ max

{
ηP

γ
; max

x∈Ω

φ3(x, 0)

}

.

This implies that V is bounded on Ω × [0, Tmax).
From the above discussion, we deduce that H , I and V are bounded on Ω × [0, Tmax). �	

3 Asymptotic stability analysis of the uninfected equilibrium

The aim of this section is to study the local and global stability of the uninfected equilibrium.
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3.1 Basic reproduction number and Uninfected equilibrium

It is easy to verify that system (2) always has an uninfected equilibrium E0 = (H0, 0, 0) with

H0 =
[

(r1 − μ) +
(

(r1 − μ)2 + 4
r1λ

k

)1/2
]

k

2r1
.

FollowingWang and Zhao [30], we define the basic reproduction number of our model in the absence of spatial
dependence as follows:

R0(τ ) = 1

α

[

r2

(

1 − H0

k

)

+ ηe−τm f (H0, 0, 0)

γ + a f (H0, 0, 0)

]

.

One of the main tools in epidemic models is the basic reproduction number which is an important threshold
parameter to discuss the dynamic behaviour of the epidemic model. It quantifies the infection risk. It measures
the expected average number of new infected hepatocytes generated by a single virion in a completely healthy
hepatocyte.

3.2 Local stability analysis of E0

The objective of this section is to prove the local stability of the spatially homogeneous uninfected equilibrium
E0 for the Reaction-Diffusion-ODE system (2). We address local stability by analyzing the characteristic
equation.

Proposition 3.1 The spatially homogeneous uninfected equilibrium E0 of Reaction-Diffusion-O.D.E model
system (2) is locally asymptotically stable if R0(τ ) < 1 and it is unstable if R0(τ ) > 1.

Proof Let {μl , ϕl} be an eigenpair of the Laplace operator−Δ onΩ with the homogeneousNeumann boundary
condition where 0 = μ1 < μ2 < μ3 < · · · → ∞. Let Eμl be the eigenspace corresponding toμl inC1(Ω) and
{Φl j , j = 1, 2, · · ·, dimEμl } be an orthogonal basis of Eμl . Let Y = (C1(Ω))3 and Xl j = {cϕl j , / c ∈ R

3}.
Consider the following direct sum

Y =
∞⊕

l=1

Xl with Xl =
dim Eμl⊕

j=1

Xl j ,

where Xl j is the eigenspace corresponding to μl . The linearization of system (2) at the spatially homogeneous
uninfected equilibrium E0 can be formulated by:

∂z

∂t
= DΔz + Az + Bzt , (9)

where z = (H, I, V ), zτ = (Hτ , Iτ , Vτ ), D = diag(0, 0, D),

A =

⎛

⎜
⎜
⎝

r1
(
1 − 2H0

k

)
− μ −r1

k
H0 − f (H0, 0, 0)

0 r2
(
1 − H0

k

)
− α 0

0 η −γ − a f (H0, 0, 0)

⎞

⎟
⎟
⎠

and

B =
⎛

⎝
0 0 0
0 0 e−τm f (H0, 0, 0)
0 0 0

⎞

⎠ .

For each i = 0, 1, 2 · · ·,Xl is invariant under the linearization.We use the exponential Ansatz z(x, t) = estΦ(x)

whereΦ ∈ Xl satisfiesΔΦ = −μiΦ. Then,we find that zτ = z(x, t−τ) = e−Xτ z(x, t). Noting that ∂z
∂t = Xz,

we substitute into (9) obtaining

Xz = −μi Dz + Az + e−τ XBz.
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Letting I d be the 3 × 3 identity matrix, we have

(−X I d − μi D + A + e−τ XB)z = 0. (10)

Thus, there exist non-trivial solutions z and X is an eigenvalue if the matrix −X I d − μi D +A+ e−τ XB has
a determinant equal to zero. This calculation gives the characteristic equation as follows:

−
(

X −
(

r1 − μ − 2
r1
k

H0

)) (
X2 +

(r2
k

H0 + γ + a f (H0, 0, 0) + α − r2 + μi D
)

X
)

+
(

− r2γ + αγ + r2
k

H0γ − r2a f (H0, 0, 0) + αa f (H0, 0, 0) + r2
k

H0a f (H0, 0, 0)

−μi D(r2 − r2H0

k
− α) − ηe(m+X)τ f (H0, 0, 0)

)

= 0. (11)

Considering that E0 verifies system (17), hence r1
(
1 − H0

k

)
= μ − λ

H0
, and using the previous fact we can

express the first factor of (11) as:

X = r1 − 2
r1
k

H0 − μ = −
(

λ

H0
+ r1H0

k

)

,

which have a negative eigenvalue, and the other two eigenvalues satisfy the following transcendental polyno-
mial

X2 + a2X + a3 + b3(τ )e−Xτ = 0, (12)

where

a2 = r2
r1

λ

H0
− r2

r1
μ + γ + a f (H0, 0, 0) + α + μi D,

a3 = −r2 (γ + a f (H0, 0, 0))

(

1 − H0

k

)

+ αγ + αa f (H0, 0, 0) − μi D(r2 − r2H0

k
− α),

b3(τ ) = −ηe−mτ f (H0, 0, 0).

It is clear that a2 > 0 due to the fact that r2 ≤ r1 and μ ≤ α.
When τ = 0, equation (12) becomes

X2 + a2X + a3 + b3(0) = 0. (13)

We have

a3 + b3(0) = −r2 (γ + a f (H0, 0, 0))

(

1 − H0

k

)

+ αγ + αa f (H0, 0, 0)

−μi D

(

r2 − r2H0

k
− α

)

− η f (H0, 0, 0)

= −α (γ + a f (H0, 0, 0))

[
r2
α

(

1 − H0

k

)

− η f (H0, 0, 0)

α (γ + a f (H0, 0, 0))
− 1

]

−μi D(r2 − r2H0

k
− α)

= −α (γ + a f (H0, 0, 0)) [R0(0) − 1] − μi D

[

−r2
r1

λ

H0
+ r2

r1
μ − α

]

.

If R0(0) < 1 then a3 + b3(0) > 0. Furthermore, the fact that a3 > 0, ensures that all the roots of (13) have
negative real part according to Routh-Hurwitz criterion. Therefore, the uninfected equilibrium E0 is locally
asymptotically stable when τ = 0.

Now, let us consider the distribution of the roots of (12) when τ > 0.
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Assume that X = ωi (ω > 0) is a solution of (12). Substituting X = ωi (ω > 0) into (12), then separating
in real and imaginary parts, we obtain

{
a3 − ω2 = −b3(τ ) cosωτ,

a2ω = b3(τ ) sinωτ.

Squaring and adding the last two equations and after simplifications yield

ω4 + (a2
2 − 2a3)ω

2 + (a2
3 − b23(τ )) = 0.

Let

ω2 = Z; A = a2
2 − 2a3; B(τ ) = a2

3 − b23(τ ),

then, we have

F(Z) = Z2 + AZ + B(τ ) = 0, (14)

where

A =
(

r2λ

r1H0
− r2

r1
μ + α

)2

+ (γ + a f (H0, 0, 0))
2 + 2μi D (γ + a f (H0, 0, 0)) + (μi D)2 > 0.

and

B(τ ) = a2
3 − b23(τ ) = (a3 − b3(τ )) (a3 + b3(τ )) .

where

(a3 + b3(τ )) = −αγ [R0(τ ) − 1] − μi D

[
r2
r1

λ

H0
− r2

r1
μ − α

]

.

Additionally,

a3 + b3(τ ) = −r2 (γ + a f (H0, 0, 0))

(

1 − H0

k

)

+ αγ + αa f (H0, 0, 0)

−μi D(r2 − r2H0

k
− α) + ηe−mτ f (H0, 0, 0)

= (γ + a f (H0, 0, 0))

[
r2λ

r1H0
− r2

r1
μ + α

]

− μi D

[

−r2
r1

λ

H0
+ r2

r1
μ − α

]

+ηe−mτ f (H0, 0, 0).

Therefore,

a3 + b3(τ ) = (γ + a f (H0, 0, 0))

[
r2λ

r1H0
− r2

r1
μ + α

]

− μi D

[

−r2
r1

λ

H0
+ r2

r1
μ − α

]

+ηe−mτ f (H0, 0, 0).

Since r2μ
r1

− α < 0, if R0(τ ) < 1, then B(τ ) > 0.
Now as A > 0, B(τ ) > 0 and ω > 0, then F(Z) > 0 for any Z > 0, which contradicts F(Z) = 0. This

shows that characteristic equation (14) does not have pure imaginary roots when R0(τ ) < 1. The fact that
E0 is locally asymptotically stable for τ = 0, and the continuity of the roots of (14) with respect to the delay
imply that (14) has all its roots with real negative part when R0(τ ) < 1.

Therefore, if R0(τ ) < 1, the uninfected equilibrium E0 of system (2) is locally asymptotically stable.
Now we consider the case R0(τ ) > 1, recalling that i specifies the diffusion eigenvalue μi , let

F(X, i) = X2 + a2X + a3 + b3(τ )e−Xτ . (15)

Here, it is sufficient to consider i = 0 and the space X0 corresponding to μ0 = 0. We have

F(0, 0) = −αγ [R0(τ ) − 1] < 0

and

lim
X→+∞ F(X, 0) = +∞

Hence, there must exist X0 > 0 such that F(X0, 0) = 0. This yields that (13) has at least one positive root.
Thus, the uninfected equilibrium E0 is unstable for R0(τ ) > 1. �	

123



Arab. J. Math. (2023) 12:173–199 183

3.3 Global stability analysis of E0

We discuss about the global stability of the uninfected equilibrium E0 = (H0, 0, 0) for the delayed Reaction-
Diffusion-O.D.E model problem (2)–(4) when R0(τ ) < 1. We set

y = y(x, t) and yτ = y(x, t − τ) forall y ∈ {H, I, V }.
We assume that f is under the following hypothesis:

(H4) : ∃δ > 0 such that

(

1 − f (H0, 0, 0)

f (H, 0, 0)

)

= δ(H − H0)

H
, for all H > 0.

We have the following result:

Theorem 3.2 Suppose that r1 = r2
(γ+a f (H0,0,0))

γ δ
eτm and if R0(τ ) ≤ 1, then the uninfected equilibrium

E0 = (H0, 0, 0) of the delayed Reaction-Diffusion-O.D.E model problem (2)–(4) is globally asymptotically
stable.

Proof Let H = H(x, t), I = I (x, t) and V = V (x, t) be any positive solution of the delayed Reaction-
Diffusion-O.D.E model problem (2)–(4). Define the following Lyapunov functional

L1(t) =
∫

Ω

(

r2emτ

(

H − H0 −
∫ H

H0

f (H0, 0, 0)

f (η, 0, 0)
dη

)

+ emτ r1δ I + r1δ f (H0, 0, 0)V

γ + a f (H0, 0, 0)

)

dx

+r1δ
∫

Ω

∫ t

t−τ

f (H(x, u), I (x, u), V (x, u))V (x, u)dudx . (16)

Then, clearly, L1(t) is nonnegative definite with respect to E0. Now, calculating the time derivative of L1 along
the solution of problem (2)–(4), where the dot (·) represents derivative with respect to time, we obtain

d L1(t)

dt
=
∫

Ω

(

r2emτ

(

1 − f (H0, 0, 0)

f (H, 0, 0)

)

Ḣ + emτ r1δ İ + r1δ f (H0, 0, 0)V

γ + a f (H0, 0, 0)
V̇

)

dx

+r1

∫

Ω

δ
d

dt

∫ t

t−τ

f (H(x, u), I (x, u), V (x, u))V (x, u)dudx

=
∫

Ω

[

emτ r2
δ(H − H0)

H

(

λ + r1H

(

1 − H + I

k

)

− μH

)

−emτ r2

(

1 − f (H0, 0, 0)

f (H, 0, 0)

)

f (H, I, V )V + r1δ f (Hτ , Iτ Vτ )Vτ

+r1emτ r2δ I

(

1 − H + I

k

)

− r1δαemτ I − r1δ f (Hτ , Iτ , Vτ )Vτ + r1δ f (H, I, V )V

+ r1δ f (H0, 0, 0)ηI

γ + a f (H0, 0, 0)
− r1δ f (H0, 0, 0)V γ

γ + a f (H0, 0, 0)
− r1δa f (H0, 0, 0) f (H, I, V )V

γ + a f (H0, 0, 0)

+D
r1δ f (H0, 0, 0)

γ + a f (H0, 0, 0)
ΔV

]

dx .

Since

r1 − μ = r1H0

k
− λ

H0
,

we have

d L1(t)

dt
=
∫

Ω

[

emτ r2
δ(H − H0)

H

(

λ + r1
k

H0H − λ

H0
H − r1

k
I H − r1

k
H2
)

−emτ r2

(

1 − f (H0, 0, 0)

f (H, 0, 0)

)

f (H, I, V )V + emτ I r1r2δ

(

1 − H0

k

)
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−emτ I r1r2δ

(
H − H0

k

)

− r1emτ r2
I 2

k
δ − r1δαemτ I + r1δ f (H0, 0, 0)ηI

γ + a f (H0, 0, 0)

−r1δ f (H0, 0, 0)V γ

γ + a f (H0, 0, 0)
+ r1δ f (H, I, V )V γ

γ + a f (H0, 0, 0)
+ D

r1δ f (H0, 0, 0)

γ + a f (H0, 0, 0)
ΔV

]

dx

=
∫

Ω

[

− r1r2δ

H0
emτ ((H − H0) + I )2 + emτ r1δα I (R0(τ ) − 1)

−λδemτ r2(H − H0)
2

H H0
− emτ r2 f (H, I, V )V + emτ r2

f (H0, 0, 0)

f (H, 0, 0)
f (H, I, V )V

−r1δ f (H0, 0, 0)V γ

γ + a f (H0, 0, 0)
+ r1δγ f (H, I, V )V

γ + a f (H0, 0, 0)
+ D

r1δ f (H0, 0, 0)

γ + a f (H0, 0, 0)
ΔV

]

dx .

Moreover, using the fact f is a decreasing function with respect to second and third variable,

f (H, I, V ) ≤ f (H, 0, 0) forall H, I, V ≥ 0,

hence it follows that

∂L1(t)

∂t
≤
∫

Ω

[

− λδemτ r2
(H − H0)

2

H H0
− r1δ

k
r2emτ ((H − H0) + I )2

+emτ r1δα I (R0(τ ) − 1) − f (H, I, V )V

(

emτ r2 − r1δγ

γ + a f (H0, 0, 0)

)

+D
r1δ f (H0, 0, 0)

γ + a f (H0, 0, 0)
ΔV + f (H0, 0, 0)V

(

emτ r2 − r1δγ

γ + a f (H0, 0, 0)

)]

dx

≤
∫

Ω

[

− λδemτ r2
(H − H0)

2

H H0
− r1δ

k
r2emτ ((H − H0) + I )2

+emτ r1δα I (R0(τ ) − 1) + D
r1δ f (H0, 0, 0)

γ + a f (H0, 0, 0)
ΔV

]

dx .

From the Divergence theorem and the homogeneous Neumann boundary conditions, we get

∫

Ω

ΔV dx =
∫

∂Ω

∂V

∂n
= 0,

and thus, the previous inequality becomes

d L1(t)

dt
≤
∫

Ω

(

− λδemτ r2
(H − H0)

2

H H0
− r1δ

k
r2emτ ((H − H0) + I )2

+emτ r1δα I
(
R0(τ ) − 1

))

dx .

Therefore, the condition R0(τ ) < 1 ensures d L1(x,t)
dt ≤ 0, for all H , I , V ≥ 0. Furthermore, d L1(t)

dt =
0 if and only, if H = H0, I = 0, V = 0. It then follows that the largest compact invariant set G of{
(H, I, V ) ∈ R3+ / d L1

dt (t) = 0
}
is {E0}. By LaSalle’s invariance principle [[7], Theorem 5.3.1], we deduce

that the spatially homogeneous uninfected equilibrium E0 of theReaction-Diffusion-ODEmodel (2) is globally
asymptotically stable. This completes the proof. �	
Remark 3.3 The previous results confirm that the infection always dies out. These results strictly extend those
of [4,11,32] in the case where their models ignored cell proliferation and the absorption effect in the asymptotic
stability result of the homogeneous uninfected equilibrium.
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3.4 Numerical results

In this section, we present the numerical simulations done by using Matlab software to confirm the theoretical
results that we established in the previous section for a particular case of the incidence function f defined as
follows:

f (H, I, V ) = β H

1 + α1H + α2V
,

which is the Beddington–DeAngelis incidence function [13] where α1, α2 and β are positive constants.

Fig. 1 Demonstration of stability of the uninfected equilibrium with parameters: τ = 5; r1 = 0.05; r2 = 0.021; m = 0, 021;
k = 1200; a = 0.01; β = 9.2419.10−7; μ = 0.02; γ = 0.02; α = 0.031; λ = 20; η = 0.21; α1 = 0.001; α2 = 0.001;
D = 0.01. Here H0 = 1140.8,R0 = 0.1836 < 1 and E0 = (1140, 0, 0)
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4 Asymptotic stability analysis of the infected equilibrium

The aim of this section is: first to determine the existence and the uniqueness of the infected equilibrium for the
system (2), then to study the local and global stability of the the later, and finally to obtain numerical results.
Due to the complexity of determining an infected equilibrium of the initial model, we will in this section
restrict ourselves to the case a = 0.

4.1 Infected equilibrium

4.1.1 Existence

Proposition 4.1 Assume that R0(τ ) > 1, then the system (2) possesses an infected equilibrium E1 =
(H1, I1, V1), where every component is strictly positive.

Proof We suppose that there exists a homogeneous spatial equilibrium or constant solution (H1, I1, V1) for
system (2), then this constant solution satisfies:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

λ + r1H1

(

1 − H1 + I1
k

)

− μH1 − f (H1, I1, V1)V1 = 0 (17)

e−τm f (H1, I1, V1)V1 + r2 I1

(

1 − H1 + I1
k

)

− α I1 = 0 (18)

ηI1 − γ V1 = 0. (19)

From (19) we get

V1 = η

γ
I1. (20)

Moreover, bymultiplying (17) by e−mτ and adding the latter to (18), we obtain the following quadratic equation
in H1:

−r1
k

e−mτ H2
1 +

((
r1 − μ − r1

k
I1
)

e−mτ − r2
k

I1

)

H1 + λe−mτ

+r2 I1

(

1 − I1
k

)

− α I1 = 0. (21)

Note that equation (21) has two real roots of opposite sign that depend on I1. The positive real root of (21) is
given by

H1 =

((
r1 − μ − r1

k
I1
)

e−mτ − r2
k I1

)

+ √
Δ

2
r1
k

,

where

Δ =
((

r1 − μ − r1
k

I1
)

e−mτ − r2
k

I1

)2

+ 4
r1
k

e−mτ

(

λe−mτ + r2 I1

(

1 − I1
k

)

− α I1

)

. (22)

Defining H1 = h(I1) with

h(I1) =

((
r1 − μ − r1

k
I1
)

e−mτ − r2
k I1

)

+ √
Δ

2
r1
k

. (23)
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Substituting (19) and (23) into (18) yields

e−mτ f

(

h(I1), I1,
η

γ
I1

)
η

γ
I1 + r2 I1

(

1 − h(I1) + I1
k

)

− α I1 = 0.

It follows that

e−mτ f

(

h(I1), I1,
η

γ
I1

)
η

γ
+ r2

(

1 − h(I1) + I1
k

)

− α = 0

since I1 > 0. Let

F(I1) = e−mτ f

(

h(I1), I1,
η

γ
I1

)
η

γ
+ r2

(

1 − h(I1) + I1
k

)

− α. (24)

F is a continuous real function defined on [0, +∞). Furthermore,

F(0) = e−mτ f (h(0), 0, 0)
η

γ
+ r2

(

1 − h(0)

k

)

− α,

and

h(0) =
(r1 − μ) e−mτ +

√

(r1 − μ)2 e−2mτ + 4λe−2mτ
r1
k

2
r1e−mτ

k

= H0.

Finally, we get

F(0) = α

[
e−mτ f (H0, 0, 0)η

αγ
+ r2

α

(

1 − H0

k

)

− 1

]

.

Therefore

F(0) = α (R0(τ ) − 1) (25)

which is positive as R0(τ ) > 1. Note that

0 ≤ lim
I1→+∞ h(I1) < +∞.

Using the fact that there exists β > 0 such that f (H, I, V ) ≤ β H for all H , I , V ≥ 0, we deduce that

lim
I1→+∞ f

(

h(I1), I1,
η

γ
I1

)

< +∞

and therefore

lim
I1→+∞ F(I1) = −∞.

The intermediate value theorem guarantees the existence of I1 > 0 such that F(I1) = 0. The existence of I1
also ensures that of H1 and of V1. Thus the infected equilibrium point E1 = (H1, I1, V1) exists. �	
Now let’s take a look at uniqueness.
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4.1.2 Uniqueness

Proposition 4.2 If A = H2
0 r2 − λk ≤ 0, then the infected equilibrium point E1 = (H1, I1, V1) is unique.

Proof It is sufficient to show that F(I1) is a strictly decreasing function. We have

F ′(I1) = e−mτ h′(I1)
∂ f

∂ H

(

h(I1), I1,
η

γ
I1

)
η

γ
+ e−mτ ∂ f

∂ I

(

h(I1), I1,
η

γ
I1

)
η

γ

+e−mτ ∂ f

∂V

(

h(I1), I1,
η

γ
I1

)(
η

γ

)2

− r2
k

− r2
k

h′(I1)

= e−mτ h′(I1)
∂ f

∂ H

(

h(I1), I1,
η

γ
I1

)
η

γ
+ e−mτ ∂ f

∂ I

(

h(I1), I1,
η

γ
I1

)
η

γ

+e−mτ ∂ f

∂V

(

h(I1), I1,
η

γ
I1

)(
η

γ

)2

− r2
k

(h′(I1) + 1).

Note that F ′(I1) depends on h′(I1). To calculate h′(I1) we first rewrite the Eq. (21) as

−r1
k

e−mτ h(I1) +
((

r1 − μ − r1
k

I1
)

e−mτ − r2
k

I1

)

+ 1

h(I1)

(

λe−mτ + r2 I1

(

1 − I1
k

)

− α I1

)

= 0. (26)

Using implicit differentiation we get

h′(I1) = −
[

r1
k

e−mτ + r2
k

+ 1

h(I1)

(

α − r2

(

1 − 2I1
k

))]

×
[

r1
k

e−mτ + 1

h2(I1)

(

λe−mτ + r2 I1

(

1 − I1
k

)

− α I1

)]−1

.

The previous expression of h′(I1) can be rewritten as

h′(I1) = A

B
,

where

A = −r1
k

emτ h2(I1) + r2h(I1)

(

1 − h(I1) + I1
k

)

− αh(I1) − r2
k

I1h(I1)

and

B = r1
k

emτ h2(I1) + λe−mτ + r2 I1

(

1 − I1
k

)

− α I1 + r2
k

I1h(I1).

Using Eqs. (18) and (19) we rewrite A and B respectively as

A = −r1
k

emτ h2(I1) − h(I1)e
−mτ f (h(I1), I1,

η

γ
I1)

η

γ
− r2

k
I1h(I1)

and

B = r1
k

emτ h2(I1) + λe−mτ − e−mτ f

(

h(I1), I1,
η

γ
I1

)
η

γ
I1 + r2

k
I1h(I1).

Note that

A + B = λe−mτ − e−mτ f

(

h(I1), I1,
η

γ
I1

)
η

γ
I1 − h(I1)e

−mτ f

(

h(I1), I1,
η

γ
I1

)
η

γ
. (27)
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From (27), we deduce that

F ′(I1) = e−mτ A

B

∂ f

∂ H

(

h(I1), I1,
η

γ

)
η

γ
+ e−mτ ∂ f

∂ I

(

h(I1), I1,
η

γ

)
η

γ

+e−mτ ∂ f

∂V

(

h(I1), I1,
η

γ

)(
η

γ

)2

− r2
k B

(

λ − f

(

h(I1), I1,
η

γ

)
η

γ
I1

)

e−mτ + r2
k B

h(I1) f

(

h(I1), I1,
η

γ

)
η

γ

)

e−mτ

≤ e−mτ A

B

∂ f

∂ H

(

h(I1), I1,
η

γ

)
η

γ
− r2

k B

(

λ − f

(

h(I1), I1,
η

γ

)
η

γ
I1

)

e−mτ

+ r2
k B

h(I1) f

(

h(I1), I1,
η

γ

)
η

γ

)

e−mτ .

From (17), we have
(

λ − f

(

h(I1), I1,
η

γ

)
η

γ
I1

)

e−mτ ≥
(

h2(I1)
λ

H2
0

+ r1
k

I1h(I1)

)

e−mτ ,

from which we deduce that

F ′(I1) ≤ e−mτ A

B

∂ f

∂ H

(

h(I1), I1,
η

γ

)
η

γ
− r2

k B

(

h2(I1)
λ

H2
0

+ r1
k

I1h(I1)

)

e−mτ

+ r2
k B

h(I1) f

(

h(I1), I1,
η

γ

)
η

γ

)

e−mτ

≤ r2
k B

h(I1)

I1

(

f

(

h(I1), I1,
η

γ

)
η

γ
I1 − λ

H2
0

h(I1)I1 − r1
k

I 21

)

e−mτ

+e−mτ A

B

∂ f

∂ H

(

h(I1), I1,
η

γ

)
η

γ
.

Equation (18), allows us to have:

F ′(I1) ≤ r2
k B

h(I1)

I1

(

(α − r2)I1 + (r2 − r1)

k
I 21 + r2

k
h(I1)I1 − λ

H2
0

h(I1)I1

)

e−mτ

+e−mτ A

B

∂ f

∂ H

(

h(I1), I1,
η

γ

)
η

γ

≤ r2
k B

h(I1)

I1

(

α − r2

(

1 − (H2
0 r2 − λk)h(I1)

k H2
0 r2

))

I1e−mτ + e−mτ A

B

∂ f

∂ H

(

h(I1), I1,
η

γ

)
η

γ

< 0.

Therefore

F ′(I1) < 0.

The fact that F is a strictly monotonic function allows us to conclude that the point I1 is unique. The uniqueness
of I1 results in that of H1 and V1. Thus we conclude that the equilibrium point (H1, I1, V1) is unique. �	
Remark 4.3 Indeed, any spatially-inhomogeneous equilibrium point E1 = (H1, I1, V1) of the model (2)
subject to homogeneous Neumann boundary condition (4) must solve the following system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ + r1H1

(

1 − H1 + I1
k

)

− μH1 − f (H1, I1, V1)V1 = 0

e−τm f (H1, I1, V1)V1 + r2 I1

(

1 − H1 + I1
k

)

− α I1 = 0

DΔV1 + ηI1 − γ V1 = 0
∂V1

∂n
= 0
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Investigation of the existence and stability of such spatially-inhomogeneous equilibria will be the concern of
a forthcoming work via an in-depth analysis of the above system.

4.2 Local stability analysis of E1

In this section we deal with the local stability of the infected equilibrium E1.

Proposition 4.4 Let

B =
(

H1
∂ f (H1, I1, V1)

∂ H
− f (H1, I1, V1)

)

.

If R0(τ ) > 1 and B ≥ 0, then the infected equilibrium E1 = (H1, I1, V1), if it exists, is locally asymptotically
stable.

Proof Note that this proof is analogous to the proof of Proposition3.1.
The characteristic equation of system (2) at the infected equilibrium is of the form

X3 + a2(τ )X2 + a1(τ )X + [
b2(τ )X2 + b1(τ )X + b0(τ )

]
e−Xτ + a0(τ ) = 0, (28)

where

a2(τ ) =
(

λ

H1
+ r1

k
H1 + ∂ f (H1, I1, V1)

∂ H
V1 − f (H1, I1, V1)

V1

H1
+ γ + μi D

e−mτ f (H1, I1, V1)
V1

I1
+ r2

k
I1

)

,

a1(τ ) =
[(

γ + μi D + e−mτ f (H1, I1, V1)
V1

I1
+ rI

k
I1

)(
λ

H1
+ r1

k
H1 + ∂ f (H1, I1, V1)

∂ H
V1

− f (H1, I1, V1)
V1

H1

)

+
(

+ e−mτ f (H1, I1, V1)
V1

I1
+ rI

k
I1

)(

γ + μi D

)

−
(

r1
k

H1 + ∂ f (H1, I1, V1)

∂V
V1

)
r2
k

I1

]

,

a0(τ ) =
(

λ

H1
+ r1

k
H1 + ∂ f (H1, I1, V1)

∂ H
V1 − f (H1, I1, V1)

V1

H1

)[(

e−mτ f (H1, I1, V1)
V1

I1
+ r2

k
I1

)

×
(

γ + μi D

)]

−
(

r1
k

H1 + ∂ f (H1, I1, V1)

∂ I
V1

)
r2
k

I1(γ + μi D)

−
(

f (H1, I1, V1) + ∂ f (H1, I1, V1)

∂V
V1

)
r2
k

ηI1,

b2(τ ) = −e−mτ ∂ f (H1, I1, V1)

∂ I
V1,

b1(τ ) = −
[

ηe−mτ f (H1, I1, V1) + ηe−mτ ∂ f (H1, I1, V1)

∂V
V1 −

(
r1
k

H1 + ∂ f (H1, I1, V1)

∂ I
V1

)

×

e−mτ ∂ f (H1, I1, V1)

∂ H
V1 +

(

e−mτ ∂ f (H1, I1, V1)

∂ I
V1

)[(

γ + μi D

)

+
(

λ

H1
+ r1

k
H1 + ∂ f (H1, I1, V1)

∂ H
V1 − f (H1, I1, V1)

V1

H1

)]]

,

and

b0(τ ) = −
(

λ

H1
+ r1

k
H1 + ∂ f (H1, I1, V1)

∂ H
V1 − f (H1, I1, V1)

V1

H1

)[(

ηe−mτ f (H1, I1, V1)

+ηe−mτ ∂ f (H1, I1, V1)

∂V
V1 +

(

e−mτ ∂ f (H1, I1, V1)

∂ I
V1

)(

γ + μi D

)]

+
(

r1
k

H1 +
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∂ f (H1, I1, V1)

∂ I
V1

)(

γ + μi D

)

e−mτ ∂ f (H, I1, V1)

∂ H
V1 +

(

f (H1, I1, V1) + ∂ f (H1, I1, V1)

∂V
V1

)

×
(

ηe−mτ ∂ f (H1, I1, V1)

∂ H
V1

)

.

When τ = 0, Eq. (28) becomes

X3 + (a2(0) + b2(0))X2 + (a1(0) + b1(0))X + b0(0) + a0(0) = 0. (29)

By the Routh-Hurwitz criterion the conditions for real part of X Re X to be negative are: a2(0) + b2(0) > 0,
b0(0) + a0(0) > 0, and (a2(0) + b2(0))(a1(0) + b1(0)) − (a0(0) + b0(0)) > 0.
In our case we have

a2(0) + b2(0) = λ

H1
+ r1

k
H1 + ∂ f (H1, I1, V1)

∂ H
V1 − f (H1, I1, V1)

V1

H1
+ γ + μi D

+r2
k

I1 + f (H1, I1, V1)
V1

I1
− ∂ f (H1, I1, V1)

∂ I
V1 > 0,

and

a0(0) + b0(0) =
(

λ

H1
− f (H1, I1, V1)

V1

H1

)[
r2
k

I1

(

γ + μi D

)]

+ ∂ f (H1, I1, V1)

∂ H
V1

r2
k

I1μi D

+
(

λ

H1
+ r1

k
H1 + ∂ f (H1, I1, V1)

∂ H
V1 − f (H1, I1, V1)

V1

H1

)

f (H1, I1, V1)
V1

I1
μi D

−∂ f (H1, I1, V1)

∂ I
V1

r2
k

I1(γ + μi D) − ∂ f (H1, I1, V1)

∂V
V1

r2
k

ηI1

−
(

λ

H1
+ r1

k
H1 − f (H1, I1, V1)

V1

H1

)

η
∂ f (H1, I1, V1)

∂V
V1

−
(

λ

H1
+ r1

k
H1 − f (H1, I1, V1)

V1

H1

)(
∂ f (H1, I1, V1)

∂ I
V1

)(

γ + μi D

)

+r1
k

H1μi D
∂ f (H, I1, V1)

∂ H
V1 + η f (H1, I1, V1)

∂ f (H1, I1, V1)

∂ H
V1

γ V1

k

(

r2
∂ f (H1, I1, V1)

∂ H
I1 + r1

∂ f (H1, I1, V1)

∂ H
H1 − r2 f (H1, I1, V1)

)

> 0,

since B > 0, so we need

H(1) : a0(0) + b0(0) > 0, (a2(0) + b2(0))(a1(0) + b1(0)) − (a0(0) + b0(0)) > 0.

If τ = 0, by the Routh-Hurwitz criterion, we have the following result. �	

Proposition 4.5 If conditions H(1) are satisfied, B =
(

∂ f (H1,I1,V1)
∂ H H1− f (H1, I1, V1)

)

≥ 0, andR0(0) > 1,

then the infected equilibrium E1 = (H1, I1, V1) is locally asymptotically stable.

Now we analyze if it is possible to have a complex root with positive real part for the case τ > 0, assuming
H(1) satisfies, note that X = 0 is not a root of (28) because a0(τ ) + b0(τ ) > 0. Now suppose that X = iω,
with ω > 0, is a root of (28) so the next equation must be satisfied by ω

−iω3 − a2(τ )ω2 + ia1(τ )ω + a0(τ ) − b2(τ )ω2 cosωτ + ib2(τ )ω2 sinωτ + ib1(τ )ω cosωτ

+b1(τ )ω sinωτ + b0(τ )ω cosωτ − ib0(τ ) sinωτ = 0.

Separating the real and the imaginary parts of the previous expression yields:
{

a0(τ ) − a2(τ )ω2 = (b2(τ )ω2 − b0(τ )) cosωτ − b1(τ )ω sinωτ, (30)

a1(τ )ω − ω3 = −(b2(τ )ω2 − b0(τ )) sinωτ − b1(τ )ω cosωτ. (31)
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From (30) and (31), we get

cosωτ = (−a2(τ )b2(τ ) + b1(τ ))ω4 + (a0(τ )b2(τ ) + a2(τ )b0(τ ) − a1(τ )b1(τ ))ω2 − a0(τ )b0(τ )

(b2(τ )ω2 − b0(τ ))2 + b1(τ )ω2

and

sinωτ = b2(τ )ω5 + (−b0(τ ) − a1(τ )b2(τ ) + a2(τ )b1(τ ))ω3 + (a1(τ )b0(τ ) − a0(τ )b1(τ ))ω

(b2(τ )ω2 − b0(τ ))2 + b1(τ )ω2 .

Moreover, note that the characteristic Eq. (28) is equivalent to

P(X, τ ) + Q(X, τ )e−Xτ = 0 (32)

with

P(X, τ ) = X3 + a2(τ )X2 + a1(τ ) + a0(τ ),

Q(X, τ ) = b2(τ )X2 + b1(τ )X + b0(τ ).

It follows from the above that:

sin(ωτ) = Im
Q(iω, τ)

P(iω, τ)

and

cos(ωτ) = −Re
Q(iω, τ)

P(iω, τ)
.

Hence, we conclude that ω is a positive root of the following equation:

|P(iω, τ)|2 = |Q(iω, τ)|2
that is:

ω6 − Aω4 + Bω2 + C = 0 (33)

where

A = a2
2(τ ) − b22(τ ) − 2a1(τ ),

B = a2
1(τ ) − 2a0(τ )a2(τ ) − b21(τ ) + 2b2(τ )b0(τ ),

C = a2
0(τ ) − b20(τ )).

Let z = ω2 then (33) becomes the third order equation in z

z3 + Az2 + Bz + C = 0. (34)

Suppose that (34) has at least one positive root, let z0 be the smallest value for these roots. Then (33) has the
root ω0 = √

z0 then, according to (30) and (31), we obtain the value of τ associated with this ω0 such that
X = ωi is an purely imaginary root of (32), known as

τ0 = 1

ω0
arccos

[
(a2ω2

0 − a0) + b2ω2
0(a0 − a2ω2

0) + b1ω0(ω
3
0 − a1ω0)

(b2ω2
0 − b0)2 + b1ω2

0

]

.

Then we have the following result, from Lemma 2.1 from Ruan [24].:

Theorem 4.6 Assume (H(1)),

1. If C ≥ 0 and Λ = A2 − 3B < 0, then all roots of (32) have negative real part for all τ ≥ 0 and the
infected equilibrium E1 = (H1, I1, V1) is locally asymptotically stable.

2. If C < 0 or C ≥ 0, z1 > 0 and z31 + Az21 + Bz1 + C ≤ 0, then all roots of (32) have negative real parts
when τ ∈ [0, τ0] and the infected equilibrium E1 = (H1, I1, V1) is locally asymptotically stable in [0, τ0].
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4.3 Global stability analysis of E1

Next, we study the global stability of the infected equilibrium without absorption of E1 = (H1, I1, V1) for the
model problem (2)–(4). We assume that

(H5) :
(

1 − f (H, I, V )

f (H, I1, V1)

)(
f (H, I1, V1)

f (H, I, V )
− V

V1

)

≤ 0, H, I, V ≥ 0,

(H6) :
(

1 − f (H1, I1, V1)

f (H, I1, V1)

)

= δ2(H − H1)

H
, H, δ2 > 0.

Biological interpretations of (H5) can be easily found in [15].

Theorem 4.7 If r1 = r2 = r emτ−3 ≤ 0,−
(

δ2 − 1
4

(
1 + δ2

emτ

)2
)

≤ 0and−
(

1
P H1

(λδ2− f (H1, I1, V1)V1)−
2rδ2

k

)

< 0 then the uninfected equilibrium E1 = (H1, I1, V1), if it exists, is globally asymptotically stable.

Proof Let H(x, t), I (x, t) and V (x, t) be any positive solution of the delayed Reaction–Diffusion-O.D.E
model problem (2)–(4). Define the following Lyapunov functional

L2(t) =
∫

Ω

(
L̃(x, t) + f (H1, I1, V1)V1L+(x, t)

)
dx, (35)

where

L̃(x, t) =
(

H − H1 −
∫ H

H1

f (H1, I1, V1)

f (η, H1, V1)
dη

)

+ emτ

∫ I

I1

η − I1
η

dη

+ f (H1, I1, V1)V1

ηI1

∫ V

V1

η − V1

η
dη

and

L+(x, t) =
∫ τ

0

(
f (H(x, t − ω), I (x, t − ω), V (x, t − ω))V (x, t − ω))

f (H1, I1, V1)V1
− 1

− ln
f (H(x, t − ω), I (x, t − ω)V (x, t − ω))V (x, t − ω)

f (H1, I1, V1)V1

)

dω.

The time derivative of L+ is given by:

∂L+(x, t)

∂t
= − f (Hτ , Iτ , Vτ )Vτ

f (H1, I1, V1)V1
+ f (H, I, V )V

f (H1, I1, V1)V1
+ ln

f (Hτ , Iτ , Vτ )Vτ

f (H1, I1, V1)V1

− ln
f (H, I, V )V

f (H1, I1, V1)V1

= − f (Hτ , Iτ , Vτ )Vτ

f (H1, I1, V1)V1
+ f (H, I, V )V

f (H1, I1, V1)V1
+ ln

H1

H
+ ln

f (Hτ , Iτ , Vτ )Vτ I1
f (H1, I1, V1)V1 I

+ ln
f (H1, I1, V1)V1H I

f (H, I, V )V H1 I1
.

Noting that

ln
f (H1, I1, V1)V1H I

f (H, I, V )V H1 I1
= ln

f (H1, I1, V1) f (H, I1, V1)V1H I

f (H, I, V ) f (H, I1, V1)V H1 I1

= ln
f (H, I1, V1)

f (H, I, V )
+ ln

V1 I

V I1
+ ln

f (H1, I1, V1)H

f (H, I1, V1)H1
.
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Inserting the previous equation in the expression of ∂L+(x,t)
∂t , one deduces that

∂L+(x, t)

∂t
= − f (Hτ , Iτ , Vτ )Vτ

f (H1, I1, V1)V1
+ f (H, I, V )V

f (H1, I1, V1)V1
+ ln

H1

H
+ ln

f (Hτ , Iτ , Vτ )Vτ I1
f (H1, I1, V1)V1 I

+ ln
f (H, I1, V1)

f (H, I, V )
+ ln

f (H1, I1, V1)H

f (H, I1, V1)H1
+ ln

V1 I

V I1
.

Likewise,

∂ L̃(x, t)

∂t
=
(

1 − f (H1, I1, V1)

f (H, I1, V1)

)(
λ − r

k
H(H + I ) − f (H, I, V )V + (r − μ)H

)

+emτ (I − I1)

(

e−mτ f (Hτ , Iτ , Vτ )Vτ

I
− r

k
(H + I ) + r − α

)

+ f (H1, I1, V1)V1

ηI1

(

1 − V1

V

)

(ηI − γ V + DΔV ) .

Since (H1, I1, V1) is an infected equilibrium, we get:

r − μ = − λ

H1
+ r

k
(H1 + I1) + f (H1, I1, V1)V1

H1
,

r − α = r

k
(H1 + I1) − e−mτ f (H1, I1, V1)V1

I1
,

γ = ηI1
V1

.

Using the previous inequalities, we have:

∂ L̃(x, t)

∂t
= δ2(H − H1)

(
λ

H
− r

k
(H + I ) − λ

H1
+ r

k
(H1 + I1)

)

+
(

1 − f (H1, I1, V1)

f (H, I1, V1)

)

×
(

− f (H, I, V )V + f (H1, I1, V1)V1H

H1

)

+ emτ (I − I1)

(
e−mτ f (Hτ , Iτ , Vτ )Vτ

I

−r

k
(H + I ) + r

k
(H1 + I1) − e−mτ f (H1, I1, V1)V1

I1

)

+ f (H1, I1, V1)V1

ηI1
×

(

1 − V1

V

)(
η(I V1 − I1V )

V1

)

+ f (H1, I1, V1)V1

ηI1

(

1 − V1

V

)

DΔV,

which can be written as:

∂ L̃(x, t)

∂t
= δ2(H − H1)

(−λ(H − H1)

H H1
− r

k
[(H − H1) + (I − I1)]

)

+
(

1 − f (H1, I1, V1)

f (H, I1, V1)

)(

− f (H, I, V )V + f (H1, I1, V1)V1H

H1

)

+ (I − I1) ×
(

f (Hτ , Iτ , Vτ )Vτ

I
− f (H1, I1, V1)V1

I1
− r

k
emτ ((H − H1) + (I − I1))

)

+ f (H1, I1, V1)V1

ηI1

(

1 − V1

V

)(
ηI V1 − I1V

V1

)

+ f (H1, I1, V1)V1

ηI1

(

1 − V1

V

)

DΔV .

Hence

∂ L̃(x, t)

∂t
= −λδ2

(H − H1)
2

H H1
+ r

k
emτ

(
− (I − I1)

2 − (H − H1)(I − I1)

− δ2

emτ
(H − H1)(I − I1) − 1

4

(
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+ f (H, I, V )V

f (H, I1, V1)V1

)

+ f (H1, I1, V1)V1

(

− V

V1
− f (H1, I1, V1)H

f (H, I1, V1)H1
− V1 I

V I1

)

+ f (H1, I1, V1)V1

ηI1

(

1 − V1

V

)

DΔV

= −λδ2
(H − H1)

2

H H1
− remτ

k

[

(I − I1) + 1

2

(

1 + δ2

emτ

)

(H − H1)

]2

+ 2r

k
δ2(H − H1)

2

−remτ

k

(

δ2 − 1

4

(

1 + δ2

emτ

)2
)

(H − H1)
2 + r

k
δ2
(−3 + emτ

)
(H − H1)

2

+ f (H1, I1, V1)V1

(

− f (H, I, V )V

f (H1, I1, V1)V1
+ f (Hτ , Iτ , Vτ )Vτ

f (H1, I1, V1)V1
− f (H1, I1, V1)H

f (H, I1, V1)H1

)

+ f (H1, I1, V1)V1

(

5 − H1

H
− V1 I

V I1
− f (Hτ , Iτ , Vτ )Vτ I1

I f (H1, I1, V1)V1
− f (H, I1, V1)

f (H, I, V )

)

+ f (H1, I1, V1)V1

(

− 1 − V

V1
+ f (H, I1, V1)

f (H, I, V )
+ f (H, I, V )V

f (H, I1, V1)V1

)

+ f (H1, I1, V1)V1

(
H1

H
+ H

H1
− 2

)

+ f (H1, I1, V1)V1

ηI1

(

1 − V1

V

)

DΔV .

Moreover,
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H
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Thus
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Also, from the Divergence Theorem and the homogeneous Neumann boundary conditions and the results of
work [10], we have

∫

Ω

1

V
ΔV =
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V 2 ‖∇V ‖2dx .
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and
∫

Ω

ΔV = 0.

Then combining the final expressions of ∂ L̃(x,t)
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The fact that the real function g defined by g(x) = x − 1 − ln x is positive on (0,+∞), one deduces that:

d L2(t)

dt
≤ 0.

Therefore d L1(t)
dt ≤ 0, for all H , I , V ≥ 0. Furthermore, d L1(t)

dt = 0 if and only, if H = H1, I = I1,

V = V1. It then follows that the largest compact invariant set G of
{
(H, I, V ) ∈ R3+ / d L1

dt = 0
}
is {E1}.
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(b) spatial distribution of the uninfected cells H(x, t), infected cells I(x, t) and free virions V (x, t)

Fig. 2 Demonstration of stability of the infected equilibrium with the set of parameter values: τ = 10; r1 = 0.001; r2 = 0.001;
m = 0.02; k = 1200; a = 0.01; β = 0.00009; μ = 0.02; γ = 2.1; α = 0.05; λ = 6; η = 1.8; α1 = 0.001; α2 = 0.001;
D = 0.01. Here we find H0 = 311.5328,R0 = 3.0153 > 1, E1 = (91.1385, 89.6691, 75.7164)

By LaSalle’s invariance principle [[7], Theorem 5.3.1, we deduce that the spatially homogeneous uninfected
equilibrium E1 of the PDE model system (2)–(4) is globally asymptotically stable. This completes the proof.

�	
Remark 4.8 Theorem4.7 confirms that the infection persists. This result extends strictly those of [4,11,32] in
that the cellular proliferation and absorption effect were ignored in establishing the result on the asymptotic
stability of the homogeneous infected equilibrium.
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4.4 Numerical results

5 Conclusion

In this work, we have proposed and analyzed a class of three dimensional spatio-temporal model describing
infectious diseases caused by viruses such as the human immunodeficiency virus (HIV), hepatitis C virus and
the hepatitis B virus (HBV). The infection transmission process is modeled by a general incidence function
which includes several forms existing in the literature. In addition, the global analysis of the proposed model
is rigorously investigated. Furthermore, biological findings of our analytical results are presented. Moreover,
mathematical virus models and results presented in many previous studies are extended and generalized.
To study the mechanism of viral infection and replication, we performed the mathematical analysis of a
dynamic model of diffusive in-host virus with a general non-linear incidence function. The well-posedness
and the stability of the equilibria of this model are examined. The basic reproductive numberR0(τ ) which is a
threshold value that predicts extinction and persistence of the viral infection is given. It is shown that the global
stability of the equilibria is determined by R0(τ ) with some other conditions: if R0(τ ) < 1, the uninfected
equilibrium is globally asymptotically stable, which means that the virus is finally cleared and the infection
dies; if R0(τ ) > 1, then the infected equilibrium is globally asymptotically stable. Our results also imply
that diffusion coefficients have no influence on the global behaviour of such a virus dynamics model with
homogeneous Neumann boundary conditions. Furthermore, the model proposed in this work is an extension
of some previous work and the results obtained improve some known results. It is interesting to improve
the present work by integrating several delays and searching for the spatially heterogeneous equilibria. In
addition, we can undertake the study of the existence of the Hopf bifurcation, and knowing that The memory
is an important characteristic of biological systems, It will be more interesting to examine the memory effect
on the spatiotemporal dynamics of our model by using the new generalized fractional derivative presented in
[8].
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