Héctor Suárez(- Armando Reyes© • Yésica Suárez ©

Homogenized skew PBW extensions

Received: 16 December 2021 / Accepted: 23 November 2022 / Published online: 9 December 2022
© The Author(s) 2022

Abstract

In this paper, we provide a new and more general filtration to the family of noncommutative rings known as skew PBW extensions. We introduce the notion of σ-filtered skew PBW extension and study some homological properties of these algebras. We show that the homogenization of a σ-filtered skew PBW extension A over a ring R is a graded skew PBW extension over the homogenization of R. Using this fact, we prove that if the homogenization of R is Auslander-regular, then the homogenization of A is a domain Noetherian, Artin-Schelter regular, and A is Noetherian, Zariski and (ungraded) skew Calabi-Yau.

Mathematics Subject Classification 16S36 16S37 16W50 •16W70 •13N10

1 Introduction

Skew PBW extensions (also known as σ-PBW extensions) were defined by Gallego and Lezama [12] with the aim of extending the skew polynomial rings (also known as Ore extensions) of injective type introduced by Ore [35], and the differential operator rings and PBW extensions defined by Bell and Goodearl [5]. Several ring-theoretical properties of skew PBW extensions have been investigated by some authors (e.g., [1,3,10,15, $17,33,42,43,51,53]$).

Lezama and the second author [27] defined a filtration for these objects considering the degree of each element of the ring of coefficients as zero ([27, Theorem 2.2]). Using this filtration, different homological properties have been formulated (e.g., $[10,23,25,47,50]$). Our objective in this paper is to consider the ring of coefficients with a non-zero filtration, and generalize some of the previous results to a more general setting.

The paper is organized as follows. In Sect. 2, we recall some elementary definitions and properties of ring theory and skew PBW extensions that are needed throughout the paper. Section 3 contains the definition of filtration on skew PBW extensions over positively filtered algebras, give some remarkable examples and study some properties of these noncommutative rings (Theorem 3.3 and Propositions 3.5, 3.6, 3.7, and 3.11). Next, Sect. 4 presents properties of σ-filtered skew PBW extensions over finitely presented algebras (Propositions 4.1, 4.2, and 4.5). We show that the homogenization of a σ-filtered skew PBW extension over a finitely presented algebra R is a graded skew PBW extension over the homogenization of R (Theorem 4.3). In Sect. 5,

[^0]Springer
for A a σ-filtered skew PBW extension over a ring R, we establish properties for A, its associated graded ring $G(A)$, and the homogenization $H(A)$ of A (Theorems 5.2 and 5.6, and Proposition 5.4). Finally, Sect. 6 presents some ideas for a possible future work concerning the ideas developed here and topics of interest in computational algebra and noncommutative geometry.

2 Preliminaries

Throughout the paper, the word ring means an associative ring (not necessarily commutative) with identity. \mathbb{K} denotes a field, all algebras are \mathbb{K}-algebras, $\operatorname{dim}(V)$ is the dimension of a \mathbb{K}-vector space V, all modules are left modules, and the tensor product \otimes means $\otimes_{\mathbb{K}}$. The symbols \mathbb{N}, \mathbb{Z} and \mathbb{C} denote the set of natural numbers including zero, the ring of integers, and the field of complex numbers, respectively.

An algebra R is called \mathbb{Z}-graded if there exists a family of subspaces $\left\{R_{p}\right\}_{p \in \mathbb{Z}}$ of R such that $R=\bigoplus_{p \in \mathbb{Z}} R_{p}$ and $R_{p} R_{q} \subseteq R_{p+q}$, for all $p, q \in \mathbb{Z}$. A graded algebra R is called positively graded (or \mathbb{N}-graded) if $R_{p}=0$, for all $p<0$. An \mathbb{N}-graded algebra R is called connected if $R_{0}=\mathbb{K}$. A non-zero element $x \in R_{p}$ is called a homogeneous element of R of degree p. A homogeneous element z of a graded algebra R is said to be regular if it is neither a left nor a right zero divisor. For R and S two connected graded algebras, if there exists a central element $z \in S_{1}$ such that $R \cong S /\langle z\rangle$, then S is called a central extension of R. If further z is regular in S, then S is called a central regular extension of R. If R is a \mathbb{Z}-graded algebra, $R(l):=\bigoplus_{p \in \mathbb{Z}} R(l)_{p}$, where $R(l)_{p}=R_{p+l}$, for $l \in \mathbb{Z}$.

An algebra R is said to be finitely graded if the following conditions hold:

- R is \mathbb{N}-graded,
- R is connected,
$-R$ is finitely generated as \mathbb{K}-algebra, i.e., there are finite elements $t_{1}, \ldots, t_{m} \in R$ such that the set $\left\{t_{i_{1}} t_{i_{2}} \cdots t_{i_{p}} \mid 1 \leq i_{j} \leq m, p \geq 1\right\} \cup\{1\}$ spans R as a \mathbb{K}-space.
A filtration \mathcal{F} on an algebra R is a collection of vector spaces $\left\{\mathcal{F}_{p}(R)\right\}_{p \in \mathbb{Z}}$ such that $\mathcal{F}_{p}(R) \subseteq \mathcal{F}_{p+1}(R)$, $\mathcal{F}_{p}(R) \cdot \mathcal{F}_{q}(R) \subseteq \mathcal{F}_{p+q}(R)$, for every $p, q \in \mathbb{Z}$, and $\bigcup_{p \in \mathbb{Z}} \mathcal{F}_{p}(R)=R$. The filtration \mathcal{F} is said to be finite if each $\mathcal{F}_{p}(R)$ is a finite-dimensional subspace. The filtration is positive if $\mathcal{F}_{-1}(R)=0$. In this case, we say that R is positively filtered (\mathbb{N}-filtered). If $0 \neq r \in \mathcal{F}_{p}(R) \backslash \mathcal{F}_{p-1}(R)$, then r is said to have degree p, and write $\operatorname{deg}(r)=p$. A positive filtration is said to be connected if $\mathcal{F}_{0}(R)=\mathbb{K}$; in this case, we say that R is connected filtered. The associated graded algebra of R is given by $G_{\mathcal{F}}(R):=\bigoplus_{p \geq 0} \mathcal{F}_{p}(R) / \mathcal{F}_{p-1}(R)$. Notice that $G_{\mathcal{F}}(R)$ is connected if the filtration \mathcal{F} is connected. We simply write $G(R)$ if no confusion arises.

The associated Rees algebra is defined as $\operatorname{Rees} \mathcal{F}(R):=\bigoplus_{p \geq 0} \mathcal{F}_{p}(R) z^{p}$. The filtration $\left\{F_{p}(R)\right\}_{p \in \mathbb{Z}}$ is left (right) Zariskian and R is called a left (right) Zariski ring if $F_{-1}(R) \subseteq \operatorname{Rad}\left(F_{0}(R)\right)\left(\right.$ where $\operatorname{Rad}\left(F_{0}(R)\right)$ is the Jacobson radical of $F_{0}(R)$), and the associated Rees ring $\operatorname{Rees}_{\mathcal{F}}(R)$ is left (right) Noetherian. Of course, if R is graded, then $R=G(R)$. In this case, we write R_{p} for the vector space spanned by homogeneous elements of degree p. If R is a filtered algebra with filtration $\left\{\mathcal{F}_{p}(R)\right\}_{p \in \mathbb{Z}}$ and M is an R-module, then we say that M is filtered if there exists a family $\left\{\mathcal{F}_{p}(M)\right\}_{p \in \mathbb{Z}}$ of subspaces of M such that $\mathcal{F}_{p}(M) \subseteq \mathcal{F}_{p+1}(M)$, $\mathcal{F}_{p}(R) \cdot \mathcal{F}_{q}(M) \subseteq \mathcal{F}_{p+q}(M)$, and $\bigcup_{p \in \mathbb{Z}} \mathcal{F}_{p}(M)=M$. If $m \in M_{p} \backslash M_{p-1}$, then m is said to have degree p. For further details about filtered and Rees rings, see Li and Van Oystaeyen [31].

For R a connected graded algebra, its global homological dimension $\operatorname{gld}(R)$ is the projective dimension of the trivial R-module $\mathbb{K}=R / R_{+}$, where R_{+}is the augmentation ideal generated by all degree one elements. If V is a generating set for R and V^{n} is the set of elements of degree n, then the Gelfand-Kirillov dimension of R is defined as $\operatorname{GKdim}(R):=\varlimsup_{n \rightarrow \infty} \log _{n}\left(\operatorname{dim} V^{n}\right)$. The algebra R is said to be Artin-Schelter Gorenstein if $\operatorname{Ext}_{R}^{i}\left(\mathbb{K}_{R}, R\right) \cong \delta_{i, d} \mathbb{K}$, where $\delta_{i, d}$ is the Kronecker delta and $d=\operatorname{gld}(R)$.

The free associative algebra L in m generators t_{1}, \ldots, t_{m}, denoted by $L:=\mathbb{K}\left\langle t_{1}, \ldots, t_{m}\right\rangle$, is the ring whose underlying \mathbb{K}-vector space is the set of all words in the indeterminates t_{i}, that is, expressions of the form $t_{i_{1}} t_{i_{2}} \ldots t_{i_{p}}$, for some $p \geq 1$, where $1 \leq i_{j} \leq m$, for all j. The degree (deg) of a word $t_{i_{1}} t_{i_{2}} \ldots t_{i_{p}}$ is p, and the degree of an element $f \in L$ is the maximum of the degrees of the words in f. We include among the words a symbol 1 , which we think of as the empty word, and which has degree 0 . The product of two words is concatenation, and this operation is extended linearly to define an associative product on all elements. Notice that L is positively graded with graduation given by $L:=\bigoplus_{p \geq 0} L_{p}$, where $L_{0}=\mathbb{K}$ and L_{p} spanned by all words of degree p in the alphabet $\left\{t_{1}, \ldots, t_{m}\right\}$, for $p>0 . L$ is connected and, therefore, augmented, where the augmentation of L is given by the natural projection $\varepsilon: \mathbb{K}\left\langle t_{1}, \ldots, t_{n}\right\rangle \rightarrow L_{0}=\mathbb{K}$ and the augmentation
ideal is given by $L_{+}:=\bigoplus_{p>0} L_{p} . L$ is connected filtered with the standard filtration $\left\{\mathcal{F}_{q}(L)\right\}_{q \in \mathbb{N}}$, where $\mathcal{F}_{q}(L)=\bigoplus_{p \leq q} L_{p}$.

An algebra R is finitely presented if it is a quotient $\mathbb{K}\left\langle t_{1}, \ldots, t_{m}\right\rangle / I$ where I is a finitely generated twosided ideal of $\mathbb{K}\left\langle t_{1}, \ldots, t_{m}\right\rangle$, say $I=\left\langle r_{1}, \ldots, r_{s}\right\rangle . \mathbb{K}\left\langle t_{1}, \ldots, t_{m}\right\rangle / I$ is said to be a presentation of R with generators t_{1}, \ldots, t_{m} and relations r_{1}, \ldots, r_{s}. Throughout the paper, we assume that $\left\{r_{1}, \ldots, r_{s}\right\}$ is a minimal set of relations for R, the generators t_{i} all have degree 1 , and none of the relations r_{i} are linear. Notice that if the relations r_{1}, \ldots, r_{s} are all homogeneous, then R is called a connected graded algebra. Now, by a deformation of a connected graded algebra R, we mean an algebra

$$
\begin{equation*}
U=\mathbb{K}\left\langle t_{1}, \ldots, t_{m}\right\rangle /\left\langle r_{1}+l_{1}, \ldots, r_{s}+l_{s}\right\rangle \tag{1}
\end{equation*}
$$

where l_{1}, \ldots, l_{s} are (not necessarily homogenous) elements of $\mathbb{K}\left\langle t_{1}, \ldots, t_{m}\right\rangle$ such that $\operatorname{deg}\left(l_{i}\right)<\operatorname{deg}\left(r_{i}\right)$, for all i. There is a standard filtration on U induced by the standard filtration on $\mathbb{K}\left\langle t_{1}, \ldots, t_{m}\right\rangle$. If $g=\sum_{k=0}^{p} g_{k} \in$ $\mathbb{K}\left\langle t_{1}, \ldots, t_{m}\right\rangle$, where each non-zero g_{k} is a homogeneous polynomial of degree k, and $\operatorname{deg}\left(g_{1}\right)<\operatorname{deg}\left(g_{2}\right)<$ $\cdots<\operatorname{deg}\left(g_{p}\right)$, then g_{p} is said to be the leading homogeneous polynomial of g, which is denoted by $\operatorname{lh}(g)$. The homogenization \widehat{g} of g is given by $\widehat{g}=\sum_{k=0}^{p} g_{k} z^{p-k}$, where z is a new central indeterminate. Let $R=\mathbb{K}\left\langle t_{1}, \ldots, t_{m}\right\rangle /\left\langle f_{1}, \ldots, f_{s}\right\rangle$ be a finitely presented algebra. Since R is not necessarily graded, if we homogenize every polynomial $f_{i} \in R$, we obtain a graded algebra known as the homogenization of R.

In the setting of noncommutative rings having PBW bases, Cassidy and Shelton [7, Theorem 1.3] proved that a deformation U of the graded algebra R is a PBW deformation if and only if the homogenization of U is a regular central extension. Other properties of central extensions and homogenization have been used by several authors to study certain classes of algebras (e.g., [7,9,11, 46,52]).

Of interest for us in this paper, we recall the following definition.
Definition 2.1 ([11, Definition 2.1]) Let $U=\mathbb{K}\left\langle t_{1}, \ldots, t_{m}\right\rangle /\left\langle f_{1}, \ldots, f_{s}\right\rangle$ be an algebra, where $f_{1}, \ldots, f_{s} \in$ $L=\mathbb{K}\left\langle t_{1}, \ldots, t_{m}\right\rangle$. The graded algebra $H(U)=L[z] /\left\langle\widehat{f_{1}}, \ldots, \widehat{f_{s}}\right\rangle$ is called the homogenization of U.

In other words, the homogenization $H(R)$ of $R=L /\left\langle f_{1}, \ldots, f_{s}\right\rangle$ is the algebra with $n+1$ generators t_{1}, \ldots, t_{n}, and z, subject to the homogenized relations $\widehat{f_{k}}$ as well as the additional relations $z t_{i}-t_{i} z$, for $1 \leq i \leq n$.

Notice that if $U:=\mathbb{K}\left\langle t_{1}, \ldots, t_{m}\right\rangle /\left\langle f_{1}, \ldots, f_{s}\right\rangle$ is an algebra and we consider

$$
R:=\mathbb{K}\left\langle t_{1}, \ldots, t_{m}\right\rangle /\left\langle\operatorname{lh}\left(f_{1}\right), \ldots, \operatorname{lh}\left(f_{s}\right)\right\rangle,
$$

then we have a natural graded surjective homomorphism $\phi: R \rightarrow G(U)$. When ϕ is an isomorphism, we say that U is a Poincaré-Birkhoff-Witt $(P B W)$ deformation of $G(U)$ [11, Definition 2.6]. If R is a connected graded algebra, a deformation U of R as in (1) is said to be a $P B W$ deformation if $G(U)$ is isomorphic to R.

Definition 2.2 ([4]). A connected graded algebra R is said to be Artin-Schelter regular of dimension d if:
(i) R has finite global dimension d;
(ii) R has finite Gelfand-Kirillov dimension;
(iii) $\operatorname{Ext}_{R}^{i}(\mathbb{K}, R)=0$ if $i \neq d$, and $\operatorname{Ext}_{R}^{d}(\mathbb{K}, R) \cong \mathbb{K}$.

Now, we recall the definition of skew PBW extension and some of its properties.
Definition 2.3 ([12, Definition 1]). Let R and A be rings. We say that A is a skew $P B W$ extension over R (also called a $\sigma-P B W$ extension over R) if the following conditions hold:
(i) R is a subring of A sharing the same identity element.
(ii) There exist finitely many elements $x_{1}, \ldots, x_{n} \in A$ such that A is a free R-module, with basis the basic elements $\operatorname{Mon}(A):=\left\{x^{\alpha}=x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}} \mid \alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n}\right\}$.
(iii) For each $1 \leq i \leq n$ and any $r \in R \backslash\{0\}$, there exists an element $c_{i, r} \in R \backslash\{0\}$ such that $x_{i} r-c_{i, r} x_{i} \in R$.
(iv) For any elements $1 \leq i, j \leq n$, there exists $d_{i, j} \in R \backslash\{0\}$ such that

$$
\begin{equation*}
x_{j} x_{i}-d_{i, j} x_{i} x_{j} \in R+R x_{1}+\cdots+R x_{n} . \tag{2}
\end{equation*}
$$

Under these conditions, we write $A:=\sigma(R)\left\langle x_{1}, \ldots, x_{n}\right\rangle$.
For $X=x^{\alpha}=x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}} \in \operatorname{Mon}(A), \operatorname{deg}(X):=\alpha_{1}+\cdots+\alpha_{n}$. The relationship between skew polynomial rings and skew PBW extensions is presented in the following proposition.

Proposition 2.4 ([12, Proposition 3]). Let A be a skew PBW extension over R. For each $1 \leq i \leq n$, there exist an injective endomorphism $\sigma_{i}: R \rightarrow R$ and a σ_{i}-derivation $\delta_{i}: R \rightarrow R$ such that $x_{i} r=\sigma_{i}(r) x_{i}+\delta_{i}(r)$, where $r \in R$.

From now on, σ_{i} and δ_{i} are the injective endomorphisms and the σ_{i}-derivations as in Proposition 2.4, respectively.

A skew PBW extension A is called bijective if σ_{i} is bijective and $d_{i, j}$ is invertible, for any $1 \leq i<j \leq n$. A is called quasi-commutative if the conditions (iii) and (iv) in Definition 2.3 are replaced by the following:
(iii') for each $1 \leq i \leq n$ and all $r \in R \backslash\{0\}$, there exists $c_{i, r} \in R \backslash\{0\}$ such that $x_{i} r=c_{i, r} x_{i}$;
(iv') for any $1 \leq i, j \leq n$, there exists $d_{i, j} \in R \backslash\{0\}$ such that $x_{j} x_{i}=d_{i, j} x_{i} x_{j}$.
Examples of bijective and quasi-commutative skew PBW extensions, and some of their properties can be found in [10, 16, 40-42].

Let $I \subseteq \sum_{n \geq 2} L_{n}$ be a finitely generated homogeneous ideal of $\mathbb{K}\left\langle t_{1}, \ldots, t_{m}\right\rangle$ and let $R=\mathbb{K}\left\langle t_{1}, \ldots, t_{m}\right\rangle / I$ be a connected graded algebra generated in degree 1 . Suppose that $\sigma: R \rightarrow R$ is a graded algebra automorphism and $\delta: R(-1) \rightarrow R$ is a graded σ-derivation (i.e., a degree +1 graded σ-derivation δ of R). Let $B:=R[x ; \sigma, \delta]$ be the associated graded Ore extension of R, that is, $B=\bigoplus_{p \geq 0} R x^{p}$ as an R-module, and for $r \in R$, $x r=\sigma(r) x+\delta(r)$. If we consider x to have degree 1 in B, then under this grading B is a connected graded algebra generated in degree 1 (for more details, see [8] and [36]).

Proposition 2.5 ([47, Proposition 2.7]). Let $R=\bigoplus_{m>0} R_{m}$ be an \mathbb{N}-graded algebra, and let $A=$ $\sigma(R)\left\langle x_{1}, \ldots, x_{n}\right\rangle$ be a bijective skew PBW extension over \bar{R} satisfying the following two conditions:
(1) σ_{i} is a graded ring homomorphism and $\delta_{i}: R(-1) \rightarrow R$ is a graded σ_{i}-derivation, for all $1 \leq i \leq n$.
(2) $x_{j} x_{i}-d_{i, j} x_{i} x_{j} \in R_{2}+R_{1} x_{1}+\cdots+R_{1} x_{n}$, as in (2) and $d_{i, j} \in R_{0}$.

For $p \geq 0$, if A_{p} is the \mathbb{K}-space generated by the set

$$
\left\{r_{t} x^{\alpha} \mid t+\operatorname{deg}\left(x^{\alpha}\right)=p, r_{t} \in R_{t} \text { and } x^{\alpha} \in \operatorname{Mon}(A)\right\}
$$

then A is an \mathbb{N}-graded algebra given by $A=\bigoplus_{p \geq 0} A_{p}$.
Proposition 2.5 motivates the following definition.
Definition 2.6 ([47, Definition 2.6]). Let $A=\sigma(R)\left\langle x_{1}, \ldots, x_{n}\right\rangle$ be a bijective skew PBW extension over an \mathbb{N}-graded algebra $R=\bigoplus_{m \geq 0} R_{m}$. A is said to be a graded skew PBW extension over R if it satisfies the conditions (1) and (2) establishèd in Proposition 2.5.

The class of graded iterated Ore extensions of injective type is strictly contained in the class of graded skew PBW extensions. For example, homogenized enveloping algebras and diffusion algebras are graded skew PBW extensions over a field but these are not iterated Ore extensions of the field. Details and examples of graded skew PBW extensions can be found in [13], [47] and [49].

3σ-Filtered skew PBW extensions

If R is an arbitrary algebra, then it is clear that R is a filtered algebra with filtration given by $\mathcal{F}_{p}(R)=R$, for all $p \in \mathbb{Z}$. In this case, we say that R has the trivial filtration. R has the trivial positive filtration if $\mathcal{F}_{p}(R)=R$, for all $p \geq 0$ and $\mathcal{F}_{-1}(R)=0$. If $l \geq 0$, then R is connected filtered with filtration given by

$$
\mathcal{F}_{p}(R)= \begin{cases}0, & \text { if } p=-1 \\ \mathbb{K}, & \text { if } 0 \leq p \leq l \\ R, & \text { if } p>l\end{cases}
$$

In this case, we say that R is an l-trivial connected filtered algebra. If $l=0$, then we say that R is a trivial connected filtered algebra. Throughout the paper, we assume that \mathbb{K} has trivial connected filtration.

Remark 3.1 Let $A=\sigma(R)\left\langle x_{1}, \ldots, x_{n}\right\rangle$ be a skew PBW extension.

(i) From (2), we have that

$$
\begin{equation*}
x_{j} x_{i}=d_{i, j} x_{i} x_{j}+r_{0_{j, i}}+r_{1_{j, i}} x_{1}+\cdots+r_{n_{j, i}} x_{n}, \tag{3}
\end{equation*}
$$

where $d_{i, j}, r_{0_{j, i}}, r_{1_{j, i}}, \ldots, r_{n_{j, i}} \in R$, for $1 \leq i, j \leq n$.
(ii) ([12, Remark 2]). Every element $f \in A \backslash\{0\}$ has a unique representation as

$$
\begin{equation*}
f=c_{1} X_{1}+\cdots+c_{d} X_{d} \text {, with } c_{i} \in R \backslash\{0\} \text { and } X_{i} \in \operatorname{Mon}(A) \text {, for } 1 \leq i \leq d . \tag{4}
\end{equation*}
$$

Definition 3.2 Let $A=\sigma(R)\left\langle x_{1}, \ldots, x_{n}\right\rangle$ be a skew PBW extension over a positively filtered algebra $R=$ $\bigcup_{p \in \mathbb{N}} \mathcal{F}_{p}(R)$.
(i) For $X=x^{\alpha}=x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}} \in \operatorname{Mon}(A)$ and $c \in R \backslash\{0\}, \operatorname{tdeg}(c X):=\operatorname{deg}(c)+\operatorname{deg}(X)$.
(ii) Let $f=c_{1} X_{1}+\cdots+c_{d} X_{d} \in A \backslash\{0\}, \operatorname{tdeg}(f):=\max \left\{\operatorname{tdeg}\left(c_{i} X_{i}\right)\right\}_{i=1}^{d}$.
(iii) Let $\sigma: R \rightarrow R$ be an endomorphism of algebras. If $\sigma\left(\mathcal{F}_{p}(R)\right) \subseteq \mathcal{F}_{p}(R)$, then we say that σ is a filtered endomorphism.
(iv) Let $\delta: R \rightarrow R$ be a σ-derivation. If $\delta\left(\mathcal{F}_{p}(R)\right) \subseteq \mathcal{F}_{p+1}(R)$, we say that δ is a filtered σ-derivation, and if $\delta\left(\mathcal{F}_{p}(R)\right) \subseteq \mathcal{F}_{p+m}(R)$, then we say that δ is an m-filtered σ-derivation, for $m>1$.
(v) We say that A preserves tdeg if for each $x_{j} x_{i}$ as in (3),

$$
\operatorname{tdeg}\left(x_{j} x_{i}\right)=\operatorname{tdeg}\left(c_{i, j} x_{i} x_{j}+r_{0_{j, i}}+r_{1_{j, i}} x_{1}+\cdots+r_{n_{j, i}} x_{n}\right)=2 .
$$

The following theorem, one of the most important results of the paper, provides a general filtration to the skew PBW extensions.

Theorem 3.3 If $A=\sigma(R)\left\langle x_{1}, \ldots, x_{n}\right\rangle$ is a skew PBW extension over a positively filtered algebra R such that the following conditions hold:
(1) σ_{i} and δ_{i} are filtered, for $1 \leq i \leq n$;
(2) A preserves tdeg,
then $\left\{\mathcal{F}_{p}(A)\right\}_{p \in \mathbb{N}}$ is a filtration on A, where

$$
\begin{equation*}
\mathcal{F}_{p}(A):=\{f \in A \mid \operatorname{tdeg}(f) \leq p\} \cup\{0\} . \tag{5}
\end{equation*}
$$

Moreover, A is a filtered R-module with the same filtration.
Proof Notice that for each $f \in A \backslash\{0\}$, $\operatorname{tdeg}(f) \geq 0$. By definition, $0 \in \mathcal{F}_{p}(A)$. Let $f, g \in \mathcal{F}_{p}(A)$ with $f \neq 0$ and $g \neq 0$. By Remark 3.1(ii), f and g have a unique representation as $f=c_{1} X_{1}+\cdots+c_{d} X_{d}$ and $g=r_{1} Y_{1}+\cdots+r_{e} Y_{e}$, with $c_{i}, r_{j} \in R \backslash\{0\}$ and $X_{i}, Y_{j} \in \operatorname{Mon}(A)$ for $1 \leq i \leq d$ and $1 \leq j \leq e$. In this way, $\operatorname{tdeg}\left(c_{i} X_{i}\right) \leq p$ and $\operatorname{tdeg}\left(r_{j} Y_{j}\right) \leq p$, for $1 \leq i \leq d, 1 \leq j \leq e$. Thus, $\operatorname{tdeg}(f+g)=$ $\operatorname{tdeg}\left(c_{1} X_{1}+\cdots+c_{d} X_{d}+r_{1} Y_{1}+\cdots+r_{e} Y_{e}\right)=\max \left\{\operatorname{tdeg}\left(c_{i} X_{i}\right), \operatorname{tdeg}\left(e_{j} Y_{j}\right) \mid 1 \leq i \leq d, 1 \leq j \leq e\right\} \leq p$, and so $f+g \in \mathcal{F}_{p}(A)$. Now, if $k \in \mathbb{K}$, then $\operatorname{tdeg}(k f)=\operatorname{tdeg}\left(\left(k c_{1}\right) X_{1}+\cdots+\left(k c_{d}\right) X_{d}\right) \leq p$, whence $\mathcal{F}_{p}(A)$ is a subspace of A, for each $p \in \mathbb{N}$. It is clear that $\bigcup_{p \in \mathbb{N}} \mathcal{F}_{p}(A)=A$. If $0 \neq f=c_{1} X_{1}+\cdots+c_{d} X_{d} \in \mathcal{F}_{p}(A)$, then $\operatorname{tdeg}\left(c_{i} X_{i}\right) \leq p<p+1$, for $1 \leq i \leq d$, and $\mathcal{F}_{p}(A) \subseteq \mathcal{F}_{p+1}(A)$. Let $h \in \mathcal{F}_{p}(A) \cdot \mathcal{F}_{q}(A)$. Without loss of generality we assume that $h=h_{p} h_{q}$ with $h_{p} \in \mathcal{F}_{p}(A)$ and $h_{q} \in \mathcal{F}_{q}(A)$. Let $h_{p}=a_{1} X_{1}+\cdots+a_{m} X_{m}$, $h_{q}=b_{1} Y_{1}+\cdots+b_{t} Y_{t}$. Then, $\operatorname{tdeg}\left(a_{i} X_{i}\right) \leq p$ and $\operatorname{tdeg}\left(b_{j} Y_{j}\right) \leq q$, for $1 \leq i \leq m, 1 \leq j \leq t$. Hence,

$$
\begin{equation*}
h=\left(a_{1} X_{1}+\cdots+a_{m} X_{m}\right)\left(b_{1} Y_{1}+\cdots+b_{t} Y_{t}\right)=\sum_{k=1}^{m+t}\left(\sum_{i+j=k} a_{i} X_{i} b_{j} Y_{j}\right), \tag{6}
\end{equation*}
$$

and so $\operatorname{tdeg}(h)=\max \left\{\operatorname{tdeg}\left(a_{i} X_{i} b_{j} Y_{j}\right) \mid 1 \leq i \leq m, 1 \leq j \leq t\right\}$, but obtaining the unique representation of $a_{i} X_{i} b_{j} Y_{j}$ as in (4) once the commutation rules have been made taking into account (3) and (4) in the Definition 2.3.

Let $X_{i}=x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}, Y_{j}=x_{1}^{\beta_{1}} \cdots x_{n}^{\beta_{n}}$, with $\alpha_{i}, \beta_{i} \in \mathbb{N}$. By [39, Remark 2.7], we have that

$$
\begin{align*}
& a_{i} x_{i} b_{j} Y_{j}=a_{i}\left(x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}} b_{j}\right) x_{1}^{\beta_{1}} \cdots x_{n}^{\beta_{n}} \\
& =a_{i} x_{1}^{\alpha_{1}} \cdots x_{n-1}^{\alpha_{n-1}}\left(\sum_{j=1}^{\alpha_{n}} x_{n}^{\alpha_{n}-j} \delta_{n}\left(\sigma_{n}^{j-1}\left(b_{j}\right)\right) x_{n}^{j-1}\right) x_{1}^{\beta_{1}} \cdots x_{n}^{\beta_{n}} \\
& +a_{i} x_{1}^{\alpha_{1}} \cdots x_{n-2}^{\alpha_{n-2}}\left(\sum_{j=1}^{\alpha_{n-1}} x_{n-1}^{\alpha_{n-1}-j} \delta_{n-1}\left(\sigma_{n-1}^{j-1}\left(\sigma_{n}^{\alpha_{n}}\left(b_{j}\right)\right)\right) x_{n-1}^{j-1}\right) x_{n}^{\alpha_{n}} x_{1}^{\beta_{1}} \cdots x_{n}^{\beta_{n}} \\
& +a_{i} x_{1}^{\alpha_{1}} \cdots x_{n-3}^{\alpha_{n-3}}\left(\sum_{j=1}^{\alpha_{n-2}} x_{n-2}^{\alpha_{n-2}-j} \delta_{n-2}\left(\sigma_{n-2}^{j-1}\left(\sigma_{n-1}^{\alpha_{n-1}}\left(\sigma_{n}^{\alpha_{n}}\left(b_{j}\right)\right)\right)\right) x_{n-2}^{j-1}\right) x_{n-1}^{\alpha_{n-1}} x_{n}^{\alpha_{n}} x_{1}^{\beta_{1}} \cdots x_{n}^{\beta_{n}} \\
& +\cdots+a_{i} x_{1}^{\alpha_{1}}\left(\sum_{j=1}^{\alpha_{2}} x_{2}^{\alpha_{2}-j} \delta_{2}\left(\sigma_{2}^{j-1}\left(\sigma_{3}^{\alpha_{3}}\left(\sigma_{4}^{\alpha_{4}}\left(\cdots\left(\sigma_{n}^{\alpha_{n}}\left(b_{j}\right)\right)\right)\right)\right)\right)_{2}^{j-1}\right) x_{3}^{\alpha_{3}} \cdots x_{n-1}^{\alpha_{n-1}} x_{n}^{\alpha_{n}} x_{1}^{\beta_{1}} \cdots x_{n}^{\beta_{n}} \\
& +a_{i} \sigma_{1}^{\alpha_{1}}\left(\sigma_{2}^{\alpha_{2}}\left(\cdots\left(\sigma_{n}^{\alpha_{n}}\left(b_{j}\right)\right)\right)\right) x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}} x_{1}^{\beta_{1}} \cdots x_{n}^{\beta_{n}}, \quad \sigma_{j}^{0}:=\mathrm{id}_{R} \text { for } 1 \leq j \leq n . \tag{7}
\end{align*}
$$

Notice that as σ_{i} and δ_{i} are filtered, then $\sigma_{i}^{k}\left(\mathcal{F}_{p}(R)\right) \subseteq \sigma_{i}^{k-1}\left(\mathcal{F}_{p}(R)\right) \subseteq \cdots \subseteq \sigma_{i}\left(\mathcal{F}_{p}(R)\right)$ and $\left.\delta_{i}^{k}\left(\mathcal{F}_{p}(R)\right) \subseteq \mathcal{F}_{p+k}(R)\right)$, and thus σ_{i}^{k} is filtered and δ_{i}^{k} is k-filtered. Furthermore, as A preserves tdeg, then for each of the summands in (7), tdeg $\leq p+q$ (once the commutation rules have been made taking into account (3) and (4) in the Definition 2.3). In this way, $\operatorname{tdeg}(h) \leq p+q$, and so $h \in \mathcal{F}_{p+q}$, whence $\left\{\mathcal{F}_{p}(A)\right\}_{p \in \mathbb{N}}$ is a filtration on A.

On the other hand, let $g \in \mathcal{F}_{p}(R) \mathcal{F}_{q}(A)$. Then, $g=r f$, for some $r \in \mathcal{F}_{p}(R)$ and $f=r_{1} X_{1}+\cdots+$ $r_{t} X_{t} \in \mathcal{F}_{q}(A)$. Therefore, $\operatorname{tdeg}\left(r_{i} X_{i}\right)=\operatorname{deg}\left(r_{i}\right)+\operatorname{deg}\left(X_{i}\right) \leq q$, for $1 \leq i \leq t$. Thus, $\operatorname{tdeg}\left(r\left(r_{i} X_{i}\right)\right)=$ $\left.\operatorname{tdeg}\left(\left(r r_{i}\right) X_{i}\right)\right)=\operatorname{deg}\left(r r_{i}\right)+\operatorname{deg}\left(X_{i}\right) \leq p+\operatorname{deg}\left(r_{i}\right)+\operatorname{deg}\left(X_{i}\right) \leq p+q$, which implies that $\operatorname{tdeg}(r f) \leq p+q$, and, therefore, $r f=g \in \mathcal{F}_{p+q}(A)$. This shows that A is a filtered R-module.

Theorem 3.3 suggests the following definition.
Definition 3.4 Let $A=\sigma(R)\left\langle x_{1}, \ldots, x_{n}\right\rangle$ be a skew PBW extension over a positively filtered algebra R. We say that A is a σ-filtered skew $P B W$ extension over R if A satisfies the conditions (1) and (2) in Theorem 3.3.

In this case, it is understood that A has the filtration $\left\{\mathcal{F}_{p}(A)\right\}_{p \in \mathbb{N}}$, where $\mathcal{F}_{p}(A)$ is as in (5).
Proposition 3.5 Let $A=\sigma(R)\left\langle x_{1}, \ldots, x_{n}\right\rangle$ be a σ-filtered skew PBW extension over R.
(1) If $\left\{\mathcal{F}_{p}(R)\right\}_{p \in \mathbb{N}}$ is a positive filtration on R, then $\mathcal{F}_{p}(R)$ is a subspace of $\mathcal{F}_{p}(A)$.
(2) If the filtration on R is finite, then the filtration of A is finite.

Proof Let $\left\{\mathcal{F}_{p}(R)\right\}_{p \in \mathbb{N}}$ be a connected filtration on R and $\left\{\mathcal{F}_{p}(A)\right\}_{p \in \mathbb{N}}$ the filtration on A.
(1) If $0 \neq r \in \mathcal{F}_{p}(R)$, then $\operatorname{deg}(r) \leq p$. By Definition 2.3(1), we have $R \subseteq A$, and $r=r x_{1}^{0} \cdots x_{n}^{0}$ is the unique representation of r. This means that $\operatorname{tdeg}(r)=\operatorname{deg}(r) \leq p$, and so $r \in \mathcal{F}_{p}(A)$.
(2) Let $\mathcal{B}_{k}^{(R)}$ be a finite basis for $\mathcal{F}_{k}(R)$. By Definition 2.3(ii), we have that A is a left free R-module with basis $\operatorname{Mon}(A)=\left\{x^{\alpha}=x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}} \mid \alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n}\right\}$, whence $\mathcal{B}_{p}=\left(\bigcup_{k=0}^{p} \mathcal{B}_{k}^{(R)}\right) \bigcup\{X \in \operatorname{Mon}(A) \mid$ $\operatorname{deg}(X) \leq p\}$ is a finite basis for $\mathcal{F}_{p}(A)$.

Proposition 3.6 If $A=\sigma(R)\left\langle x_{1}, \ldots, x_{n}\right\rangle$ is a σ-filtered skew PBW extension over R, then R is connected filtered if and only if A is connected filtered.

Proof Let $A=\sigma(R)\left\langle x_{1}, \ldots, x_{n}\right\rangle=\bigcup_{p \in \mathbb{N}} \mathcal{F}_{p}(A)$ be a σ-filtered skew PBW extension over a connected filtered algebra R. If $0 \neq h \in \mathcal{F}_{0}(A)$, then h has a unique representation as $h=a_{1} X_{1}+\cdots+a_{t} X_{t}$ (Remark 3.1(ii)), whence $\operatorname{tdeg}\left(a_{i} X_{i}\right)=\operatorname{deg}\left(a_{i}\right)+\operatorname{deg}\left(X_{i}\right)=0$, for $1 \leq i \leq t$. Thus, $\operatorname{deg}\left(a_{i}\right)=0=\operatorname{deg}\left(X_{i}\right), X_{i}=1$, for $1 \leq i \leq t$, and so $h \in R$ with $\operatorname{deg}(h)=0$, that is, $h \in \mathcal{F}_{0}(R)=\mathbb{K}$ since R is connected filtered. This proves that $\mathcal{F}_{0}(A)=\mathbb{K}$, i.e., A is connected filtered.

For the converse, let $0 \neq r \in \mathcal{F}_{0}(R)$. By Proposition 3.5(1), $\mathcal{F}_{0}(R) \subseteq \mathcal{F}_{0}(A)=\mathbb{K}$, whence $r \in \mathbb{K}$, that is, $\mathcal{F}_{0}(R)=\mathbb{K}$.

Lezama and Reyes [27, Theorem 2.2] defined a filtration \mathcal{F}^{\prime} for a skew PBW extension $A=$ $\sigma(R)\left\langle x_{1}, \ldots, x_{n}\right\rangle$ in the following way:

$$
\mathcal{F}_{m}^{\prime}(A):= \begin{cases}R, & \text { if } m=0 \tag{8}\\ \{f \in A \mid \operatorname{deg}(f) \leq m\} \cup\{0\}, & \text { if } m \geq 1,\end{cases}
$$

where $\operatorname{deg}(f):=\max \left\{\operatorname{deg}\left(X_{i}\right)\right\}_{i=1}^{t}$, for $f=a_{1} X_{1}+\cdots a_{t} X_{t}$. Notice that if R has the trivial positive filtration, then $\operatorname{deg}(r)=0$, for all $r \in R$. Thus, $\operatorname{deg}(f)=\operatorname{tdeg}(f)(\operatorname{tdeg}(f)$ as in Definition 3.2(iv) and $\operatorname{deg}(f)$ as in (8)), i.e., the filtration (5) coincides with the filtration (8). More precisely,

Proposition 3.7 If $A=\sigma(R)\left\langle x_{1}, \ldots, x_{n}\right\rangle$ be a skew PBW extension over R with filtration as in (8), then A is a σ-filtered skew PBW extension if and only if R has the trivial positive filtration.

Proof Suppose that $A=\sigma(R)\left\langle x_{1}, \ldots, x_{n}\right\rangle$ is σ-filtered with the filtration given in (8). Then, R is positively filtered and $\mathcal{F}_{0}^{\prime}(A)=R$. By $(5), \mathcal{F}_{0}^{\prime}(A)=\{f \in A \mid \operatorname{tdeg}(f) \leq 0\} \cup\{0\}=R$. Let $r \in R=\mathcal{F}_{0}^{\prime}(A)$. Then, $\operatorname{tdeg}(r)=\operatorname{deg}(r)=0=\min \left\{p \in \mathbb{N} \mid r \in \mathcal{F}_{p}(R)\right\}$, i.e., $r \in \mathcal{F}_{0}(R)$. Therefore, $\mathcal{F}_{0}(R)=R$ and so $\mathcal{F}_{p}(R)=R$ for $p \geq 0$.

For the converse, assume that R has the trivial positive filtration, i.e., $\mathcal{F}_{p}(R)=R$ for all $p \geq 0$. Notice that $\sigma_{i}\left(\mathcal{F}_{p}(R)\right)=\sigma_{i}(R) \subseteq R$ and $\delta_{i}\left(\mathcal{F}_{p}(R)\right)=\delta_{i}(R) \subseteq R=\mathcal{F}_{p+1}(R)$. Thus, σ_{i} and δ_{i} are filtered. Now, as $x_{j} x_{i}=c_{i, j} x_{i} x_{j}+r_{0_{j, i}}+r_{1_{j, i}} x_{1}+\cdots+r_{n_{j, i}} x_{n}$ with $c_{i, j}, r_{0_{j, i}}, r_{1_{j, i}, \ldots,}, r_{n_{j, i}} \in R=R_{0}$, then $\operatorname{deg}\left(c_{i, j}\right)=$ $\operatorname{deg}\left(r_{0_{j, i}}\right)=\operatorname{deg}\left(r_{1_{j, i}}\right)=\cdots=\operatorname{deg}\left(r_{n_{j, i}}\right)=0$, so, $\operatorname{tdeg}\left(c_{i, j} x_{i} x_{j}+r_{0_{j, i}}+r_{1_{j, i}} x_{1}+\cdots+r_{n_{j, i}} x_{n}\right)=2$, that is, A preserves tdeg. Thus, A is a σ-filtered skew PBW extension.

Remark 3.8 From Proposition 3.7, we obtain that every skew PBW extension A over a ring R is σ-filtered with the filtration given by Lezama and Reyes [27, Theorem 2.2]. Of course, graded skew PBW extensions are trivially σ-filtered skew PBW extensions. For some examples of skew PBW extensions, filtrations (5) and (8) coincide. More exactly, if we consider a skew PBW extension A over R where σ_{i} is the identity map on R and $\delta_{i}=0$, for each $1 \leq i \leq n$, where σ_{i} and δ_{i} are as in Proposition 2.4, then the skew PBW extensions are trivially σ-filtered skew PBW extensions. For instance, if \mathfrak{g} is a finite-dimensional Lie algebra over \mathbb{K}, then its universal enveloping algebra $U(\mathfrak{g})$ satisfies these conditions.

Example 3.9 (1) The Weyl algebra $\mathbb{K}\left[t_{1}, \ldots, t_{n}\right]\left[x_{1}, \partial / \partial t_{1}\right] \cdots\left[x_{n}, \partial / \partial t_{n}\right]=A_{n}(\mathbb{K})$ is a skew PBW extension over the commutative polynomial ring $\mathbb{K}\left[t_{1}, \ldots, t_{n}\right]$, i.e., $A_{n}(\mathbb{K}) \cong \sigma\left(\mathbb{K}\left[t_{1}, \ldots, t_{n}\right]\right)\left\langle x_{1}, \ldots, x_{n}\right\rangle$, where $x_{i} t_{j}=t_{j} x_{i}+\delta_{i j}, x_{i} x_{j}-x_{j} x_{i}=0$, and $\delta_{i j}=0$ for $i \neq j$ and $\delta_{i i}=1,1 \leq i, j \leq n$. The endomorphisms and derivations of Proposition 2.4 are σ_{i}, the identity map of R, and $\delta_{i}=\delta_{i j}$, respectively. If R is endowed with the standard filtration, then $A_{n}(\mathbb{K})$ is a σ-filtered skew PBW extension.
(2) Let \mathbb{K} be a field of characteristic zero. It is well known that $A_{n}(\mathbb{K}) \cong U(\mathfrak{g}) /(1-y) U(\mathfrak{g})$, where $U(\mathfrak{g})$ is the universal enveloping algebra of the $(2 n+1)$-dimensional Heisenberg Lie algebra with basis given by the set $\left\{t_{1}, \ldots, t_{n}, x_{1}, \ldots, x_{n}, y\right\}$ over \mathbb{K}. Li and Van Oystaeyen [30, Example (i)] proved that $U(\mathfrak{g}$) is the Rees algebra of $A_{n}(\mathbb{K})$ with respect to the filtration $\mathcal{F}^{\prime \prime}$ on $A_{n}(\mathbb{K})$, where $\mathcal{F}_{p}^{\prime \prime}\left(A_{n}(\mathbb{K})\right)=\left\{\sum_{|\alpha| \leq p} f_{\alpha}\left(t_{1}, \ldots, t_{n}\right) x^{\alpha}\right\}$, $f_{\alpha}\left(t_{1}, \ldots, t_{n}\right) \in \mathbb{K}\left[t_{1}, \ldots, t_{n}\right]$ and $x^{\alpha} \in \operatorname{Mon}\left(A_{n}(\mathbb{K})\right)$. Notice that $\mathcal{F}^{\prime \prime}$ coincides with the filtration given in (8). Thus, by Proposition 3.7, $A_{n}(\mathbb{K}) \cong U(\mathfrak{g}) /(1-y) U(\mathfrak{g})$ is σ-filtered with the filtration $\mathcal{F}^{\prime \prime}$.
(3) Let $R=\mathbb{K}\left\langle t_{1}, t_{2}\right\rangle /\left(t_{2} t_{1}-t_{1} t_{2}-t_{1}^{2}\right)$ be the Jordan plane and $A=\sigma(R)\left\langle x_{1}\right\rangle$ be the skew PBW extension over R, where $x_{1} t_{1}=t_{1} x_{1}$ and $x_{1} t_{2}=t_{2} x_{1}+2 t_{1} x_{1}$. According to Proposition 2.4, we have $\sigma_{1}\left(t_{1}\right)=t_{1}$ and $\sigma_{1}\left(t_{2}\right)=2 t_{1}+t_{2}$ and $\delta_{1}=0$. Notice that A is a σ-filtered skew PBW extension over the Jordan plane R, when R is endowed with the standard filtration.
(4) Let $R=\mathbb{K}[t]$ be the polynomial ring and $A=\sigma(R)\left\langle x_{1}\right\rangle$ a skew PBW extension over R, where $x_{1} t=$ $c_{1} t x_{1}+c_{2} x_{1}+c_{3} t^{2}+c_{4} t+c_{5}$, for $c_{1}, c_{2}, c_{3}, c_{4}, c_{5} \in \mathbb{K}$ and $c_{1} \neq 0$. According to Proposition 2.4, $\sigma_{1}(t)=c_{1} t+c_{2}$ and $\delta_{1}(t)=c_{3} t^{2}+c_{4} t+c_{5}$. Therefore, A is a σ-filtered skew PBW extension over $\mathbb{K}[t]$, when $\mathbb{K}[t]$ is endowed with the standard filtration. Notice that since $c_{1} \neq 0$ then σ_{1} is an automorphism of $\mathbb{K}[t]$.
Remark 3.10 Let A be the free algebra generated by x, y subject to the relation $y x=x y+x^{3}$, that is, $\mathbb{K}\langle x, y\rangle /\left\langle y x-x y-x^{3}\right\rangle$. As one can check (following the ideas presented in [1]), A is a skew PBW extension over $\mathbb{K}[x]$. By Proposition 2.4, $y x=\sigma(x) y+\delta(x)$, whence σ is the identity map of $\mathbb{K}[x]$ and $\delta(x)=x^{3}$. Notice that the standard filtration of $\mathbb{K}[x]$ is connected, σ is filtered but δ is not filtered. In this way, A is not σ-filtered.

Let R be a graded algebra. A graded R-module M is free-graded on the basis $\left\{e_{j} \mid j \in J\right\}$ if M is free as a left R-module on the basis $\left\{e_{j}\right\}$, and also every e_{j} is homogeneous, say of degree $d(j)$. A filtered module $M=\bigcup_{p \in \mathbb{N}} \mathcal{F}_{p}(M)$ over a filtered algebra $R=\bigcup_{p \in \mathbb{N}} \mathcal{F}_{p}(R)$ is free-filtered with filtered basis $\left\{e_{j} \mid j \in J\right\}$ if M is a free R-module with basis $\left\{e_{j} \mid j \in J\right\}$, and $\mathcal{F}_{p}(M)=\bigoplus_{j} \mathcal{F}_{p-p(j)}(R) e_{j}$, where $p(j)$ is the degree of e_{j}.
Proposition 3.11 If $A=\sigma(R)\left\langle x_{1}, \ldots, x_{n}\right\rangle$ is a σ-filtered skew PBW extension, then A is free-filtered with filtered basis Mon(A). Moreover, $G(A)$ is free-graded over $G(R)$.
Proof By Definition 2.3(ii), we have that A is a free R-module with basis $\operatorname{Mon}(A)=\left\{x^{\alpha}=x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}} \mid \alpha=\right.$ $\left.\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n}\right\}$. If the degree of x^{α} is denoted by $\operatorname{deg}\left(x^{\alpha}\right):=|\alpha|$, the idea is to show that

$$
\begin{equation*}
\mathcal{F}_{p}(A)=\bigoplus_{\alpha \in \mathbb{N}^{n}} \mathcal{F}_{p-|\alpha|}(R) x^{\alpha} \tag{9}
\end{equation*}
$$

Let $0 \neq f \in \mathcal{F}_{p}(A)$. By Remark 3.1 (ii), f has a unique representation given by $f=c_{1} X_{1}+\cdots+c_{d} X_{d}$, with $c_{i} \in R \backslash\{0\}$ and $X_{i}:=x^{\alpha^{i}}=x_{1}^{\alpha_{1}^{i}} \cdots x_{n}^{\alpha_{n}^{i}} \in \operatorname{Mon}(A)$, where $\operatorname{tdeg}\left(c_{i} X_{i}\right)=\operatorname{tdeg}\left(c_{i} x^{\alpha^{i}}\right)=\operatorname{deg}\left(c_{i}\right)+$ $\operatorname{deg}\left(X_{i}\right)=\operatorname{deg}\left(c_{i}\right)+\left|\alpha^{i}\right| \leq p$, for $1 \leq i \leq d$. Hence, $\operatorname{deg}\left(c_{i}\right) \leq p-\left|\alpha^{i}\right|$, i.e., $c_{i} \in \mathcal{F}_{p-\left|\alpha^{i}\right|}(R)$, for $1 \leq i \leq d$, and so $f \in \mathcal{F}_{p-\left|\alpha^{1}\right|}(R) x^{\alpha^{1}}+\cdots+\mathcal{F}_{p-\left|\alpha^{d}\right|}(R) x^{\alpha^{d}}$. From the uniqueness of the representation of f, it follows that $f \in \bigoplus_{\alpha \in \mathbb{N}^{n}} \mathcal{F}_{p-|\alpha|}(R) x^{\alpha}$.

For the other inclusion, let $f \in \bigoplus_{\alpha \in \mathbb{N}^{n}} \mathcal{F}_{p-|\alpha|}(R) x^{\alpha}$. Then, f has a unique representation as $f=$ $f_{\alpha^{1}}+\cdots+f_{\alpha^{t}}$, where $f_{\alpha^{j}} \in \mathcal{F}_{p-\left|\alpha^{j}\right|}(R) x^{\alpha^{j}}$, for $1 \leq j \leq t$. Thus, $f_{\alpha^{j}}=r_{j} x^{\alpha^{j}}$, with $r_{j} \in \mathcal{F}_{p-\left|\alpha^{j}\right|}$ and $x^{\alpha^{j}} \in \operatorname{Mon}(A)$. In this way, $\operatorname{deg}\left(r_{j}\right) \leq p-\left|\alpha^{j}\right|$, and, therefore, $\operatorname{tdeg}\left(f_{\alpha^{j}}\right)=\operatorname{deg}\left(r_{j}\right)+\left|\alpha^{j}\right| \leq p$, whence $\operatorname{tdeg}(f) \leq p$, that is, $f \in \mathcal{F}_{p}(A)$. This means that A is free-filtered with filtered basis Mon (A). Finally, since A free-filtered, by McConnell and Robson (2001, Proposition 7.6.15), we obtain that $G(A)$ is free-graded over $G(R)$ on the graded basis $\overline{\operatorname{Mon}(A)}$.

4 The homogenization of a σ-filtered skew PBW extension

Proposition 4.1 Let $A=\sigma(R)\left\langle x_{1}, \ldots, x_{n}\right\rangle$ be a skew PBW extension over an algebra R.
(1) If R is finitely generated as algebra, then A is finitely generated as algebra.
(2) If R is finitely presented, then A is finitely presented.
$\operatorname{Proof}(1)$ If R is finitely generated as algebra, then there exists a finite set of elements $t_{1}, \ldots, t_{s} \in R$ such that the set $\left\{t_{i_{1}} t_{i_{2}} \cdots t_{i_{m}} \mid 1 \leq i_{j} \leq s, m \geq 1\right\} \cup\{1\}$ spans R as a \mathbb{K}-space. By $\operatorname{Definition} 2.3($ ii $), \operatorname{Mon}(A)=$ $\left\{x^{\alpha}=x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}} \mid \alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n}\right\}$ is an R-basis for A. There exists a finite set of elements $t_{1}, \ldots, t_{s}, x_{1}, \ldots, x_{n} \in A$ such that the set $\left\{t_{i_{1}} t_{i_{2}} \cdots t_{i_{m}} x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}} \mid 1 \leq i_{j} \leq s, m \geq 1, \alpha_{1}, \ldots, \alpha_{n} \in \mathbb{N}\right\}$ spans A as a \mathbb{K}-space.
(2) If R is finitely presented, then $R=\mathbb{K}\left\langle t_{1}, \ldots, t_{m}\right\rangle / I$, where

$$
\begin{equation*}
I=\left\langle r_{1}, \ldots, r_{s}\right\rangle \tag{10}
\end{equation*}
$$

is a two-sided ideal of $\mathbb{K}\left\langle t_{1}, \ldots, t_{m}\right\rangle$ generated by a finite set r_{1}, \ldots, r_{s} of polynomials in $\mathbb{K}\left\langle t_{1}, \ldots, t_{m}\right\rangle$. In this way,

$$
\begin{align*}
A & =\mathbb{K}\left\langle t_{1}, \ldots, t_{m}, x_{1}, \ldots, x_{n}\right\rangle / J, \text { where } \tag{11}\\
J & =\left\langle r_{1}, \ldots, r_{s}, f_{i k}, g_{j i} \mid 1 \leq i, j \leq n, 1 \leq k \leq m\right\rangle
\end{align*}
$$

is the two-sided ideal of $\mathbb{K}\left\langle t_{1}, \ldots, t_{m}, x_{1}, \ldots, x_{n}\right\rangle$ generated by a finite set of polynomials $r_{1}, \ldots, r_{s}, f_{i k}$, $g_{j i}$ with r_{1}, \ldots, r_{s} as in (10), that is,

$$
\begin{equation*}
f_{i k}:=x_{i} t_{k}-\sigma_{i}\left(t_{k}\right) x_{i}-\delta_{i}\left(t_{k}\right) \tag{12}
\end{equation*}
$$

where σ_{i} and δ_{i} are as in Proposition 2.4, i.e.,

$$
\begin{equation*}
g_{j i}:=x_{j} x_{i}-c_{i, j} x_{i} x_{j}-\left(r_{0_{j, i}}+r_{1_{j, i}} x_{1}+\cdots+r_{n_{j, i}} x_{n}\right) \tag{13}
\end{equation*}
$$

as in (3). Therefore, A is finitely presented.

Proposition 4.2 If A is a skew PBW extension over a finitely presented algebra R such that σ_{i}, δ_{i} are filtered, and A preserves tdeg, then A is a connected σ-filtered algebra, and the filtration of A is finite.

Proof Let $A=\sigma(R)\left\langle x_{1}, \ldots, x_{n}\right\rangle$ be a skew PBW extension over a finitely presented algebra $R=$ $\mathbb{K}\left\langle t_{1}, \ldots, t_{m}\right\rangle /\left\langle r_{1}, \ldots, r_{s}\right\rangle$. As $L=\mathbb{K}\left\langle t_{1}, \ldots, t_{m}\right\rangle$ is connected filtered, R inherits a connected filtration $\left\{\mathcal{F}_{q}(R)\right\}_{q \in \mathbb{N}}$, from the standard filtration on the free algebra $\mathbb{K}\left\langle t_{1}, \ldots, t_{m}\right\rangle$. Since σ_{i} and δ_{i} are filtered and A preserves tdeg, then A is σ-filtered. Now, as R is connected filtered, Proposition 3.6 implies that A is connected filtered. Notice that L_{p} is a finite-dimensional subspace of L, for all $p \in \mathbb{N}$. In this way, $\mathcal{F}_{q}(L)$ is also a finite dimensional subspace, and so $\mathcal{F}_{q}(R)$ is a finite dimensional subspace of R, for all $q \in \mathbb{N}$, i.e., the filtration of R is finite. Proposition 3.5(2) guarantees that the filtration of A is finite.

Theorem 4.3 If $A=\sigma(R)\left\langle x_{1}, \ldots, x_{n}\right\rangle$ is a bijective skew PBW extension over a finitely presented algebra R such that σ_{i}, δ_{i} are filtered and A preserves tdeg, then $H(A)$ is a graded skew PBW extension over $H(R)$.
Proof Consider the ring $R=\mathbb{K}\left\langle t_{1}, \ldots, t_{m}\right\rangle /\left\langle r_{1}, \ldots, r_{s}\right\rangle=L /\left\langle r_{1}, \ldots, r_{s}\right\rangle$ and let $H(R)=L[z] /\left\langle\widehat{r}_{1}, \ldots, \widehat{r}_{s}\right\rangle=$ $\mathbb{K}\left\langle t_{1}, \ldots, t_{m}, z\right\rangle /\left\langle\widehat{r}_{1}, \ldots, \widehat{r}_{s}, t_{k} z-z t_{k} \mid 1 \leq k \leq m\right\rangle$ be the homogenization of R. By Proposition 4.1(2) and its proof, A is finitely presented with presentation

$$
\begin{equation*}
A=\frac{\mathbb{K}\left\langle t_{1}, \ldots, t_{m}, x_{1}, \ldots, x_{n}\right\rangle}{\left\langle r_{1}, \ldots, r_{s}, \quad f_{i k}, g_{j i} \mid 1 \leq i, j \leq n, 1 \leq k \leq m\right\rangle}, \tag{14}
\end{equation*}
$$

where $f_{i k}=x_{i} t_{k}-\sigma_{i}\left(t_{k}\right) x_{i}-\delta_{i}\left(t_{k}\right), g_{j i}=x_{j} x_{i}-c_{i, j} x_{i} x_{j}-\left(r_{0_{j, i}}+r_{1_{j, i}} x_{1}+\cdots+r_{n_{j, i}} x_{n}\right)$, with $c_{i, j}, r_{0_{j, i}}, r_{1_{j, i}}, \ldots, r_{n_{j, i}} \in R$. Let $L_{t x}:=\mathbb{K}\left\langle t_{1}, \ldots, t_{m}, x_{1}, \ldots, x_{n}\right\rangle$. Then,

$$
\begin{align*}
H(A) & =L_{t x}[z] /\left\langle\widehat{r}_{1}, \ldots, \widehat{r_{s}}, \widehat{f_{i k}}, \widehat{g_{j i}} \mid 1 \leq i, j \leq n, 1 \leq k \leq m\right\rangle \tag{15}\\
& =\frac{\mathbb{K}\left\langle z, t_{1}, \ldots, t_{m}, x_{1}, \ldots, x_{n},\right\rangle}{\left\langle\widehat{r}_{1}, \ldots, \widehat{r_{s}}, \widehat{f_{i k}}, \widehat{g_{j i}}, t_{k} z-z t_{k}, x_{i} z-z x_{i} \mid 1 \leq i, j \leq n, 1 \leq k \leq m\right\rangle} . \tag{16}
\end{align*}
$$

By Proposition 4.2, A is a connected σ-filtered algebra, whence σ_{i} and δ_{i} are filtered and A preserves tdeg. Hence,

$$
\begin{aligned}
& \operatorname{tdeg}\left(f_{i k}\right)=\operatorname{tdeg}\left(x_{i} t_{k}-\sigma_{i}\left(t_{k}\right) x_{i}-\delta_{i}\left(t_{k}\right)\right)=2, \\
& \operatorname{tdeg}\left(g_{j i}\right)=\operatorname{tdeg}\left(x_{j} x_{i}-c_{i, j} x_{i} x_{j}-\left(r_{0_{j, i}}+r_{1_{j, i}} x_{1}+\cdots+r_{n_{j, i}} x_{n}\right)\right)=2 .
\end{aligned}
$$

Notice that

$$
\begin{align*}
& \widehat{f_{i k}}=x_{i} t_{k}-\left(\sigma_{i}\left(t_{k}\right) z^{1-\operatorname{deg}\left(\sigma_{i}\left(t_{k}\right)\right)}\right) x_{i}-\delta_{i}\left(t_{k}\right) z^{2-\operatorname{deg}\left(\delta_{i}\left(t_{k}\right)\right)}, \tag{17}\\
& \widehat{g_{j i}}= \\
& x_{j} x_{i}-c_{i, j} x_{i} x_{j}-r_{0_{j, i}} z^{2-\operatorname{deg}\left(r_{j_{j, i}}\right)}-\left(r_{1 j, i} z^{1-\operatorname{deg}\left(r_{1 j, i}\right)}\right) x_{1}-\cdots \tag{18}\\
& \\
& -\left(r_{n_{j, i}} z^{1-\operatorname{deg}\left(r_{n j, i}\right)}\right) x_{n},
\end{align*}
$$

where $c_{i, j} \in \mathbb{K} \backslash\{0\}, r_{0_{j, i}} z^{2-\operatorname{deg}\left(r_{j, i}\right)}, r_{1_{j, i}} z^{1-\operatorname{deg}\left(r_{1, i}\right)}, \ldots, r_{n_{j, i}} z^{1-\operatorname{deg}\left(r_{n j, i}\right)} \in H(R)$, for $1 \leq i, j \leq n$.
From (17) and (18), in $H(A)$ we have the relations

$$
\begin{equation*}
x_{i} t_{k}=\left(\sigma_{i}\left(t_{k}\right) z^{1-\operatorname{deg}\left(\sigma_{i}\left(t_{k}\right)\right)}\right) x_{i}+\delta_{i}\left(t_{k}\right) z^{2-\operatorname{deg}\left(\delta_{i}\left(t_{k}\right)\right)} \tag{19}
\end{equation*}
$$

and

$$
\begin{align*}
x_{j} x_{i}-c_{i, j} x_{i} x_{j}= & r_{0_{j, i}} z^{2-\operatorname{deg}\left(r_{0}{ }_{j, i}\right)}+\left(r_{1_{j, i}} z^{1-\operatorname{deg}\left(r_{1 j, i}\right)}\right) x_{1}+\cdots \\
& +\left(r_{n_{j, i}} z^{1-\operatorname{deg}\left(r_{n j, i}\right)}\right) x_{n}, \tag{20}
\end{align*}
$$

where $c_{i, j} \in \mathbb{K} \backslash\{0\}, r_{0_{j, i}} z^{2-\operatorname{deg}\left(r_{j, i,}\right)}, r_{1_{j, i}} z^{1-\operatorname{deg}\left(r_{1, i, i}\right)}, \ldots, r_{n j, i} z^{1-\operatorname{deg}\left(r_{n j, i}\right)} \in H(R)$, for $1 \leq i, j \leq n$.
Relations given in (19) and (20) correspond to Definition 2.3(iii) and (iv), respectively, applied to $H(R)$ and $H(A)$. Notice that $H(R) \subseteq H(A)$ and $H(A)$ is an $H(R)$-free module with basis

$$
\operatorname{Mon}(A):=\operatorname{Mon}\left\{x_{1}, \ldots, x_{n}\right\}:=\left\{x^{\alpha}=x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}} \mid \alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n}\right\},
$$

whence $H(A)$ is a skew PBW extension over $H(R)$ in the variables x_{1}, \ldots, x_{n}. Thus, $H(A) \cong$ $\sigma(H(R))\left\langle x_{1}, \ldots, x_{n}\right\rangle$. Since $H(R)$ is a connected graded algebra, i.e., $R(H)=\bigoplus_{p \geq 0} H(R)_{p}$. From (19) and applying Proposition 2.4 to $H(A)$, it follows that $\widehat{\sigma}_{i}\left(t_{k}\right)=\left(\sigma_{i}\left(t_{k}\right) z^{1-\operatorname{deg}\left(\sigma_{i}\left(t_{k}\right)\right)}\right)$; $\widehat{\sigma}_{i}(z)=z$; $\widehat{\delta_{i}}\left(t_{k}\right)=\delta_{i}\left(t_{k}\right) z^{2-\operatorname{deg}\left(\delta_{i}\left(t_{k}\right)\right)}$ and $\widehat{\delta_{i}}(z)=0$, for $1 \leq i \leq n$. Thus, $\widehat{\sigma_{i}}: H(R) \rightarrow H(R)$ is a graded ring homomorphism and $\widehat{\delta_{i}}: H(R)(-1) \rightarrow H(R)$ is a graded $\overline{\widehat{\sigma}_{i}}$-derivation for all $1 \leq i \leq n$. Now, from (20) we have that $c_{i, j} \in \mathbb{K} \backslash\{0\}, r_{0_{j, i}} z^{2-\operatorname{deg}\left(r_{0, i}\right)} \in H(R)_{2}, r_{1_{j, i}} z^{1-\operatorname{deg}\left(r_{1} j_{j, i}\right)}, \ldots, r_{n_{j, i}} z^{1-\operatorname{deg}\left(r_{n j, i}\right)} \in H(R)_{1}$, for $1 \leq i, j \leq n$. Thus, $x_{j} x_{i}-c_{i, j} x_{i} x_{j} \in H(R)_{2}+H(R)_{1} x_{1}+\cdots+H(R)_{1} x_{n}$, and $c_{i, j} \in H(R)_{0}=\mathbb{K}$. As σ_{i} is bijective then $\widehat{\sigma}_{i}$ is bijective and as $c_{i, j}$ is invertible, then $H(A)$ is bijective. Therefore, $H(A)=\sigma(H(R))\left\langle x_{1}, \ldots, x_{n}\right\rangle$ is a bijective skew PBW extension over the \mathbb{N}-graded algebra $R(H)$ that satisfies both conditions formulated in Proposition 2.5, and so $H(A)$ is a graded skew PBW extension over $H(R)$.

Remark 4.4 Let A as in Theorem 4.3. By (15),

$$
H(A)=\frac{\mathbb{K}\left\langle z, t_{1}, \ldots, t_{m}, x_{1}, \ldots, x_{n},\right\rangle}{\left\langle\widehat{r}_{1}, \ldots, \widehat{r}_{s}, \widehat{f_{i k}}, \widehat{g_{j i}}, t_{k} z-z t_{k}, x_{i} z-z x_{i} \mid 1 \leq i, j \leq n, 1 \leq k \leq m\right\rangle}
$$

Let $f \in H(A)$. By Theorem 4.3, $H(A)=\sigma(H(R))\left\langle x_{1}, \ldots, x_{n}\right\rangle$ is a graded skew PBW extension over $H(R)$. Remark 3.1(ii) shows that f has a unique representation as $f=c_{1} X_{1}+\cdots+c_{d} X_{d}$, with $c_{i} \in H(R) \backslash\{0\}$ and $X_{i} \in \operatorname{Mon}(A)$. As $H(A)$ is graded, $c_{i} X_{i}$ is homogeneous in $H(A)$, let us say of degree $d(i)$, and c_{i} is homogeneous in $H(R)$. Then, $c_{i} X_{i}=k_{i} z^{\beta_{i}} \overline{t_{i_{1}} t_{i_{2}} \ldots t_{i_{p}}} X_{i}, 0 \leq i_{j} \leq m$, where $\overline{t_{i_{1}} t_{i_{2}} \ldots t_{i_{p}}} \in$ $R=\mathbb{K}\left\langle t_{1}, \ldots, t_{m}\right\rangle /\left\langle r_{1}, \ldots, r_{s}\right\rangle, \overline{t_{0}}=x_{0}=z^{0}=1, k_{i} \in \mathbb{K}$ and $\beta_{i}+p+\operatorname{deg}\left(X_{i}\right)=d(i)$. Therefore, f has a unique representation as $f=k_{1} z^{\beta_{1}} \frac{t_{1_{1}} t_{1_{2}} \ldots t_{1_{p}}}{} X_{1}+\cdots+k_{d} z^{\beta_{d}} \frac{t_{d_{1}} t_{d_{2}} \ldots t_{d_{p}}}{} X_{d}$.

Let A be a bijective σ-filtered skew PBW extension over a finitely presented algebra R. Let us fix the notation: $G(A)$ and Rees (A) is respectively the associated graded algebra and the associated Rees algebra of A regarding the filtration given in Theorem 3.3. One can always recover A and $G(A)$ from $H(A)$, via $A \cong H(A) /\langle z-1\rangle$ and $G(A) \cong H(A) /\langle z\rangle$, respectively.

Proposition 4.5 If $A=\sigma(R)\left\langle x_{1}, \ldots, x_{n}\right\rangle$ is a bijective σ-filtered skew PBW extension over a finitely presented algebra R, then the following assertions hold:
(1) $A \cong H(A) /\langle z-1\rangle$.
(2) $H(A) /\langle z\rangle \cong G(A)$.

Proof (1) It is clear.
(2) From (11) and (14),

$$
\begin{aligned}
A & =\mathbb{K}\left\langle t_{1}, \ldots, t_{m}, x_{1}, \ldots, x_{n}\right\rangle / J \\
& =\mathbb{K}\left\langle t_{1}, \ldots, t_{m}, x_{1}, \ldots, x_{n}\right\rangle /\left\langle r_{1}, \ldots, r_{s}, \quad f_{i k}, g_{j i} \mid 1 \leq i, j \leq n, 1 \leq k \leq m\right\rangle
\end{aligned}
$$

i.e., A is an algebra defined by generators and relations. Then, there is a standard connected filtration $\left\{\mathcal{F}_{p}^{*}(A)\right\}_{p \in \mathbb{N}}$ on A wherein $\mathcal{F}_{p}^{*}(A)=\left(\mathcal{F}_{p}\left(L_{t x}\right)+J\right) / J$, i.e., $\mathcal{F}_{p}^{*}(A)$ is the span of all words in the variables $t_{1}, \ldots, t_{m}, x_{1}, \ldots, x_{n}$ of degree at most p. Notice that for σ-filtered skew PBW extensions of a finitely presented algebra $R, \mathcal{F}_{p}^{*}(A)$ coincides with $\mathcal{F}_{p}(A)$ as in (5), for all $p \geq 0$. Therefore, $H(A) /\langle z\rangle \cong G(A)$.

Example 4.6 The Weyl algebra $A_{n}(\mathbb{K})$ in Example 3.9 is the free associative algebra with generators t_{1}, \ldots, t_{n}, x_{1}, \ldots, x_{n} modulo the relations $t_{j} t_{i}=t_{i} t_{j}, x_{j} x_{i}=x_{i} x_{j}, x_{i} t_{j}=t_{j} x_{i}+\delta_{i j}$, where $\delta_{i j}$ is the Kronecker delta, $1 \leq i, j \leq n$. Adding another generator z that commutes with $t_{1}, \ldots, t_{n}, x_{1}, \ldots, x_{n}$ and replacing $\delta_{i j}$ with $\delta_{i j} z^{2}$ in the above relations yields the homogenized Weyl algebra $H\left(A_{n}(\mathbb{K})\right)$. Since $A_{n}(\mathbb{K})$ is a bijective skew PBW extension over a finitely presented algebra $R=\mathbb{K}\left[t_{1}, \ldots, t_{n}\right]$, such that σ_{i}, δ_{i} are filtered and $A_{n}(\mathbb{K})$ preserves tdeg, by Theorem 4.3 we have that $H\left(A_{n}(\mathbb{K})\right)$ is a graded skew PBW extension over $H(R)=\mathbb{K}\left[t_{1}, \ldots, t_{n}, z\right]$. By Proposition 4.5, $A_{n}(\mathbb{K}) \cong H\left(A_{n}(\mathbb{K})\right) /\langle z-1\rangle$ and $H\left(A_{n}(\mathbb{K})\right) /\langle z\rangle \cong G\left(A_{n}(\mathbb{K})\right)$, which is just a commutative polynomial ring in 2 n variables, where $G\left(A_{n}(\mathbb{K})\right)$ is the associated graded algebra of $A_{n}(\mathbb{K})$ with respect to the filtration \mathcal{F} as in (5).

Example 4.7 Following [6] or [45, Definition C4.3], a 3-dimensional algebra \mathcal{A} is a \mathbb{K}-algebra generated by the indeterminates x, y, z subject to the relations $y z-\alpha z y=\lambda, z x-\beta x z=\mu$, and $x y-\gamma y x=v$, where $\lambda, \mu, \nu \in \mathbb{K} x+\mathbb{K} y+\mathbb{K} z+\mathbb{K}$, and $\alpha, \beta, \gamma \in \mathbb{K}^{*}$. \mathcal{A} is called a 3 -dimensional skew polynomial \mathbb{K}-algebra if the
set $\left\{x^{i} y^{j} z^{k} \mid i, j, k \geq 0\right\}$ forms a \mathbb{K}-basis of the algebra. As we can see in Rosenberg [45, Theorem C.4.3.1], there are exactly fifteen non-isomorphic 3-dimensional skew polynomial \mathbb{K}-algebras, and one of these is the enveloping algebra of $\mathfrak{s l}(2, \mathbb{K})$. From the definition, it is clear that these algebras are skew PBW extensions over \mathbb{K}, and hence, σ-filtered skew PBW extensions.

Redman [37] studied the geometry of the homogenizations of two classes of 3-dimensional skew polynomial algebras. Following the terminology used by Bell and Smith [6], the algebras Type I and Type II (these objects are called like this because these are two classes of three dimensional skew polynomial rings that have finitedimensional simple modules of arbitrarily large dimensions) are defined as

$$
\text { Type I }\left\{\begin{array} { l }
{ g _ { 1 } = y z - \alpha z y , } \\
{ g _ { 2 } = z x - \beta x z - a y - b , } \\
{ g _ { 3 } = x y - \alpha y x }
\end{array} \quad \text { and } \quad \text { Type II } \left\{\begin{array}{l}
g_{1}=y z-\alpha z y-x-b_{1} \\
g_{2}=z x-\alpha x z-y-b_{2} \\
g_{3}=x y-\alpha y x-z-b_{3}
\end{array}\right.\right.
$$

where $a, b, b_{1}, b_{2}, b_{3}, \alpha, \beta \in \mathbb{C}$ with such that $\alpha \beta \neq 0$.
The homogenization $H(\mathcal{A})$ of both types of algebras with respect to a central variable t is given by $\mathbb{C}\langle x, y, z, t\rangle$ with defining relations

$$
\left\{\begin{array} { l }
{ y z - \alpha z y = 0 , } \\
{ z x - \beta x z = a y t + b t ^ { 2 } , } \\
{ x y - \alpha y x = 0 , }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
y z-\alpha z y=x t+b_{1} t^{2} \\
z x-\alpha x z=y t+b_{2} t^{2} \\
x y-\alpha y x=z t+b_{3} t^{2}
\end{array}\right.\right.
$$

and $x t-t x=y t-t y=z t-t z=0$. From [6, Proposition 2.1.1], the standard monomials $\left\{x^{i} y^{j} z^{k} t^{l} \mid\right.$ $i, j, k, l \geq 0\}$ form a \mathbb{C}-basis for the algebra D with the degree and dictionary ordering being $x>y>z>t$, whence t is a non-zero divisor.

By Proposition 4.5, $\mathcal{A} \cong H(\mathcal{A}) /\langle t-1\rangle$ and $H(\mathcal{A}) /\langle t\rangle \cong G(\mathcal{A})$, where $G(\mathcal{A})$ is the associated graded algebra of \mathcal{A} with respect to the filtration \mathcal{F} as in (5). Thus, $H(\mathcal{A})$ is a central extension of the algebra $H(\mathcal{A}) /\langle t\rangle$, and, therefore, $H(\mathcal{A})$ is a central extension of $G(\mathcal{A})$. These facts were used by [37] to prove that the quotient algebra $H(\mathcal{A}) /\langle t\rangle$ is a 3-dimensional Artin-Schelter regular algebra [37, Lemma 1.1], $H(\mathcal{A})$ is 4-dimensional Artin-Schelter regular, graded Noetherian domain, and Cohen-Macaulay with Hilbert series $(1-t)^{-4}[37$, Proposition 1.2]. He also described the noncommutative projective geometry of these objects, and compute the finite-dimensional simple modules for the homogenization of Type I algebras in the case that α is not a primitive root of unity. In this case, all finite dimensional simple modules are quotients of line modules that are homogenizations of Verma modules. From Theorem 4.3, we know that $H(\mathcal{A})$ is a graded skew PBW extension over $\mathbb{C}[t]$. In Theorem 5.2 below, we generalize some of these properties for σ-filtered skew PBW extensions over a ring R such that $H(R)$ is Auslander-regular.

Example 4.8 Following Le Bruyn and Smith [18], we write $\mathfrak{g}=\mathbb{C} e \oplus \mathbb{C} f \oplus \mathbb{C} h$ and define a vector space isomorphism $\mathfrak{s l}(2, \mathbb{C}) \rightarrow \mathfrak{g}$ by

$$
\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \rightarrow e, \quad\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) \rightarrow f, \quad\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \rightarrow h
$$

and we transfer the Lie bracket on $\mathfrak{s l}(2, \mathbb{C})$ to \mathfrak{g} giving $[e, f]=h,[h, e]=2 e,[h, f]=-2 f$. The homogenization $H(U(\mathfrak{g}))$ of the universal enveloping algebra of \mathfrak{g} with respect to a central variable t is $\mathbb{C}\langle e, f, h, t\rangle$ with defining equations

$$
e f-f e=h t, \quad h e-e h=2 e t, \quad h f-f h=-2 f t \quad e t-t e=f t-t f=h t-t h=0 .
$$

By Proposition 4.5, $U(\mathfrak{g}) \cong H(U(\mathfrak{g})) /\langle t-1\rangle$ and $H(U(\mathfrak{g})) /\langle t\rangle \cong G(U(\mathfrak{g}))$, where $G(U(\mathfrak{g}))$ is the associated graded algebra of $U(\mathfrak{g})$ with respect to the filtration \mathcal{F} as in (5). Thus, $H(U(\mathfrak{g}))$ is a central extension of $H(U(\mathfrak{g})) /\langle t\rangle \cong G(U(\mathfrak{g})) \cong \mathbb{C}[e, f, h]=S(\mathfrak{g})$, the symmetric algebra on \mathfrak{g}. These facts were used by Le Bruyn and Smith [18] to deduce that $H(U(\mathfrak{g}))$ has Hilbert series $(1-t)^{-4}$, it is a positively graded Noetherian domain, Auslander-regular of dimension 4, satisfies the Cohen-Macaulay property, and its center is $\mathbb{C}[\Omega, t]$, where $\Omega=h^{2}+2 e f+2 f e$ is the Casimir element. Recall that $U(\mathfrak{g})$ is a σ-filtered skew PBW extension (Example 3.9), and by Theorem 4.3, $H(U(\mathfrak{g})$) is a graded skew PBW extension over $\mathbb{C}[t]$. Below, using Theorem 5.2, we obtain some of the above properties for σ-filtered skew PBW extensions over R such that $H(R)$ is Auslander-regular.

Remark 4.9 A graded algebra R is said to be generated in degree one if R_{1} generates R as an algebra. Let A be a σ-filtered skew PBW extension over a commutative polynomial ring $R=\mathbb{K}\left[t_{1}, \ldots, t_{m}\right]$. Notice that if we use the filtration given in (8), then $H(A)$ and $G(A)$ are not generated in degree one, while if we use the standard filtration for R, then $H(A)$ and $G(A)$ are generated in degree one. For the study of certain properties in an algebra such as Artin-Schelter regular, strongly Noetherian, Auslander-regular, Cohen-Macaulay, Koszul and the Jacobson radical, some authors impose the condition that the algebra be generated in degree one (e.g., [14, Theorem 3.3] or [55, Theorem 0.1]). For the example presented by Greenfeld et al. [14, Section 6], it was considered that the Ore extensions of endomorphism type $R[x, \sigma]$ satisfy $\operatorname{deg}(r)=0$, for all non-zero $r \in R$ and $\operatorname{deg}\left(r x^{j}\right)=j$, for all natural number $j>0$. This fact was used to study the properties graded nilpotent (a graded algebra is graded nilpotent if the algebra generated by any set of homogeneous elements of the same degree is nilpotent), graded locally nilpotent (a graded algebra is graded locally nilpotent if the algebra generated by any finite set of homogeneous elements of the same degree is nilpotent), the Jacobson radical, and to ask some related questions in the Ore extension $R[x ; \sigma]$.

5 Other homological properties

It is known that a graded algebra R is right (left) Noetherian if and only if it is graded right (left) Noetherian, which means that every graded right (left) ideal is finitely generated [20, Proposition 1.4]. Let M be an R module. The grade number of M is $j_{R}(M):=\min \left\{p \mid \operatorname{Ext}_{R}^{p}(M, R) \neq 0\right\}$ or ∞ if no such p exists. Notice that $j_{R}(0)=\infty$. When R is Noetherian, $j_{R}(M) \leq \operatorname{pd}_{R}(M)$ (where $\mathrm{pd}_{R}(M)$ denotes the projective dimension of M), and if furthermore $\operatorname{injdim}(R)=q<\infty$, we have $j_{R}(M) \leq q$, for all non-zero finitely generated R-module M (for further details, see [20]).

Definition 5.1 ([20, Definition 2.1]). Let R be a Noetherian ring.
(i) An R-module M satisfies the Auslander-condition if for all $p \geq 0, j_{R}(N) \geq p$, for every R-submodule N of $\operatorname{Ext}_{R}^{p}(M, R)$.
(ii) R is called Auslander-Gorenstein of dimension q if $\operatorname{injdim}(R)=q<\infty$, and every left or right finitely generated R-module satisfies the Auslander-condition.
(iii) R is said to be Auslander-regular of dimension q if $\operatorname{gld}(R)=q<\infty$, and every left or right finitely generated R-module satisfies the Auslander-condition.

Theorem 5.2 If A is a σ-filtered skew $P B W$ extension over a ring R such that $H(R)$ is Auslander-regular, then the following assertions hold:
(1) $H(A)$ is graded Noetherian.
(2) $H(A)$ is a domain.
(3) A is Noetherian.
(4) A is a PBW deformation of $G(A)$.
(5) $G(A)$ is Noetherian.
(6) $\operatorname{Rees}(A) \cong H(A)$.
(7) A is Zariski.
(8) $H(A)$ is Artin-Schelter regular.
(9) $G(A)$ is Artin-Schelter regular.

Proof From Theorem 4.3, we know that $H(A)$ is a graded bijective skew PBW extension over $H(R)$.
(1) Since $H(R)$ is Noetherian and graded, by [20, Proposition 1.4] $H(R)$ is graded Noetherian. From [50, Proposition 2.7], we obtain that $H(A)$ is graded Noetherian.
(2) By [28, Theorem 2.9] we know that $H(A)$ is Auslander-regular. Since $H(R)$ is connected graded, by [47, Remark 2.10], we have that $H(A)$ is connected graded, and thus the assertion follows from [20, Theorem 4.8].
(3) Part (1) above shows that $H(A)$ is Noetherian, whence $A \cong H(A) /\langle z-1\rangle$ is Noetherian.
(4) Notice that A is a deformation of $G(A)$. By (2), z is regular in $H(A)$, and since $G(A) \cong H(A) /\langle z\rangle$, then $H(A)$ is a central regular extension of $G(A)$. By [7, Theorem 1.3], A is a PBW deformation of $G(A)$.
(5) Since $H(A)$ is connected graded and $z \in H(A)_{1}$ is central regular, then by [20, Proposition 3.5], we have that $H(A)$ is Noetherian if and only if $H(A)\langle z\rangle \cong G(A)$ is Noetherian.
(6) It follows from (4) and [52, Proposition 2.6].
(7) From (1) and (6), Rees (A) is Noetherian. As A is connected filtered, then A is Zariski.
(8) Since $H(R)$ is finitely presented connected Auslander-regular and $H(A)$ is a graded skew PBW extension over $H(R)$, then by [50, Proposition 3.5 (iii)], we have that $H(A)$ is Artin-Schelter regular.
(9) As $H(A)$ is a connected graded, by (2) $H(A)$ is a domain, and by (8) $H(A)$ is Artin-Schelter regular. From [44, Corollary 1.2], $G(A) \cong H(A) /\langle z\rangle$ is Artin-Schelter regular.

Example 3.9 showed that the Weyl algebra $A_{n}(\mathbb{K})$ is a σ-filtered skew PBW extension over $R=$ $\mathbb{K}\left[t_{1}, \ldots, t_{n}\right]$, and by Example $4.6, H(R)=\mathbb{K}\left[t_{1}, \ldots, t_{n}, z\right]$, which is Auslander-regular. Hence, Theorem 5.2 guarantees that $A_{n}(\mathbb{K})$ is Noetherian, Zariski, and a PBW deformation of $G\left(A_{n}(\mathbb{K})\right), H\left(A_{n}(\mathbb{K})\right)$ is a domain graded Noetherian and Artin-Schelter regular, $G\left(A_{n}(\mathbb{K})\right)$ is Noetherian and Artin-Schelter regular, and $\operatorname{Rees}\left(A_{n}(\mathbb{K})\right) \cong H\left(A_{n}(\mathbb{K})\right)$.

From Proposition 4.5 and Theorem 5.2, we immediately get the following result.
Corollary 5.3 If A is a σ-filtered skew PBW extension over a ring R defined by $R=\mathbb{K}\left\langle t_{1}, \ldots, t_{m}\right\rangle /\left\langle r_{1}, \ldots, r_{s}\right\rangle$ such that σ_{i} is graded, then $G(A)$ is a graded skew PBW extension over $G(R)$ in n variables y_{1}, \ldots, y_{n} given by

$$
\begin{align*}
y_{i} t_{k} & =\sigma_{i}\left(t_{k}\right) y_{i}+r_{i} \tag{21}\\
y_{j} y_{i} & =c_{i, j} y_{i} y_{j}+r_{0_{j, i}}+r_{1_{j, i}} y_{1}+\cdots+r_{n_{j, i}} y_{n}
\end{align*}
$$

where

$$
\begin{align*}
r_{i} & = \begin{cases}\delta_{i}\left(t_{k}\right), & \text { if } \operatorname{deg}\left(\delta_{i}\left(t_{k}\right)\right)=2, \\
0, & \text { otherwise },\end{cases} \\
r_{0_{j, i}} & = \begin{cases}r_{0_{j, i}}, & \text { if } \operatorname{deg}\left(r_{0_{j, i}}\right)=2, \\
0, & \text { otherwise, }\end{cases} \tag{22}\\
r_{l_{j, i}} & = \begin{cases}r_{l_{j, i},}, & \text { if } \operatorname{deg}\left(r_{l_{j, i}}\right)=1, \\
0, & \text { otherwise, }\end{cases}
\end{align*}
$$

for $1 \leq l \leq n$, with $c_{i, j}, r_{0_{j, i}}, r_{1_{j, i}}, \ldots, r_{n_{j, i}}, 1 \leq i, j \leq n$, the constants that define A as in (3), and $t_{k} \in G(R)$ is the coset of t_{k}.

Proposition 5.4 PBW deformations of Artin-Schelter regular algebras of dimension two are σ-filtered skew PBW extensions.

Proof By [11, Corollary 2.13], PBW deformations of Artin-Schelter regular algebras of dimension two are isomorphic to one of the following algebras: $\mathbb{K}\langle x, y\rangle /\langle x y-q y x\rangle, \mathbb{K}\langle x, y\rangle /\langle x y-q y x+1\rangle, \mathbb{K}\langle x, y\rangle /\langle y x-$ $x y+y\rangle, \mathbb{K}\langle x, y\rangle /\left\langle y x-x y+y^{2}\right\rangle, \mathbb{K}\langle x, y\rangle /\left\langle y x-x y+y^{2}+1\right\rangle$, where $q \in \mathbb{K} \backslash\{0\}$. Notice that the first three algebras are skew PBW extensions over \mathbb{K} and the last two are skew PBW extensions over $\mathbb{K}[y]$. As one can check, every algebra satisfies the conditions (1) and (2) established in Theorem 3.3.

Example 5.5 (1) Andruskiewitsch et al. [2] studied the Hopf algebra \mathcal{D} which was called the double of the Jordan plane. The authors considered the field \mathbb{K} to be characteristic zero and algebraically closed. Following [2, Definition 2.1], the Hopf algebra \mathcal{D} is presented by generators $u, v, \zeta, g^{ \pm 1}, x, y$ and relations $g^{ \pm 1} g^{ \pm 1}=1, \quad \zeta g=g \zeta, \quad g x=x g, \quad g y=y g+x g, \quad \zeta y=y \zeta+y, \quad \zeta x=x \zeta+x, \quad u g=g u$, $v g=g v+g u, \quad v \zeta=\zeta v+v, \quad u \zeta=\zeta u+u, \quad y x=x y-\frac{1}{2} x^{2}, \quad v u=u v-\frac{1}{2} u^{2}, \quad u x=x u$, $v x=x v+(1-g)+x u, u y=y u+(1-g), \quad v y=y v-g \zeta+y u$. According to Andruskiewitsch et al. [2, Lemma 4.1], the algebra \mathcal{D} can be described as the iterated Ore extension

$$
\mathcal{D} \cong \mathbb{K}\left[g^{ \pm 1}, x, u\right]\left[y ; \sigma_{1}, \delta_{1}\right]\left[\zeta ; \sigma_{2}, \delta_{2}\right]\left[v ; \sigma_{3}, \delta_{3}\right]
$$

where σ_{1} the identity automorphism of $\mathbb{K}\left[g^{ \pm 1}, x, u\right]$, and δ_{1} is the σ_{1}-derivation of $\mathbb{K}\left[g^{ \pm 1}, x, u\right]$ given by $\delta_{1}(x)=-\frac{1}{2} x^{2}, \delta_{1}(u)=g-1$, and $\delta_{1}(g)=-x g ; \sigma_{2}$ is the identity automorphism of $\mathbb{K}\left[g^{ \pm 1}, x, u\right]\left[y ; \sigma_{1}, \delta_{1}\right]$, and δ_{2} is the σ_{2}-derivation of $\mathbb{K}\left[g^{ \pm 1}, x, u\right]\left[y ; \sigma_{1}, \delta_{1}\right]$ defined by $\delta_{2}(x)=$ $x, \delta_{2}(u)=-u, \delta_{2}(g)=0$, and $\delta_{2}(y)=y$. Finally, σ_{3} and δ_{3} are the automorphism and the σ_{3}-derivation of $\mathbb{K}\left[g^{ \pm 1}, x, u\right]\left[y ; \sigma_{1}, \delta_{1}\right]\left[\zeta ; \sigma_{2}, \delta_{2}\right]$, respectively, given by $\sigma_{3}(x)=x, \sigma_{3}(u)=u, \sigma_{3}(g)=g, \sigma_{3}(y)=y$ and $\sigma_{3}(\zeta)=\zeta+1, \delta_{3}(x)=1-g+x u, \delta_{3}(u)=-\frac{1}{2} u^{2}, \delta_{3}(g)=g u, \delta_{3}(y)=y u-g \zeta$ and $\delta_{3}(\zeta)=0$.

Notice that $\mathbb{K}\left[g^{ \pm 1}, x, u\right]\left[y ; \sigma_{1}, \delta_{1}\right]\left[\zeta ; \sigma_{2}, \delta_{2}\right]\left[v ; \sigma_{3}, \delta_{3}\right]$ satisfies the four conditions established in [10, Example 2.2 of Part I], which means that \mathcal{D} is a bijective skew PBW extension over $\mathbb{K}\left[g^{ \pm 1}, x, u\right]$, that is,

$$
\mathcal{D} \cong \mathbb{K}\left[g^{ \pm 1}, x, u\right]\left[y ; \sigma_{1}, \delta_{1}\right]\left[\zeta ; \sigma_{2}, \delta_{2}\right] \cong \sigma\left(\mathbb{K}\left[g^{ \pm 1}, x, u\right]\right)\langle y, \zeta, v\rangle
$$

Notice that σ_{i} and δ_{i} restricted to $\mathbb{K}\left[g^{ \pm 1}, x, u\right]$ are the endomorphism and derivation as in Proposition 2.4, whence \mathcal{D} satisfies the conditions of Theorem 3.3, and, therefore, \mathcal{D} is a σ-filtered skew PBW extension.
(2) Semi-graded rings were defined by Lezama and Latorre [26] in the following way: a ring R is called semi-graded (SG) if there exists a collection $\left\{R_{p}\right\}_{p \in \mathbb{N}}$ of subgroups R_{p} of the additive group R^{+}such that the following conditions hold:
$-R=\bigoplus_{p \in \mathbb{N}} R_{p}$;

- For every $p, q \in \mathbb{N}, R_{p} R_{q} \subseteq R_{0} \oplus R_{1} \oplus \cdots \oplus R_{p+q}$;
$-1 \in R_{0}$.
Notice that R has a standard \mathbb{N}-filtration given by $\mathcal{F}_{p}(R):=R_{0} \oplus \cdots \oplus R_{p}$ [26, Proposition 2.6], and \mathbb{N}-graded rings and skew PBW extensions are examples of semi-graded rings ([26, Proposition 2.7]). In the case of a skew PBW extension A over a ring R, they assumed $A_{0}=R$, i.e., R has the trivial positive filtration. Notice that under these conditions, skew PBW extensions over an algebra R with the standard \mathbb{N}-filtration are σ-filtered. In this way, if R does not have the trivial positive filtration, then A is not generally σ-filtered, as can be seen in Remark 3.10.
Recently, Lezama [22, Definition 4.3] introduced the notion of semi-graded Artin-Schelter regular algebra, and proved under certain assumptions that skew PBW extensions are semi-graded Artin-Schelter regular [22, Theorem 4.14]. With this purpose, he showed that A is a connected semi-graded algebra with semigraduation $A_{0}=\mathbb{K}$, and A_{p} is the \mathbb{K}-subspace generated by $R_{q} x^{\alpha}$ such that $q+|\alpha|=p$, for $p \geq 1$. In this regard, notice that A with the standard \mathbb{N}-filtration given by this semi-graduation is σ-filtered [26, Proposition 2.6].
(3) Zhang and Zhang [54] defined double Ore extensions as a generalization of Ore extensions. If R is an algebra, and B is another algebra containing R as a subring, then B is a right double Ore extension of R if the following conditions hold:
- B is generated by R and two new variables x_{1} and x_{2}.
- The variables x_{1} and x_{2} satisfy the relation

$$
x_{2} x_{1}=p_{12} x_{1} x_{2}+p_{11} x_{1}^{2}+\tau_{1} x_{1}+\tau_{2} x_{2}+\tau_{0}
$$

where $p_{12}, p_{11} \in \mathbb{K}$ and $\tau_{1}, \tau_{2}, \tau_{0} \in R$.

- As a left R-module, $B=\sum_{\alpha_{1}, \alpha_{2} \geq 0} R x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}}$ and it is a left free R-module with basis the set $\left\{x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \mid\right.$ $\left.\alpha_{1} \geq 0, \alpha_{2} \geq 0\right\}$.
- $x_{1} R+x_{2} R \subseteq R x_{1}+R x_{2}+R$.

Left double Ore extensions are defined similarly. B is a double Ore extension if it is left and right double Ore extension of R with the same generating set $\left\{x_{1}, x_{2}\right\}$ [54, Definition 1.3]. B is a graded right (left) double Ore extension if all relations of B are homogeneous with assignment $\operatorname{deg}\left(x_{1}\right)=\operatorname{deg}\left(x_{2}\right)=1$. They studied the property of being Artin-Schelter for these extensions [54, Theorem 3.3].
Later, Zhang and Zhang [55] constructed 26 families of Artin-Schelter regular algebras of global dimension four using double Ore extensions. Briefly, to prove that a connected graded double Ore extension of an Artin-Schelter regular algebra is Artin-Schelter regular, Zhang and Zhang needed to pass the ArtinSchelter regularity from the trimmed double extension $R_{P}\left[x_{1}, x_{2} ; \sigma\right]$ to $R_{P}\left[x_{1}, x_{2} ; \sigma, \delta, \tau\right]$ (details about the notation used for double Ore extensions can be found in [54]). For this purpose, they defined a new grading and with this a filtration: let $A=R_{P}\left[x_{1}, x_{2} ; \sigma, \delta, \tau\right]$ be a graded (or ungraded) double extension of R with $d_{1}=\operatorname{deg}\left(x_{1}\right)$ and $d_{2}=\operatorname{deg}\left(x_{2}\right)$ (or $\operatorname{deg}\left(x_{1}\right)=\operatorname{deg}\left(x_{2}\right)=0$), the new defined graduation is $\operatorname{deg}^{\prime}\left(x_{1}\right)=d_{1}+1$ and $\operatorname{deg}^{\prime}\left(x_{2}\right)=d_{2}+1$ and $\operatorname{deg}^{\prime}(r)=\operatorname{deg}(r)$ for all $r \in R$. Using this grading they defined a filtration of A by $\mathcal{F}_{p}(A)=\left\{\sum r_{n_{1}, n_{2}} x_{1}^{n_{1}} x_{2}^{n_{2}} \in A \mid \operatorname{deg}^{\prime}\left(r_{n_{1}, n_{2}}+n_{1} \operatorname{deg}^{\prime}\left(x_{1}\right)+n_{2} \operatorname{deg}^{\prime}\left(x_{2}\right) \leq\right.\right.$ $m\} . \mathcal{F}=\left\{\mathcal{F}_{p}(A)\right\}_{p \in \mathbb{Z}}$ is an \mathbb{N}-filtration such that the associated graded ring $G_{\mathcal{F}}(A)$ is isomorphic to $R_{P}\left[x_{1}, x_{2} ; \sigma\right]$; there is a central element t of degree 1 such that $\operatorname{Rees} \mathcal{F}(A) /(t)=R_{P}\left[x_{1}, x_{2} ; \sigma\right]$ as graded rings and $\operatorname{Rees}_{\mathcal{F}}(A) /(t-1)=R_{P}\left[x_{1}, x_{2} ; \sigma, \delta, \tau\right]$ as ungraded rings; also, if A is connected graded, then so are $G_{\mathcal{F}}(A)$ and $\operatorname{Rees}_{\mathcal{F}}(A)$, where $\operatorname{Rees}_{\mathcal{F}}(A)$ is the Rees ring associated to this filtration [54, Lemma 3.4].

Related with this work, Gómez and the first author proved that for $R=\bigoplus_{m \geq 0} R_{m}$ be an \mathbb{N}-graded algebra and $A=R_{P}\left[x_{1}, x_{2} ; \sigma, \delta, \tau\right]$ be a graded right double Ore extension of R, if $P=\left\{p_{12}, 0\right\}, p_{12} \neq 0$ and $\sigma:=\left(\begin{array}{cc}\sigma_{11} & 0 \\ 0 & \sigma_{22}\end{array}\right)$, where σ_{11}, σ_{22} are automorphism of R, then A is a graded skew PBW extension over R [13, Theorem 3.5]. As one can check, the previous filtration on A coincides with the filtration given in (5), and so $A=R_{P}\left[x_{1}, x_{2} ; \sigma, \delta, \tau\right]$ is a σ-filtered skew PBW extension.

For the last theorem of the paper, recall that the enveloping algebra of an algebra R is the tensor product $R^{e}=R \otimes R^{o p}$, where $R^{o p}$ is the opposite algebra of R. If M is an R-bimodule, and $v, \mu: R \rightarrow R$ are two automorphisms, then the skew R-bimodule ${ }^{\nu} M^{\mu}$ is equal to M as a vector space with $a \cdot m \cdot b:=v(a) \cdot m \cdot \mu(b)$. When v is the identity, we omit it. M is a left R^{e}-module with product given by $(a \otimes b) \cdot m=a \cdot m \cdot b=v(a)$. $m \cdot \mu(b)$. In particular, for R and R^{e}, we have the structure of left R^{e}-module given by $(a \otimes b) \cdot x=v(a) x \mu(b)$, $(a \otimes b) \cdot(x \otimes y)=a \cdot(x \otimes y) \cdot b=v(a) \cdot(x \otimes y) \cdot \mu(b)=v(a) x \otimes y \mu(b)$.

An algebra R is said to be skew Calabi-Yau of dimension d if it has a finite resolution by finitely generated projective bimodules, and there exists an algebra automorphism v of R such that

$$
\operatorname{Ext}_{R^{e}}^{i}\left(R, R^{e}\right) \cong \begin{cases}0, & i \neq d \\ R^{v}, & i=d\end{cases}
$$

as R^{e}-modules. If v is the identity, then R is said to be Calabi-Yau. Enveloping algebras and skew Calabi-Yau algebras related to skew PBW extensions were studied in [38].

Theorem 5.6 If A is a σ-filtered skew $P B W$ extension over a ring R such that $H(R)$ is Auslander-regular, then A is skew Calabi-Yau.

Proof From Theorem 5.2, parts (4), (5) and (9), we know that A is a PBW deformation of a Noetherian Artin-Schelter regular algebra $G(A)$. The assertion follows from [11, Proposition 2.15].

Example 5.7 Let $R=\mathbb{K}\left[t_{1}, \ldots, t_{m}\right], m \geq 0$. Since $H(R)=R[z]$ is Auslander-regular and a commutative polynomial ring in $m+1$ variables over \mathbb{K}, then every one of the examples of skew PBW extensions over R presented in [10], [12,27,47], and [48] that are σ-filtered, are skew Calabi-Yau. In particular, every one of the algebras in the proof of Proposition 5.4 are skew Calabi-Yau.

6 Future work

Since Redman [37] and Chirvasitu et al. [9] studied the noncommutative geometry of the homogenization of two classes of three dimensional skew polynomial algebras, and of the homogenization of the universal enveloping algebra $U(\mathfrak{s l}(2, \mathbb{C}))$, respectively, keeping in mind that these algebras are particular examples of skew PBW extensions (Examples 4.7 and 4.8), we can think of establishing several properties of noncommutative geometry of the homogenization of skew PBW extensions. It is a natural task to investigate if the treatment developed by Redman [37] and Chirvasitu et al. [9] can be extended to the more general setting of these extensions.

Acknowledgements The first author was supported by Vicerrectoría de Investigación y Extensión, Code SGI 3334, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia. The authors were supported by the research fund of Faculty of Science, Code HERMES 52464, Universidad Nacional de Colombia-Sede Bogotá, Colombia.

Funding The authors have not disclosed any funding.

Declarations

Conflict of Interest The authors declare that they does not have any conflicts of interests.

References

1. Acosta, J.P.; Lezama, O.: Universal property of skew PBW extensions. Algebra Discrete Math. 30(1), 1-12 (2015)
2. Andruskiewitsch, N., Dumas, F., Peña, H. M.: On the double of the Jordan plane. arXiv:2108.13849v1 [math.RA] (2021)
3. Artamonov, V. A.: Derivations of skew PBW extensions. Commun. Math, Stat 3(4), 449-457 (2015). https://doi.org/10. 1007/s40304-015-0067-9
4. Artin, M.; Schelter, W.F.: Graded algebras of global dimension 3. Adv. Math. 66(2), 171-216 (1987)
5. Bell, A.; Goodearl, K.: Uniform rank over differential operator rings and Poincaré-Birkhoff-Witt extensions. Pac. J. Math. 131(11), 13-37 (1988)
6. Bell, A. D., Smith, S. P.: Some 3-dimensional skew polynomial ring. University of Wisconsin-Milwaukee and University of Washington (1990)
7. Cassidy, T.; Shelton, B.: PBW-deformation theory and regular central extensions. J. Reine Angew. Math. 610, 1-12 (2007). https://doi.org/10.1515/CRELLE.2007.065
8. Cassidy, T.; Shelton, B.: Generalizing the notion of Koszul algebra. Math. Z. 260(1), 93-114 (2008). https://doi.org/10.1007/ s00209-007-0263-8
9. Chirvasitu, A.; Smith, S.P.; Wong, L.Z.: Noncommutative geometry of homogenized quantum $\mathfrak{s l}(2, \mathbb{C})$. Pacific J. Math. 292(2), 305-354 (2018). https://doi.org/10.2140/pjm.2018.292.305
10. Fajardo, W.; Gallego, C.; Lezama, O.; Reyes, A.; Suárez, H.; Venegas, H.: Skew PBW Extensions: Ring and Module-theoretic Properties, Matrix and Gröbner Methods, and Applications. Algebra and Applications, Springer Cham (2020)
11. Gaddis, J.: PBW deformations of Artin-Schelter regular algebras. J. Algebra Appl. 15(4), 1650064 (2016). https://doi.org/ 10.1142/S021949881650064X
12. Gallego, C.; Lezama, O.: Gröbner bases for ideals of σ-PBW extensions. Comm. Algebra 39(1), 50-75 (2011). https://doi. org/10.1080/00927870903431209
13. Gómez, J.; Suárez, H.: Double Ore extensions versus graded skew PBW extensions. Comm. Algebra 48(1), 185-197 (2020). https://doi.org/10.1080/00927872.2019.1635610
14. Greenfeld, B.; Smoktunowicz, A.; Ziembowski, M.: Five solved problems on radicals of Ore extensions. Publ. Mat. 63(2), 423-444 (2019). https://doi.org/10.5565/PUBLMAT6321902
15. Hashemi, E.; Khalilnezhad, K.; Alhevaz, A.: (Σ, Δ)-Compatible skew PBW extension ring. Kyungpook Math. J. 57(3), 401-417 (2017). https://doi.org/10.5666/KMJ.2017.57.3.401
16. Hashemi, E.; Khalilnezhad, K.; Alhevaz, A.: Extensions of rings over 2-primal rings. Matematiche 74(1), 141-162 (2019). https://doi.org/10.4418/2019.74.1.10
17. Hashemi, E.; Khalilnezhad, Kh.; Ghadiri, M.: Baer and quasi-Baer properties of skew PBW extensions. J. Algebr. Syst. 7(1), 1-24 (2019b). https://doi.org/10.22044/JAS.2018.6762.1333
18. Le Bruyn, L.; Smith, S.P.: Homogenized $\mathfrak{s l}(2)$. Proc. Amer. Math. Soc. 118(3), 725-730 (1993). https://doi.org/10.1090/ S0002-9939-1993-1136235-9
19. Le Bruyn, L.; Smith, S.P.; Van den Bergh, M.: Central extensions of three dimensional Artin-Schelter algebras. Math. Z. 222(2), 171-212 (1996)
20. Levasseur, T.: Some properties of non-commutative regular graded rings. Glasglow Math. J. 34(3), 277-300 (1992). https:// doi.org/10.1017/S0017089500008843
21. Lezama, O.: Computation of point modules of finitely semi-graded rings. Comm. Algebra 48(2), 866-878 (2020). https:// doi.org/10.1080/00927872.2019.1666404
22. Lezama, O.: Some Open Problems in the Context of Skew PBW Extensions and Semi-graded Rings. Commun. Math. Stat. 9(3), 347-378 (2021). https://doi.org/10.1007/s40304-021-00238-7
23. Lezama, O.; Gallego, C.: d-Hermite rings and skew PBW extensions. São Paulo J. Math. Sci. 10(1), 60-72 (2016). https:// doi.org/10.1007/s40863-015-0010-8
24. Lezama, O.; Gallego, C.: Projective modules and Gröbner bases for skew PBW extensions. Dissertationes Math. 521, 1-50 (2017). https://doi.org/10.4064/dm747-4-2016
25. Lezama, O.; Gómez, J.: Koszulity and Point Modules of Finitely Semi-Graded Rings and Algebras. Symmetry 11(7), 881 (2019). https://doi.org/10.3390/sym11070881
26. Lezama, O.; Latorre, E.: Non-commutative algebraic geometry of semi-graded rings. Internat. J. Algebra Comput. 27(4), 361-389 (2017). https://doi.org/10.1142/S0218196717500199
27. Lezama, O.; Reyes, A.: Some Homological Properties of Skew PBW Extensions. Comm. Algebra 42(3), 1200-1230 (2014). https://doi.org/10.1080/00927872.2012.735304
28. Lezama, O.; Venegas, H.: Some homological properties of skew PBW extensions arising in non-commutative algebraic geometry. Discuss. Math. Gen. Algebra Appl. 37(1), 45-57 (2017). https://doi.org/10.7151/dmgaa. 1264
29. Lezama, O.; Venegas, H.: Center of skew PBW extensions. Internat. J. Algebra Comput. 30(08), 1625-1650 (2020). https:// doi.org/10.1142/S0218196720500575
30. Li, H.; Van Oystaeyen, F.: Dehomogenization of gradings to Zariskian filtrations and aplications to invertible ideals. Proc. Amer. Math. Soc. 115(1), 1-11 (1992). https://doi.org/10.2307/2159557
31. Li, H. Van Oystaeyen, F.: Zariskian filtrations. K-Monographs in Mathematics. Springer Science (1996)
32. Liu, Y.; Wang, S.; Wu, Q.-S.: Twisted Calabi-Yau property of Ore extensions. J. Noncommut. Geom. 8(2), 587-609 (2014). https://doi.org/10.4171/JNCG/165
33. Louzari, M.; Reyes, A.: Minimal prime ideals of skew PBW extensions over 2-primal compatible rings. Rev. Colombiana Mat 54(1), 39-63 (2020). https://doi.org/10.15446/recolma.v54n1.89788
34. McConnell, J.; Robson, J.: Noncommutative Noetherian Rings. Graduate Studies in Mathematics, AMS (2001)
35. Ore, O.: Theory of Non-Commutative Polynomials. Ann. of Math. (2) 34(3), 480-508 (1933). https://doi.org/10.2307/ 1968173
36. Phan, C.: The Yoneda algebra of a graded Ore extension. Comm. Algebra 40(3), 834-844 (2012). https://doi.org/10.1080/ 00927872.2010.539584
37. Redman, I.T.: The homogenization of the three dimensional skew polynomial algebras of type I. Comm. Algebra 27(11), 5587-5602 (1999). https://doi.org/10.1080/00927879908826775
38. Reyes, A.; Suárez, H.: Enveloping algebra and skew Calabi-Yau algebras over skew Poincaré-Birkhoff-Witt extensions,. Far East J. Math. Sci. (FJMS) 102(2), 373-397 (2017). https://doi.org/10.17654/MS102020373
39. Reyes, A.; Suárez, H.: A notion of compatibility for Armendariz and Baer properties over skew PBW extensions. Rev. Un. Mat. Argentina 59(1), 57-78 (2018)
40. Reyes, A.; Suárez, H.: Skew Poincaré-Birkhoff-Witt extensions over weak zip rings. Beitr. Algebra Geom. 60(2), 197-216 (2019). https://doi.org/10.1007/s13366-018-0412-8
41. Reyes, A.; Suárez, H.: Skew Poincaré-Birkhoff-Witt extensions over weak compatible rings. J. Algebra Appl. 19(12), 2050225 (2020). https://doi.org/10.1142/S0219498820502254
42. Reyes, A.; Suárez, H.: Radicals and Köthe's conjecture for skew PBW extensions. Commun. Math. Stat. 9(2), 119-138 (2021). https://doi.org/10.1007/s40304-019-00189-0
43. Reyes, A.; Suárez, Y.: On the ACCP in skew Poincaré-Birkhoff-Witt extensions. Beitr. Algebra Geom. 59(4), 625-643 (2018). https://doi.org/10.1007/s13366-018-0384-8
44. Rogalski, D.; Zhang, J. J.: Regular algebras of dimension 4 with 3 generators. In: Contemp. Math. (AMS) 562, 221-241 (2012). https://doi.org/10.1090/conm/562/11130
45. Rosenberg, A. L.: Noncommutative Algebraic Geometry and Representations of Quantized Algebras. Mathematics and its Applications, 330 Kluwer Academic Publishers, Second edition (1995)
46. Shen, Y.; Lu, D.-M.: Nakayama automorphisms of PBW deformations and Hopf actions. Sci. China Math. 59(4), 661-672 (2016). https://doi.org/10.1007/s11425-015-5077-2
47. Suárez, H.: Koszulity for graded skew PBW extensions. Comm. Algebra 45(10), 4569-4580 (2017a). https://doi.org/10. 1080/00927872.2016.1272694
48. Suárez, H.: N-Koszul algebras, Calabi-Yau algebras and skew PBW extensions. Ph.D. Thesis, Universidad Nacional de Colombia, Bogotá, Colombia, (2017b).
49. Suárez, Cáceres, D., Reyes, A.: Some special determinants in graded skew PBW extensions. Rev. Integr. Temas Mat. 39(1), 91-107 (2021). https://doi.org/10.18273/revint.v39n1-2021007
50. Suárez, H.; Lezama, O.; Reyes, A.: Calabi-Yau property for graded skew PBW extensions. Rev. Colombiana Mat. 51(2), 221-238 (2017)
51. Tumwesigye, A. B., Richter, J., Silvestrov, S.: Centralizers in PBW Extensions. In: Silvestrov S., Malyarenko A., Rancic M. (eds) Algebraic Structures and Applications. SPAS 2017, Springer Proceedings in Mathematics \& Statistics, Vol. 317, Springer (2020).
52. Wu, Q.; Zhu, C.: Poincaré-Birkhoff-Witt deformation of Koszul Calabi-Yau algebras. Algebr. Represent. Theor. 16(2), 405-420 (2013). https://doi.org/10.1007/s10468-011-9312-4
53. Zambrano, B. A.: Poisson brackets on some skew PBW extensions. Algebra Discrete Math. 29(2), 277-302 (2020). https:// doi.org/10.12958/adm1037
54. Zhang, J.J.; Zhang, J.: Double Ore extensions. J. Pure Appl. Algebra 212(12), 2668-2690 (2008). https://doi.org/10.1016/j. jpaa.2008.05.008
55. Zhang, J.J.; Zhang, J.: Double extension regular algebras of type (14641). J. Algebra 322(2), 373-409 (2009). https://doi. org/10.1016/j.jalgebra.2009.03.041

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

[^0]: H. Suárez • Y. Suárez

 Escuela de Matemáticas y Estadística, Universidad Pedagógica y Tecnológica de Colombia, Sede Tunja, Colombia
 E-mail: hector.suarez@uptc.edu.co
 Y. Suárez

 E-mail: yesica.suarez@uptc.edu.co

