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Abstract In this paper, we study the current T ∧ ddcψ for positive currents T and semi-exhaustive, not
necessarily plurisubharmonic, functionsψ . The study leads to newdefinitions of capacity andLelong–Demailly
numbers with respect to the weight ψ .
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1 Introduction

Let � be a domain in C
n and T be a current of bi-dimension (p, p) on �. Recall that T is said to be closed

if dT = 0, and is said to be plurisubharmonic (resp. plurisuperharmonic) if ddcT ≥ 0 (resp. ddcT ≤ 0).
Consider a non-negative function ψ of class C2 on � and set the following notations for every reals r1 < r2

Bψ(r1) := {z ∈ �; ψ(z) < r1},
Sψ(r1) := {z ∈ �; ψ(z) = r1},
Bψ(r2, r1) := Bψ(r2) \ Bψ(r1),

βψ := ddcψ, αψ = ddc logψ.

Throughout this paper, we assume that dψ(z) �= 0 on {z ∈ �, ψ(z) �= 0} and that ψ is semi-exhaustive,
which means that there exists Rψ > 0 so that Bψ(Rψ) is relatively compact in �. The paper consists of two
parts. The first one concerns with obtaining Lelong–Jensen formula and Lelong–Demailly numbers related to
ψ . More precisely, we show the following result.

Theorem. (Theorem 3.7) If T and ddcT are of order zero and 0 < r1 < r2 < Rψ , then

1

r p2

∫
Bψ(r2)

T ∧ β
p
ψ − 1

r p1

∫
Bψ(r1)

T ∧ β
p
ψ =

∫ r2

r1

(
1

t p
− 1

r p2

) ∫
Bψ(t)

ddcT ∧ β
p−1
ψ dt

+
(

1

r p1
− 1

r p2

) ∫ r1

0

∫
Bψ(t)

ddcT ∧ β
p−1
ψ dt

+
∫
Bψ(r2,r1)

T ∧ α
p
ψ. (1.1)
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Moreover, Theorem 3.8 shows that the previous formula remains true when T is positive (or negative)
plurisubharmonic and ψ is plurisubharmonic of class C1. These results generalize some classical conclusions
of [2,5,8]. As a consequence of these formulas, one can obtain the Lelong–Demailly number ν(T, ψ) with
respect to the weight ψ for positive plurisubharmonic current T and plurisubharmonic function ψ of class C1.

The second part is devoted to study the Monge–Ampère measure T ∧ ddcψ . Namely, the contribution of
this section is stated as follows.

Theorem. (Theorem 4.1) Let T be a positive current. If ψ is of class C1 and dcψ ∧ T is well defined on
Sψ(r) for all 0 < r < Rψ . Then we have

∫
Sψ(r)

T ∧ dcψ ∧ β p−1 ≥ 0, β = ddc|z|2. (1.2)

If, in addition, T is plurisuperharmonic, then
∫
Bψ(r)

T ∧ ddcψ ∧ β p−1 ≥ 0.

The above inequalities make possible to introduce different capacities, each originating from a different
source.

2 Preliminaries and notations

Let Dp,q(�, k) be the space of Ck compactly supported differential forms of bi-degree (p, q) on �. A form
ϕ ∈ Dp,p(�, k) is said to be strongly positive form if ϕ can be written as

ϕ(z) =
N∑
j=1

γ j (z) iα1, j ∧ α1, j ∧ ... ∧ iαp, j ∧ α p, j ,

where γ j ≥ 0 and αs, j ∈ D1,0(�, k). Then, Dp,p(�, k) admits a basis consisting of strongly positive forms.
The dual space D′

p,q(�, k) is the space of currents of bi-dimension (p, q) or bi-degree (n − p, n − q) and of
order k. If T ∈ D′

p,p(�, k), then it can be written as

T = i (n−p)2
∑

|I |=|J |=n−p

TI,J dzI ∧ dz J ,

where the coefficients TI,J are distributions on �. If these coefficients are measures, then T is called of
order zero. Remember that when T and ddcT are of order zero, then T is called C-normal. The current
T ∈ D′

p,p(�, k) is said to be positive if 〈T, ϕ〉 ≥ 0 for all forms ϕ ∈ Dp,p(�, k) that are strongly positive.
For such currents T , the mass is denoted by ‖T ‖ and defined by

∑ |TI,J |, where |TI,J | are the total variations
of the measures TI,J . Let β = ddc|z|2 be the Kähler form on Cn ( where d = ∂ + ∂ and dc = i(−∂ + ∂), thus
ddc = 2i∂∂), then for each open subset �1 ⊂ �, there exists a constant C > 0 depends only on n and p such
that

T ∧ β p

2p p! (�1) ≤ ‖T ‖�1 ≤ C T ∧ β p(�1).

3 Lelong–Jensen Formula

We start this section with some basic facts that will be used frequently in this paper.

Lemma 3.1 Let E be a domain in R
n and f : E → R be a function of class C1 so that d f (x) �= 0 for all

x ∈ E. If ϕ is a locally bounded (n − 1)-form and compactly supported, then

∫
E
d f ∧ ϕ =

∫ ∞

−∞
dt

∫
f =t

ϕ.
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Lemma 3.2 Let � be a domain in C
n and ϕ : � → [0,∞) be a function of class C2. Let t > 0 be a regular

value of ϕ and set S(r) = {z ∈ �, ϕ(z) = r}. Then,

j∗t ddc(Logϕ) = 1

t
j∗t ddcϕ,

where j∗t : S(t) → � is the canonical injection.

Lemma 3.3 Let ϕ be a function of class C1. If T and γ are two C1-form of bi-degree (n − p, n − p) and
(p − 1, p − 1), respectively, then

dϕ ∧ dcT ∧ γ = −dcϕ ∧ dT ∧ γ.

Lemma 3.4 Let u be a C1-function on �. If T is a C-normal current of bi-dimension (p, p), then the current
T ∧ ddcu is well defined.

Proof Take a test form ϕ in � and let (u j ) j∈N be a sequence of smooth functions converges in C1(�) to u.
Then,

∫
�

ddc(u jϕ) ∧ T ∧ β p−1 =
∫

�

u jϕdd
cT ∧ β p−1. (3.1)

Hence, by a simple computation, one can deduce that

∫
�

ϕddcu j ∧ T ∧ β p−1 =
∫

�

u jϕdd
cT ∧ β p−1 − 2

∫
�

du j ∧ dcϕ ∧ T ∧ β p−1

−
∫

�

u jdd
cϕ ∧ T ∧ β p−1.

(3.2)

This shows that lim
j→∞ ddcu j ∧ T exists as the right-hand side terms of the previous equality are convergent. ��

Lemma 3.5 Let u1, ..., uq , 1 ≤ q ≤ p be plurisubharmonic functions of class C1 on �. If T is positive (or
negative) plurisubharmonic, then the current T ∧ ddcu1 ∧ · · · ∧ ddcuq is well defined.

Proof By the precedent lemma, T ∧ ddcu j is well defined for all j ∈ {1, . . . , q}. Now, the result is induced
by induction and the fact that each T ∧ ddcu j is positive (or negative) plurisubharmonic. ��
Theorem 3.6 (See [6]) Let T be an (n − p, n − p)-form of class C2 on �. Then for all 0 < r1 < r2 < Rψ ,
we have

∫ r2

r1

dt

t p

∫
Bψ(t)

ddcT ∧ β
p−1
ψ = 1

r p2

∫
Sψ(r2)

T ∧ dcψ ∧ β
p−1
ψ

− 1

r p1

∫
Sψ(r1)

T ∧ dcψ ∧ β
p−1
ψ −

∫
Bψ(r2,r1)

T ∧ α
p
ψ.

(3.3)

Proof By Stokes’ theorem, we have

∫
Bψ(t)

ddcT ∧ β
p−1
ψ =

∫
Bψ(t)

d(dcT ∧ β
p−1
ψ ) =

∫
Sψ(t)

dcT ∧ β
p−1
ψ

= t p−1
∫
Sψ(t)

dcT ∧ α
p−1
ψ .

(3.4)
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Therefore,
∫ r2

r1

dt

t

∫
Sψ(t)

dcT ∧ α
p−1
ψ =

∫ r2

r1

dt

t p

∫
Bψ(t)

ddcT ∧ β
p−1
ψ

=
∫
Bψ(r2,r1)

dLogψ ∧ dcT ∧ α
p−1
ψ

=
∫
Bψ(r2,r1)

dT ∧ dcLogψ ∧ α
p−1
ψ

=
∫
Sψ(r2)

T ∧ dcLogψ ∧ α
p−1
ψ −

∫
Sψ(r1)

T ∧ dcLogψ ∧ α
p−1
ψ

−
∫
Bψ(r2,r1)

T ∧ α
p−1
ψ . (3.5)

Now, (3.3) follows by applying Lemma 3.2. ��
Theorem 3.7 If T is C-normal and 0 < r1 < r2 < Rψ , then

1

r p2

∫
Bψ(r2)

T ∧ β
p
ψ − 1

r p1

∫
Bψ(r1)

T ∧ β
p
ψ =

∫ r2

r1

(
1

t p
− 1

r p2

) ∫
Bψ(t)

ddcT ∧ β
p−1
ψ dt

+
(

1

r p1
− 1

r p2

)∫ r1

0

∫
Bψ(t)

ddcT ∧ β
p−1
ψ dt

+
∫
Bψ(r2,r1)

T ∧ α
p
ψ. (3.6)

Notice that the previous formula is obtained without constraint on dT as required in [8] and [6].

Proof We first assume that T of class C2. Then by the previous lemma, one has
∫ r2

r1

dt

t p

∫
Bψ(t)

ddcT ∧ β
p−1
ψ = 1

r p2

∫
Sψ(r2)

T ∧ dcψ ∧ β
p−1
ψ

− 1

r p1

∫
Sψ(r1)

T ∧ dcψ ∧ β
p−1
ψ −

∫
Bψ(r2,r1)

T ∧ α
p
ψ. (3.7)

But

1

r p2

∫
Sψ(r2)

T ∧ dcψ ∧ β
p−1
ψ = 1

r p2

∫
Bψ(r2)

T ∧ β
p
ψ + 1

r p2

∫
Bψ(r2)

dT ∧ dcψ ∧ β
p−1
ψ

= 1

r p2

∫
Bψ(r2)

T ∧ β
p
ψ + 1

r p2

∫ r2

0
dt

∫
Bψ(r2)

ddcT ∧ β
p−1
ψ . (3.8)

Similarly, we have

1

r p1

∫
Sψ(r1)

T ∧ dcψ ∧ β
p−1
ψ = 1

r p1

∫
Bψ(r1)

T ∧ β
p
ψ + 1

r p1

∫ r1

0
dt

∫
Bψ(r2)

ddcT ∧ β
p−1
ψ . (3.9)

Thus, the result is verified for C2 currents T by combining the latter equalities. Now, for C-normal currents T ,
set ET = {r ∈ R, ||T ||S(r) ∗ ||ddcT ||S(r) �= 0}. By the assumptions of T and ddcT , it is clear that ||T ||K and
||ddcT ||K are bounded for all compact subset K of�. Hence, the set ET is countable. Consider a regularization
ρε. Then for all t ∈ R \ ET , we have

lim
ε→0

∫
Bψ(t)

T ∗ ρε ∧ β
p
ψ = lim

ε→0

∫
Cn

1Bψ(t)T ∗ ρε ∧ β
p
ψ =

∫
Bψ(t)

T ∧ β
p
ψ, (3.10)
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where 1Bψ(t) is the characteristic function of Bψ(t). If r1, r2 are elements of ET one can take (r ( j)
1 ) j∈N

increasing to r1 and (r ( j)
2 ) j∈N increasing to r2 so that r

( j)
k ∈ R\ ET . The result is achieved by taking the limits.

��
Theorem 3.8 If T is positive (or negative) plurisubharmonic current and ψ is plurisubharmonic and of class
C1, then Lelong–Jensen formula (3.6) remains valid.

This result generalizes the formulas in [2] to the case of C1 functions.
Proof By regularizingψ , one can assume thatψ is smooth. Now the result follows by applying, first, Theorem
3.7 and, second, Lemma 3.5. ��
Remark 3.9 According toTheorem3.7 andTheorem3.8, if T∧α

p
ψ and ddcT∧β

p−1
ψ are positivemeasures, then

the function r �→ 1

r p

∫
Bψ(r)

T ∧ β
p
ψ is positive and increasing on (0, Rψ). Therefore, lim

r→0+
1

r p

∫
Bψ(r)

T ∧ β
p
ψ

exists, and is denoted by ν(T, ψ) the Demailly–Lelong number of T with respect to the weight ψ . This show
that ν(T, ψ) exists in the particular case when T is positive plurisubharmonic and ψ is plurisubharmonic and
of class C1.

4 Capacity related to semi-exhaustive functions

In this section, we study the current ddcψ ∧ T . From now on, we relax the classification of ψ to C1.
Theorem 4.1 If T is positive and dcψ ∧ T is well defined on Sψ(r) for all 0 < r < Rψ , then we have

∫
Sψ(r)

dcψ ∧ T ∧ β p−1 ≥ 0. (4.1)

If, in addition, T is plurisuperharmonic, then
∫
Bψ(r)

T ∧ ddcψ ∧ β p−1 ≥ 0.

Proof Noticefirst that dψ∧dcψ∧T is a positive current.Hence, the function f (r)=∫
Bψ(r) dψ∧dcψ∧T∧β p−1

is non decreasing. So, f
′
(r) ≥ 0. But

f
′
(r) =

[∫
Bψ(r)

dψ ∧ dcψ ∧ T ∧ β p−1

]′

=
[∫ r

0
dt

∫
Sψ(t)

dcψ ∧ T ∧ β p−1

]′

=
∫
Sψ(r)

dcψ ∧ T ∧ β p−1. (4.2)

Now, assume that ddcT ≤ 0. By Stokes’ formula, we have
∫
Sψ(r)

dcψ ∧ T ∧ β p−1 =
∫
Bψ(r)

ddcψ ∧ T ∧ β p−1 −
∫
Bψ(r)

dcψ ∧ dT ∧ β p−1

=
∫
Bψ(r)

ddcψ ∧ T ∧ β p−1 +
∫
Bψ(r)

dψ ∧ dcT ∧ β p−1

=
∫
Bψ(r)

ddcψ ∧ T ∧ β p−1 +
∫ r

0
dt

∫
Sψ(t)

dcT ∧ β p−1

=
∫
Bψ(r)

ddcψ ∧ T ∧ β p−1 +
∫ r

0
dt

∫
Bψ(t)

ddcT ∧ β p−1. (4.3)
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This shows that∫
Bψ(r)

ddcψ ∧ T ∧ β p−1 =
∫
Sψ(r)

dcψ ∧ T ∧ β p−1 −
∫ r

0
dt

∫
Bψ(t)

ddcT ∧ β p−1 ≥ 0. (4.4)

��
Remark 4.2 If T is C-normal on �, then the current dcψ ∧ T is well defined on Sψ(r). Indeed, the wedge
product ddcψ ∧ T is achieved by Lemma 3.4. Hence, we set∫

Sψ(r)
dcψ ∧ T ∧ β p−1 =

∫
Bψ(r)

ddcψ ∧ T ∧ β p−1 +
∫ r

0
dt

∫
Bψ(t)

ddcT ∧ β p−1. (4.5)

As shown above, semi-exhaustive functions have things in common with plurisubharmonic functions.
Despite this, we must be cautious once we deal with these semi-exhaustive functions as some important prop-
erties of Psh are not applicable to this type of functions. For example, if ψ is plurisubharmonic, then it is

so obvious that r �→
∫
Bψ(r)

ddcψ ∧ T ∧ β p−1 is increasing in r . This fact is not valid when the plurisubhar-

monicity is omitted. The following example shows this.

Example 4.3 In C, set � = B(0, 1) and put T = 1. Now, take ψ(z) = sin (π
2 |z|2). Clearly, ψ is an semi-

exhaustive function on � where Rψ = 1. By a simple computation, we have

ddcψ = [−(
π

2
)2|z|2 sin (

π

2
|z|2) + π

2
cos (

π

2
|z|2)] β. (4.6)

Notice that ddcψ tends to π
2 β when |z| → 0, while ddcψ tends to −(π

2 )2β as |z| → 1−.
Let us recall a very fundamental fact about currents.When g is a locally bounded plurisubharmonic function

on � and T is positive and closed, the current gT is well defined. The exterior derivatives lead to the current
ddcg ∧ T as it is defined by ddc(gT ).

Proposition 4.4 Let T be a positive closed current of bi-dimension (p, p) on � and g be a locally bounded
plurisubharmonic function. Then, ∫

Bψ(r)
dψ ∧ dcg ∧ T ∧ β p−1 ≥ 0. (4.7)

If g is positive, then ∫
Bψ(r)

ddc(ψg) ∧ T ∧ β p−1 ≥ 0. (4.8)

Proof First, we show that the quantity
∫
Bψ(r)

dψ ∧ dcg ∧ T ∧ β p−1 is non-negative and increasing in r . By

Lemma 3.1, we have∫
Bψ(r)

dψ ∧ dcg ∧ T ∧ β p−1 =
∫ r

0
dt

∫
Sψ(t)

dcg ∧ T ∧ β p−1

=
∫ r

0
dt

∫
Bψ(t)

ddcg ∧ T ∧ β p−1 ≥ 0.
(4.9)

Now, assume that g is positive. Then the current gT is C-normal. Hence by Lemma 3.1 and Theorem 4.1, we
have ∫

Bψ(r)
ddc(ψg) ∧ T ∧ β p−1 =

∫
Sψ(r)

dc(ψg) ∧ T ∧ β p−1

=
∫
Sψ(r)

gdcψ ∧ T ∧ β p−1 + r
∫
Bψ(r)

ddcg ∧ T ∧ β p−1 ≥ 0. (4.10)

��
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In virtue of [7], if g ∈ Psh(�) ∩ L∞
loc(� \ K ) for some compact subset K of �, then ddcg ∧ T is well

defined. Therefore, by following a similar technique as in [1], the current gT in this case can be deduced.
Indeed, take neighborhoods V and W so that K � V � W ⊂ �, and χ ∈ C∞

0 (W ) such that χ = 1 on V .
Now, construct a decreasing sequence of smooth plurisubharmonic functions (g j ) converges point-wise to g
on �. Then,

∫
W
ddc(χ |z|2)g j T ∧ β p−1 =

∫
W

χ |z|2ddcg j ∧ T ∧ β p−1.

This implies that,
∫
W

−χg j T ∧ β p = −
∫
W

χ |z|2ddcg j ∧ T ∧ β p−1

+2
∫
W
g jdχ ∧ dc|z|2 ∧ T ∧ β p−1

+
∫
W
g j |z|2ddcχ ∧ T ∧ β p−1.

Thus,

sup
j

∫
V

|g j |T ∧ β p < ∞.

The previous discussion yields to the fulfillment of Proposition 4.4 in the case of unbounded functions g.

Definition 4.5 A real-valued function f on� is called a T -Monge-Ampère of degree q, 0 ≤ q ≤ p on� (for
short f ∈ MAq(T, �)) if the current (ddc f )q∧T is well defined on�. If in addition

∫
�
(ddc f )q∧T ∧β p−q ≥

0, then f is said to be of class Pq(T, �).

Clearly, the set C2 ∩ Psh(�) ⊆ P p(T, �). Moreover, the early studies of currents lead to many cases
where the previous inclusion is proper. For instant, if T is positive and closed, then we already know that
Psh(�) ∩ L∞

loc(�) ⊂ P p(T, �). Also, the above study shows that the C1 semi-exhaustive function ψ ∈
P1(T, Bψ(r)).

Definition 4.6 Let S be a positive current of bi-dimension (p, p) on �. We define the capacity CqS (O, �) for
all Borel set O � � by

CqS (O, �) = sup

{∫
O
(ddc f )q ∧ S ∧ β p−q , f ∈ Pq(S, �), 0 ≤ f ≤ 1

}
.

Observe that for positive and closed currents S, the capacity CS , which is introduced in [4], is dominated
by C p

S . This is an obvious inclusion from the fact that Psh(�) ∩ L∞
loc(�) ⊂ P p(T, �). We give an example

where CS < CqS .

Example 4.7 In C
1, set � = B(0, 1) and S = 1. From [3] it is very well known that CS(B(0,

1

2
)) = 1

log 2
.

Now construct a positive smooth semi-exhaustive function ψ on B(0, 1) so that ψ(z) = 2
3 |z|2 on B(0, 1

2 ), and
ψ(z) = sin (π

2 |z|2) on an appropriate neighborhood of {|z| = 1}. Clearly,
∫
B(0, 12 )

ddcψ = 2

3
π. (4.11)

This show that CS(B(0,
1

2
)) < C1S(B(0,

1

2
)).

Another definition of capacity is given as follows.

123
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Definition 4.8 Let S be a positive closed current of bi-dimension (p, p) on �. We define the capacity
CS(dψ, r, r ′) for all 0 < r < r ′ < Rψ by

sup

{∫
Bψ(r)

dψ ∧ dcg ∧ (ddcg)p−1 ∧ S, g ∈ Psh(Bψ(r ′)), 0 ≤ g ≤ 1

}
.

The above definitions together with Proposition 4.4 yield to the next properties.

Proposition 4.9 Let S be a positive closed current of bi-dimension (p, p) on �. Then for all 0 < r < r ′ <
r ′′ < Rψ , we have

(1) CS(dψ, r, r ′′) ≤ CS(dψ, r ′, r ′′).
(2) CS(dψ, r, r ′) ≥ CS(dψ, r, r ′′).
(3) 1

r CS(dψ, r, Rψ) ≤ CS(Bψ(r), Bψ(Rψ)) ≤ C p
S (Bψ(r), Bψ(Rψ)).

We end this paper with a version of Chern–Levine–Nirenberg inequality in the case of semi-exhaustive
functions.

Proposition 4.10 Let K be a compact subset of � so that Bψ(r) � K � �. If T is positive and plurisuper-
harmonic, then there exists a constant CK (r) > 0 such that∫

Bψ(r)
ddcψ ∧ T ∧ β p−1 ≤ CK (r)‖ψ‖L∞(K )‖T ‖K . (4.12)

Proof By similar arguments as above, one can assume that ψ is of class C2. Now, set O = {z ∈
Bψ(r), ddcψ(z) > 0}. Clearly, O is an open subset of Bψ(r), and

∫
Bψ(r)

ddcψ ∧ T ∧ β p−1 ≤
∫
O
ddcψ ∧ T ∧ β p−1. (4.13)

Thus, for ε > 0, there exists an open subset Oε of O so that∫
Bψ(r)

ddcψ ∧ T ∧ β p−1 ≤
∫
Oε

ddcψ ∧ T ∧ β p−1 + ε. (4.14)

But Chern–Lieven–Nirenberg shows that∫
Bψ(r)

ddcψ ∧ T ∧ β p−1 ≤
∫
Oε

ddcψ ∧ T ∧ β p−1 + ε

≤ CK (r)‖ψ‖L∞(K )‖T ‖K . (4.15)

��
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