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Abstract This paper is devoted to examine necessary and sufficient conditions for a Frenet curve to be f -
harmonic, f -biharmonic, bi- f -harmonic and f -biminimal in three-dimensional β-Kenmotsu manifolds. In
addition, such conditions are investigated for slant curves.
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1 Introduction

The concept of f -Kenmotsu manifold was defined for the first time in [9] by Jannsens and Vanhecke, where
f is a real constant. Subsequently, Olszak and Rosca [15] investigated normal locally conformal almost
cosymplectic manifolds and gave a differential geometric interpretation of such manifolds which are called
f -Kenmotsu manifolds, where f is a function on M , [15].

On the other hand, in [7], Eells and Sampson defined harmonic maps between Riemannian manifolds, and
in [6], Lemaire and Eells studied various topics in harmonic maps. On the other hand, Mangione published a
paper which he considered harmonic maps in f -Kenmotsu manifold, in [13]. These maps are widely studied
as they have an comprehensive field of study due to their wide applications.

In [7], Eells and Sampson studied not only harmonic maps, but also biharmonic maps between the Rie-
mannian manifolds by generalizing harmonic maps. Besides, in [20], Perktaş et al. studied biharmonic curves
in three-dimensional f -Kenmotsu manifold for the first time.

f -Harmonic maps between Riemannian manifolds were introduced by Lichnerowicz in 1970 and then
examined by Eells and Lemaire, in [6]. f -Harmonic maps, as the solution of inhomogeneous Heisenberg spin
systems and continuous spin systems, are of interest not only for mathematicians but also for physicists [2].

In [12], Lu defined f -biharmonic maps, which are the generalization of biharmonic maps. He also studied
f -biharmonic maps between Riemannian manifolds, in [5]. Besides, Ou [16] gave a complete classification
of f -biharmonic curves in three-dimensional Euclidean space and characterization of f -biharmonic curves in
n-dimensional space forms.
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Bi- f -harmonic maps as a generalization of biharmonic and f -harmonic maps were introduced by Ouakkas
et al. [17]. In addition, Roth defined a non- f -harmonic, f -biharmonic map called as a proper f -biharmonic
map [21]. In [19], Perktaş et al. obtained bi- f -harmonicity conditions for curves in Riemannian manifolds
and discussed the particular cases of the Euclidean space, unit sphere and hyperbolic space.

Finally, Loubeau andMontaldo [11] studied biminimal curves in aRiemannianmanifold.Moreover, Perktaş
et al. handled these types of curves in f -Kenmotsu manifolds in [20]. On the other hand, Karaca and Özgür
defined f -biminimal immersions and they handled f -biminimal curves in a Riemannian manifold, in [8].

This paper, which we prepared with the inspiration got from these studies, is organized as follows. In
Sects. 2 and 3, we give basic definitions and properties of Frenet curves in three-dimensional β-Kenmotsu
manifolds which will be needed in other sections, respectively. In Sect. 4, we prove that there is no proper f -
harmonic Frenet curve in three-dimensional β -Kenmotsu manifold. In Sect. 5, we derive the f -biharmonicity
conditions for a Frenet curve in a three-dimensional β-Kenmotsu manifold and give a nonexistence theorem.
In Sect. 6, we get bi- f -harmonicity conditions not only for a Frenet curve but also a slant and a Legendre
curve in three-dimensional β-Kenmotsu manifolds. Finally, in the last section, we investigate f -biminimality
conditions.

2 Preliminaries

In this section, we remind some definitions and propositions which will be needed throughout the paper.
A differentiable manifoldM2n+1 is called an almost contact metric manifold with the almost contact metric

structure (ϕ, ξ, η, g) if it admits a tensor field ϕ of type (1, 1), a vector field ξ , a 1-form η, and a Riemannian
metric tensor field g satisfying the following conditions [3]:

ϕ2 = −I + η ⊗ ξ,

η(ξ) = 1, ϕξ = 0, η ◦ ϕ = 0, η(X) = g(X, ξ),

g(ϕX, ϕY ) = g(X, Y ) − η(X)η(Y ), (2.1)

where I denotes the identity transformation and X, Y ∈ �(T M).
An almost contact metric manifold is said to be an f -Kenmotsu manifold if the Levi–Civita connection ∇ of
g satisfies

(∇X ϕ) Y = f (g(ϕX, Y ) ξ − η(Y )ϕX), (2.2)

∇X ξ = f (X − η(X)ξ), (2.3)

where f is a strictly positive differentiable function on M and X, Y ∈ �(T M), [9]. Here, if f is equal to a
nonzero constant β, then the manifold is called a β-Kenmotsu manifold [9,14]. In particular, if β = 1, then
the manifold is known as a Kenmotsu manifold [10].
For an f -Kenmotsu manifold, the curvature tensor field equation is given as

R(X, Y )Z =
(r
2

+ 2( f 2 + f
′
)
)

(g(Y, Z)X − g(X, Z)Y )

−
(r
2

+3( f 2+ f
′
)
)

(g(Y, Z)η(X)ξ−g(X, Z)η(Y )ξ−η(X)η(Z)Y+η(Y )η(Z)X), (2.4)

where X, Y, Z ∈ T M and r is the scalar curvature of M . [13].

Definition 2.1 γ : I ⊂ R −→ M is called a slant curve if the contact angle θ : I → [0, 2π) of given by
cos θ(s) = g(T (s), ξ) is a constant function.

In particular, if θ = π

2
(or

3π

2
), then is called a Legendre curve, [4].

Remark 2.2 For a slant curve in a β-Kenmotsu manifold, we have [4]

η(N ) = − β

k1
(sin θ)2, (2.5)

where |sin θ | ≤ min
k1
β

and

η(B) = |sin θ |
k1

√
k21 − β2(sin θ)2. (2.6)
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Remark 2.3 For a Legendre curve in a β-Kenmotsu manifold, we have

N = −ξ, k1 = β, k2 = 0. (2.7)

In particular, a Legendre curve in a β-Kenmotsu manifold is a circle [4,20].

Definition 2.4 Let (M, g) and (M̄, ḡ) beRiemannianmanifolds. Then, a harmonicmapψ : (M, g) → (M̄, ḡ)
is defined as the critical point of the energy functional

E(ψ) = 1

2

∫

M
|dψ |2vg,

where vg is the volume element of (M, g). Using Euler–Lagrange equation of the energy functional E(ψ),
where τ(ψ) is the tension field of map ψ , a map is called as harmonic if

τ(ψ) := trace∇dψ = 0.

Here, ∇ is the connection induced from the Levi–Civita connection ∇ M̄ of M̄ and the pull-back connection
∇ψ [7,8].

As a natural generalization of harmonic maps, biharmonic maps are defined as below.

Definition 2.5 Amap ψ : (M, g) → (M̄, ḡ) is defined as biharmonic if it is a critical point, for all variations,
of the bienergy functional

E2(ψ) = 1

2

∫

M
|τ(ψ)|2vg.

Namely, ψ is a biharmonic map if τ2(ψ) which is the bitension field of ψ equals to

τ2(ψ) = trace(∇ψ∇ψ − ∇ψ
∇ )τ (ψ) − trace(RM̄ (dψ, τ(ψ))dψ) = 0.

Here, RM̄ , the curvature tensor field of M̄ , is defined as

RM̄ (X, Y )Z = ∇ M̄
X ∇ M̄

Y Z − ∇ M̄
Y ∇ M̄

X Z − ∇ M̄[X,Y ]Z ,

for any X, Y, Z ∈ �(T M̄) and ∇ψ is the pull-back connection [7,8].

Note that harmonic maps are always biharmonic and biharmonic maps which are not harmonic are called
proper biharmonic maps [18].

Definition 2.6 A map ψ : (M, g) → (M̄, ḡ) is said to be an f -harmonic if it is critical point of f -energy
functional

E f (ψ) = 1

2

∫

M
f |dψ |2vg,

where f ∈ C∞(M, IR) is a positive smooth function. Then, the f -harmonic map equation obtained using
Euler–Lagrange equation as follows:

τ f (ψ) = f τ(ψ) + dψ(grad f ) = 0,

where τ f (ψ) is the f -tension field of the map ψ .
Note that f -harmonic maps are generalizations of harmonic maps [1].

Definition 2.7 A map ψ : (M, g) → (M̄, ḡ) is said to be an f -biharmonic if it is critical point of the
f -bienergy functional

E2, f (ψ) = 1

2

∫

M
f |τ(ψ)|2vg.

The Euler–Lagrange equation for the f -biharmonic map is given by

τ2, f (ψ) = f τ2(ψ) + � f τ(ψ) + 2∇ψ
grad f τ(ψ) = 0,

where τ2, f (ψ) is the f -bitension field of the map ψ [5,8].
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Remark 2.8 An f -biharmonic map turns into a biharmonic map if f is a constant.

Definition 2.9 A map ψ : (M, g) → (M̄, ḡ) is said to be a bi- f -harmonic if it is a critical point of the
bi- f -energy functional

E f,2(ψ) = 1

2

∫

M
|τ f (ψ)|2vg.

The Euler–Lagrange equation for the bi- f -harmonic map is given by

τ f,2(ψ) = trace
(
(∇ψ f (∇ψτ f (ψ)) − f ∇ψ

∇M τ f (ψ) + f RM̄ (τ f (ψ), dψ)dψ
) = 0,

where τ f,2(ψ) is the bi- f -tension field of the map ψ [19].

Definition 2.10 An immersion ψ : (M, g) → (M̄, ḡ) is called biminimal if it is critical point of the bienergy
functional E2(ψ) for variations normal to the image ψ(M) ⊂ M̄ , with fixed energy. Equivalently, there exists
a constant λ ∈ IR, such that ψ is a critical point of the λ-bienergy

E2,λ(ψ) = E2(ψ) + λE(ψ)

for any smooth variation of the map ψt :] − ε, +ε[, ψ0 = ψ , such that V = dψt/dt |t0 is normal to ψ(M)
[11]. The Euler–Lagrange equation for a λ-biminimal immersion is

[τ2,λ(ψ)]⊥ = [τ2(ψ)]⊥ − λ[τ(ψ)]⊥ = 0,

for some value of λ ∈ IR, where [.]⊥ denotes the normal component of [.].
An immersion is called free biminimal if it is biminimal for λ = 0 [8,11].

Definition 2.11 An immersion ψ : (M, g) → (M̄, ḡ) is called f -biminimal if it is a critical point of the f -
bienergy functional E2, f (ψ) for variations normal to the image ψ(M) ⊂ M̄ , with fixed energy. Equivalently,
there exists a constant λ ∈ IR, such that ψ is a critical point of the λ- f -bienergy

E2,λ, f (ψ) = E2, f (ψ) + λE f (ψ),

for any smooth variation of the map ψt :] − ε, +ε[, ψ0 = ψ . Using the Euler–Lagrange equations for
f -harmonic and f -biharmonic maps, an immersion is f -biminimal if

[τ2,λ, f (ψ)]⊥ = [τ2, f (ψ)]⊥ − λ[τ f (ψ)]⊥ = 0,

for some value of λ ∈ IR.
An immersion is called free f -biminimal if it is f -biminimal for λ = 0. If f is a constant, then the immersion
is biminimal [8].

3 Frenet curves in three-dimensional β-Kenmotsu manifold

Let (M, ϕ, ξ, η, g) be a three-dimensional β-Kenmotsu manifold and γ : I −→ M be a non-geodesic Frenet
curve parametrized by arclength s. The Serret–Frenet frame defined on γ denoted by T = γ

′
(s), N , B which

are the tangent, the principal normal, and the binormal vector fields, respectively. Here, Serret–Frenet formulas
are given as

⎧⎪⎨
⎪⎩

∇T T = k1N
∇T N = −k1T + k2B
∇T B = −k2N ,

(3.1)

where k1 and k2 are the curvature and the torsion of the curve, respectively.
Using these Serret–Frenet formulas, we get

∇T T = k1N , (3.2)

∇2
T T = −k21T + k

′
1N + k1k2B, (3.3)

∇3
T T = −3k1k

′
1T + (−k31 − k1k

2
2 + k

′′
1)N + (2k

′
1k2 + k1k

′
2)B, (3.4)
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and by substituting (3.2) to the curvature tensor formula (2.4), we have

R(T, ∇T T )T = −k1
(r
2

+ 2β2
)
N

−k1
(r
2

+ 3β2
)

[η(N )η(T )T − η(T )2N − η(N )ξ ]. (3.5)

With the help of these calculations,we shall present f -harmonicity, f -biharmonicity, bi- f -harmonicity, and
f -biminimality conditions of a Frenet curve in a three-dimensional β-Kenmotsu manifold as in the following
sections.

4 f -Harmonic curves in three-dimensional β-Kenmotsu manifold

In this section, we investigate the f -harmonicity condition for a curve in a three-dimensional β-Kenmotsu
manifold. Let γ : I ⊂ IR → M be a curve in a three-dimensional β-Kenmotsu manifold. Then, via definition
(2.6), the f -harmonicity condition given as below

τ f (γ ) = f
′
T + f ∇T T = f

′
T + f (k1N ) = 0. (4.1)

From (4.1), we get following nonexistence theorem.

Theorem 4.1 There is no proper f -harmonic Frenet curve in a three-dimensional β-Kenmotsu manifold.

Proof Using the condition given in (4.1), it is easy to see that f
′ = 0, so f is a constant. This situation

contradicts the definition of a proper f -harmonic curve. �

5 f -Biharmonic curves in three-dimensional β-Kenmotsu manifold

Here, we derive the f -biharmonicity condition for a curve in a three-dimensional β-Kenmotsu manifold. By
substituting (3.2)–(3.5) in the equation of f -bitension field τ2, f (γ ), f -biharmonicity condition is obtained as
below

τ2, f (γ ) = f τ2(γ ) + (� f )τ (γ ) + 2∇γ

grad f τ(γ )

= f (∇3
T T − R(T, ∇T T )T ) + f

′′∇T T + 2 f
′∇2

T T

=
[
−3k1k

′
1 f + k1 f

(r
2

+ 3β2
)

η(N )η(T ) − 2k21 f
′]
T

+
[ (

−k31 − k1k
2
2 + k

′′
1 + k1

(r
2

+ 2β2
)

− k1
(r
2

+ 3β2
)

η(T )2
)
f + 2k

′
1 f

′ + k1 f
′′]
N

+
[
(2k

′
1k2 + k1k

′
2) f + 2k1k2 f

′]
B

−k1 f
(r
2

+ 3β2
)

η(N )ξ

= 0. (5.1)

Taking the scalar product of (5.1) with T , N and B, respectively, we can state the following theorem.

Theorem 5.1 Let (M, ϕ, ξ, η, g) be a three-dimensional β-Kenmotsu manifold and γ : I → M be a non-
geodesic Frenet curve parametrized by arclength s. Then, γ is an f -biharmonic curve if and only if

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

3k
′
1 f + 2k1 f

′ = 0,

k21 + k22 − k
′′
1

k1
− r

2
− 2β2 +

(r
2

+ 3β2
)

(η(T )2 + η(N )2) − 2
k

′
1

k1

f
′

f
− f

′′

f
= 0,

2k
′
1k2
k1

+ k
′
2 −

(r
2

+ 3β2
)

η(N )η(B) + 2k2
f

′

f
= 0.

(5.2)

From Theorem 5.1, we obtain the following nonexistence theorems about f -biharmonic curves in three-
dimensional β-Kenmotsu manifolds.
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Theorem 5.2 There does not exist an f -biharmonic Frenet curve with constant curvature k1 in a three-
dimensional β-Kenmotsu manifold.

Proof Let k1 be a constant. Then, the first equation of (5.2) reduces to 2k1 f
′ = 0. Here, it is easy to see that

f becomes a constant. This situation contradicts the definition of an f -biharmonic curve. �
Theorem 5.3 There does not exist an f -biharmonic Legendre curve in a three-dimensional β-Kenmotsu
manifold.

Proof For a Legendre curve in a β-Kenmotsu manifold, it is well known that k1 = β where β is a constant,
[4]. Therefore, the assumption k1 �= constant contradicts the definition of a β-Kenmotsu manifold. �
Theorem 5.4 Let (M, ϕ, ξ, η, g) be a three-dimensional β-Kenmotsu manifold and γ : I −→ M be a non-
geodesic Frenet curve parametrized by arclength s. Then, γ is an f -biharmonic curve if and only if r, k1 and
k2 satisfies the following conditions:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

k21 + k22 = 3

4

(
k

′
1

k1

)2

− k
′′
1

2k1
+ r

2
+ 2β2 −

(r
2

+ 3β2
)

(η(T )2 + η(N )2),

k
′
2 − k2

k
′
1

k1
−

(r
2

+ 3β2
)

η(N )η(B) = 0,

(5.3)

where f = ck
− 3

2
1 and c is the integration constant.

Proof From the first equation of (5.2), it is easy to see that f equals to ck
− 3

2
1 . Then, by substituting f and its

derivatives into the second and third equation of (5.2), the proof is completed. �
Next, we shall examine some special cases for an f -biharmonic curve in a three-dimensional β-Kenmotsu

manifold.
Case 5-I: If k2 = 0, then (5.3) reduces to

⎧⎪⎪⎨
⎪⎪⎩
k21 = 3

4

(
k

′
1

k1

)2

− k
′′
1

2k1
+ r

2
+ 2β2 −

(r
2

+ 3β2
)

(η(T )2 + η(N )2),

(r
2

+ 3β2
)

η(N )η(B) = 0.

(5.4)

Here, if we assume that η(N ) = 0, then we obtain that γ is a Legendre curve. However, it is well known
that for a Legendre curve in a three-dimensional β-Kenmotsu manifold η(N ) = −1, which contradicts our
assumption. Therefore, in the second equation of (5.4), η(N ) cannot be zero. In this case, we have following
two subcases:

Subcase 5-I-1: If (
r

2
+ 3β2) = 0, then (5.4) reduces to

k21 = 3

4

(
k

′
1

k1

)2

− k
′′
1

2k1
+ r

2
+ 2β2.

Then, we conclude the following theorem.

Theorem 5.5 Let (M, ϕ, ξ, η, g) be a three-dimensional β-Kenmotsu manifold of constant scalar curvature
r = −6β2 and γ : I −→ M be a non-geodesic Frenet curve parametrized by arclength s with k1 �= constant
and k2 = 0. Then, γ is an f -biharmonic curve if and only if

k1 =
√√√√3

4

(
k

′
1

k1

)2

− k
′′
1

2k1
− β2,

where f = ck
− 3

2
1 and c is the integration constant.
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Subcase 5-I-2: If η(B) = 0, then (5.4) reduces to

k21 = 3

4

(
k

′
1

k1

)2

− k
′′
1

2k1
+ r

2
+ 2β2 −

(r
2

+ 3β2
)

(η(T )2 + η(N )2).

Since ξ = η(T )T + η(N )N and (η(T ))2 + (η(N ))2 = 1, we give the following theorem.

Theorem 5.6 Let (M, ϕ, ξ, η, g) be a three-dimensional β-Kenmotsu manifold and γ : I −→ M be a non-
geodesic Frenet curve parametrized by arclength s with k1 �= constant, k2 = 0 and η(B) = 0. Then, γ is an
f -biharmonic curve if and only if k1 satisfy the following differential equation:

k21 = 3

4

(
k

′
1

k1

)2

− k
′′
1

2k1
− β2,

where f = ck
− 3

2
1 and c is the integration constant.

Case 5-II: If k2 = constant > 0, then (5.3) reduces to
⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

k21 + k22 = 3

4

(
k

′
1

k1

)2

− k
′′
1

2k1
+ r

2
+ 2β2 −

(r
2

+ 3β2
)

(η(T )2 + η(N )2),

k2
k

′
1

k1
+

(r
2

+ 3β2
)

η(N )η(B) = 0.

(5.5)

Hence, we have the following theorem.

Theorem 5.7 Let (M, ϕ, ξ, η, g) be a three-dimensional β-Kenmotsu manifold and γ : I −→ M be a non-
geodesic Frenet curve parametrized by arclength s with k1 �= constant and k2 = constant. Then, γ is an
f -biharmonic curve if and only if

f = c(e
∫ 1

k2

( r
2+3β2

)
η(N )η(B)ds

)
3
2

and k1, k2, r satisfy the following differential equation:

k21 + k22 = 3

4
(
k

′
1

k1
)2 − k

′′
1

2k1
+ r

2
+ 2β2 + k2k

′
1(η(T )2 + η(N )2)

k1η(N )η(B)
.

Proof From second equation of (5.5), we obtain that

k1 = e
− ∫ 1

k2

( r
2+3β2)η(N )η(B)ds

.

Then, by substituting this result to the first equation of (5.5) and the formula f = ck
− 3

2
1 , the proof is completed.

�
Now, assume that γ : I −→ M is a slant curve such that N is non-parallel to ξ . By means of Definition 2.1,

Remark 2.2 and Theorem 5.1, the following theorem and corollary are obtained.

Theorem 5.8 Let (M, ϕ, ξ, η, g) be a three-dimensional β-Kenmotsu manifold and γ : I −→ M be a non-
geodesic slant curve. Then, γ is an f -biharmonic curve if and only if

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

3k
′
1 f + 2k1 f

′ = 0,

k21 + k22 = k
′′
1

k1
+ 2

k
′
1

k1

f
′

f
+ f

′′

f
+ r

2
+ 2β2 −

(r
2

+ 3β2
)(

(cos θ)2 + β2

k21
(sin θ)4

)
,

2k
′
1k2
k1

+ k
′
2 + 2k2

f
′

f
−

(r
2

+ 3β2
)(

β

k1
(sin θ)2

)( |sin θ |
k1

√
k21 − β2(sin θ)2

)
= 0,

(5.6)

where k1 �= constant.
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Corollary 5.9 Let (M, ϕ, ξ, η, g) be a three-dimensional β-Kenmotsu manifold and γ : I −→ M be a
non-geodesic slant curve. Then, γ is an f -biharmonic curve if and only if

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

k21 + k22 = 3

4

(
k

′
1

k1

)2

− k
′′
1

2k1
+ r

2
+ 2β2 −

(r
2

+ 3β2
) (

(cos θ)2 + β2

k21
(sin θ)4

)
,

k
′
2 − k

′
1k2
k1

−
(r
2

+ 3β2
) (

β

k1
(sin θ)2

) ( |sin θ |
k1

√
k21 − β2(sin θ)2

)
= 0,

(5.7)

where k1 �= constant, f = ck
− 3

2
1 , and c is the integration constant.

Now, we discuss some special cases for a slant f -biharmonic curve in a three-dimensional β-Kenmotsu
manifold.

Case 5-III: If k1 �= constant and k2 = 0, then (5.6) reduces to

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

3k
′
1 f + 2k1 f

′ = 0,

k21 = k
′′
1

k1
+ 2

k
′
1

k1

f
′

f
+ f

′′

f
+ r

2
+ 2β2 −

(r
2

+ 3β2
) (

(cos θ)2 + β2

k21
(sin θ)4

)
,

(r
2

+ 3β2
)(

β

k1
(sin θ)2

)( |sinθ |
k1

√
k21 − β2(sinθ)2

)
= 0.

(5.8)

Then, we get the following theorem:

Theorem 5.10 Let (M, ϕ, ξ, η, g) be a three-dimensional β-Kenmotsu manifold and γ : I −→ M be a non-
geodesic slant curve. Then, for k1 �= constant and k2 = 0, γ is an f -biharmonic curve if and only if M is of
constant scalar curvature r = −6β2 and

f = ck
− 3

2
1 , k1 =

√√√√3

4

(
k

′
1

k1

)2

− k
′′
1

2k1
− β2.

Case 5-IV: If k1 �= constant and k2 = constant > 0, then (5.6) reduces to

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

3k
′
1 f + 2k1 f

′ = 0,

k21 + k22 = k
′′
1

k1
+ 2

k
′
1

k1

f
′

f
+ f

′′

f
+ r

2
+ 2β2 −

(r
2

+ 3β2
) (

(cos θ)2 + β2

k21
(sin θ)4

)
,

2k
′
1k2
k1

+ 2k2
f

′

f
−

(r
2

+ 3β2
)(

β

k1
(sin θ)2

)( |sin θ |
k1

√
k21 − β2(sin θ)2

)
= 0.

(5.9)

Using first equation of (5.9), we get f = ck
− 3

2
1 . Then, by substituting this result to the second and third

equation of (5.9), we conclude the following.

Theorem 5.11 Let (M, ϕ, ξ, η, g) be a three-dimensional β-Kenmotsu manifold and γ : I −→ M be a non-
geodesic slant curve with k1 �= constant and k2 = constant > 0. Then, γ is an f -biharmonic curve if and
only if

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

k21 + k22 = 3

4

(
k

′
1

k1

)2

− k
′′
1

2k1
+ r

2
+ 2β2 −

(r
2

+ 3β2
) (

(cos θ)2 + β2

k21
(sin θ)4

)
,

k
′
1k2
k1

+
(r
2

+ 3β2
) (

β

k1
(sin θ)2

) ( |sin θ |
k1

√
k21 − β2(sin θ)2

)
= 0,

(5.10)

where f = ck
− 3

2
1 and c is the integration constant.
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6 Bi- f -harmonic curves in three-dimensional β-Kenmotsu manifold

In this section, we derive the bi- f -harmonicity condition for a Frenet curve in a three-dimensional β-Kenmotsu
manifold. Using Eqs. (3.2)–(3.5) in the equation of bi- f -tension field τ f,2(γ ), see [19], we obtain bi- f -
harmonicity condition as below

τ f,2(γ ) = trace
(∇γ f (∇γ τ f (γ )) − f ∇γ

∇τ f (γ ) + f R(τ f (γ ), dγ )dγ
)

= ( f f
′′
)
′
T + (3 f f

′′ + 2( f
′
)2)∇T T + 4 f f

′∇2
T T + f 2∇3

T T + f 2R(∇T T, T )T

= [
( f f

′′
)
′ − 4k21 f f

′ − 3k1k
′
1 f

2 + f 2k1(
r

2
+ 3β2)η(N )η(T )

]
T

+[
(3 f f

′′ + 2( f
′
)2)k1 + 4 f f

′
k

′
1 − f 2(k31 + k1k

2
2 − k

′′
1) + f 2k1

(r
2

+ 2β2 −
(r
2

+ 3β2
)

η(T )2
)]
N

+[
4 f f

′
k1k2 + f 2(2k

′
1k2 + k1k

′
2)

]
B

− f 2k1
(r
2

+ 3β2
)

η(N )ξ

= 0. (6.1)

Therefore, we can state the following theorem:

Theorem 6.1 Let (M, ϕ, ξ, η, g) be a three-dimensional β-Kenmotsu manifold and γ : I −→ M be a non-
geodesic Frenet curve parametrized by arclength s. Then, γ is a bi- f -harmonic curve if and only if

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

( f f
′′
)
′ − 4k21 f f

′ − 3k1k
′
1 f

2 = 0,{
(3 f f

′′ + 2( f
′
)2)k1 + 4 f f

′
k

′
1 − f 2(k31 + k1k22 − k

′′
1)

+ f 2k1
[r
2

+ 2β2 −
(r
2

+ 3β2
)

(η(T )2 + η(N )2)
] = 0,

4 f
′
k1k2 + f (2k

′
1k2 + k1k

′
2) − f k1

(r
2

+ 3β2
)

η(N )η(B) = 0.

(6.2)

Now,we shall examine some special cases for the bi- f -harmonic curves in a three-dimensionalβ-Kenmotsu
manifold.

Case 6-I: If k1 = constant > 0 and k2 = 0, then (6.2) reduces to

⎧⎪⎨
⎪⎩

( f f
′′
)
′ − 4k21 f f

′ = 0,

(3 f f
′′ + 2( f

′
)2)k1 + f 2k1

(
−k21 + r

2
+ 2β2 −

( r
2

+ 3β2
)

(η(T )2 + η(N )2)
)

= 0,( r
2

+ 3β2
)

η(N )η(B) = 0.

(6.3)

Since any of (
r

2
+ 3β2) or η(B) in the third equation of (6.3) can be equal to zero, we examine Case 6-I

in two subcases.
Subcase 6-I-1: If (

r

2
+ 3β2) = 0, then (6.3) reduces to

{
( f f

′′
)
′ − 4k21 f f

′ = 0,
(3 f f

′′ + 2( f
′
)2) − f 2

(
k21 + β2) = 0.

Then, we have the following theorem.

Theorem 6.2 Let (M, ϕ, ξ, η, g) be a three-dimensional β-Kenmotsu manifold and γ : I −→ M be a non-
geodesic Frenet curve with k1 = constant > 0, k2 = 0 and r = −6β2. Then, γ is a bi- f -harmonic curve if
and only if k1, f, β satisfy the following differential equation:

2 f
′
f

′′ + (5k21 − β2) f f
′ = 0.
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Corollary 6.3 Let (M, ϕ, ξ, η, g) be a three-dimensional β-Kenmotsu manifold and γ : I −→ M be a non-
geodesic Frenet curve with k1 = constant > 0, k2 = 0 and r = −6β2. Then, γ is a bi- f -harmonic curve if
and only if either

f (s) = c1 cos

⎛
⎝

√
β2 − 5k21

2
s

⎞
⎠ + c2 sin

⎛
⎝

√
β2 − 5k21

2
s

⎞
⎠ ,

where β2 − 5k21 < 0, or

f (s) = c3e
−

√√√√β2 − 5k21
2

s
+ c4e

√√√√β2 − 5k21
2

s
,

where β2 − 5k21 > 0, ci (1 ≤ i ≤ 4) are real constants.

Subcase 6-I-2: If η(B) = 0, then (6.3) reduces to
{

( f f
′′
)
′ − 4k21 f f

′ = 0,

(3 f f
′′ + 2( f

′
)2)k1 + f 2k1

(
−k21 + r

2
+ 2β2 −

(r
2

+ 3β2
)

(η(T )2 + η(N )2)
)

= 0.

Since ξ = η(T )T + η(N )N and (η(T ))2 + (η(N ))2 = 1, we give the following theorem.

Theorem 6.4 Let (M, ϕ, ξ, η, g) be a three-dimensional β-Kenmotsu manifold and γ : I −→ M be a non-
geodesic Frenet curve parametrized by arclength s with k1 = constant > 0, k2 = 0 and η(B) = 0. Then, γ is
a bi- f -harmonic curve if and only if

{
( f f

′′
)
′ − 4k21 f f

′ = 0,
(3 f f

′′ + 2( f
′
)2) − f 2

(
k21 + β2

) = 0.

Case 6-II: If k1 = constant > 0 and k2 = constant > 0, then (6.2) reduces to
⎧⎪⎨
⎪⎩

( f f
′′
)
′ − 4k21 f f

′ = 0,

(3 f f
′′ + 2( f

′
)2)k1 − f 2k1

(
k21 + k22 − r

2
− 2β2 +

( r
2

+ 3β2
)

(η(T )2 + η(N )2)
)

= 0,

4 f
′
k1k2 − f k1

( r
2

+ 3β2
)

η(N )η(B) = 0.

(6.4)

Then, we have the following.

Theorem 6.5 Let (M, ϕ, ξ, η, g) be a three-dimensional β-Kenmotsu manifold and γ : I −→ M be a non-
geodesic Frenet curve with k1 = constant > 0 and k2 = constant > 0. Then, γ is a bi- f -harmonic curve if
and only if

⎧⎪⎨
⎪⎩

( f f
′′
)
′ − 4k21 f f

′ = 0,

3 f f
′′ + 2( f

′
)2 − f 2(k21 + k22) + f 2

[ r
2

+ 2β2 −
( r
2

+ 3β2
)

(η(T )2 + η(N )2)
]

= 0,

4 f
′
k2 − f

( r
2

+ 3β2
)

η(N )η(B) = 0.

Now, assume that γ : I −→ M is a slant curve, such that N is non-parallel to ξ . By means of Definition
2.1, Remark 2.2 and Theorem 6.1, the following theorem is obtained.

Theorem 6.6 Let (M, ϕ, ξ, η, g) be a three-dimensional β-Kenmotsu manifold and γ : I −→ M be a non-
geodesic slant curve. Then, γ is a bi- f -harmonic curve if and only if

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( f f
′′
)
′ − 4k21 f f

′ − 3k1k
′
1 f

2 = 0,⎧⎪⎨
⎪⎩

(3 f f
′′ + 2( f

′
)2)k1 + 4 f f

′
k

′
1 − f 2(k31 + k1k22 − k

′′
1)

+ f 2k1

[
r

2
+ 2β2 −

(r
2

+ 3β2
)(

(cos θ)2 + β2

k21
(sin θ)4

)]
= 0,

⎧⎨
⎩
4 f f

′
k1k2 + f 2(2k

′
1k2 + k1k

′
2)

+ f 2k1
(r
2

+ 3β2
) (

β

k1
(sin θ)2

)( |sin θ |
k1

√
k21 − β2(sin θ)2

)
= 0.

(6.5)
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We shall consider some special cases for bi- f -harmonic slant curves in a three-dimensional β-Kenmotsu
manifold.

Case 6-III: If k1 = constant > 0 and k2 = 0, then (6.5) reduces to
⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

( f f
′′
)
′ − 4k21 f f

′ = 0,

(3 f f
′′ + 2( f

′
)2)k1 − f 2k31 + f 2k1

[
r

2
+ 2β2 −

( r
2

+ 3β2
) (

(cos θ)2 + β2

k21
(sinθ)4

)]
= 0,

f 2k1
( r
2

+ 3β2
)(

β

k1
(sin θ)2

) ( |sin θ |
k1

√
k21 − β2(sin θ)2

)
= 0.

Hence, we give the following.

Theorem 6.7 Let (M, ϕ, ξ, η, g) be a three-dimensional β-Kenmotsu manifold and γ : I −→ M be a slant
curve. Then, for k1 = constant > 0 and k2 = 0, γ is a bi- f -harmonic curve if and only if M is of constant
scalar curvature r = −6β2 and

2 f
′
f

′′ + (5k21 − β2) f f
′ = 0.

Case 6-IV: If k1 = constant > 0 and k2 = constant > 0, then (6.5) reduces to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( f f
′′
)
′ − 4k21 f f

′ = 0,⎧⎪⎨
⎪⎩

(3 f f
′′ + 2( f

′
)2)k1 − f 2(k31 + k1k22)

+ f 2k1

[
r

2
+ 2β2 −

(r
2

+ 3β2
) (

(cos θ)2 + β2

k21
(sin θ)4

)]
= 0,

4 f f
′
k1k2 − f 2k1

(r
2

+ 3β2
)(

β

k1
(sin θ)2

)( |sin θ |
k1

√
k21 − β2(sin θ)2

)
= 0.

We have the following theorem.

Theorem 6.8 Let (M, ϕ, ξ, η, g) be a three-dimensional β-Kenmotsu manifold and γ : I −→ M be a non-
geodesic slant curve with k1 = constant > 0 and k2 = constant > 0. Then, γ is a bi- f -harmonic if and only
if

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

( f f
′′
)
′ − 4k21 f f

′ = 0,

3 f f
′′ + 2( f

′
)2 + f 2

[
−k21 − k22 + r

2
+ 2β2 −

( r
2

+ 3β2
)(

(cos θ)2 + β2

k21
(sinθ)4

)]
= 0,

4 f f
′
k2 − f

( r
2

+ 3β2
)(

β

k1
(sin θ)2

)( |sin θ |
k1

√
k21 − β2(sin θ)2

)
= 0.

Now, assume that γ : I −→ M is a Legendre curve. By means of Definition 2.1, Remark 2.3, and
Theorem 6.1, the following theorem is obtained.

Theorem 6.9 Let (M, ϕ, ξ, η, g) be a three-dimensional β-Kenmotsu manifold and γ : I −→ M be a non-
geodesic Legendre curve. Then, γ is a bi- f -harmonic curve if and only if the function f satisfies the following
differential equation:

( f f
′′
)
′ + 3 f

′′
f + 2( f

′
)2 − 4β2 f

′
f − 2β2 f 2 = 0.

7 f -Biminimal curves in three-dimensional β-Kenmotsu manifold

Finally, in this section, we derive the f -biminimality condition for a Frenet curve in a three-dimensional β-
Kenmotsu manifold. The f -biminimality condition, see [8], obtained as below using normal components of
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f -tension and f -bitension field with the help of λ- f -bienergy functional

[τ2,λ, f (γ )]⊥ = [τ2, f (γ )]⊥ − λ[τ f (γ )]⊥
=

[ (
−k31 − k1k

2
2 + k

′′
1 + k1

(r
2

+ 2β2 −
(r
2

+ 3β2
)

η(T )2 − λ
))

f + 2k
′
1 f

′ + k1 f
′′]
N

+[(2k ′
1k2 + k1k

′
2) f + 2k1k2 f

′ ]B
−k1 f

(r
2

+ 3β2
)

η(N )ξ

= 0. (7.1)

Using (7.1) we obtain the following.

Theorem 7.1 Let (M, ϕ, ξ, η, g) be a three-dimensional β-Kenmotsu manifold and γ : I −→ M be a non-
geodesic Frenet curve parametrized by arclength s. Then, γ is an f -biminimal curve if and only if

⎧
⎪⎨
⎪⎩
k21 + k22 = k

′′
1

k1
+ 2

k
′
1 f

′

k1 f
+ f

′′

f
+ 2β2 − λ + r

2
−

(r
2

+ 3β2
)

(η(T )2 + η(N )2),

(2k
′
1k2 + k1k

′
2) f + 2k1k2 f

′ − k1 f
(r
2

+ 3β2
)

η(N )η(B) = 0.
(7.2)

Now, we discuss some special cases for a f -biminimal curve in a three-dimensional β-Kenmotsu manifold.
Case 7-I: If k1 = constant > 0 and k2 = 0, then (7.2) reduces to

⎧⎪⎨
⎪⎩
k21 = f

′′

f
− λ + r

2
+ 2β2 −

(r
2

+ 3β2
)

(η(T )2 + η(N )2),

k1 f
(r
2

+ 3β2
)

η(N )η(B) = 0.
(7.3)

In the third equation of (7.3), (
r

2
+ 3β2) or η(B) can be equal to zero, so we consider Case 7-I in two

subcases.
Subcase 7-I-1: If (

r

2
+ 3β2) = 0, then (7.3) reduces to

k21 = f
′′

f
+ r

2
+ 2β2 − λ. (7.4)

Subcase 7-I-2: If η(B) = 0, we know that η(T )2 + η(N )2 = 1, which reduces (7.3) to the following:

k21 = f
′′

f
− λ − β2. (7.5)

Since in Subcase 7-I-1, r = −6β2, then (7.4) and (7.5) overlap.
Thus, we get the following theorem.

Theorem 7.2 Let (M, ϕ, ξ, η, g) be a three-dimensional β-Kenmotsu manifold and γ : I −→ M be a non-
geodesic Frenet curve with k1 = constant > 0, k2 = 0. Then, γ is an f -biminimal curve if and only if either
r = −6β2 or η(B) = 0 and, in both cases, f satisfies

f (s) = c1 cos((
√
k21 + β2 + λ)s) + c2 sin((

√
k21 + β2 + λ)s),

where k21 + β2 + λ < 0, and

f (s) = c3e
−(

√
k21+β2+λ)s + c4e

(

√
k21+β2+λ)s

,

where k21 + β2 + λ > 0, ci (1 ≤ i ≤ 4) are real constants.
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Case 7-II: If k1 = constant > 0 and k2 = constant > 0, then (7.2) reduces to
⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

k21 + k22 = f
′′

f
− λ + r

2
+ 2β2 −

(r
2

+ 3β2
)

(η(T )2 + η(N )2),

2k2 f
′ − f

(r
2

+ 3β2
)

η(N )η(B) = 0.

(7.6)

Using second equation of (7.6) into the first equation, we get the following theorem.

Theorem 7.3 Let (M, ϕ, ξ, η, g) be a three-dimensional β-Kenmotsu manifold and γ : I −→ M be a non-
geodesic Frenet curve with k1 = constant > 0 and k2 = constant > 0. Then, γ is an f -biminimal curve if
and only if

k21 + k22 = f
′′

f
− 2k2 f

′
(η(T )2 + η(N )2)

f η(N )η(B)
+ 2β2 + r

2
− λ.

Now, assume that γ : I −→ M is a slant curve, such that N is non-parallel to ξ . By means of Definition 2.1,
Remark 2.2, and Theorem 7.1, the following theorem is obtained.

Theorem 7.4 Let (M, ϕ, ξ, η, g) be a three-dimensional β-Kenmotsu manifold and γ : I −→ M be a non-
geodesic slant curve. Then, γ is an f -biminimal curve if and only if

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

k21 + k22 = k
′′
1

k1
+ 2

k
′
1 f

′

k1 f
+ f

′′

f
− λ + r

2
+ 2β2 −

( r
2

+ 3β2
)(

(cos θ)2 + β2

k21
(sin θ)4

)
,

(2k
′
1k2 + k1k

′
2) f + 2k1k2 f

′ + k1 f
( r
2

+ 3β2
)(

β

k1
(sin θ)2

) ( |sin θ |
k1

√
k21 − β2(sin θ)2

)
= 0.

(7.7)

Here, we examine some cases for the f -biminimal slant curves in a three-dimensional β-Kenmotsu manifold.
Case 7-III: If k1 = constant > 0 and k2 = 0, then (7.7) reduces to

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

k21 = f
′′

f
− λ + r

2
+ 2β2 −

(r
2

+ 3β2
)(

(cos θ)2 + β2

k21
(sin θ)4

)
,

k1 f
(r
2

+ 3β2
)(

β

k1
(sin θ)2

)( |sin θ |
k1

√
k21 − β2(sin θ)2

)
= 0.

Then, we have the following.

Theorem 7.5 Let (M, ϕ, ξ, η, g) be a three-dimensional β-Kenmotsu manifold and γ : I −→ M be a non-
geodesic slant curve. Then, for k1 = constant > 0 and k2 = 0, γ is an f -biminimal curve if and only if M is
of constant curvature r = −6β2 and either

f (s) = c1 cos((
√
k21 + β2 + λ)s) + c2 sin((

√
k21 + β2 + λ))s),

where k21 + β2 + λ < 0, or

f (s) = c3e
(√

k21+β2+λ
)
s + c4e

−
(√

k21+β2+λ
)
s
,

where k21 + β2 + λ > 0, ci (1 ≤ i ≤ 4) are real constants.

Case 7-IV: If k1 = constant > 0 and k2 = constant > 0, then (7.7) reduces to
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

k21 + k22 = f
′′

f
− λ + r

2
+ 2β2 −

(r
2

+ 3β2
) (

(cos θ)2 + f 2

k21
(sin θ)4

)
,

2k1k2 f
′ + k1 f

(r
2

+ 3β2
) (

f

k1
(sin θ)2

)( |sin θ |
k1

√
k21 − f 2(sin θ)2

)
= 0.

(7.8)

Hence, we get
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Theorem 7.6 Let (M, ϕ, ξ, η, g) be a three-dimensional β-Kenmotsu manifold and γ : I −→ M be a non-
geodesic slant curve with k1 = constant > 0 and k2 = constant > 0. Then, γ is an f -biminimal curve if and
only if

k21 + k22 = −
2k2 f

′
(

(cos θ)2 + β2

k21
(sin θ)4

)
− 3β2

(
f

β

k1
(sin θ)2

) ( |sin θ |
k1

√
k21 − β2(sin θ)2

)

f

(
β

k1
(sin θ)2

)( |sin θ |
k1

√
k21 − β2(sin θ)2

)

+ f
′′

f
+ 2β2 − λ.

Now, assume that γ : I −→ M is a Legendre curve. Via Definition 2.1, Remark 2.3, and Theorem 7.1, the
following theorem is obtained.

Theorem 7.7 Let (M, ϕ, ξ, η, g) be a three-dimensional β-Kenmotsu manifold and γ : I −→ M be a non-
geodesic Legendre curve. Then, γ is an f -biminimal curve if and only if either

f (s) = c1 cos(
(√

2β2 + λ
)
s) + c2 sin(

(√
2β2 + λ

)
s),

where 2β2 + λ < 0, or

f (s) = c3e
−
(√

2β2+λ
)
s + c4e

(√
2β2+λ

)
s
,

where 2β2 + λ > 0, ci (1 ≤ i ≤ 4) are real constants.
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