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Abstract The purpose of the present paper is to examine the isometries of almost Ricci–Yamabe solitons.
Firstly, the conditions under which a compact gradient almost Ricci–Yamabe soliton is isometric to Euclidean
sphere Sn(r) are obtained. Moreover, we have shown that the potential f of a compact gradient almost Ricci–
Yamabe soliton agrees with the Hodge–de Rham potential h. Next, we studied complete gradient almost
Ricci–Yamabe soliton with α �= 0 and non-trivial conformal vector field with non-negative scalar curvature
and proved that it is either isometric to Euclidean space En or Euclidean sphere Sn . Also, solenoidal and
torse-forming vector fields are considered. Lastly, some non-trivial examples are constructed to verify the
obtained results.

Mathematics Subject Classification 53C15 · 53C24 · 53C44

1 Introduction

One of the most significant approaches to understanding the geometric structure in Riemannian geometry is to
study the theory of geometric flows. The Ricci flow is a well-known geometric flow introduced by Hamilton
[15], who used it to prove a three-dimensional sphere theorem [14]. The idea of the Ricci flow is contributed
to the proof of Thurston’s conjecture, including as a special case, the Poincaré conjecture. The Ricci soliton
on a Riemannian manifold (M, g) are self-limiting solutions to Ricci flow and is defined by

1

2
LV g + Ric = λg, (1.1)

where LV g denotes the Lie-derivative of g along potential vector field V, Ric is the Ricci curvature of M2n+1

and λ, a real constant. When the vector field V is the gradient of a smooth function f on M2n+1, that is,
V = ∇ f, then we say that Ricci soliton is gradient (for details see [9,20]). According to Petersen and Wylie
[20], a gradient Ricci soliton is rigid if it is a flat N ×� R

k, where N is Einstein and gave certain classification.
The notion of almost Ricci soliton was introduced by Pigola et al. [21] by taking λ as a smooth function in the
definition of Ricci soliton (1.1). The authors in [2] studied the rigidity of gradient almost Ricci solitons and
showed that it is isometric to the Euclidean spaceRn or sphere Sn . Barros et al. [3], Yang and Zhang [28], Cao
et al. [8] obtain several rigidity results.
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To tackle the Yamabe problem on manifolds of positive conformal Yamabe invariant, Hamilton introduced
the geometric flow known as Yamabe flow. The Yamabe soliton is a self-similar solution to the Yamabe flow.
On a Riemannian manifold (M, g), a Yamabe soliton is given by

1

2
LV g = (R − λ), (1.2)

where R is the scalar curvature of the manifold and λ, a real constant. Even though both the Ricci and Yamabe
solitons are similar in dimension n = 2, the solitons behave differently for dimension n > 2 as the Yamabe
soliton preserves the conformal class of the metric but the Ricci soliton does not in general. If λ is a smooth
function in (1.2), then it is called almost Yamabe soliton. Alkhaldi et al. [1] gave a characterization of almost
Yamabe soliton with conformal vector field. Barbosa and Ribeiro [4] gave some rigidity results for Yamabe
almost soliton.

Güler and Crasmareanu [13], in 2019, introduced the notion of the Ricci–Yamabe map which is a scalar
combination of Ricci and Yamabe flow. In [13], the authors define the following:

Definition 1.1 [13] The map RY (α,β,g) : I → T s
2 (M) given by:

RY (α,β,g) = ∂g

∂t
(t) + 2αRic(t) + βR(t)g(t),

is called the (α, β)-Ricci–Yamabe map of the Riemannian flow (M, g). If

RY (α,β,g) ≡ 0,

then g(.) will be called an (α, β)-Ricci–Yamabe flow.

The Ricci–Yamabe flow can be Riemannian or semi-Riemannian or singular Riemannian flow due to the
involvement of scalars α and β. This kind of different choices can be useful in some physical models such as
relativity theory. The Ricci–Yamabe soliton emerges as the limit of the solution of Ricci–Yamabe flow.

Definition 1.2 A Riemannian manifold (Mn, g), n > 2 is said to admit almost Ricci–Yamabe soliton
(g, V, λ, α, β) if there exist smooth function λ such that

LV g + 2αRic = (2λ − βR)g, (1.3)

where α, β ∈ R. Almost Ricci–Yamabe soliton is of particular interest as it generalizes a large group of
well-known solitons such as:
• Ricci almost soliton (α = 1, β = 0).
• almost Yamabe soliton (α = 0, β = 1).
• Ricci–Bourguignon almost soliton (α = 1, β = −2ρ).
Also, if λ is constant, then it includes Ricci soliton, Yamabe soliton and Ricci–Bourguignon soliton among
others.

If V is a gradient of some smooth function f on M, then the above notion is called gradient almost
Ricci–Yamabe soliton and then (1.3) reduces to

∇2 f + αRic =
(

λ − 1

2
βR

)
g, (1.4)

where ∇2 f is the Hessian of f.

The almost Ricci–Yamabe soliton (ARYS) is said to be expanding, shrinking or steady if λ < 0, λ > 0
or λ = 0 respectively. In particular, if λ is constant, then ARYS reduces to Ricci–Yamabe soliton. Many
geometers such as [10,11,22] analyzed Ricci–Yamabe solitons. In [23,26], authors studied Ricci–Yamabe
soliton in different spacetimes. Singh and Khatri [16,25] studied ARYS in almost contact manifolds. Siddiqi
et al. [24] consider ARYS on static spacetimes.

Motivated by the above studies, we investigated the ARYS under certain conditions. The present paper is
organized as follows: In Sect. 2, several rigidity results are obtained by following the methods of Barros and
Ribeiro [5] for compact almost Ricci soliton. Also, we obtained the conditions under which compact gradient
ARYS is isometric to the Euclidean sphere Sn(r). In Sect. 3, ARYS with conformal, solenoidal and torse-
forming vector fields are considered. We showed that a complete ARYS with α �= 0 and potential vector field
as conformal vector field is either isometric to Euclidean space En or Euclidean sphere Sn(r). Also, complete
gradient ARYS with conformal vector field is investigated. Lastly, ARYS with solenoidal and torse-forming
vector fields are considered and obtained several rigidity results which are proved by constructing non-trivial
examples.
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2 Some rigidity results on ARYS

Before proceeding to the main results of this paper, we obtained several lemmas on ARYS and gradient ARYS
which would be used later.

Lemma 2.1 For a gradient ARYS (Mn, g, ∇ f, λ), the following formula holds:
(1) 2� f + (2α + nβ)R = 2nλ.
(2) {α + (n − 1)β}∇i R = 2(m − 1)∇iλ + 2Ris∇s f, α �= 0, n ≥ 3.
(3) α(∇ j Rik − ∇i R jk) = α

α+(n−1)β

[
(∇ jλ)gik − (∇iλ)g jk

] + α+(n−3)β
α+(n−1)β Ri jks∇s f, α + (n − 1)β �= 0.

(4) For α + (n − 1)β �= 0, we have

1

2
∇(R + |∇ f |2) = n − 1

α + (n − 1)β
∇λ +

(
λ − βR

2

)
∇ f

+ 1 − α2 − (n − 1)αβ

α + (n − 1)β
Ric(∇ f ).

Proof Equation (1) is directly obtained by taking trace of the soliton equation.
For Eq. (2), we consider Schur’s Lemma (n > 2), we have

1

2
∇i R = divRici = g jk∇k Ri j ,

�⇒ α

2
∇i R = g jk

{
(∇kλ)gi j − β

2
(∇k R)gi j

}
− g jk∇k∇i∇ j f.

Then, using Ricci identity in the above expression gives

(α + β)∇i R = 2∇iλ − 2∇i (� f ) − 2Ris∇s f.

Thus, in regard of equation (1) yields

[α + (n − 1)β]∇i R = 2(n − 1)∇iλ + 2Ris∇s f.

This gives Eq. (2).
In consequence of Eq. (2) and Ricci identity, we obtain

R jiks∇s f + α(∇ j Rik − ∇i R jk) = (∇ jλ)gik − (∇iλ)g jk + β

2
[(∇i R)g jk − (∇ j R)gik].

Further, inserting (2) in the above expression and then simplifying, we obtain Eq. (3). Now, using Eq. (3)
and the fundamental equation as a (1, 1)-tensor, Eq. (4) follows, which thus completes the proof. 
�

Petersen and Wylie [20] obtained the following Bochner formula for Killing and gradient field as:

Lemma 2.2 Given a vector field X on a Riemannian manifold (Mn, g), we have

div(LX g)(X) = 1

2
�|X |2 − |∇X |2 + Ric(X, X) + DXdivX.

When X = ∇ f is a gradient field and Z is any vector field, we have

div(L∇ f g)(Z) = 2Ric(Z ,∇ f ) + 2DZdiv∇ f,

or, in (1, 1)-tensor notation,

div∇∇ f = Ric(∇ f ) + ∇� f.

Taking an inner product of Eq. (2) in Lemma 2.1 by arbitrary vector field Z gives

[α + (n − 1)β]g(∇R, Z) = 2(n − 1)g(∇λ, Z) + 2Ric(∇ f, Z). (2.1)

In particular,
[α + (n − 1)β]g(∇R, ∇ f ) = 2(n − 1)g(∇λ, ∇ f ) + 2Ric(∇ f, ∇ f ). (2.2)

and
[α + (n − 1)β]|∇R|2 = 2(n − 1)g(∇λ, ∇R) + 2Ric(∇ f, ∇R). (2.3)
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Lemma 2.3 For an ARYS (Mn, g, X, λ) (n ≥ 3) with α �= 0, we have

2α + nβ

2
�|X |2 − (2α + nβ)|∇X |2 + β(2α + nβ)g(∇R, X)

+ (2α + nβ)Ric(X, X) + 2[(n − 2)α − nβ]g(∇λ, X) + nβDXdivX = 0.

Proof Taking divergence of ARYS equation yields

div(LX g)(X) + 2(α + β)divRic(X) = 2DXλ. (2.4)

We have from (1.3), 2divX + (2α + nβ)R = 2nλ, which gives

2DXdivX + (2α + nβ)DX R = 2nDXλ. (2.5)

Making use of Schur’s Lemma, Lemma 2.2, (2.4) and (2.5), we get the required results. This completes the
proof. 
�

Moreover, from (1.3) we have

1

2
LX g(X, X) + αRic(X, X) =

(
λ − βR

2

)
|X |2.

In consequence of this in Lemma 2.3, we get

2α + nβ

2

(
� − DX

α

)
|X |2 = (2α + nβ)|∇X |2 − β(2α + nβ)g(∇R, X)

− 2α + nβ

α

(
λ − βR

2

)
|X |2 + 2[nβ − (n − 2)α]g(∇λ, X)

− nβDXdivX. (2.6)

Corollary 2.4 For a gradient ARYS (Mn, g, ∇ f, λ) (n ≥ 3) with α �= 0, we have

2α + nβ

2
�|∇ f |2 = (2α + nβ)|Hess f |2 − β(2α + nβ)g(∇R, ∇ f )

− (2α + nβ)Ric(∇ f, ∇ f ) + 2[nβ − (n − 2)α]g(∇λ, ∇ f )

− nβD∇ f div(∇ f ).

Theorem 2.5 Let (Mn, g, X, λ) (n ≥ 3) be a compact ARYS. If α �= {0,− nβ
2 } and∫

M

{
Ric(X, X) + βg(∇R, X) + nβ

2α + nβ
∇XdivX

+ 2[(n − 2)α − nβ]
2α + nβ

g(∇λ, X)

}
dvg ≤ 0,

then X is Killing and Mn is RYS.

Proof Since Mn is compact, taking integration of Lemma 2.3 gives∫
M

|∇X |2dvg =
∫
M

{
Ric(X, X) + βg(∇R, X) + nβ

2α + nβ
∇XdivX

+ 2[(n − 2)α − nβ]
2α + nβ

g(∇λ, X)

}
dvg. (2.7)

In view of our hypothesis ∫
M

{
Ric(X, X) + βg(∇R, X) + nβ

2α + nβ
∇XdivX

+ 2[(n − 2)α − nβ]
2α + nβ

g(∇λ, X)

}
dvg ≤ 0,

and (2.7), we get ∇X = 0 which implies LX g = 0, i.e., X is Killing vector field. In this case, ARYS will be
simply RYS since Mn will be Einstein manifold, which implies that λ is constant. This completes the proof.
�
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Corollary 2.6 Let (Mn, g, X, λ) (n ≥ 3) be a compact RYS. If α �= {0,− nβ
2 } and

∫
M

[
Ric(X, X) + βg(∇R, X) + nβ

2α + nβ
∇XdivX

]
dvg ≤ 0,

then X is Killing.

In particular, for α = 1 and β = −2ρ in Theorem 2.5, we recover Theorem 1.6 of [12]. Moreover,
Theorem 3 in [5] for compact Ricci soliton is obtained for α = 1, β = 0.

The next theorem generalizes Theorem 3.5 of [12] which is obtained for compact gradient Ricci–
Bourguignon almost soliton, which is the case for α = 1 and β = −2ρ.

Theorem 2.7 Let (Mn, g, ∇ f, λ) (n ≥ 3) be a compact ARYS with α �= 0 and α + (n − 1)β �= 0. Then we
have

(1)
∫
M |∇2 f − � f

n g|2dvg = α(n−2)
2n

∫
M g(∇R, ∇ f )dvg.

(2)
∫
M |∇2 f − � f

n g|2dvg = α(n−2)
2n[α+(n−1)β]

∫
M [2(n − 1)g(∇λ, ∇ f ) + 2Ric(∇ f, ∇ f )]dvg.

Proof From the gradient ARYS, from (1.4) we have

(Hess f )(∇ f ) + αRic(∇ f ) =
(

λ − βR

2

)
∇ f. (2.8)

Combining second argument of Lemma 2.1 and (2.8), then taking divergence of the obtained expression yields

α[α + (n − 1)β]�R = 2α(n − 1)�λ + (2λ − βR)� f − �|∇ f |2
+ 2g(∇λ,∇ f ) − βg(∇R, ∇ f ). (2.9)

Now, using commuting covariant derivative and Ricci identity, we have

∇i∇i (g(∇ j f, ∇ j f )) = 2∇i (g(∇i∇ j f, ∇ j f )),

= 2g(∇i∇i∇ j f, ∇ j f ) + 2|∇2 f |2,
= 2g(∇i∇i∇ j f + Rii js∇s f, ∇ j f ) + 2|∇2 f |2,
= 2g(∇(� f ), ∇ f ) + 2Ric(∇ f, ∇ f ) + 2|∇2 f |2.

Making use of the above expression in (2.9), we get

α{α + (n − 1)β}�R + 2g(∇� f,∇ f ) + 2Ric(∇ f, ∇ f ) + 2|∇2 f |2
= 2α(n − 1)�λ + (2λ − βR)� f + 2g(∇λ,∇ f ) − βg(∇R, ∇ f ). (2.10)

Combining first argument of Lemma 2.1, (2.2) and (2.10), we obtain

α{α + (n − 1)β}�R − αg(∇R, ∇ f ) + 2|∇2 f |2 = 2α(n − 1)�λ + (2λ − βR)� f. (2.11)

Making use of the fact that |∇2 f − � f
n g|2 = |∇2 f |2 − (� f )2

n in (2.11) gives

α{α + (n − 1)β}�R + 2

∣∣∣∣∇2 f − � f

n
g

∣∣∣∣
2

− αg(∇R, ∇ f ) = 2α(n − 1)�λ + 2α

n
R� f. (2.12)

By hypothesis, since Mn is compact, we get
∫
M

∣∣∣∣∇2 f − � f

n
g

∣∣∣∣
2

dvg = α

2

∫
M
g(∇R, ∇ f )dvg + α

n

∫
M
R� f dvg. (2.13)

Also, we know that
∫
M R� f dvg = − ∫

M g(∇R, ∇ f )dvg, then (2.13) becomes

∫
M

∣∣∣∣∇2 f − � f

n
g

∣∣∣∣
2

dvg = α(n − 2)

2n

∫
M
g(∇R, ∇ f )dvg. (2.14)

Combining (2.2) in (2.14) proves the second part provided α + (n − 1)β �= 0. This completes the proof. 
�
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Now, for a gradient ARYS (Mn, g, ∇ f, λ), from (1.4) and Lemma 2.1 we can write

α

(
Ric − R

n
g

)
=

(
λ − βR

2

)
g − ∇2 f − αR

n
g,

= λg − (2α + nβ)R

2n
g − ∇2 f,

= � f

n
g − ∇2 f.

Now, using the foregoing equation in (2.14) yields

∫
M

∣∣∣∣Ric − R

n
g

∣∣∣∣
2

dvg = α(n − 2)

2n|α|2
∫
M
g(∇R, ∇ f )dvg. (2.15)

Corollary 2.8 Let (Mn, g, ∇ f, λ) (n ≥ 3) be a gradient ARYS with α �= 0. Then we have

(1) {α + (n − 1)β}�R + 2α|Ric − R
n g|2 − g(∇R, ∇ f ) = 2(n − 1)�λ + 2

n R� f.

(2) If Mn is compact, then
∫
M |Ric − R

n g|2dvg = (n−2)
2nα

∫
M g(∇R, ∇ f )dvg.

With regard to Theorem 2.7, Corollary 2.8 and Tashiro’s result [27] which states that a compact Riemannian
manifold (Mn, g) is conformally equivalent to Sn(r) provided there exists a non-trivial function f : Mn → R

such that ∇2 f = � f
n g. We obtain the following result which is a generalization of Corollary 1 of [5] and

Corollary 1.10 of [12].

Corollary 2.9 A non-trivial compact gradient ARYS (Mn, g, ∇ f, λ) (n ≥ 3) with α �= {0, (1 − n)β} is
isometric to a Euclidean sphere Sn(r) if one of the following conditions hold:
(1) Mn has constant scalar curvature.
(2) Mn is a homogeneous manifold.
(3)

∫
M [2(n − 1)g(∇λ, ∇ f ) + 2Ric(∇ f, ∇ f )]dvg ≥ 0 and 0 < α < (1 − n)β or 0 > α > (1 − n)β.

(4)
∫
M [2(n − 1)g(∇λ, ∇ f ) + 2Ric(∇ f, ∇ f )]dvg ≤ 0 with non-negative constants α and β.

Hodge–de Rham decomposition theorem states that we may decompose the vector field X over a compact
oriented Riemannian manifold as a sum of the gradient of a function h and a divergence free vector field Y,
i.e.,

X = ∇h + Y (2.16)

where div Y = 0.
Taking divergence of (2.16) gives div X = �h. From the fundamental equation, we have 2div X + (2α +

nβ)R = 2nλ. Therefore, combining both equations result in the following:

2�h + (2α + nβ)R = 2nλ. (2.17)

On the other hand, if (Mn, g, ∇ f, λ) is also a compact gradient ARYS, then from equation (1) of Lemma 2.1,
we have

2� f + (2α + nβ)R = 2nλ. (2.18)

Comparing (2.17) and (2.18), we get �(h − f ) = 0. Now, by using Hopf’s theorem, we see that f = h + c,
where c is a constant. Hence, we can state the following:

Theorem 2.10 Let (Mn, g, X, λ) be a compact ARYS. If Mn is also gradient ARYS with potential f, then up
to a constant, it agrees with the Hodge–de Rham potential h.
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3 ARYS with certain conditions on the potential vector field

In this section, we consider ARYS whose potential vector field satisfies certain conditions such as conformal,
solenoidal and torse-forming vector fields. First we recall the definition of conformal vector field.

A smooth vector field X on a Riemannian manifold is said to be a conformal vector field if there exists a
smooth function ψ on M that satisfies

LX g = 2ψg.

We say that X is non-trivial if X is not Killing, that is, ψ �= 0. Conformal vector field under almost Ricci
soliton and almost Ricci–Bourguignon solitons were considered by authors in [5,6] and obtained interesting
results. Now, we state and prove the following lemma.

Lemma 3.1 Let (n ≥ 3) be ARYS with α �= 0. If X is a conformal vector field with potential function ψ, then
R and λ − ψ are constants.

Proof Since X is a conformal vector field, we have LX g = 2ψg. Making use of this in the soliton equation
(1.3) yields

αRic =
(

λ − βR

2
− ψ

)
g, (3.1)

which further gives
(2α + nβ)R = 2n(λ − ψ), (3.2)

and

α divRic = ∇
(

λ − βR

2
− ψ

)
. (3.3)

Making use of Schur’s Lemma in (3.3) and inserting it in the covariant derivative of (3.2) results in (n −
2)α∇R = 0. As α �= 0, then R is constant, which implies then from (3.2) that λ − ψ is also constant. This
completes the proof. 
�
Theorem 3.2 Let (Mn, g, X, λ) (n ≥ 3) be a compact ARYS with α �= 0. If X is a non-trivial conformal
vector field, then Mn is isometric to Euclidean sphere Sn(r).

Proof In regard of Lemma 3.1, we know that R and λ − ψ are constants. Moreover, using Lemma 2.3 [29]
we conclude that R �= 0, otherwise ψ = 0, a contradiction as ψ �= 0.

Taking Lie derivative of (3.1) and using the fact that R and λ − ψ are constants give

αLXRic =
(

λ − βR

2
− ψ

)
LX g =

(
λ − βR

2
− ψ

)
ψg.

Now, applying Theorem 4.2 of [29] to conclude thatMn is isometric to Euclidean sphere Sn(r).This completes
the proof. 
�

Now,we look at gradientARYS admitting conformal vector field onwhichwe state and prove the following:

Theorem 3.3 Let (Mn, g, ∇ f, λ) (n ≥ 3) be a complete gradient ARYS with α �= 0. If ∇ f is a non-trivial
conformal vector field with non-negative scalar curvature, then either

(1) Mn is isometric to a Euclidean space En . or
(2) Mn is isometric to a Euclidean sphere Sn. Moreover, ψ is a first eigenfunction of Laplacian and λ =

2α+nβ
2n R − λ1

n f + k, where k is a constant.

Proof Since ∇ f is a non-trivial conformal vector field, we have L∇ f g = 2ψg, ψ �= 0. Now, in consequence
of argument (1) of Lemma 2.1, we get ψ = � f

n �= 0. Moreover, from Lemma 3.1, we know that R and λ − ψ
are constants. Suppose R = 0, then this implies that Mn is Ricci flat and by using Tashiro’s theorem [27] in the
fundamental equation, we conclude that Mn is isometric to a Euclidean space En . On the other hand, suppose
R �= 0. Then, making use of Lemma 2.1 in ψ = � f

n gives λ = ψ + (
2α+nβ
2n )R. As a consequence, (3.1)

becomes Ric = R
n g for α �= 0. Therefore, by involving a theorem by Nagano and Yano [18], we can conclude

that Mn is isometric to a Euclidean sphere Sn . Furthermore, taking into account of the fact that Ric = R
n g, we
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can use Lichnerowicz’s theorem [17], the first eigenvalue of the Laplacian of Mn is λ1 = R
n−1 . Now, we make

use of well known formula by Obata and Yano [19], which gives

�ψ + R

n − 1
ψ = 0. (3.4)

In view of (3.4), one can easily obtain �ψ = −λ1ψ, that is, ψ is a first eigenfunction of the Laplacian. Also,
we get�(� f +λ1 f ) = 0.Then, byHopf theorem, we obtain� f +λ1 f = c,where c is a constant. Combining
the last expression with Lemma 2.1 give us the required expression for λ. This completes the proof. 
�

In [6], the authors consider almost Ricci–Bourguignon soliton and almost η-Ricci–Bourguignon soliton
with solenoidal and torse-forming vector field and obtained several rigidity results. Following similar methods,
we examine ARYS (Mn, g, ξ, λ) with solenoidal and torse-forming vector fields.

Let ξ be a solenoidal vector field. Then, by taking trace of the ARYS equation (1.3), we get

R = 2

2α + nβ
(λn − div(ξ)), (3.5)

provided α �= − nβ
2 . If α = − nβ

2 , then λ = div(ξ)
n . For α �= {0,− nβ

2 }, the soliton equation can be written as

1

2
Lξ g + αRic = βdiv(ξ) + 2αλ

2α + nβ
g. (3.6)

Taking an inner product with Ric in (3.6) gives

〈Lξ g,Ric〉 = −2α|Ric|2

+ 4

(2α + nβ)2
[(nβ − 2α)div(ξ)λ − β(div(ξ))2 + 2αnλ2]. (3.7)

Again, taking an inner product with Lξ g in (3.6) and considering |Lξ g|2 = 4|∇ξ |2, we have

〈Lξ g,Ric〉 = − 2

α
|∇ξ |2 + 2

α(2α + nβ)
[β(div(ξ))2 + 2αλdiv(ξ)]. (3.8)

Comparing (3.7) and (3.8), we get

|Ric|2 = 1

α2 |∇ξ |2 + 1

α2(2α + nβ)2
[4α2nλ2 − 8α2λdiv(ξ) − (4α + nβ)β(div(ξ))2].

which leads to the following:

Proposition 3.4 For an ARYS (Mn, g, ξ, λ) with α �= {0,− nβ
2 } and a solenoidal vector field ξ, we have

|Ric|2 ≥ 1

α2 |∇ξ |2.
Now, let ξ be a gradient vector field. Making use of Bochner formula [7], we have

Ric(ξ, ξ) = 1

2
�(|ξ |2) − |∇ξ |2 − ξ(div(ξ)). (3.9)

Using (3.5) in the soliton equation (1.3), we get

1

2
Lξ g + αRic =

[
λ − β

2α + nβ
(λn − div(ξ))

]
g. (3.10)

From (3.10), we have

αRic(ξ, ξ) = −1

2
ξ(|ξ |2) +

[
λ − β

2α + nβ
(λn − div(ξ))

]
|ξ |2. (3.11)

Comparing (3.6) and (3.11), we can state the following:
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Theorem 3.5 A gradient ARYS (Mn, g, ξ, λ) with α �= {0,− nβ
2 } has the function λ expressed in terms of ξ

as

λ = 2α + nβ

4α|ξ |2 [α�(|ξ |2) − 2α|∇ξ |2 + ξ(|ξ |2) − 2αξdiv(ξ)] − β

2α
div(ξ).

In particular, for α = 1 and β = −2ρ, where ρ ∈ R and ρ �= 1
n , we recover Theorem 2.2 of [6].

If ξ = ∇ f with f a smooth function on Mn and α �= {0,− nβ
2 }, the soliton equation becomes

Hess f + αRic =
(

λ − βR

2

)
g. (3.12)

and (3.5) becomes

R = 2

2α + nβ
(λn − � f ). (3.13)

Differentiating the above expression gives

d(� f ) = ndλ − 2α + nβ

2
dR, (3.14)

�⇒ ∇(� f ) = n∇λ − 2α + nβ

2
∇R.

Taking divergence of (3.12) and using Schur’s Lemma, we get

div(Hess f ) = dλ − α + β

2
dR. (3.15)

Also, from [7], we have
div(Hess f ) = d(� f ) + iQ(∇ f )g, (3.16)

where i denotes the interior product and Q is the Ricci operator.
Comparing (3.15) and (3.16) yields

d(� f ) = dλ − α + β

2
dR − iQ(∇ f )g. (3.17)

From (3.14) and (3.17), we have

(n − 1)dλ = α + (n − 1)β

2
dR − Q(∇ f ). (3.18)

Therefore we can state the following:

Proposition 3.6 For a gradient ARYS on Mn with α �= {0,− nβ
2 }, we have

grad(λ) = α + (n − 1)β

2(n − 1)
grad(R) − 1

n − 1
Q(grad f ).

Moreover, if grad f ∈ Ker(Q), then

grad(λ) = α + (n − 1)β

2(n − 1)
grad(R). (3.19)

In the gradient case, we have ξ = ∇ f, if α �= {0,− nβ
2 }, then from (3.13), we get

λ = 2α + nβ

2n
R + � f

n
. (3.20)

Then, (3.12) becomes

Hess f + αRic = αR + � f

n
g. (3.21)
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Taking inner product with Ric and Hess f respectively in (3.21) yields

α|Ric|2 = αR + � f

n
R − 〈Hess f,Ric〉, (3.22)

and
1

α
|Hess f |2 = αR + � f

αn
� f − 〈Ric,Hess f 〉. (3.23)

On comparing (3.22) and (3.23), we get

α|Ric|2 − 1

α
|Hess f |2 = α2R2 − (� f )2

αn
,

which leads to the following:

Theorem 3.7 For a gradient ARYS (Mn, g, ∇ f, λ) on Mn with α �= {0,− nβ
2 }, we have

1

α2 |Hess f |2 − (� f )2

α2n
≤ |Ric|2 ≤ 1

α2 |Hess f |2 + R2

n
.

Again, let us consider a torse forming vector field ξ, then,∇ξ = γ I +ψ ⊗ξ,where γ is a smooth function,
ψ is a 1-form and I is the identity endomorphism on the space of vector fields. Then, we have

div(ξ) = nγ + ψ(ξ),

Lξ g = 2γ g + ψ ⊗ θ + θ ⊗ ψ,

where θ is the dual 1-form of ξ. From (1.3), we get for α �= {0,− nβ
2 } that

Ric = βψ(ξ) − 2α(γ − λ)

α(2α + nβ)
g − 1

2α
(ψ ⊗ θ + θ ⊗ ψ). (3.24)

Thus,

Q = βψ(ξ) − 2α(γ − λ)

α(2α + nβ)
I − 1

2α
(ψ ⊗ ξ + θ ⊗ ζ ),

which implies

R = nβψ(ξ) − 2αn(γ − λ)

α(2α + nβ)
,

where ζ is the dual vector field of ψ.
Computing the Riemann curvature for ∇ξ = γ I + ψ ⊗ ξ, we get

R(X, Y )ξ = (dγ − γψ)(X)Y − (dγ − γψ)(Y )X + [(∇Xψ)Y − (∇Yψ)X ]ξ,

for any X, Y ∈ χ(Mn). If ψ is a Codazzi tensor field, i.e., (∇Xψ)Y = (∇Yψ)X, then

Ric(ξ, ξ) = (1 − n)[ξ(γ ) − γψ(ξ)]. (3.25)

Also, from (3.24), we have

Ric(ξ, ξ) = |ξ |2
α(2α + nβ)

[2α(λ − γ ) − {2α + (n − 1)β}ψ(ξ)]. (3.26)

Then, comparing (3.25) and (3.26) yields

Proposition 3.8 Let (Mn, g, ξ, λ) defines an ARYS with α �= {0,− nβ
2 } such that ξ is a torse forming vector

field and ψ is a Codazzi tensor field, then

λ = γ + 2α + nβ

2|ξ |2 (1 − n)ξ(γ ) + 1

α|ξ |2 [{2α + (n − 1)β}|ξ |2 + α(n − 1)(2α + nβ)γ ]ψ(ξ).
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Let us verify the obtained results by assuming non-trivial examples constructed by Blaga and Tastan [6].

Example On the 3-dimensional manifold M = {(x, y, z) ∈ R
3, z > 0}, where (x, y, z) are the standard

coordinates in R
3 with the Riemannian metric

g := 1

z2
(dx2 + dy2 + dz2).

Then
(
g, ξ = ∂

∂z , λ = 3β
2αz − 2α+3β

2α (2 + 1
z )

)
defines a gradient ARYS.

Precisely, ξ = ∇ f for f (x, y, z) = − 1
z where |ξ |2 = 1

z2
, ξ(|ξ |2) = − 2

z3
, �(|ξ |2) = 8

z2
, |∇ξ |2 = 3

z2
,

div(ξ) = − 3
z , ξ(div(ξ)) = 3

z2
. Therefore, λ = 3β

2αz − 2α+3β
2α (2 + 1

z ) is obtained from Theorem 3.5.

Example Let M = {(x, y, z) ∈ R
3|z > 0}. Consider the Riemannian metric

g := exp(2z)(dx2 + dy2) + dz2.

Then, (g, ξ = exp(z) ∂
∂z , λ = 2α+3β

2α (exp(z)−2α)− 3β
2α exp(z)) defines a gradient ARYS with ξ = ∇ f,where

f (x, y, z) = exp(z). On the other hand, one can check that |ξ |2 = exp(2z), ξ(|ξ |2) = 2 exp(3z), �(|ξ |2) =
8 exp(2z), |∇ξ |2 = 3 exp(2z), div(ξ) = 3 exp(z), ξ(div(ξ)) = 3 exp(2z), therefore, λ = 2α+3β

2α (exp(z) −
2α) − 3β

2α exp(z) is immediately obtained from Theorem 3.5.
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