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Abstract The notion of approximate fixed point sequence, emphasized in Chidume (Geometric properties of
Banach spaces and nonlinear iterations. Lecture Notes in Mathematics, 1965. Springer-Verlag London, Ltd.,
London, 2009), is a very useful tool in proving convergence theorems for fixed point iterative schemes in the
class of nonexpansive-type mappings. In the present paper, our aim is to present simple and unified alternative
proofs of some classical fixed point theorems emerging fromBanach contraction principle, by using a technique
based on the concepts of approximate fixed point sequence and graphic contraction.

Mathematics Subject Classification (2000) 47H09 · 47H10 · 54H25

1 Introduction

In the monograph [18], Chidume illustrated the role of approximate fixed point sequences in proving conver-
gence theorems for fixed point iterative schemes in the class of nonexpansive-type mappings.

To exemplify this, let K be a nonempty closed convex subset of a real Banach space X and T : K → K a
nonexpansive map, i.e., a map satisfying

‖T x − T y‖ ≤ ‖x − y‖, x, y ∈ K . (1)

For arbitrary x0, u ∈ K , let {xn} be the Halpern-type iterative sequence defined by

xn+1 = λnu + (1 − λn)Sxn, n ≥ 0,

where λn ∈ [0, 1] and S = (1 − δ)I + δT , for δ ∈ (0, 1) (I denotes the identity map).
If X has uniformly Gâteaux differentiable norm and {λn} satisfies some conditions, then (see [19] and [18],

page 214) {xn} is an approximate fixed point sequence with respect to the averaged map S, that is,

‖xn − Sxn‖ → 0 as n → ∞.
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The property of having an approximate fixed point sequence is very important for the class of nonexpansive-
type mappings; see for example the very recent paper [64]. So, there are many convergence results for iterative
algorithms in such classes of mappings which are proven by using the properties of some approximate fixed
point sequence; see [1–3,6,19,21,22,26,27,49,52,53,59,65,67] and the references therein.

In this paper our aim is to emphasize, by means of several examples, how one can simplify and unify the
proofs of some classical fixed point theorems emerging from Banach contraction principle, such as Kannan
fixed point theorem, Chatterjea fixed point theorem, Bianchini fixed point theorem, and Zamfirescu fixed
point theorem, using a technique based on the concepts of graphic contractions and approximate fixed point
sequence.

2 Graphic contractions

An important concept that will be useful in this paper is given in the next definition; see for example [5,48,56–
58].

Definition 2.1 Let (X, d) be a metric space. A mapping T : X → X is called a graphic contraction (orbital
contraction) if

d(T x, T 2x) ≤ αd(x, T x), ∀x ∈ X, (2)

where α ∈ (0, 1).

In the following examples, (X, d) is supposed to be a metric space.

Example 2.2 Any Banach contraction, i.e., any mapping T : X → X satisfying the inequality

d(T x, T y) ≤ ad(x, y),∀x, y ∈ X, (3)

for some a ∈ [0, 1), is a graphic contraction with α = a.

Example 2.3 (Kannan [34]) Any Kannan mapping, i.e., any mapping T : X → X satisfying the inequality

d(T x, T y) ≤ b(d(x, T x) + d(y, T y)), ∀x, y ∈ X, (4)

for some b ∈ [0, 1/2), is a graphic contraction with α = b

1 − b
.

Example 2.4 (Ćirić [24];Reich [51];Rus [55])Any Ćirić-Reich-Rus contraction, i.e., anymappingT : X → X
satisfying

d(T x, T y) ≤ ad(x, y) + b (d(x, T x) + d(y, T y)) , ∀x, y ∈ X, (5)

where a, b ≥ 0 and a + 2b < 1, is a graphic contraction with α = a + b

1 − b
.

Example 2.5 (Bianchini [62]) Any Bianchini mapping, i.e., any mapping T : X → X satisfying

d(T x, T y) ≤ hmax{d(x, T x), d(y, T y)},∀x, y ∈ X, (6)

for some h ∈ [0, 1), is a graphic contraction with α = h.

Example 2.6 (Chatterjea [17]) Any Chatterjea mapping T : X → X , i.e., any mapping satisfying

d(T x, T y) ≤ c(d(x, T y) + d(y, T x)),∀x, y ∈ X, (7)

for some c ∈ [0, 1/2), is a graphic contraction with α = c

1 − c
.

Example 2.7 (Zamfirescu [66]) Any Zamfirescu mapping, i.e., any mapping T : X → X for which there exist
a, b, c ≥ 0 satisfying a < 1, b < 1/2, c < 1/2 such that for each x, y ∈ X at least one of the following
conditions is true:

(i) d(T x, T y) ≤ ad(x, y);
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(ii) d(T x, T y) ≤ b (d(x, T x) + d(y, T y));
(iii) d(T x, T y) ≤ c (d(x, T y) + d(y, T x)),

is a graphic contraction with

α = max

{
a,

b

1 − b
,

c

1 − c

}
.

Example 2.8 (Ćirić [24]) Any strong Ćirić quasi contraction, i.e., any mapping T : X → X satisfying, for all
x, y ∈ X ,

d(T x, T y) ≤ h · max

{
d(x, y), d(x, T x), d(y, T y),

1

2
[d(x, T y) + d(y, T x)]

}
(8)

for some h ∈ [0, 1), is a graphic contraction with α = h.

Example 2.9 (Hardy and Rogers [32]) Any Hardy and Rogers contraction, i.e., any mapping T : X → X
satisfying, for all x, y ∈ X ,

d(T x, T y) ≤ a1d(x, y) + a2d(x, T x) + a3d(y, T y) + a4d(x, T y) + a5d(y, T x) (9)

for a1, a2, a3, a4, a5 ≥ 0 and a1 + a2 + a3 + a4 + a5 < 1, is a graphic contraction with

α = 2a1 + a2 + a3 + a4 + a5
2 − a2 − a3 − a4 − a5

.

Example 2.10 (Berinde [5]) Any almost contraction, that is, any mapping T : X → X satisfying

d(T x, T y) ≤ ad(x, y) + L · d(y, T x), ∀x, y ∈ X, (10)

where a ∈ [0, 1) and L ≥ 0, is a graphic contraction with α = a.

The following notion is related to that of graphic contraction, as it is shown by Lemma 2.12. According to
MathScinet, the first papers that consider explicitly this concept are by Lin [41] and Khamsi [37].

Definition 2.11 s Let (X, d) be a metric space and T : X → X a self-mapping. A sequence {xn} ⊂ X is
called an approximate fixed point sequence with respect to T if

d(xn, T xn) → 0 as n → ∞. (11)

The next lemmawill be extremely useful in proving some classical fixed results in metric fixed point theory.

Lemma 2.12 Let (X, d) be a metric space. Any graphic contraction T : X → X admits an approximate fixed
point sequence.

Proof Denote

D = {d(x, T x) : x ∈ X}, D1 = {d(T x, T 2x) : x ∈ X}
and

δ = inf D.

Obviously, δ ≥ 0.
Asume δ > 0. Then, since D1 ⊆ D, by using (2) we get

δ = inf D ≤ inf D1 ≤ α inf D = αδ < δ,

a contradiction. So, δ = 0, i.e.,

inf{d(x, T x) : x ∈ X} = 0,

which, by the definition of infimum, shows that there exists a sequence {xn} ⊂ X such that

d(xn, T xn) → 0, as n → ∞. (12)

��
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Remark 2.13 1. Note that the Picard iteration associated with a graphic contraction T , i.e., the sequence {xn}
defined by xn+1 = T xn , n ≥ 0, for some x0 ∈ X , is an approximate fixed point sequence with respect to
T .
However, the approximate fixed point sequence {xn} ensured by Lemma 2.12 is not necessarily the Picard
iteration associated with T .

2. The main idea behind Lemma 2.12 is taken from Joseph and Kwack [33].
3. There exist mappings which are not graphic contractions but they admit an approximate fixed point

sequence. Indeed, let X = [0, 1] with the usual metric and T : X → X be given by T x = 7

8
, if

0 ≤ x < 1 and T 1 = 1

4
. Then T has an approximate fixed point sequence {xn} (see [2], Example 2.1), T

is asymptotically regular on X but T is not a graphic contraction (just take x = 1 in (2) to get α ≥ 5, a
contradiction).

To shorten the statements of the fixed point theorems presented in this paper, we also need the following
concepts.

Let T : X → X be a mapping. Denote by

Fix (T ) = {x ∈ X : T x = x}
the set of all fixed points of T . The map T is called a weakly Picard operator, see for example [58], if

(p1) Fix (T ) = ∅;
(p2) the Picard iteration {xn}∞n=0 defined by

xn+1 = T xn , n = 0, 1, 2, . . . (13)

converges to some p ∈ Fix (T ), for any x0 ∈ X .
If T is a weakly Picard operator and Fix (T ) = {p}, then T is called a Picard operator.
Our first main result in this section is an alternative proof of the well-known Ćirić-Reich-Rus fixed point

theorem, from which are then obtained as particular cases the classical fixed point theorems due to Banach [4]
and Kannan [34].

The innovation brought by Lemma 2.12 is that the Cauchyness is established for an arbitrary approximate
fixed point sequence and not necessarily for the Picard iteration.

Theorem 2.14 (Ćirić [24]; Reich [51]; Rus [55]) Let (X, d) be a complete metric space and T : X → X be
a Ćirić–Reich–Rus contraction. Then T is a Picard operator.

Proof By Example 2.4, T is a graphic contraction with α = a + b

1 − b
< 1.

Hence, by Lemma 2.12, there exists an approximate fixed point sequence {xn} with respect to T , that is, a
sequence {xn} ⊂ X with the property

d(xn, T xn) → 0, as n → ∞. (14)

Now, for n,m positive integers, by the contraction condition (5) we have

d(xn, xm) ≤ 1 + b

1 − a
· (d(xn, T xn) + d(xm, T xm)),

which, by virtue of (14), shows that {xn} is a Cauchy sequence. Let

lim
n→∞ xn = p. (15)

By using once again the Ćirić–Reich–Rus condition (5), we obtain

d(p, T p) ≤ 1 + a

1 − b
· d(xn, p) + 1 + b

1 − b
· d(xn, T xn),

which, by (14) and (15), proves that T p = p, i.e., Fix (T ) = ∅.
Assume that q = p is another fixed point of T . Then, by (5)

0 < d(p, q) = d(T p, Tq) ≤ a · d(p, q) < d(p, q),
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a contradiction. This proves that Fix (T ) = {p}.
Now, let {yn} ⊂ X be the Picard iteration defined by y0 ∈ X and

yn+1 = f (yn), n ≥ 0. (16)

Then, by (5) one obtains

d(yn+1, p) ≤ αd(yn, p), n ≥ 0 (17)

which, by induction, yields

d(yn, p) ≤ αnd(y0, p), n ≥ 1. (18)

This proves that {yn} converges to p as n → ∞. So, T is a Picard operator. ��
Corollary 2.15 (Banach [4], [16]) Let (X, d) be a complete metric space and T : X → X a Banach contrac-
tion. Then T is a Picard operator.

Proof Any Banach contraction is a Ćirić–Reich–Rus contraction with the constant b = 0.
We apply Theorem 2.14 and get the conclusion. ��

Corollary 2.16 (Kannan [34]) Let (X, d) be a complete metric space and T : X → X a Kannan mapping.
Then T is a Picard operator.

Proof Any Kannan mapping is a Ćirić–Reich–Rus contraction with the coefficient a = 0.
The conclusion follows by applying Theorem 2.14. ��

Theorem 2.17 (Bianchini [62]) Let (X, d) be a complete metric space and T : X → X a Bianchini mapping.
Then T is a Picard operator.

Proof By Example 2.5, T is a graphic contraction with α = h. Hence, by Lemma 2.12, there exists an
approximate fixed point sequence {xn} with respect to T , i.e., a sequence {xn} ⊂ X such that

d(xn, T xn) → 0, as n → ∞. (19)

Now, for n,m positive integers, by the Bianchini contraction condition (6) we have

d(xn, xm) ≤ hmax{d(xn, T xn), d(xm, T xm)} + d(xn, T xn) + d(xm, T xm),

which, by (19), shows that {xn} is a Cauchy sequence. Let

lim
n→∞ xn = p. (20)

Again by the Bianchini contraction condition (6), we get

d(p, T p) ≤ d(xn, p) + d(xn, T xn) + hmax{d(xn, T xn), d(p, T p)}.
Now, if max{d(xn, T xn), d(p, T p)} = d(xn, T xn), then it follows that

d(p, T p) ≤ d(xn, p) + (h + 1) · d(xn, T xn)

which, by (19) and (20), proves that T p = p.
If max{d(xn, T xn), d(p, T p)} = d(p, T p), then

d(p, T p) ≤ 1

1 − h
(d(xn, p) + d(xn, T xn)),

which, by (19) and (20), also proves that T p = p, i.e., Fix (T ) = ∅.
Assume that q = p is another fixed point of T . Then, by (6)

0 < d(p, q) = d(T p, Tq) ≤ hmax{d(p, p), d(q, q)} = 0,

a contradiction. This proves that Fix (T ) = {p}.
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Now, let {yn} ⊂ X be defined by y0 ∈ X and

yn+1 = f (yn), n ≥ 0. (21)

Then, by Example 2.5, one obtains

d(yn+1, p) ≤ hd(yn, p), n ≥ 0

which, by induction, yields

d(yn, p) ≤ hnd(y0, p), n ≥ 0, (22)

and this proves that {yn} converges to p, for any starting point y0 ∈ X .
��

Theorem 2.18 (Chatterjea [17])Let (X, d) be a completemetric space and T : X → X aChatterjeamapping.
Then T is a Picard operator.

Proof By Example 2.6, T is a graphic contraction with α = c

1 − c
< 1. Hence, by Lemma 2.12, there exists

an approximate fixed point sequence {xn} with respect to T , i.e., a sequence {xn} ⊂ X such that

d(xn, T xn) → 0, as n → ∞. (23)

By Chatterjea contraction condition (7) and for n,m positive integers, we get

d(xn, xm) ≤ c

1 − 2c
· (d(xn, T xn) + d(xm, T xm)) ,

which, by (23), shows that {xn} is a Cauchy sequence. Let

lim
n→∞ xn = p. (24)

Again, by the Chatterjea contraction condition (7) we get

d(p, T p) ≤ 2c + 1

1 − c
· d(xn, p) + c + 1

1 − c
· d(xn, T xn),

which, by (23) and (24), proves that T p = p, i.e., Fix (T ) = ∅.
Assume that q = p is another fixed point of T . Then, by (7)

0 < d(p, q) = d(T p, Tq) ≤ 2c · d(p, q) < d(p, q),

a contradiction. This proves that Fix (T ) = {p}.
Now, let {yn} ⊂ X be defined by y0 ∈ X and

yn+1 = f (yn), n ≥ 0. (25)

Then, by Example 2.6 one obtains

d(yn+1, p) ≤ α · d(yn, p), n ≥ 0

which, by induction, yields

d(yn, p) ≤ αn · d(y0, p), n ≥ 0, (26)

and this proves that {yn} converges to p, for any starting point y0 ∈ X .
��

Theorem 2.19 (Zamfirescu [66]) Let (X, d) be a complete metric space and T : X → X a Zamfirescu
mapping. Then T is a Picard operator.
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Proof By Example 2.7, T is a graphic contraction with

α = max

{
a,

b

1 − b
,

c

1 − c

}
< 1.

Hence, by Lemma 2.12, there exists an approximate fixed point sequence {xn} with respect to T , i.e., a
sequence {xn} ⊂ X such that

d(xn, T xn) → 0, as n → ∞. (27)

Now, if for xn, xm ∈ X and T we have condition (i) in Example 2.7 satisfied, then

d(xn, xm) ≤ 1

1 − a
· (d(xn, T xn) + d(xm, T xm)) . (28)

If for xn, xm ∈ X and T we have condition (i i) in Example 2.7 satisfied, then

d(xn, xm) ≤ (b + 1) · (d(xn, T xn) + d(xm, T xm)) , (29)

while, if for xn, xm ∈ X and T we have condition (i i i) in Example 2.7 satisfied, then by the proof of Theorem
2.18 we have

d(xn, xm) ≤ c

1 − 2c
· (d(xn, T xn) + d(xm, T xm)) . (30)

By (27), (28), (29) and (30), we obtain that {xn} is a Cauchy sequence. Let

lim
n→∞ xn = p. (31)

On the other hand, we have

d(p, T p) ≤

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

1 − a
· (d(xn, p) + d(xn, T xn)) , if, for xn and p, (i) holds

1 + b

1 − b
· d(xn, p) + 1

1 − b
· d(xn, T xn), if, for xn and p, (ii) holds

1 + c

1 − 2c
· (d(xn, p) + d(xn, T xn)) , if, for xn and p, (iii) holds,

which, by (27) and (31), proves that T p = p, i.e., Fix (T ) = ∅.
Assume that q = p is another fixed point of T . Then, by considering separately each of the cases (i), (i i)

and (i i i), we obtain the contradiction

0 < d(p, q) = d(T p, Tq) < d(p, q),

which proves that Fix (T ) = {p}.
Now, let {yn} ⊂ X be defined by y0 ∈ X and

yn+1 = T yn, n ≥ 0. (32)

Then, by Example 2.7 one obtains

d(yn+1, yn) ≤ α · d(yn, yn−1), n ≥ 1

which, by induction, yields

d(yn+p, yn) ≤ αn · d(y0, p), n ≥ 0, (33)

and this proves that {yn} converges to p, for any starting point y0 ∈ X .
��

Remark 2.20 Note that to prove the fixed point theorem corresponding to almost contractions (Example 2.10),
which are weakly Picard operators, we have to use Picard iteration as approximate fixed point sequence and
not an arbitrary approximate fixed point sequence as above; see the complete proof in [5].

123



348 Arab. J. Math. (2023) 12:341–351

3 Maia fixed point theorems

One of the most interesting generalizations of the contraction mapping principle is the so-called Maia fixed
point theorem, see [43], which was obtained by splitting the assumptions in the contraction mapping principle
among two metrics defined on the same set. We provide an alternate proof to this result by using the concept
of approximate fixed point sequence.

Theorem 3.1 (Maia [43]) Let X be a nonempty set, d and ρ two metrics on X and T : X → X a mapping.
Suppose that

(i) d(x, y) ≤ ρ(x, y), for each x, y ∈ X;
(ii) (X, d) is a complete metric space;
(iii) T : X → X is continuous with respect to the metric d;
(iv) T is a contraction mapping with respect to the metric ρ, with contraction coefficient a ∈ [0, 1).
Then T is a Picard operator.

Proof By assumption (iv), T is a graphic contractionwith respect to themetric ρ, withα = a. Then, by Lemma
2.12, there exists an approximate fixed point sequence {xn} with respect to T , i.e., a sequence {xn} ⊂ X such
that

ρ(xn, T xn) → 0, as n → ∞. (34)

For this sequence, by the contraction condition

ρ(T x, T y) ≤ aρ(x, y), x, y ∈ X,

we obtain

ρ(xn, xm) ≤ (1 − a) · (ρ(xn, T xn) + ρ(xm, T xm)),

which, by virtue of (34), shows that {xn} is a Cauchy sequence in the metric space (X, ρ).
By (i), {xn} is a Cauchy sequence in the metric space (X, d), too, and by (i i) it follows that it converges

with respect to the metric d . Let

p = lim
n→∞ T xn (⇐⇒ lim

n→∞ d(T xn, p) = 0).

Now, by (i i i) we obtain that p ∈ Fix (T ) and by (iv) that Fix (T ) = {p}. ��
Remark 3.2 Theorem 3.1 remains valid if one replaces assumption (i) by the followingmore general condition:

(i ′) There exists C > 0 such that d(x, y) ≤ C · ρ(x, y), for each x, y ∈ X .
If we have ρ ≡ d , from Theorem 3.1 one obtains the Picard–Banach fixed point principle (Corollary 2.15).

A more general Maia-type result, which generalizes Theorem 2.14, is given by the following:

Theorem 3.3 Let X be a nonempty set, d and ρ two metrics on X and T : X → X a mapping. Suppose that

(i) there exists C > 0 such that d(x, y) ≤ C · ρ(x, y), for each x, y ∈ X;
(ii) (X, d) is a complete metric space;
(iii) T : X → X is continuous with respect to the metric d;
(iv) T is a Ćirić–Reich–Rus contraction with respect to the metric ρ, with contraction coefficients a, b ∈ [0, 1).
Then T is a Picard operator.

Proof Based on the same arguments like in the proof of Theorem 2.14 and using assumption (iv), we can

easily deduce that T is a graphic contraction with respect to the metric ρ, with α = a + b

1 − b
< 1.

Then, by Lemma 2.12, there exists an approximate fixed point sequence {xn} with respect to T , i.e., a
sequence {xn} ⊂ X such that

ρ(xn, T xn) → 0, as n → ∞. (35)

For this sequence, by the Ćirić–Reich–Rus contraction condition

ρ(T x, T y) ≤ aρ(x, y) + b (ρ(x, T x) + ρ(y, T y)) , (36)

123



Arab. J. Math. (2023) 12:341–351 349

valid for all x, y ∈ X , we obtain

ρ(xn, xm) ≤ 1 + b

1 − a
· (ρ(xn, T xn) + ρ(xm, T xm)),

which, by virtue of (35), shows that {xn} is a Cauchy sequence in the metric space (X, ρ).
By (i), it follows that {xn} is a Cauchy sequence in the metric space (X, d), too, and by (i i) we deduce

that it converges with respect to the metric d . Let

p = lim
n→∞ T xn (⇐⇒ lim

n→∞ d(T xn, p) = 0).

Now, by (i i i) we obtain that p ∈ Fix (T ) and by (iv) that Fix (T ) = {p}. ��
Remark 3.4 Note that in the case of Ćirić–Reich–Rus contractions, condition (i i) in Theorem 3.3 is not always
satisfied, because these mappings are in general not continuous, see the examples in [11].

If in Theorem 3.3 we have ρ ≡ d , then one obtains the Ćirić–Reich–Rus fixed point theorem (Theorem
2.14).

4 Conclusions

1. We presented simple and unified alternative proofs, based on the concepts of graphic contraction and
approximate fixed point sequence, for some classic metric fixed point theorems emerging from Picard–
Banach contraction mapping principle: Kannan fixed point theorem (Kannan [34]); Ćirić-Reich-Rus fixed
point theorem (Ćirić [24], Reich [51], Rus [55]); Bianchini fixed point theorem (Bianchini [62]); Chatterjea
fixed point theorem (Chatterjea [17]) and Maia’s fixed point theorem (Maia [43]).

2. Similar proofs could be given for other important classes of contractive-type mappings that are related to
the Banach contractions: strong Ćirić quasi contractions (see Example 2.8); Hardy and Rogers contractions
(see Example 2.9) etc. which are left as exercises for the reader.

3. In connection with Maia-type fixed point theorems, it is an open problem to find weaker conditions than
the continuity of the mapping T involved in Theorems 3.1 and 3.3.

4. The technique of proof used in the present paper, essentially based on the concepts of graphic contraction
and approximate fixed point sequence, could also be nontrivially applied to other classes of self and nonself
single-valued mappings in the literature on metric fixed point theory, see [5,7–12,14,20,23,28,31,36,38,
39,42,44,46,50,60,61,63] etc.

5. There exists another important technique for proving metric fixed point theorems which is based on the
property of asymptotic regularity of the mappings, see [14,29–31], and which is naturally closely related
but independent to the technique emphasized in the current paper, in view of Theorem 3.1 in [13], which
shows that, for a nonempty set X and a mapping T : X → X , the following statements are equivalent:
(a) there exists a complete metric on X with respect to which T is a continuous graphic contraction;
(b) Fix (T ) = ∅ and there exists a metric on X with respect to which T is asymptotically regular.

So, by also having in viewRemark 2.13 (3), it would be very important to compare directly the twomethods, the
one based on graphic contractions (and approximate fixed point sequences) and the other based on asymptotical
regularity, for some concrete classes of mappings to establish, if possible, which one is more reliable.

For example, in the case of Kannan mappings, one can compare the proof of Corollary 2.16 to the proof
of the corresponding result in [29]–[31] and conclude that the two methods exhibit slightly different facets of
the fixed point problem under study.
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metric spaces. Carpathian J. Math. 37(2), 173–184 (2021)
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24. Ćirić, L. B.: Generalized contractions and fixed-point theorems. Publ. Inst. Math. (Beograd) (N.S.) 12(26), 19–26 (1971)
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36. Karapınar, E.; Petruşel, A.; Petruşel, G.: On admissible hybrid Geraghty contractions. Carpathian J. Math. 36(3), 433–442

(2020)
37. Khamsi, M. A.: La propriété du point fixe dans les espaces de Banach avec base inconditionnelle. (French) Math. Ann.

277(4), 727–734 (1987)
38. Khamsi,M.A.:Approximate fixed point sequences of nonlinear semigroups inmetric spaces. Can.Math. Bull. 58(2), 297–305

(2015)
39. Khan, A. R., Oyetunbi, D. M.: On some mappings with a unique common fixed point. J. Fixed Point Theory Appl. 22(2), 7

(2020) (Paper No. 47)
40. Kirk, W.A.: Approximate fixed points of nonexpansive maps. Fixed Point Theory 10(2), 275–288 (2009)
41. Lin, P.-K.: Unconditional bases and fixed points of nonexpansive mappings. Pacific J. Math. 116(1), 69–76 (1985)
42. Llorens Fuster, E., Moreno Gálvez, E.: The fixed point theory for some generalized nonexpansive mappings. Abstr. Appl.

Anal. Art. ID 435686, 15 (2011)
43. Maia, M.: Un’osservazione sulle contrazioni metriche. Rend. Sem. Mat. Univ. Padova 40, 139–143 (1968)
44. Martínez-Moreno, J.; Calderón, K.; Kumam, P.; Rojas, E. Approximating fixed points of Suzuki (α, β)-nonexpansive map-

pings in ordered hyperbolic metric spaces. Advances in metric fixed point theory and applications, 365–383, Springer,
Singapore (2021)

45. Meszaros, J.: A comparison of various definitions of contractive type mappings. Bull. Calcutta Math. Soc. 84(2), 167–194
(1992)
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