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Abstract This article proposes two regularized iterative algorithms for solving variational inequality problems
defined over a solution set of a variational inclusion problem, known as hierarchical variational inequality
problems, in the setting of Hadamard manifolds. Instead of regularizing the variational inequality problem or
an iterativemethod for solving it,wefirst regularize the consideredvariational inclusionproblem, and thenprove
that the solution of the regularized problem converges to a solution of the hierarchical variational inequality
problem. Using such a result, we prove the convergence of the sequences generated by the proposed algorithms
to a solution of the considered hierarchical variational inequality problem. A computational experiment is
provided to see the validity and effectiveness of the proposed algorithms.

Mathematics Subject Classification 49J53 · 49J40 · 47H05 · 47J22

1 Introduction

Over the past two decades, many problems from nonlinear analysis such as, fixed point problems, variational
inequality problems, optimization problems, etc., have been extended from linear spaces to manifold settings,
see, [1–8,11,13,15–18,20,21,26,28,29] and the references therein.

Let C be a nonempty closed and geodesic convex subset of a Hadamard manifold M and B : C → TM
be a single-valued vector field. The variational inequality problem (in short, VIP) on a Hadamard manifoldM
was first studied by Németh [21], and is defined as follows:

Find x̄ ∈ C such that
〈
B(x̄), exp−1

x̄ x
〉
≥ 0, ∀x ∈ C, (1)

where exp−1· is the inverse of the exponential map, and 〈., .〉 denotes the inner product on a tangent space in
M.

Very recently, Chen et al. [9] proposed two Tseng’s type extragradient iterative algorithms for finding the
solution of VIP (1).
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In 2009, Li et al. [16] first studied the variational inclusion problem for a set-valued vector field on a
Hadamard manifoldM which is defined as follows:

Find x̄ ∈ M such that 0 ∈ A(x̄), (2)

where A : M ⇒ TM is a set-valued vector field onM and 0 denotes the zero tangent vector of the tangent space
TxM. They proposed the proximal point algorithm for the inclusion problem (2) and studied the convergence
of the sequence generated by the proposed algorithm to a solution of the problem (2) under some suitable
conditions. In [6], we discussed the regularized methods for proximal point algorithms for finding the solutions
of the problem (2) when A is a maximal monotone set-valued vector field.

Later, we [3,4] studied the following variational inclusion problem on a Hadamard manifoldM:

Find x̄ ∈ M such that 0 ∈ A(x̄) + B(x̄). (3)

We denote by S the solution set of the inclusion problem (3), and throughout this article, we assume that
S �= ∅. We [4] extended the proximal point algorithm of Li et al. [16] for the problem (3) and proved the
convergence of the sequence generated by the proposed algorithm to a solution of the inclusion problem (3)
under the maximal monotonicity of A and strong monotonicity and Lipschitz continuity of B with some other
conditions on the parameter.

Very recently, Khammahawong et al. [14] presented two Tseng’s type iterative algorithms for solving the
inclusion problem (3), where stepsizes in one algorithm are required by utilizing a line search, and in other
algorithm, they are obtained by simple updating.

Very recently, Hieu et al. [12] considered a variational inequality problem which is defined over the set
of solutions of a variational inclusion problem (3) in the setting of Hilbert spaces. Instead of regularizing
the variational inequality problem, they regularized variational inclusion problem over which a variational
inequality problem is defined. Then, they proposed three iterative regularization methods for solving such a
problem.

Motivated and inspired by the work of Hieu et al. [12,14], we consider the following variational inequality
problem which is defined over the set of solutions of the variational inclusion problem (3) in the setting of a
Hadamard manifoldM:

Find x̄ ∈ (A + B)−1(0) such that
〈
F(x̄), exp−1

x̄ x
〉
≥ 0, ∀x ∈ (A + B)−1(0). (4)

Such a problem is known as hierarchical variational inequality problem (in short, HVIP). As in [12], we first
regularize variational inclusion problem (3), and then propose two Tseng’s type iterative methods for solving
hierarchical variational inequality problem (4).

The organization of this article is as follows. In Sect. 2, we recall some definitions and results from
manifolds. In Sect. 3, we discuss the regularization of the variational inclusion problem (3) and prove that a
solution of the regularized variational inclusion problem converges to a solution of the hierarchical variation
inequality problem (4). In Sect. 4, we propose two Tseng’s type iterative methods for finding the solution
of the hierarchical variational inclusion problem (4) in the setting of Hadamard manifolds. The convergence
analysis of proposed algorithms is also studied. In the last section, we demonstrate proposed algorithms by a
numerical example.

2 Basic tools from manifolds and some preliminaries

Let TxM be the tangent space at the point x in a finite dimensional differentiable manifoldM. The collection
of all such tangent spaces on M is called tangent bundle and it is denoted by TM. Since a tangent space is a
real vector space of the same dimension asM, an inner product 〈·, ·〉x : TxM× TxM → R, for all x ∈ M, can
be defined on TxM. The corresponding norm to the inner product 〈·, ·〉x on TxM is denoted by ‖ · ‖x . If there is
no confusion, then we omit the subscript x . 〈·, ·〉 : TM× TM → RM. A differentiable manifoldM endowed
with a Riemannian metric 〈·, ·〉 is said to be a Riemannian manifold. The length of a piecewise smooth curve
γ : [a, b] → M joining x = γ (a) to y = γ (b) in M is given by

L (γ ) =
∫ b

a
‖γ̇ (t)‖dt,
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where γ̇ (t) denotes the tangent vector at γ (t) in the tangent space Tγ (t)M. The minimal length of all such
curves joining x to y is known as the Riemannian distance and it is denoted by d(x, y).

Let ∇ be a Levi-Civita connection associated with the Riemannian manifold M. For a smooth curve γ , a
tangent vector γ̇ (t) along the curve γ is said to be parallel if ∇γ̇ (t)γ̇ (t) = 0 for all t ∈ [a, b], where 0 denotes
the zero tangent vector; in this case, γ is called a geodesic and ‖γ̇ (t)‖ is a constant for all t ∈ [a, b]. Moreover,
if ‖γ̇ (t)‖ = 1 for all t ∈ [a, b], then γ is called normalized geodesic. If the length of a geodesic joining x
to y in the Riemannian manifold M equals d(x, y), then γ is said to be a minimal geodesic. If for any x in
a Riemannian manifold M, all geodesics emanating from x are defined for all t ∈ R, then the Riemannian
manifold M is said to be (geodesically) complete. For a complete Riemannian manifold M, the exponential
map expx : TxM → M at x ∈ M is defined by

expx u = γu(1; x), ∀u ∈ TxM,

where γu(·; x) is the geodesic starting from x with velocity u, i.e., γu(0; x) = x and γ̇u(0; x) = u. It is known
that expx tu = γu(t; x) for any real number t , and expx 0 = γu(0; x) = x . It is also well known that the
exponential map expx is differentiable on TxM for any x ∈ M. The derivative D expx (0) of expx (0) is equal
to the identity vector of TxM. Therefore, by the inverse mapping theorem, there exists an inverse exponential
map exp−1

x : M → TxM. For any x, y ∈ M, we have d(x, y) = ‖ exp−1
x y‖. For further details, we refer [25].

The parallel transport Pγ,γ (b),γ (a) : Tγ (a)M → Tγ (b)M on the tangent bundle TM along γ : [a, b] → M

with respect to ∇ is defined as

Pγ,γ (b),γ (a)(v) = V (γ (b)), ∀a, b ∈ R and ∀v ∈ Tγ (a)M,

where V is a unique vector field such that ∇γ̇ (t)V = 0 for all t ∈ [a, b], and V (γ (a)) = v. When γ is a
minimal geodesic joining x to y, we write Py,x instead of Pγ,y,x . For every a, b, c ∈ R, we have

Pγ (b),γ (c) ◦ Pγ (c),γ (a) = Pγ (b),γ (a) and P−1
γ (b),γ (a) = Pγ (a),γ (b).

Pγ (b),γ (a) is an isometry from Tγ (a)M to Tγ (b)M, that is, the parallel transport preserve the inner product,
〈
Pγ (b),γ (a)(u), Pγ (b),γ (a)(v)

〉
γ (b) = 〈u, v〉γ (a) , ∀u, v ∈ Tγ (a)M.

Theorem 2.1 [10, Hopf-Rinow Theorem] Let x be any point in a Riemannian manifoldM. Then the following
assertions are equivalent:

(a) The exponential mapping expx is defined on TxM.
(b) The closed and bounded subsets ofM are compact.
(c) M is complete as a metric space.
(d) M is geodesically complete.

Moreover, any of the equivalent statements (a)–(d) implies that

(e) any x, y ∈ M can be joined by a minimal geodesic whose arc length is equal to d(x, y).

A complete simply connected Riemannian manifold of nonpositive sectional curvature is said to be a
Hadamard manifold.
Rest of the paper, unless otherwise specified, we assume thatM is a finite-dimensional Hadamard manifold.

Recall the following properties of the exponential map.

Proposition 2.2 [25] The exponential map expx : TxM → M is a diffeomorphism for all x ∈ M. For any two
points x, y ∈ M, there exists a unique normalized geodesic γ : [0, 1] → M joining x = γ (0) to y = γ (1)
which is in fact a minimal geodesic defined by

γ (t) = expx t exp
−1
x y, ∀t ∈ [0, 1].

Lemma 2.3 [16] Let {xn}∞n=0 be a sequence in a Hadamard manifold M such that xn → x̃ ∈ M. Then the
following assertions hold.

(a) For every y ∈ M, we have

exp−1
xn y → exp−1

x̃ y and exp−1
y xn → exp−1

y x̃;
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(b) If vn ∈ TxnM and vn → ṽ, then ṽ ∈ Tx̃M;
(c) Given un, vn ∈ TxnM and ũ, ṽ ∈ Tx0M, then

un → ũ and vn → ṽ ⇒ 〈un, vn〉 → 〈ũ, ṽ〉.
A subset C of a Riemannian manifold M is said to be geodesic convex if for all x, y ∈ C and for any

geodesic γ : [a, b] → M, a, b ∈ R, such that x = γ (a) and y = γ (b), we have

γ (at + (1 − t)b) ∈ C, ∀t ∈ [0, 1].
A function f : M → R is said to be geodesic convex if for any geodesic γ : [a, b] → M, the composition

function f ◦ γ : [a, b] → R is convex, that is,

( f ◦ γ )(at + (1 − t)b) ≤ t ( f ◦ γ )(a) + (1 − t)( f ◦ γ )(b), ∀t ∈ [0, 1] and ∀a, b ∈ R.

Moreover, f : M → R is said to be strongly geodesic convex with constant σ > 0 if for any geodesic
γ : [a, b] → M, the composition function f ◦ γ : [a, b] → R is strongly convex with constant σ‖γ̇ (0)‖2,
that is,

( f ◦ γ )(at + (1 − t)b) ≤ t ( f ◦ γ )(a) + (1 − t)( f ◦ γ )(b) − σ t (1 − t)‖γ̇ (0)‖2,
∀t ∈ [0, 1] and ∀a, b ∈ R. (5)

Proposition 2.4 [25] If M is a Riemannian manifold, then the Riemannian distance d : M × M → R is
a geodesic convex function with respect to the product Riemannian metric, i.e., for any pair of geodesics
γ1 : [0, 1] → M and γ2 : [0, 1] → M,

d(γ1(t), γ2(t)) ≤ (1 − t)d(γ1(0), γ2(0)) + td(γ1(1), γ2(1)), ∀t ∈ [0, 1].
In particular, for any x ∈ M, the function d(·, x) : M → R is a geodesic convex function.

A geodesic triangle�(x1, x2, x3) in a Riemannian manifoldM is a set which consists of three points x1, x2
and x3, and three minimal geodesics γi joining xi to xi+1, where i = 1, 2, 3 (mod 3).

Lemma 2.5 [17] Let �(x1, x2, x3) be a geodesic triangle in a Hadamard manifold M. Then, there exists
x̃1, x̃2, x̃3 ∈ R

2 such that

d(x1, x2) = ‖x̃1 − x̃2‖, d(x2, x3) = ‖x̃2 − x̃3‖ and d(x3, x1) = ‖x̃3 − x̃1‖.
The triangle�(x̃1, x̃2, x̃3) is called the comparison triangle of the geodesic triangle�(x1, x2, x3), which is

unique up to the isometry ofR2. The points x̃1, x̃2, x̃3 are called the comparison points to the points x1, x2, x3,
respectively.

Proposition 2.6 [25] Let�(x1, x2, x3) be a geodesic triangle in aHadamardmanifoldM. For each i = 1, 2, 3
(mod 3), let γi : [0, li ] → M denote the geodesic joining xi to xi+1, li = L (γi ), and θi be the angle between
tangent vectors γ̇i (0) and γ̇i−1(li−1). Then,

(a) θ1 + θ2 + θ3 ≤ π;
(b) l2i + l2i+1 − 2li li+1 cos θi+1 ≤ l2i−1.

As in [16], Proposition 2.6 (b) can be re-written in terms of Riemannian distance and exponential map as

d2(xi , xi+1) + d2(xi+1, xi+2) − 2
〈
exp−1

xi+1
xi , exp

−1
xi+1

xi+2

〉
≤ d2(xi−1, xi ), (6)

since
〈
exp−1

xi+1
xi , exp

−1
xi+1

xi+2

〉
= d(xi , xi+1)d(xi+1, xi+2) cos θi+1.

For further detail, we refer [11].

Remark 2.7 [16] For every x, y ∈ M and v ∈ TxM, we have

〈
v, − exp−1

x y
〉 =

〈
v, Px,y exp

−1
y x

〉
=

〈
Py,xv, exp−1

y x
〉
. (7)
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Remark 2.8 Let x, y, z ∈ M and v ∈ TxM. By using (6) and Remark 2.7, we have

〈
v, exp−1

x z
〉 ≤ 〈

v, exp−1
x y

〉 +
〈
v, Px,y exp

−1
y z

〉
.

We close this section by recalling some properties and results related to the sequences of real numbers.

Remark 2.9 For any sequences {αn} and {βn} of real numbers, using arithmetic mean and geometric mean
inequality, we have

2|αnβn| ≤
(
snα

2
n + 1

sn
β2
n

)
, ∀sn > 0.

Lemma 2.10 [30] Let {an} be a sequence of nonnegative real numbers such that

an+1 ≤ (1 − ζn)an + δn, ∀n ≥ 0,

where {ζn} ⊆ (0, 1) and {δn} are sequences of real numbers such that the following conditions hold:

(a) limn→∞ ζn = 0;
(b)

∑∞
n=0 ζn = +∞;

(c) lim supn→∞ δn
ζn

≤ 0.

Then, limn→∞ an = 0.

3 Regularized variational inclusion problems

A single-valued vector field on M is a single-valued mapping B : M → TM that assigns a tangent vector
B(x) ∈ TxM for all x ∈ M. The set of all such single-valued vector fields is denoted by �(M). A set-valued
vector field A on M is a set-valued mapping A : M ⇒ TM that assigns a subset A(x) of TxM for all x ∈ M.
The collection of all such set-valued vector fields is denoted by X (M). The domain of a set-valued vector
field A : M ⇒ TM is defined by D(A) = {x ∈ M : A(x) �= ∅}.
Definition 3.1 [20,29] A single-valued vector field B ∈ �(M) is said to be

(a) monotone if for every x, y ∈ M,

〈
B(x), exp−1

x y
〉 ≤

〈
B(y),− exp−1

y x
〉
;

(b) strongly monotone if there is a constant σ > 0 such that for every x, y ∈ M,

〈
B(x), exp−1

x y
〉 +

〈
B(y), exp−1

y x
〉
≤ −σd2(x, y);

(c) L-Lipschitz continuous if there exists a constant L > 0 such that for every x, y ∈ M,

‖Px,y B(y) − B(x)‖ ≤ L d(x, y);
(d) maximal monotone if it is monotone and for every x, y ∈ M and u ∈ TxM, the condition

〈
u, exp−1

x y
〉 ≤

〈
B(y),− exp−1

y x
〉
,

implies u = B(x).

Definition 3.2 [16,22] A set-valued vector field A ∈ X (M) is said to be

(a) monotone if for every x, y ∈ D(A),

〈
u, exp−1

x y
〉 ≤

〈
v, − exp−1

y x
〉
, ∀u ∈ A(x) and ∀v ∈ A(y);
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(b) strongly monotone if there is a constant σ > 0 such that for every x, y ∈ D(A),

〈
u, exp−1

x y
〉 +

〈
v, exp−1

y x
〉
≤ −σd2(x, y), ∀u ∈ A(x) and ∀v ∈ A(y);

(c) maximal monotone if it is monotone and for all x ∈ D(A) and u ∈ TxM, the condition

〈
u, exp−1

x y
〉 ≤

〈
v, − exp−1

y x
〉
, ∀y ∈ D(A) and ∀v ∈ A(y),

implies u ∈ A(x);
(d) upper Kuratowski semicontinuous at x ∈ D(A) if for every sequences {xn}∞n=0 ⊆ D(A) and {un}∞n=0 ⊂ TM

with un ∈ A(xn), the relations lim
n→∞ un = u and lim

n→∞ xn = x imply u ∈ A(x).

Furthermore, A is said to be upper Kuratowski semicontinuous onM if it is upper Kuratowski semicontinuous
at each x ∈ D(A).

Remark 3.3 (a) It can be easily seen that if A ∈ X (M) is a set-valued monotone vector field and B ∈ �(M)
is a single-valued monotone vector field, then A + B is a set-valued monotone vector field.

(b) If A, B ∈ X (M) are set-valued maximal monotone vector fields such that D(A) ∩ int D(B) �= ∅, where
int D(B) denotes the interior of D(B), then A+ B is a set-valued maximal monotone vector field (see [24]).

Lemma 3.4 [16] Every maximal monotone set-valued vector field A ∈ X (M) is upper Kuratowski semicon-
tinuous onM.

Theorem 3.5 [16] Let A ∈ X (M) be a maximal and strongly monotone vector field with D(A) = M. Then,
there exists a unique x̄ ∈ M such that 0 ∈ A(x̄).

Definition 3.6 [15,17] Let C be a nonempty subset of a Hadamard manifold M. A mapping T : C → M is
said to be

(a) nonexpansive if

d(T (x), T (y)) ≤ d(x, y), ∀x, y ∈ C;
(b) firmly nonexpansive if for every x, y ∈ C , the function φ : [0, 1] → [0,∞] defined by

φ(t) := d
(
expx t exp

−1
x T (x), expy t exp

−1
y T (y)

)
, ∀t ∈ [0, 1],

is nondecreasing.

Remark 3.7 [15] Every firmly nonexpansive mapping is nonexpansive.

Definition 3.8 [21] LetC be a nonempty geodesic convex subset of a Hadamard manifoldM. A single-valued
vector field F : C → TM is said to be geodesic hemicontinuous if for every geodesic γ : [0, 1] → C and
u ∈ Tγ (0)M, the function t �→ 〈

Pγ (0),γ (t)F(γ (t)), u
〉
is continuous.

Definition 3.9 [15] For a given λ > 0 and a set-valued vector field A ∈ X (M), the resolvent related to A of
order λ is a set-valued mapping J A

λ : M ⇒ D(A) defined by

J A
λ (x) := {

z ∈ M : x ∈ expz λA(z)
}
, ∀x ∈ M.

Theorem 3.10 [15] Let A ∈ X (M) be a set-valued vector field. Then the following assertions hold for all
λ > 0,

(a) The vector field A is monotone if and only if J A
λ is single-valued and firmly nonexpansive;

(b) Let D(A) = M. The vector field A is maximal monotone if and only if J A
λ is single-valued, firmly nonex-

pansive and D(JAλ ) = M.

Remark 3.11 (a) It can be easily seen that the set Fix(T )of fixedpoints of a nonexpansivemapping T : C → M

defined on a Hadamard manifold M is closed and geodesic convex; See, for example, [1].
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(b) If A ∈ X (M) and B ∈ �(M) are monotone vector fields, then so is A + B ∈ X (M). Therefore, in view
of Theorem 3.10 (a), we see that J A+B

λ is nonexpansive, and Fix(J A+B
λ ) = (A + B)−1(0) for each λ > 0

(see [15]). Indeed,

x ∈ Fix(J A+B
λ ) ⇔ x ∈ J A+B

λ (x) ⇔ x ∈ expx λ(A + B)(x) ⇔ 0 ∈ (A + B)(x).

Hence, S = (A + B)−1(0) is closed and geodesic convex.
(c) In view of [21, Theorem 1] and the above remark, if F ∈ �(M) is a strongly monotone and Lipschitz

continuous vector field, then the problem (4) has a unique solution.

Lemma 3.12 Let B ∈ �(M) be a monotone and geodesic hemicontinuous single-valued vector field with
D(B) = M. Then B is maximal monotone.

Proof Let x ∈ M and u ∈ TxM be such that

〈
u, exp−1

x y
〉 ≤

〈
B(y), − exp−1

y x
〉
, ∀y ∈ M,

equivalently,
〈
Px,y B(y) − u, exp−1

x y
〉 ≥ 0, ∀y ∈ M.

Consider the geodesic γ (t) = expx t exp
−1
x y for t ∈ (0, 1), then

〈
Px,γ (t)B(γ (t)) − u, exp−1

x γ (t)
〉 ≥ 0.〈

Px,γ (t)B(γ (t)) − u, exp−1
x y

〉 ≥ 0.

Letting t → 0 and using geodesic hemicontinuity of B, we get
〈
B(x) − u, exp−1

x y
〉 ≥ 0, ∀y ∈ M. (8)

In particular, take y = expx (u − B(x)) in (8), we get u = B(x). Hence, B is maximal monotone vector field.
��

Proposition 3.13 Let A ∈ X (M) be a maximal monotone set-valued vector field and B ∈ �(M) be a
monotone and geodesic hemicontinuous single-valued vector field with D(B) = M. Then, A+ B is a maximal
monotone set-valued vector field.

Proof Since B is a monotone and geodesic hemicontinuous single-valued vector field with D(B) = M, by
Lemma 3.12, B is a maximal monotone vector field. Hence, by Remark 3.3 (b), we get the conclusion. ��

To propose regularization iterative methods for computing the approximate solutions of the HVIP (4), we
consider the following regularized variational inclusion problem.

Let A ∈ X (M) be a set-valued vector field and B, F ∈ �(M) be single-valued vector fields. For each
α > 0, the following regularized variational inclusion problem (in short, RVIP) is to find x̄ ∈ M such that

0 ∈ A(x̄) + B(x̄) + αF(x̄). (9)

If A ∈ X (M) is a maximal monotone set-valued vector field and B ∈ �(M) is a monotone and geodesic
hemicontinuous single-valued vector field, with D(B) = M, then by Proposition 3.13, A + B is maximal
monotone. If F ∈ �(M) is a strongly monotone and geodesic hemicontinuous single-valued vector field, so
is αF for each α > 0. Therefore, if D(A) = D(B) = D(F) = M, then by Theorem 3.5, for each α > 0, RVIP
(9) has a unique solution. We denote such a unique solution by xα , that is,

0 ∈ A(xα) + B(xα) + αF(xα). (10)

Lemma 3.14 Let A ∈ X (M) be a monotone set-valued vector field, B ∈ �(M) be a monotone single-valued
vector field, and F ∈ �(M) be a σ -strongly monotone single-valued vector field. If for each α > 0, xα is a
solution of RVIP (9), then {xα} is bounded. In fact, for any (fixed) x∗ ∈ S := {x ∈ M : x ∈ (A + B)−1(0)},

d(xα, x∗) ≤ ‖F(x∗)‖
σ

.
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Proof Since for each α > 0, xα is a solution of RVIP (9), we have −αF(xα) ∈ (A+ B)(xα). Let x∗ ∈ S, that
is, 0 ∈ (A + B)(x∗). By the monotonicity of A + B, we have

〈−αF(xα), exp−1
xα

x∗〉 ≤
〈
0, − exp−1

x∗ xα

〉
= 0,

that is,
〈
F(xα), exp−1

xα
x∗〉 ≥ 0. By the σ -strong monotonicity of F , we have

0 ≤ 〈
F(xα), exp−1

xα
x∗〉 ≤

〈
F(x∗), − exp−1

x∗ xα

〉
− σd2(xα, x∗),

that is,

σd2(xα, x∗) ≤
〈
F(x∗), − exp−1

x∗ xα

〉
. (11)

By Cauchy–Schwarz inequality, we obtain

σd2(xα, x∗) ≤ ‖F(x∗)‖‖ − exp−1
x∗ xα‖ = ‖F(x∗)‖d(xα, x∗),

and therefore,

d(xα, x∗) ≤ ‖F(x∗)‖
σ

.

Thus, {xα} is bounded. ��
Lemma 3.15 Let A ∈ X (M) be a monotone set-valued vector field, B ∈ �(M) be a monotone single-valued
vector field, and F ∈ �(M) be a σ -strongly monotone and Lipschitz continuous single-valued vector field. If
for α > 0 and β > 0, xα and xβ are the solutions of RVIP (9), then there exists μ > 0 such that

d(xα, xβ) ≤ |β − α|
α

μ.

Proof Since xα and xβ are solutions of RVIP (9) for α > 0 and β > 0, respectively, we have

−αF(xα) ∈ (A + B)(xα) and − βF(xβ) ∈ (A + B)(xβ).

By the monotonicity of A + B, we have

〈−αF(xα), exp−1
xα

xβ

〉 ≤
〈
−βF(xβ), − exp−1

xβ
xα

〉
,

that is,

〈−αF(xα), exp−1
xα

xβ

〉 ≤
〈
βF(xβ), exp−1

xβ
xα

〉
.

By adding α
〈
F(xβ), − exp−1

xβ
xα

〉
, we obtain

〈−αF(xα), exp−1
xα

xβ

〉 + α
〈
F(xβ), − exp−1

xβ
xα

〉
≤

〈
βF(xβ), exp−1

xβ
xα

〉

+α
〈
F(xβ), − exp−1

xβ
xα

〉
,

or

−α
{〈
F(xα), exp−1

xα
xβ

〉 +
〈
F(xβ), exp−1

xβ
xα

〉}
≤ (β − α)

〈
F(xβ), exp−1

xβ
xα

〉
.

Then, by σ -strongly monotonicity of F and Cauchy–Schwarz inequality, we obtain

ασd2(xα, xβ) ≤ −α
{〈
F(xα), exp−1

xα
xβ

〉 +
〈
F(xβ), exp−1

xβ
xα

〉}

≤ (β − α)
〈
F(xβ), exp−1

xβ
xα

〉
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≤ |β − α|‖F(xβ)‖‖ exp−1
xβ

xα‖
≤ |β − α|‖F(xβ)‖d(xα, xβ).

Hence,

d(xα, xβ) ≤ |β − α|
α

‖F(xβ)‖
σ

. (12)

Since F is Lipschitz continuous and {xβ} is bounded, therefore {F(xβ)} is also bounded. Thus, there exists

μ > 0 such that ‖F(xβ)‖
σ

≤ μ for all β > 0. This together with inequality (12) implies the required conclusion.
��

Lemma 3.16 Let A ∈ X (M) be a monotone and upper Kuratowski semicontinuous set-valued vector field,
B ∈ �(M) be a monotone and continuous single-valued vector field, and F ∈ �(M) be a σ -strongly
monotone and Lipschitz continuous single-valued vector field. If for each α > 0, xα is a solution of RVIP (9),
then lim

α→0
xα = x̄ , where x̄ is a solution of HVIP (4).

Proof By Lemma 3.14, {xα} is bounded, and so without loss of generality, we may assume a sequence {αn}
in (0,∞) with αn → 0 as n → ∞ such that the sequence {xαn } of {xα} converges to a cluster point x̄ of {xα}.
Since xαn is a solution of the problem RVIP (9), we have

zαn := −αn F(xαn ) − B(xαn ) ∈ A(xαn ). (13)

Since F isLipschitz continuous and {xαn } is bounded, so is {F(xαn )}, and therefore,wehave lim
n→∞ ‖αn F(xαn )‖ =

lim
n→∞ |αn|‖F(xαn )‖ = 0, that is,

αn F(xαn ) → 0 as n → ∞. (14)

Since B is continuous and xαn → x̄ as n → ∞, we have B(xαn ) → B(x̄) as n → ∞. By combining
(13) and (14), we have zαn → −B(x̄) as n → ∞. Since A is upper Kuratowski semicontinuous, we obtain
−B(x̄) ∈ A(x̄), that is, x̄ ∈ (A + B)−1(0) = S. Since (11) hold for any x∗ ∈ S, so we can rewrite it as

σd2(xα, x) ≤ 〈
F(x),− exp−1

x xα

〉
, ∀x ∈ S, (15)

and therefore, for α = αn , we get

σd2(xαn , x) ≤ 〈
F(x),− exp−1

x xαn

〉
, ∀x ∈ S.

Consequently,
〈
F(x), exp−1

x xαn

〉 ≤ 0, ∀x ∈ S. (16)

Letting n → ∞ and using Lemma 2.3 (a), we obtain
〈
F(x), exp−1

x x̄
〉 ≤ 0, ∀x ∈ S. (17)

By Remark 3.11 (b), S is geodesic convex, and therefore, γ (t) = expx̄ (t exp
−1
x̄ x) ∈ S for all t ∈ (0, 1) and

all x ∈ S. Hence by (17), for all x ∈ S, we have
〈
F(γ (t)), exp−1

γ (t) x̄
〉
≤ 0, ∀t ∈ (0, 1),

or
〈
F(γ (t)),− exp−1

γ (t) x̄
〉
≥ 0, ∀t ∈ (0, 1). (18)

Let Pγ (0),γ (t) denote the parallel transport along the geodesic γ : [0, 1] → S from γ (0) = x̄ to γ (t). From
Remark 2.7 and relation (18), we get

〈
Pγ (0),γ (t)F(γ (t)), exp−1

x̄ γ (t)
〉
=

〈
F(γ (t)),− exp−1

γ (t) x̄
〉
≥ 0, ∀t ∈ (0, 1),
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that is,

〈
Pγ (0),γ (t)F(γ (t)), t exp−1

x̄ x
〉
≥ 0, ∀t ∈ (0, 1),

and thus,

〈
Pγ (0),γ (t)F(γ (t)), exp−1

x̄ x
〉
≥ 0, ∀t ∈ (0, 1). (19)

Since F is Lipschitz continuous, by letting t → 0 in inequality (19), we obtain

〈
F(x̄), exp−1

x̄ x
〉
≥ 0, ∀x ∈ S.

Since x̄ was arbitrary cluster point which solves problem (4), which is uniquely solvable. Therefore, xα → x̄
as α → 0. Hence, lim

α→0
xα = x̄ , where x̄ is a solution of (4). ��

4 Regularized iterative methods and convergence results

Consider the sequences {λn} and {αn} of positive real numbers and two real numbers λ̄ and λ such that
0 < λ̄ ≤ λ. Assume that the following conditions hold:

(H1) {λn} ⊂ [λ̄, λ] ⊂ (
0, 1

L1

) ;
(H2) lim

n→∞ αn = 0;
(H3)

∑∞
n=1 αnλn = +∞;

(H4) lim
n→∞

|αn−αn+1|
α2
n

= 0.

Algorithm 1 [Tseng’s type regularized proximal point algorithm]

Intialization: Choose arbitrary x0 ∈ M and consider the sequences {λn}, {αn} ⊂ (0,+∞)
Iterative steps: Given xn ∈ M, compute xn+1 as follows:
Step 1: Compute yn as

0 ∈ A(yn) + Pyn ,xn B(xn) + αn Pyn ,xn F(xn) − 1

λn
exp−1

yn xn . (20)

Step 2: Compute xn+1 as

xn+1 = expyn
(
λn

(
Pyn ,xn B(xn) − B(yn)

))
. (21)

Remark 4.1 Algorithm 1 can be seen as an extension of Algorithm 2 in [12] from Hilbert space to Hadamard
manifold settings.

To study the convergence of the sequence generated by Algorithm 1 to a solution of HVIP (4), we first
establish the following lemma.

Lemma 4.2 Let A ∈ X (M) be a monotone set-valued vector field, B ∈ �(M) be a monotone single-valued
vector field, and F ∈ �(M) be a single-valued vector fields Let {xn} be a sequence generated by Algorithm 1
and {xαn } be a sequence given by (10). Then,

d2(xn+1, xαn ) ≤ d2(xn, xαn ) + λ2n‖Pyn ,xn B(xn) − B(yn)‖2
−d2(xn, yn) + 2αnλn

〈
F(xαn ) − Pxαn ,xn F(xn), exp

−1
xαn

yn
〉
. (22)
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Proof Considering α = αn in (10), we obtain

−B(xαn ) − αn F(xαn ) ∈ A(xαn ).

On the other hand, from (20), we have−Pyn ,xn B(xn)−αn Pyn ,xn F(xn)+ 1
λn

exp−1
yn xn ∈ A(yn).Then, it follows

from the monotonicity of A that
〈
−Pyn ,xn B(xn) − αn Pyn ,xn F(xn) + 1

λn
exp−1

yn xn, exp
−1
yn xαn

〉

≤
〈
−B(xαn ) − αn F(xαn ), − exp−1

xαn
yn

〉

=
〈
B(xαn ), exp

−1
xαn

yn
〉
+ αn

〈
F(xαn ), exp

−1
xαn

yn
〉
.

By the monotonicity of B, we have
〈
−Pyn ,xn B(xn) − αn Pyn ,xn F(xn) + 1

λn
exp−1

yn xn, exp
−1
yn xαn

〉

≤
〈
B(yn), − exp−1

yn xαn

〉
+ αn

〈
F(xαn ), exp

−1
xαn

yn
〉
, (23)

which implies that

1

λn

〈
exp−1

yn xn, exp
−1
yn xαn

〉
≤

〈
Pyn ,xn B(xn) − B(yn), exp

−1
yn xαn

〉

+αn

〈
Pyn ,xn F(xn), exp

−1
yn xαn

〉
+ αn

〈
F(xαn ), exp

−1
xαn

yn
〉
. (24)

Since parallel transport is isometric and Pxαn ,yn exp
−1
yn xαn = − exp−1

xαn
yn, we have

〈
Pyn ,xn F(xn), exp

−1
yn xαn

〉
=

〈
Pxαn ,yn Pyn ,xn F(xn), Pxαn ,yn exp

−1
yn xαn

〉

=
〈
Pxαn ,xn F(xn), − exp−1

xαn
yn

〉
,

and therefore, inequality (24) becomes
〈
exp−1

yn xn, exp
−1
yn xαn

〉
≤ λn

〈
Pyn ,xn B(xn) − B(yn), exp

−1
yn xαn

〉

+αnλn

〈
Pxαn ,xn F(xn), − exp−1

xαn
yn

〉
+ αnλn

〈
F(xαn ), exp

−1
xαn

yn
〉
,

equivalently,
〈
exp−1

yn xn, exp
−1
yn xαn

〉
≤ λn

〈
Pyn ,xn B(xn) − B(yn), exp

−1
yn xαn

〉

+αnλn

〈
F(xαn ) − Pxαn ,xn F(xn), exp

−1
xαn

yn
〉
. (25)

From (21), we have

exp−1
yn xn+1 = λn

(
Pyn ,xn B(xn) − B(yn)

)
. (26)

By combining (25) and (26), we get
〈
exp−1

yn xn, exp
−1
yn xαn

〉
≤

〈
exp−1

yn xn+1, exp
−1
yn xαn

〉

+αnλn

〈
F(xαn ) − Pxαn ,xn F(xn), exp

−1
xαn

yn
〉
. (27)

Consider the geodesic triangle �(xn, yn, xαn ). Then by (6), we have

d2(xn, yn) + d2(yn, xαn ) ≤ 2
〈
exp−1

yn xn, exp
−1
yn xαn

〉
+ d2(xn, xαn ). (28)
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Consider another geodesic triangle �(xn+1, xαn , yn). Then by (6), we have

d2(xn+1, xαn ) + d2(yn, xαn ) ≤ 2
〈
exp−1

xαn
yn, exp

−1
xαn

xn+1

〉
+ d2(xn+1, yn). (29)

Adding (28) and (29), we get

d2(xn+1, xαn ) ≤ d2(xn, xαn ) + d2(xn+1, yn) − d2(xn, yn) − 2d2(yn, xαn )

+2
〈
exp−1

xαn
yn, exp

−1
xαn

xn+1

〉
+ 2

〈
exp−1

yn xn, exp
−1
yn xαn

〉
. (30)

From relation (26), we have

d2(xn+1, yn) = ‖ exp−1
yn xn+1‖2 = λ2n‖Pyn ,xn B(xn) − B(yn)‖2, (31)

and therefore, the inequality (30) becomes

d2(xn+1, xαn ) ≤ d2(xn, xαn ) + λ2n‖Pyn ,xn B(xn) − B(yn)‖2 − d2(xn, yn) − 2d2(yn, xαn )

+2
〈
exp−1

xαn
yn, exp

−1
xαn

xn+1

〉
+ 2

〈
exp−1

yn xn, exp
−1
yn xαn

〉
. (32)

It follows from Remarks 2.7 and 2.8 that〈
exp−1

xαn
yn, exp

−1
xαn

xn+1

〉
≤

〈
exp−1

xαn
yn, exp

−1
xαn

yn
〉
+

〈
exp−1

xαn
yn, Pxαn ,yn exp

−1
yn xn+1

〉

=
〈
exp−1

xαn
yn, exp

−1
xαn

yn
〉
+

〈
Pyn ,xαn

exp−1
xαn

yn, exp
−1
yn xn+1

〉

= ‖ exp−1
xαn

yn‖2 +
〈
− exp−1

yn xαn , exp
−1
yn xn+1

〉

= d2(yn, xαn ) −
〈
exp−1

yn xαn , exp
−1
yn xn+1

〉
. (33)

By combining (32) and (33), we get

d2(xn+1, xαn ) ≤ d2(xn, xαn ) + λ2n‖Pyn ,xn B(xn) − B(yn)‖2 − d2(xn, yn) − 2d2(yn, xαn )

+2d2(yn, xαn ) − 2
〈
exp−1

yn xαn , exp
−1
yn xn+1

〉
+ 2

〈
exp−1

yn xn, exp
−1
yn xαn

〉
, (34)

and thus, the inequality (34) becomes

d2(xn+1, xαn ) ≤ d2(xn, xαn ) + λ2n‖Pyn ,xn B(xn) − B(yn)‖2 − d2(xn, yn)

−2
〈
exp−1

yn xαn , exp
−1
yn xn+1

〉
+ 2

〈
exp−1

yn xn, exp
−1
yn xαn

〉
. (35)

By using (27), it reduces to (22). ��
Theorem 4.3 Let A ∈ X (M) be a maximal monotone set-valued vector field withD(A) = M, B ∈ �(M) be
a monotone and L1-Lipschitz continuous single-valued vector field, and F ∈ �(M) be a σ -strongly monotone
and L2-Lipschitz continuous single-valued vector field with D(B) = D(F) = M. Suppose that the conditions
(H1)-(H4) hold. Then, the sequence {xn} generated by Algorithm 1 converges to a solution x̄ of HVIP (4).

Proof As σ > 0, we can choose two numbers ε1 > 0 and ε2 > 0 such that

2σ − L2ε1 − ε2 > 0. (36)

By Remark 2.8, we obtain
〈
F(xαn ) − Pxαn ,xn F(xn), exp

−1
xαn

yn
〉
≤

〈
F(xαn ) − Pxαn ,xn F(xn), exp

−1
xαn

xn
〉

+ 〈
F(xαn ) − Pxαn ,xn F(xn), Pxαn ,xn

exp−1
xn yn

〉
. (37)

On the other hand, the σ -strongly monotonicity of F implies that
〈
F(xαn ) − Pxαn ,xn F(xn), exp

−1
xαn

xn
〉
≤ −σd2(xn, xαn ).

123



Arab. J. Math. (2023) 12:309–330 321

Therefore, the inequality (37) becomes
〈
F(xαn ) − Pxαn ,xn F(xn), exp

−1
xαn

yn
〉
≤ −σd2(xn, xαn )

+ 〈
F(xαn ) − Pxαn ,xn F(xn), Pxαn ,xn

exp−1
xn yn

〉
(38)

Since F is L2-Lipschitz continuous, by Cauchy–Schwarz inequality, we get
〈
F(xαn ) − Pxαn ,xn F(xn), Pxαn ,xn

exp−1
xn yn

〉 ≤ ‖F(xαn ) − Pxαn ,xn F(xn)|‖Pxαn ,xn
exp−1

xn yn‖
= ‖Pxαn ,xn F(xn) − F(xαn )‖‖ exp−1

xn yn‖
≤ L2 d(xn, xαn )d(xn, yn). (39)

From Remark 2.9, we have

2d(xn, xαn )d(xn, yn) ≤ ε1d
2(xn, xαn ) + 1

ε1
d2(xn, yn), (40)

By combining (38), (39) and (40), we get

2
〈
F(xαn ) − Pxαn ,xn F(xn), exp

−1
xαn

yn
〉
≤ −2σd2(xn, xαn ) + 2L2d(xn, xαn )d(xn, yn)

≤ −2σd2(xn, xαn ) + L2ε1d
2(xn, xαn ) + L2

ε1
d2(xn, yn)

≤ (L2ε1 − 2σ)d2(xn, xαn ) + L2

ε1
d2(xn, yn). (41)

From Lemma 4.2 and inequality (41), we obtain

d2(xn+1, xαn ) ≤ d2(xn, xαn ) + λ2n‖Pyn ,xn B(xn) − B(yn)‖2 − d2(xn, yn)

+(L2ε1 − 2σ)αnλnd
2(xn, xαn ) + L2αnλn

ε1
d2(xn, yn). (42)

The Lipschitz continuity of B implies that

d2(xn+1, xαn ) ≤ (1 − (2σ − L2ε1) αnλn) d
2(xn, xαn )

−
(
1 − L2

1λ
2
n − L2αnλn

ε1

)
d2(xn, yn). (43)

Since {λn} ⊂ [λ̄, λ] ⊂ (
0, 1

L1

)
and αn → 0, there exists n0 ≥ 1 such that

1 − L2
1λ

2
n − L2αnλn

ε1
> 0, ∀n ≥ n0. (44)

As αnλn → 0 as n → ∞, we have

1 − ε2αnλn > 0, ∀n ≥ n0, (45)

and thus,

(2σ − L2ε1 − ε2) αnλn

1 − ε2αnλn
∈ (0, 1), ∀n ≥ n0. (46)

Therefore, using (44), (45) and (46), inequality (43) becomes

d2(xn+1, xαn ) ≤ (1 − (2σ − L2ε1) αnλn) d
2(xn, xαn ), ∀n ≥ n0. (47)

Consider the geodesic triangle �(xn+1, xαn , xαn+1). Then by Lemma 2.5, there exists a comparison triangle
�(x̃n+1, x̃αn , x̃αn+1) such that

d(xn+1, xαn ) = ‖x̃n+1 − x̃αn‖, d(xαn , xαn+1) = ‖x̃αn − x̃αn+1‖ and
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d(xαn+1, xn+1) = ‖x̃αn+1 − x̃n+1‖.
Note that

d2(xn+1, xαn ) = ‖x̃n+1 − x̃αn‖2
= ‖x̃n+1 − x̃αn+1 + x̃αn+1 − x̃αn‖2
= ‖x̃n+1 − x̃αn+1‖2 + ‖x̃αn+1 − x̃αn‖2 + 2

〈
x̃n+1 − x̄αn+1, x̃αn+1 − x̄αn

〉

≥ ‖x̃n+1 − x̃αn+1‖2 + ‖x̃αn+1 − x̃αn‖2 − 2‖x̃n+1 − x̃αn+1‖‖x̃αn+1 − x̃αn‖
≥ d2(xn+1, xαn+1) + d2(xαn+1, xαn ) − 2d(xn+1, xαn+1)d(xαn+1, xαn ). (48)

From Remark 2.9, we have

2d(xn+1, xαn+1)d(xαn+1, xαn ) ≤ ε2αnλnd
2(xn+1, xαn+1) + 1

ε2αnλn
d2(xαn+1, xαn ). (49)

From (48) and (49), and Lemma 3.15, we obtain

d2(xn+1, xαn ) ≥ (1 − ε2αnλn)d
2(xn+1, xαn+1) − 1 − ε2αnλn

ε2αnλn
d2(xαn+1, xαn )

≥ (1 − ε2αnλn)d
2(xn+1, xαn+1) − 1 − ε2αnλn

ε2αnλn

(
αn − αn+1

αn

)2

μ2

= (1 − ε2αnλn)d
2(xn+1, xαn+1) − μ2(1 − ε2αnλn)

ε2λn

(αn − αn+1)
2

α3
n

. (50)

This together with (47) implies that

(1 − ε2αnλn) d
2(xn+1, xαn+1) − μ2(1 − ε2αnλn)

ε2λn

(αn − αn+1)
2

α3
n

≤ (1 − (2σ − L2ε1) αnλn) d
2(xn, xαn ). (51)

Since 1 − ε2αnλn > 0, ∀n ≥ n0, it gives that

d2(xn+1, xαn+1) ≤ 1 − (2σ − L2ε1)αnλn

1 − ε2αnλn
d2(xn, xαn ) + μ2

ε2λn

(αn − αn+1)
2

α3
n

, ∀n ≥ n0. (52)

Set an := d(xn, xαn ), ζn := (2σ−L2ε1−ε2)αnλn
1−ε2αnλn

, and δn := μ2

ε2λn

(αn−αn+1)
2

α3
n

. Then the inequality (52) becomes

an+1 ≤ (1 − ζn)an + δn, ∀n ≥ n0. (53)

From (46), ζn ∈ (0, 1) for all n ≥ n0. By the conditions (H1)-(H3), we conclude that
∞∑

n=n0
ζn = +∞, and the

condition (H4) assures that

δn

ζn
= μ2(1 − ε2αnλn)

ε2λ2n(2σ − L2ε1 − ε2)

(αn − αn+1)
2

α4
n

→ 0 as n → ∞.

By (53) and Lemma 2.10, we get an = d2(xn, xαn ) → 0 as n → ∞. From Lemma 3.16, it immediately
follows that xn → x̄ as n → ∞. ��

Algorithm 1 can be applied only when the Lipchitz constant L1 of B is known which is the drawback
of Algorithm 1, because sometime either Lipschitz constant is unknown or difficult to find it. To avoid this
disadvantage, we propose another method which can be easily implemented without the prior knowledge of
Lipschitz constant L1 of the vector field B.
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Algorithm 2 [Regularized modified Tseng’s type proximal point algorithm]

Intialization: Choose arbitrary x0 ∈ M, and two numbers λ0 ∈ (0,+∞) and ν ∈ (0, 1) and a sequence

{αn} ⊂ (0,+∞) and {qn} ∈ [0,+∞) such that
∞∑
n=0

qn < ∞
Iterative steps: Given xn ∈ M, compute xn+1 as follows
Step 1. Compute yn as

0 ∈ A(yn) + Pyn ,xn B(xn) + αn Pyn ,xn F(xn) − 1

λn
exp−1

yn xn; (54)

Step 2. Compute

xn+1 = expyn
(
λn(Pyn ,xn B(xn) − B(yn))

) ;

Update

λn+1 =
{
min

{
νd(xn ,yn)

‖Pyn ,xn B(xn)−B(yn)‖ , λn + qn
}

, if Pyn ,xn B(xn) − B(yn) �= 0,

λn + qn, otherwise.
(55)

Set n := n + 1 and go to step 1.

Remark 4.4 (a) In Algorithm 2, the stepsizes increase iteration by iteration and so they reduce the dependence
on the initial stepsize λ0. Since the sequence {qn} is summable, we obtain lim

n→∞ qn = 0. Therefore, the

stepsizes may be nonincreasing when n is large. So, if F is a zero vector field, then Algorithm 2 is more
general than the algorithm considered in [14] for solving variational inclusion problem (3) where stepsizes
are considered to be decreasing.

(b) Liu and Yang [19] used similar type of stepsizes to propose an iterative algorithm for solving variational
inequality problem in the setting of Hilbert spaces.

We need the following lemma to establish the convergence of the sequences generated by Algorithm 2 to
a solution of HVIP (4).

Lemma 4.5 If B ∈ �(M) is a L1-Lipschitz continuous single-valued vector field, then

(a) the sequence {λn} generated by (55) is bounded,
(b) lim

n→∞ λn = λ and λ ∈
[
min

{
λ0,

ν
L1

}
, λ0 + Q

]
, where Q =

∞∑
n=0

qn,

(c) ‖Pyn ,xn B(xn) − B(yn)‖ ≤ νd(xn ,yn)
λn+1

.

Proof (a) From the definition of λn , we have

λn+1 ≤ λn + qn, ∀n ∈ N,

that is,

λn+1 ≤ λ0 +
n∑

k=0

qk ≤ λ0 +
∞∑
k=0

qk = λ0 + Q, ∀n ∈ N. (56)

Since B is L1-Lipschitz continuous, we have

‖Pyn ,xn B(xn) − B(yn)‖ ≤ L1d(xn, yn),

and therefore,

νd(xn, yn)

‖Pyn ,xn B(xn) − B(yn)‖ ≥ ν

L1
, if Pyn ,xn B(xn) �= B(yn).
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This together with (55) implies that

λn ≥ min

{
λ0,

ν

L1

}
, ∀n ∈ N (57)

Hence, from (56) and (57), {λn} is bounded sequence.
(b) Let (λn+1 − λn)+ = max{0, λn+1 − λn} and (λn+1 − λn)− = max{0,−(λn+1 − λn)}. By the definition of
λn , we have

∞∑
n=0

(λn+1 − λn)+ ≤
∞∑
n=0

qn < +∞. (58)

Thus, the series
∞∑
n=0

(λn+1 − λn)+ is convergent.

Next we prove the convergence of the series
∞∑
n=0

(λn+1 − λn)−. Suppose that
∞∑
n=0

(λn+1 − λn)− = +∞.

Note that

(λn+1 − λn) = (λn+1 − λn)+ − (λn+1 − λn)−, (59)

therefore, we get

λn+1 − λ0 =
n∑

k=0

(λk+1 + λk) =
n∑

k=0

(λk+1 − λk)+ +
n∑

k=0

(λk+1 − λk)−. (60)

Taking n → +∞ in (60), we get lim
n→+∞ λn = −∞. which is a contradiction. From the convergence of the

series
∞∑
n=0

(λn+1 − λn)+ and
∞∑
n=0

(λn+1 − λn)−, and taking n → ∞ in (60), we get lim
n→∞ λn = λ. Since λn has

the lower bound min
{

ν
L1

, λ0

}
and upper bound λ0 + Q, we have λ ∈

[
min

{
λ0,

ν
L1

}
, λ0 + Q

]
.

(c) Clearly, from (55), we have

‖Pyn ,xn B(xn) − B(yn)‖ ≤ νd(xn, yn)

λn+1
, ∀n ∈ N. (61)

Indeed, if Pyn ,xn B(xn) = B(yn), then (61) holds directly. Let Pyn ,xn B(xn) �= B(yn), then it follows from (55)
that

λn+1 = min

{
νd(xn, yn)

‖Pyn ,xn B(xn) − B(yn)‖ , λn + qn

}
≤ νd(xn, yn)

‖Pyn ,xn B(xn) − B(yn)‖ .

Thus,

‖Pyn ,xn B(xn) − B(yn)‖ ≤ ν

λn+1
d(xn, yn).

Hence, (61) holds for Pyn ,xn B(xn) = B(yn) as well as for Pyn ,xn B(xn) �= B(yn). ��
Theorem 4.6 Let A ∈ X (M) be a maximal monotone set-valued vector field withD(A) = M, B ∈ �(M) be
a monotone and L1-Lipschitz continuous single-valued vector field, and F ∈ �(M) be a σ -strongly monotone
and L2-Lipschitz continuous single-valued vector field with D(B) = D(F) = M. Suppose that the conditions
(H2)-(H4) hold. Then, the sequence {xn} generated by Algorithm 2 converges to a solution x̄ of HVIP (4).
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Proof From Lemma 4.2, we have

d2(xn+1, xαn ) ≤ d2(xn, xαn ) + λ2n‖Pyn ,xn B(xn) − B(yn)‖2 − d2(xn, yn)

+2αnλn

〈
F(xαn ) − Pxαn ,xn F(xn), exp

−1
xαn

yn
〉
. (62)

By Lemma 4.5 (c), it reduces to

d2(xn+1, xαn ) ≤ d2(xn, xαn ) −
(
1 − ν2λ2n

λ2n+1

)
d2(xn, yn)

+2αnλn

〈
F(xαn ) − Pxαn ,xn F(xn), exp

−1
xαn

yn
〉
. (63)

Consider ε1 > 0 and ε2 > 0 such that (36) holds. Since λn → λ, ν ∈ (0, 1) and αn → 0, there exists k ∈ N

such that

1 − ν2λ2n

λ2n+1

− L2αnλn

ε1
> 0 ∀n ≥ k, (64)

1 − ε2αnλn > 0, ∀n ≥ k, (65)

and

(2σ − L2ε2 − ε2)αnλn

1 − ε2αnλn
∈ (0, 1), ∀n ≥ k. (66)

By using relations (41) in (63), we obtain

d2(xn+1, xαn ) ≤ d2(xn, xαn ) −
(
1 − ν2λ2n

λ2n+1

)
d2(xn, yn)

+(L2ε1 − 2σ)αnλnd
2(xn, xαn ) + L2αnλn

ε1
d2(xn, yn), (67)

and therefore,

d2(xn+1, xαn ) ≤ (1 − (2σ − L2ε1) αnλn) d
2(xn, xαn ) −

(
1 − ν2λ2n

λ2n+1

− L2αnλn

ε1

)
d2(xn, yn). (68)

It follows from (64) that

d2(xn+1, xαn ) ≤ (1 − (2σ − L2ε1) αnλn) d
2(xn, xαn ), ∀n ≥ k. (69)

Remaining of the proof is similar to that of the proof of Theorem 4.3. ��

5 Computational experiment

Let f : M → R be a differentiable function onM. Then the gradient of f , denoted by grad f (x), at x [10] is
defined by

〈grad f (x), w〉 := f ′(x;w), ∀w ∈ TxM,

where f ′ is a directional derivative of f at x in the direction w ∈ TxM, defined by

f ′(x;w) = lim sup
t→0+

f (expx tw) − f (x)

t
.

The gradient of f on the Hadamard manifold (Rn++, 〈, 〉) is given by
grad f (x) = G(x)−1.∇ f (x), ∀x = (x1, x2, . . . , xn) ∈ R

n++,
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where G(x)−1 is inverse of the matrix G(x). Then, we have

x ∈ min
x∈M f ⇔ grad f (x) = 0, (70)

where min
x∈M f = {x ∈ M : f (x) ≤ f (y), ∀y ∈ M} is a set of minimizer of f overM.

Proposition 5.1 [23] IfM is a Riemannian manifold and f : M → R be a differentiable function. Then,

(a) f is geodesic convex if and only if grad f is a monotone vector field;
(b) f is strongly geodesic convex if and only if gard f is a strongly monotone vector field.

If f : M → R is a twice differentiable function, then the Hessian of f at x ∈ M [27], denoted by Hess f ,
is defined by

Hess f (x) = ∇u(grad f (x)), ∀u ∈ TxM,

where ∇u is the Riemannian connection of M.

Proposition 5.2 [8] Let M be a Hadamard manifold and f : M → R be a twice continuously differentiable
function. If Hess f is bounded, then the gradient vector field grad f is Lipschitz continuous.

The subdifferential ∂ f : M ⇒ TM of f at x [25] is defined by

∂ f (x) = {
v ∈ TxM : 〈

v, exp−1
x y

〉 ≤ f (y) − f (x), ∀y ∈ M
}
. (71)

Lemma 5.3 [16] If f : M → R ∪ {+∞} is a proper, lower semicontinuous and geodesic convex function on
a Hadamard manifold M and the domain of f , D( f ) = M. Then, the subdifferential ∂ f of f is a maximal
monotone set-valued vector field.

Example 5.4 Consider M = R
n++ = {x = (xi ) ∈ R

n : xi > 0, i = 1, 2, . . . , n} and (Rn++, 〈·, ·〉) is a
Riemannian manifold endowed with the Riemannian metric 〈·, ·〉 defined by

〈u, v〉 = u�G(x)v, ∀u, v ∈ TxM,

where G(x) is a positive definite symmetric square matrix of order n × n given by

G(x) =
{

1
x2i

, i = j,

0, i �= j.

It is known that the tangent space TxM at x ∈ M is equal toRn . Then, the parallel transport Py,x : TxM → TyM
is the identity mapping. The Riemannian distance d : M × M → [0,∞) is defined by

d(x, y) =
n∑

i=1

| ln xi − ln yi |, ∀x, y ∈ M.

Then (Rn++, 〈·, ·〉) is a Hadamardmanifold. For further details, we refer [27]. The unique geodesic γ : [0, 1] →
M starting from x = (x1, x2, . . . , xn) = γ (0) with velocity v = γ̇ (0) ∈ TxM is defined as

γ (t) =
(
x1e

(v/x1)t , x1e
(v/x1)t , . . . , xne

(v/xn)t
)

.

Since expx tv = γ (t), the inverse of the exponential map is

exp−1
x y = (x1 ln(y1/x1), x2 ln(y2/x2), . . . , xn ln(yn/xn)) ,

∀x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ M.

Let f : Rn++ → R be a function defined by

f (x) =
n∑

i=1

| ln xi |, ∀x = (x1, x2, . . . , xn) ∈ R
n++.
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Then, the subdifferential ∂ f (x) of f is given by

∂ f (x) =
{

{(t1, t2, . . . , tn) ∈ R
n : −1 ≤ ti ≤ 1 for each i = 1, 2, . . . , n}, if xi = 1;

x = (x1, x2, . . . , xn), otherwise.

Note that ∂ f is a maximal monotone vector field. Consider the functions g, h : R
n++ → R defined by

g(x) = 1
2

∑n
i=1 ln

2 xi and h(x) = 1
4

∑n
i=1(2 ln xi − 1)2, respectively. Then, the gradient of g and h are given

by

grad g(x) = (x1 ln x1, x2 ln x2, . . . , xn ln xn), ∀x = (x1, x2, . . . , xn) ∈ R
n++,

and

grad h(x) = (2x1 ln x1 − x1, 2x2 ln x2 − x2, . . . , 2xn ln xn − xn), ∀x = (x1, x2, . . . , xn) ∈ R
n++,

respectively. Note that grad g is a 1-Lipschitz continuous and monotone vector field and grad h is a 2-strongly
monotone vector field and 4-Lipschitz continuous for all x, y ∈ R

n++ (see [4]). Then (∂ f + grad g)−1(0) =
{(e−1, e−1, . . . , e−1), (1, 1, . . . , 1)}. Consider A = ∂ f , B = grad g(x) and F = grad h in HVIP (4). For any
y = (y1, y2, . . . , yn) ∈ (A + B)−1(0), we have

〈
F(x̄), exp−1

x̄ y
〉
=

n∑
i=1

(2 ln x̄i − 1)

(
ln

yi
x̄i

)
≥ 0

⇔ x̄ = (x1, x2, . . . , xn) = (1, 1, . . . , 1) ∈ (A + B)−1(0).

The convergence behavior of Algorithms 1 and 2 with different initial points is given in Figs. 1, 2, 3 and 4.
We consider the following control parameters αn and λn:

In Algorithm 1: The parameters αn = 1
(n+1)p and λn = 0.9 − 1

(n+1)q with p + q = 1.

In Algorithm 2: The parameters αn = 1
(n+1)p for p < 1, λ0 = 0.2, qn = 1

(n+1)2
and ν = 0.9.

We choose the random initial points by the command in the MatLab rand(n,1) for n = 100 and 1000. In the
following figures we show the behavior of Algorithm 1 and 2 with the error function d(xn+1, xn). We run our
programming codes in MATLAB r2013a on the processor Intel Core i5-6200U CPU @ 2.30 GHz × 4 with
stopping criteria d(xn+1, xn) < 10−4.

Fig. 1 n = 100 and x = (2, 2, . . . , 2)

123



328 Arab. J. Math. (2023) 12:309–330

Fig. 2 n = 1000 and x = (2, 2, . . . , 2)

Fig. 3 n = 100 and x =rand(100, 1)

Fig. 4 n = 1000 and x =rand(1000, 1)
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