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Abstract We consider the problem of maximal regularity for the semilinear non-autonomous evolution equa-
tions

u′(t) + A(t)u(t) = F(t, u), t-a.e., u(0) = u0.

Here, the time-dependent operators A(t) are associated with (time dependent) sesquilinear forms on a Hilbert
space H. We prove the maximal regularity result in temporally weighted L2-spaces and other regularity
properties for the solution of the previous problem under minimal regularity assumptions on the forms, the
initial value u0 and the inhomogeneous term F. Our results are motivated by boundary value problems.

Mathematics Subject Classification 35K90 · 35K45 · 47D06

1 Introduction

The present paper deals with maximal L2-regularity for non-autonomous evolution equations in the setting of
Hilbert spaces. Before explaining our results, we introduce some notations and assumptions.

Let (H, (·, ·), ‖ · ‖) be a Hilbert space over R or C. We consider another Hilbert space V which is densely
and continuously embedded into H. We denote by V ′ the (anti-) dual space of V so that

V ↪→d H ↪→d V ′.

We denote by 〈, 〉 the duality V-V ′ and note that 〈ψ, v〉 = (ψ, v) if ψ, v ∈ H. Given τ ∈ (0, ∞) and consider
a family of sesquilinear forms

a : [0, τ ] × V × V → C,

such that

• [H1]: D(a(t)) = V (constant form domain),
• [H2]: |a(t, u, v)| ≤ M‖u‖V‖v‖V (uniform boundedness),
• [H3]: Re a(t, u, u) + ν‖u‖2 ≥ δ‖u‖2V (∀u ∈ V) for some δ > 0 and some ν ∈ R (uniform quasi-
coercivity).
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Here and throughout this paper, ‖ · ‖V denotes the norm of V .
To each form a(t), we can associate two operators A(t) and A(t) on H and V ′, respectively. Recall that

u ∈ H is in the domain D(A(t)) if there exists h ∈ H such that for all v ∈ V: a(t, u, v) = (h, v). We then set
A(t)u := h. The operatorA(t) is a bounded operator from V into V ′ such thatA(t)u = a(t, u, ·). The operator
A(t) is the part of A(t) on H. It is a classical fact that −A(t) and −A(t) are both generators of holomorphic
semigroups (e−r A(t))r≥0 and (e−rA(t))r≥0 onH and V ′, respectively. The semigroup e−r A(t) is the restriction
of e−rA(t) to H. In addition, e−r A(t) induces a holomorphic semigroup on V (see, e.g., Ouhabaz [15, Chapter
1]). We consider the non-homogeneous Cauchy problem{

u′(t) + A(t) u(t) = f (t), t ∈ (0, τ ]
u(0) = u0.

(1.1)

By a well-known result of J.L. Lions, the maximal regularity always holds in the space V ′. That is for
every f ∈ L2(0, τ ;V ′) and u0 ∈ H there exists a unique u ∈ H1(0, τ ;V ′) ∩ L2(0, τ ;V) which solves the
problem (1.1). The maximal regularity in H is however more interesting since when dealing with boundary
value problems one cannot identify the boundary conditions if the Cauchy problem is considered in V ′. The
maximal regularity in H is more difficult to prove.

It has been shown in [12] that the maximal regularity in H may fail for forms C
1
2 in time. For A(.) ∈

Ws,p(0, τ ;L(V,V ′)), with s < 1
2 the maximal regularity does not hold and this comes from the inclusion

C
1
2 (0, τ ;L(V,V ′)) ⊂ Ws,p(0, τ ;L(V,V ′)).
For p > 2 andA(.) ∈ W

1
2 ,p(0, τ ;L(V,V ′)), the maximal regularity can fail also and this follows from the

counterexample in [6]. It is proved in [3] that themaximal regularity holds if t �→ A(t) ∈ W
1
2 ,2(0, τ ;L(V,V ′))

(with some integrability conditions). This result is optimal. For the case of weighted spaces, we refer the reader
to the recent paper [4]. The choice of weighted spaces has a big advantages. Among them is to reduce the
necessary regularity for initial conditions of evolution equations. Time-weights can be used also to exploit
parabolic regularization which is typical for quasilinear parabolic problems.

The main focus of this paper is to consider the semilinear equation

u′(t) + A(t)u(t) = F(t, u), t-a.e., u(0) = u0. (1.2)

Here, the inhomogeneous term F satisfies some continuity condition. Our main result shows that for
forms satisfying the uniform Kato square root property (see the next section for the definition) then we
have the maximal regularity result in temporally weighted L2−spaces if u0 ∈ [H; D(A(0))] 1−β

2
and

A ∈ W
1
2 ,2(0, τ ;L(V,V ′)) ∩ Cε([0, τ ],L(V,V ′)). The Kato square root property plays an important role

in the questions of (non-autonomous) maximal regularity and optimal control. We remark that (1.2) was stud-
ied recently in [11] in non weighted spaces, such that the non-linearity term F is a bounded valued function
on H, satisfies other more regularity assumptions and some Dini-condition holds for A(.) (see [11, Theorem
5.1] for more details). In the present paper, the regularity assumptions on A(.) and F are significantly weaker
than those from previous results.

To prove our results, we appeal to classical tools from harmonic analysis such as square function estimate
and from functional analysis such as interpolation theory or operator theory.

Notation. We denote by L(E, F) (or L(E)) the space of bounded linear operators from E to F (from E
to E).The spaces L p(a, b; E) and W 1,p(a, b; E) denote respectively the Lebesgue and Sobolev spaces of
function on (a, b) with values in E . Cα(a, b; E) denote the space of Hölder continuous functions of order
α, recall that the norms of H and V are denoted by ‖ · ‖ and ‖ · ‖V . The scalar product of H is (·, ·).
We denote by C , C ′ or c... all inessential positive constants, their values may change from line to line.
Finally, by (E, F)θ,p and [E, F]θ ( θ ∈ (0, 1) and p ∈ (1,∞)) we denote the real interpolation space
defined by the K−method and complex interpolation space, respectively, between E and F . We refer the
reader to [14, Definition 1.1.2, Definition 2.1.3] for more details.

2 Preliminaries

In this section, we state several definitions and properties which will play an important role in the proof of our
results.
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We briefly recall the definitions and we give the basic properties of vector-valued function spaces with
temporal weights. For more details, we refer to [4].

For −1 < β < 1 we set L2
β(0, τ ;H) = L2(0, τ, tβdt;H), endowed with the norm

‖u‖2
L2

β(0,τ,H)
:=

∫ τ

0
‖u(t)‖2 tβ dt.

It is known that L2
β(0, τ ;H) ↪→ L1

loc(0, τ ;H). We define the corresponding weighted Sobolev spaces

W 1,2
β (0, τ ;H) :=

{
u ∈ W 1,1(0, τ ;H) : u, u′ ∈ L2

β(0, τ ;H)
}

,

W 1,2
β,0(0, τ ; X) :=

{
u ∈ W 1,2

β (0, τ ;H) : u(0) = 0
}

,

which are Banach spaces for the norms, respectively

‖u‖2
W 1,2

β (0,τ ;H)
:= ‖u‖2

L2
β(0,τ ;H)

+ ‖u′‖2
L2

β(0,τ ;X)
,

‖u‖2
W 1,2

β,0(0,τ ;H)
:= ‖u′‖2

L2
β(0,τ ;H)

.

Remark 2.1 The restriction on β comes from several facts. The first one is the embedding L2
β(0, τ ;H) ↪→

L1(0, τ ;H). The second one is due to Hardy’ inequality and the third reason comes from the fact that functions
in W 1,2

β (0, τ ;H) have a well-defined trace in case that −1 < β < 1.

Lemma 2.2 Let u ∈ W 1,2
β,0(0, τ ;H). We have

‖u‖2
L2

β(0,τ ;H)
≤
∫ τ

0
s
∫ s

0

∥∥u′(r)
∥∥2 rβ dr ds.. (2.1)

Proof Let u ∈ W 1,2
β,0(0, τ ;H), s ∈ (0, τ ). Due to Holder’s inequality, we get

‖u(s)‖X =
∥∥∥∥
∫ s

0
u′(r) dr

∥∥∥∥ ≤
∫ s

0

∥∥u′(r)
∥∥ dr

≤
(∫ s

0
r−β dr

) 1
2
(∫ s

0

∥∥u′(r)
∥∥2 rβ dr

) 1
2

= s
1−β
2

(∫ s

0

∥∥u′(r)
∥∥2 rβ dr

) 1
2

.

Therefore, (2.1) follows immediately. ��
Let us define the space

Wβ (D(A(.)),H) :=
{
u ∈ W 1,1(0, τ ;H), s.t A(.)u ∈ L2

β(0, τ ;H), u′ ∈ L2
β(0, τ ;H)

}
,

with norm

‖u‖Wβ(D(A(.),H) = ‖A(.)u‖L2
β(0,τ ;H) + ∥∥u′∥∥

L2
β(0,τ ;H)

.

It is easy to see that Wβ(D(A(.),H) ↪→ W 1,2
β (0, τ ;H). For s ∈ (0, τ ), we define the associated trace space

to Wβ(D(A(.)),H) by

T R(s, β) := {
u(s) : u ∈ Wβ(D(A(.)),H)

}
,

endowed with norm

‖u(s)‖T R(s,β) := inf
{‖v‖Wβ(D(A(.)),H) : v(s) = u(s)

}
.
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Remark that (T R(s, β), ‖ · ‖T R(s,β)) is a Banach space and for u ∈ Wβ(D(A(·)),H), it follows that u(s) ∈
T R(s, β). Conversely, if x ∈ T R(s, β), then there exists u ∈ Wβ(D(A(·)),H) such that u(s) = x .

From now, we assume without loss of generality that the forms are coercive, that is [H3] holds with ν = 0.
The reason is that by replacing A(t) by A(t) + ν, the solution v of (1.1) is v(t) = e−νt u(t) and it is clear that
u ∈ W 1,2

β (0, τ ;H) ∩ L2
β(0, τ ;V) if and only if v ∈ W 1,2

β (0, τ ;H) ∩ L2
β(0, τ ;V).

In the statements below, we shall need the following square root property (called Kato’s square root
property)

D
(
A(t)1/2

) = V and c1
∥∥A(t)1/2v

∥∥ ≤ ‖v‖V ≤ c2
∥∥A(t)1/2v

∥∥ , (2.2)

for all v ∈ V and t ∈ [0, τ ], where the positive constants c1 and c2 are independent of t . This assumption is
always true for symmetric forms when ν = 0 in [H3]. It is also valid for uniformly elliptic operator on Rn , see
[8].

3 Main results

In this section, we state explicitly our main results.
Let F(t, x) : (0, τ )×H → H and F0(t) = F(t, 0).Assume that F0(.) ∈ L2

β(0, τ ;H) and (t, x) �→ F(t, x)
satisfies the following continuity property: for any ε > 0 there exists a constant Nε > 0 such that

‖F(., u) − F(., v)‖2
L2

β(0,τ ;H)
≤ ε‖u − v‖2Wβ(D(A(.),H) + Nε‖u − v‖2

L2
β(0,τ ;H)

, (3.1)

for any u, v ∈ Wβ(D(A(.),H).

If we assume that ‖F(t, x)− F(t, y)‖ ≤ K‖x − y‖V , K > 0, x, y ∈ V, t ∈ (0, τ ) then the condition (3.1)
is satisfied. Indeed, let u, v ∈ Wβ(D(A(.),H) one has

‖F(., u) − F(., v)‖2
L2

β(0,τ ;H)
≤ K 2‖u − v‖2

L2
β(0,τ ;V)

= K 2

δ

∫ τ

0

(
δ‖u(t) − v(t)‖2V

)
tβ dt

≤ K 2

δ

∫ τ

0
(Re (A(t) (u(t) − v(t)) , u(t) − v(t))) tβ dt

≤ K 2

δ

∫ τ

0
‖A(t)(u(t) − v(t))‖ ‖u(t) − v(t)‖ tβ dt

≤ ε‖A(.)(u − v)‖2
L2

β(0,τ ;H)
+ Nε‖u − v‖2

L2
β(0,τ ;H)

,

where Nε = K 4

δ2ε
.

The following theorem is proved in [4, Theorem 5.3].

Theorem 3.1 Assume that A ∈ W
1
2 ,2(0, τ ;L(V,V ′)) ∩ Cε([0, τ ],L(V,V ′)), ε > 0 and (2.2) holds. Then

for all f ∈ L2
β(0, τ ;H) and u0 ∈ [H; D(A(0))] 1−β

2
, there exists a unique u ∈ Wβ(D(A(.),H) solves (1.1).

Moreover, there exists a positive constant N > 0 such that

‖u‖Wβ(D(A(.),H) ≤ N
[
‖u0‖[H;D(A(0))] 1−β

2

+ ‖ f ‖L2
β(0,τ ;H)

]
.

The following proposition gives a characterization of the trace space T R(s, β).

Proposition 3.2 For all β ∈ (0, 1), s ∈ (0, τ ), we have

T R(s, β) = [H; D(A(s))] 1−β
2

with equivalent norms.

Proof The first injection T R(s, β) ↪→ [H; D(A(s))] 1−β
2

is obtained by [4, Proposition 5.1]. The second

injection “←↩” follows by Theorem 3.1. ��
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The following is our main result.

Theorem 3.3 Suppose that A ∈ W
1
2 ,2(0, τ ;L(V,V ′)) ∩ Cε([0, τ ],L(V,V ′)), with ε > 0, and (2.2) holds.

Then for all u0 ∈ [H; D(A(0))] 1−β
2

, there exists a unique u ∈ Wβ(D(A(.),H) satisfies

u′(t) + A(t)u(t) = F(t, u), t-a.e., u(0) = u0. (3.2)

Moreover, there exists a positive constant c > 0 such that

‖u‖Wβ(D(A(.),H) ≤ c
[
‖u0‖[H;D(A(0))] 1−β

2

+ ‖F0‖L2
β(0,τ ;H)

]
. (3.3)

Proof First, let us define the space Wβ,0(D(A(.),H) := Wβ(D(A(.),H)} ∩ W 1,2
β,0(0, τ ; X). For v ∈

Wβ(D(A(.),H) consider the linear equation

w′ + A(.)w = F(., v), w(0) = 0. (3.4)

Thanks to Theorem 3.1, (3.4) has a unique solution w ∈ Wβ,0(D(A(.),H).

We define

S : Wβ,0(D(A(.),H) → Wβ,0(D(A(.),H)

v �→ w.

Let v1, v2 ∈ Wβ,0(D(A(.),H).Obviously, x = Sv1− Sv2 satisfies x ′ + A(.)x = F(., v1)−F(., v2), x(0) = 0
and we have by Theorem 3.1 and Lemma 2.2 that there exists N > 0 such that

‖Sv1 − Sv2‖2Wβ(D(A(.),H) ≤ N‖F(., v1) − F(., v2)‖2L2
β(0,τ ;H)

≤ Nε‖v1 − v2‖2Wβ(D(A(.),H) + NNε‖v1 − v2‖2L2
β(0,τ ;H)

≤ Nε‖v1 − v2‖2Wβ(D(A(.),H) + NNε

∫ τ

0
s
∫ s

0

∥∥(v1 − v2)
′(r)

∥∥2 rβ dr ds

≤ Nε‖v1 − v2‖2Wβ(D(A(.),H) + NNε

∫ τ

0
s‖v′

1 − v′
2‖2L2

β(0,s;H)
ds.

Set K0 := Nε and K1 := NNε. Then, repeating the above inequality and using the identity
∫ t

0
s1

∫ s1

0
s2...

∫ sn−1

0
sn dsn...ds1 = 1

�(2n + 1)
t2n,

we obtain

∥∥Snv1 − Snv2
∥∥2
Wβ(D(A(.),H)

≤
n∑

k=0

(
n
k

)
Kn−k
0 (K1τ

2)k
1

�(2k + 1)
‖v1 − v2‖2Wβ(D(A(.),H)

≤ (2K0)
n

⎡
⎢⎣ max
k=0,..,n

⎛
⎜⎝
(
K−1
0 τ 2K1

)k
�(2k + 1)

⎞
⎟⎠
⎤
⎥⎦ ‖v1 − v2‖2Wβ(D(A(.),H).

In the second inequality we used

n∑
k=0

(
n
k

)
= 2n.

Observe that maxk=0,..,n

((
K−1
0 τ 2K1

)k
�(2k+1)

)
is bounded for all n ∈ N

∗.
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Now, we take ε < 1
4N (which gives K0 < 1

4 ) and n sufficiently large to get

∥∥Snv1 − Snv2
∥∥2
Wβ(D(A(.),H)

<
1

2n

⎡
⎢⎣ max
k=0,..,n

⎛
⎜⎝
(
K−1
0 τ 2K1

)k
�(2k + 1)

⎞
⎟⎠
⎤
⎥⎦ ‖v1 − v2‖2Wβ(D(A(.),H)

< ‖v1 − v2‖2Wβ(D(A(.),H).

Then Sn is a contraction map on Wβ(D(A(.),H) and this yields the existence and uniqueness of a solution
w ∈ Wβ(D(A(.),H) to (3.4). Therefore it only remains to prove the a priori estimate (3.3). From the linear
equation and (3.1), we have for all ε > 0

‖w‖2Wβ(D(A(.),H) ≤ N‖F(., w)‖2
L2

β(0,τ ;H)

≤ N‖F(., w) − F0(.)‖2L2
β(0,τ ;H)

+ 2N‖F0(.)‖2L2
β(0,τ ;H)

≤ 2Nε‖w‖2Wβ(D(A(.),H) + 2NNε‖w‖2
L2

β(0,s;H)
+ 2N‖F0(.)‖2L2

β(0,s;H)

≤ 2Nε‖w‖2Wβ(D(A(.),H) + 2NNε

∫ τ

0
s‖w′‖p

L2
β(0,s;H)

ds + 2N‖F0(.)‖2L2
β(0,s;H)

.

Take ε = 1
8N . Gronwall’s lemma gives that there exists C > 0 such that

‖w‖Wβ(D(A(.),H) ≤ C‖F0‖L2
β(0,s;H).

Consider now the non homogeneous equation. Let u0 ∈ [H; D(A(0))] 1−β
2

. Proposition 3.2, and the fact

that Tr(0, β) = [H; D(A(0))] 1−β
2

shows that there exists v ∈ Wβ(D(A(.),H) (with minimal norm) with

v(0) = u0 and

‖v‖Wβ(D(A(.),H) = ‖u0‖[H;D(A(0))] 1−β
2

.

For w ∈ Wβ(D(A(.),H), we define the function

G(t, w, w′) = F
(
t, w + v, w′ + v′) − (

v′(t) + A(t)v(t)
)
, t ∈ (0, τ ).

It is easy to check that G satisfies the condition (3.1), t �→ G(t, w, w′) ∈ L2
β(0, τ ;H),G(t, 0, 0) =

F(t, v, v′) − (v′(t) + A(t)v(t)). Moreover,

‖G(., 0, 0)‖L2
β(0,τ ;H) ≤ ∥∥F (

., v, v′) − F(., 0, 0)
∥∥
L2

β(0,τ ;H)
+ ‖F(., 0, 0)‖L2

β(0,τ ;H)

+ ∥∥v′ + A(.)v
∥∥
L2

β(0,τ ;H)

≤ C1‖v‖Wβ(D(A(.),H) + ‖F0‖L2
β(0,τ ;H)

≤ C

[
‖F0‖L2

β(0,τ ;H) + ‖u0‖(H;D(A(0))) 1−β
2 ,2

]
.

Now, we follow the same procedure as before we get the existence and the uniqueness of the solution to the
equation

w′ + A(.)w = G(., w), w(0) = 0.

Set u = v + w. Hence, u is the unique solution to (3.2). ��

4 Applications

This section is devoted to application of our results on existence and maximal regularity to concrete evolution
equations. We show how they can be applied to both linear and semilinear evolution equations.
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4.1 Elliptic operators.

Define on H = L2(Rd) the sesquilinear forms

a(t, u, v) =
d∑

k, j=1

∫
Rd

ak j (t, x)∂ku∂ jv dx +
d∑
j=1

∫
Rd

b j (t, x)∂ j uv dx +
∫
Rd

c(t, x)uv dx, u, v ∈ H1
(
R
d
)

.

We assume that ak j , b j , c : [0, τ ] × R
d → C such that:

ak j , b j , c ∈ L∞ (
[0, τ ] × R

d
)
for 1 ≤ k, j ≤ d,

and

Re
d∑

k, j=1

ak j (t, x)ξk ξ̄ j ≥ δ|ξ |2 for all ξ ∈ C
d and a.e. (t, x) ∈ [0, τ ] × R

d .

Here, δ > 0 is a constant independent of t.
It easy to check that a(t, ., .) is H1(Rd)-bounded and quasi-coercive. The associated operator with a(t, ., .) is
elliptic operator given by the formal expression

A(t)u = −
d∑

k, j=1

∂ j
(
ak j (t, .)∂ku

) +
d∑
j=1

b j (t, .)∂ j u + c(t, .)u.

In addition to the above assumptions, we suppose that C = (ak j )k, j ∈ W
1
2 ,2(0, τ ; L∞(�;Cn×n)) ∩

Cε([0, τ ]; L∞(�;Cn×n)), with ε > 0, which is equivalent to

∫ τ

0

∫ τ

0
sup
x∈�

‖C(t, x) − C(s, x)‖2
Cn×n

|t − s|2 ds dt < ∞,

‖C(t, x) − C(s, x)‖Cn×n < C |t − s|ε
a.e. for x ∈ � and t, s ∈ [0, τ ].

Note that

‖A(t) − A(s)‖L(V,V ′) � ‖C(t, .) − C(s, .)‖L∞(�;Cn×n).

Hence

A ∈ W
1
2 ,2 (0, τ ;L (V,V ′)) ∩ Cε

([0, τ ];L (V,V ′)) .

Let F(t, x) : (0, τ ) × H → H and F0(t) = F(t, 0). Assume that F0 ∈ L2
β(0, τ ;H) and F satisfies the

following continuity property:

‖F(t, x) − F(t, y)‖L2(Rd ) ≤ K‖x − y‖H1(Rd), K > 0, x, y ∈ H1
(
R
d
)

, t ∈ (0, τ ). (4.1)

Therefore, applying Theorem 3.3, we conclude that for every u0 ∈ [H; D(A(0))] 1−β
2

the problem

u′(t) −
d∑

k, j=1

∂ j
(
ak j (t, .)∂ku(t)

) +
d∑
j=1

b j (t, .)∂ j u(t) + c(t, .)u(t) = F(t, u(t)), t − a.e., u(0) = u0

has a unique solution u ∈ L2
β(0, τ ; H1(Rd)) such that A(.)u ∈ L2

β(0, τ ;H) and u′ ∈ L2
β(0, τ ;H).

Remark 4.1 Observe that for all β ∈ [0, 1[ we have[
L2

(
R
d
)

; D(A(0))
]
1−β
2

=
[
L2

(
R
d
)

; H1
(
R
d
)]

1−β
= H1−β

(
R
d
)

.
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The maximal regularity we proved here holds also in the case of elliptic operators on Lipschitz domains
with Dirichlet or Neumann boundary conditions. The arguments are the same. One define the previous forms
a(t) with domain V = H1

0 (�) (for Dirichlet boundary conditions) or V = H1(�) (for Neumann boundary
conditions).

As an example of non linearity, we take

F(t, y) = f (t, x) + g(t, x)|y(x)|α + h(t, x)
i=n∑
i=1

∣∣∣∣∂y(x)∂xi

∣∣∣∣
γ

,

such that α, γ ∈ [0, 1] and f ∈ L2
β(0, τ ;H), h ∈ L∞(0, τ ; L 2

1−γ (Rd)), y ∈ H1(Rd) with

• g ∈ L∞(0, τ ; L2(Rd)) for d = 1.

• g ∈ L∞(0, τ ; L 2q
q−1 (Rd)) for q ≥ 1

α
and d = 2.

• g ∈ L∞(0, τ ; L 2q
q−1 (Rd)) for 1

α
≤ q ≤ d

α(d−2) and d > 2.

Then, the function F satisfies the condition (3.1).
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