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Abstract Many physical phenomena can be modelled through nonlocal boundary value problems whose
boundary conditions involve integral terms. In this work we propose a numerical algorithm, by combining
second-orderCrank-Nicolson schema for the temporal discretization andLegendre-Chebyshev pseudo-spectral
method (LC-PSM) for the space discretization, to solve a class of parabolic integrodifferential equations subject
to nonlocal boundary conditions. The approach proposed in this paper is based on Galerkin formulation and
Legendre polynomials. Results on stability and convergence are established. Numerical tests are presented to
support theoretical results and to demonstrate the accuracy and effectiveness of the proposed method

Mathematics Subject Classification 35R09 · 65M20

1 Introduction

In the last decades, the theory of integrodifferential equations has been extensively investigated by many
researchers, and it has become a very active research area. The study of this class of equations ranges from
the theoretical aspects of solvability and well-posedness to the analytic and numerical methods for obtaining
solutions. A strong motivation for studying integrodifferential equations of PDEs type comes from the fact
that they could serve as mathematical models for many problems in physics, mechanics, biology and other
fields of sciences.

In this work, we are concerned with the numerical solution of the following parabolic integrodifferential
equation:

∂t u(x, t) − ∂2x u(x, t) =
∫ t

0
a(t − s)u(x, s)ds + f (x, t), x ∈ �, t ∈ J. (1.1)

with the initial condition

u(x, 0) = u0(x), x ∈ �. (1.2)

subject to integral boundary conditions

∂xu(−1, t) =
∫ 1

−1
u(x, t)K1(x)dx,

∂xu(1, t) =
∫ 1

−1
u(x, t)K2(x)dx .

(1.3)
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where � and J stand for the space domain (−1, 1) and time interval [0, T ] with T > 0, respectively. The
functions a, f, u0, K1 and K2 are well-defined functions. Assume that the kernel a in the integral part of
Eq. (1.1) is bounded, namely

|a(t − s)| ≤ a0, t, s ∈ J. (1.4)

Integrodifferential equations of the form (1.1), and other similar variants, arise in the mathematical modelling
of many physical phenomena and practical engineering problems, such as nonlocal reactive flows in porous
media [8,9], heat transfer inmaterialswithmemory [13,17], phenomena of visco-elasticity [7,19], gas diffusion
problems [18], spatio-temporal development of epidemics [21], and so on.

Considerable work has been made on the area of nonlocal boundary values problems in the numerical and
theoretical aspects. Indeed theoretical studies devoted to these classes of problems are usually connected with
some difficulties due to the presence of an integral terms in the boundary conditions, this promoted researchers
to perform some modifications and improvements on the classical methods to overcome this issue (see, e.g.,
[2,3,12,16]).

On the other hand, integrodifferential equations are usually too complicate to be solved analytically;
this made the use of numerical methods is required to obtain approximate solutions. Many efforts have been
undertaken to design and develop efficient numerical approaches for solving differential and integrodifferential
equations with nonlocal boundary conditions. In [15], Merad and Martín-Vaquero presented a computational
study for two-dimensional hyperbolic integrodifferential equations with purely integral conditions, in which,
they demonstrated the existence and uniqueness of the solution and proposed a numerical approach based on
Galerkin method. Authors in [11], utilized reproducing kernels approach to solve parabolic and hyperbolic
integrodifferential equations subject to integral and weighted integral conditions. More recently, Bencheikh et
al. [1] implemented numericalmethod, based on operationalmatrices of orthonormal Bernstein polynomials, to
approximate the solution of an integrodifferential parabolic equation with purely nonlocal integral conditions.
The problem under consideration in this paper has been well studied in [10], where the authors proved the
existence and uniqueness of the solution using energy inequalities method, and for the numerical resolution, a
numerical algorithm based on superposition principle is presented, where the original nonlocal problem was
replaced by three auxiliary standard boundary value problems that solved using finite difference method.

As for the numerical methods, Spectral and pseudo-spectral methods [4,20] have gained increasing pop-
ularity in the numerical resolution of many types of problems. In the context of spectral methods, Legendre
approximation has been used widely, and this Legendre–Galerkin spectral method has been shown to be com-
putationally efficient and highly accurate with exponential rate of convergence. While plenty of papers have
devoted to discussing the use of spectral methods for solving problemswith classical boundary conditions. Sur-
prisingly, a limited number of authors touched upon the implementation and analysis of the spectral methods
for problems with nonlocal boundary conditions [6].

The primary aim in this paper is to present a suitable way to analysis and implement Legendre–Chebyshev
pseudo-spectral method for the numerical resolution of a class of parabolic integrodifferential equations sub-
ject to non-local boundary conditions. The proposed approach is based on Galerkin formulation and used
Legendre polynomials as a basis for the spatial discretization, followed by, temporal discretization using the
trapezoidal method. Both efficiency and accuracy are achieved using the presented method, and the numerical
experiments showed that (LC–PSM) can realize better accuracy compared to other existing methods and with
less computational time.

This paper is organized as follows. In the next section, we briefly describe the way to implement Legendre–
Chebyshev pseudo-spectral method for discretizing the parabolic integrodifferential equation (1.1). In Sect. 3,
we first recall some lemmas and results related to spectral methods, and then, the stability and convergence of
themethod are established in L2-norms. In Sect. 4, we provide some numerical tests to confirm the effectiveness
and robustness of (LC–PSM) presented in this paper. Finally, in Sect. 5, we summarize some remarks on the
main features of our method and cite some possible extensions.

2 Legendre–Galerkin spectral method

In the next subsections, we shall briefly describe the way to implement Legendre–Chebyshev pseudo-spectral
method to approximate the solution of the nonlocal boundary value problem considered in this paper. As a
starting point, we formulate the nonlocal problem (1.1)–(1.3) in weak formulation: find u : J → H1(�) such
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that for any v ∈ H1(�)

⎧⎨
⎩

(∂t u, v) + (∂xu, ∂xv) − K(u, v) =
∫ t

0
a(t − s)(u(s), v)ds + ( f, v), t ∈ J,

u(0) = u0.
(2.1)

where the functional K(·, ·) is defined as follows:

K(z, v) = v(1)

(∫
�

K2(x)z(x)dx

)
− v(−1)

(∫
�

K1(x)z(x)dx

)
, v, z ∈ H1(�). (2.2)

Here and in what follows, we use the notation (·, ·) to denote the L2-inner product and ‖ · ‖ for the induced
norm on the space L2(�). Denote by Hm(�) the standard Sobolev space with norm and semi-norm denoted
by ‖ · ‖m and | · |m , respectively. Solvability of the above variational problem is addressed in the following
theorem [10].

Theorem 2.1 Assume that a0 satisfies rm (1.4). Then the variational problem (2.1) admits a unique weak
solution in L2(J ; H1(�)).

2.1 Space discretization: LC–PSM

Let PN (�) be the space consisting of all algebraic polynomials of degree at most N and denote by I CN :
L2(�) → PN (�) the operator of interpolation atChebyshev–Gauss–Lobatto points ξi = cos

( iπ
N

)
, 0 ≤ i ≤ N

defined as

I CN v(ξi ) = v(ξi ), 0 ≤ i ≤ N , v ∈ H1(�).

Based on the above weak formulation, we pose the semi-discrete Legendre–Chebyshev Galerkin schema as:
find uN : J → PN (�) such that for any v ∈ PN (�)

⎧⎪⎨
⎪⎩

(∂t uN , v) + (∂xuN , ∂xv) − K(uN , v) =
∫ t

0
a(t − s)(uN (s), v)ds + (I CN f, v),

uN (0) = I CN u0.

(2.3)

Let Lk be the kth degree Legendre polynomial defined by the following three-term recurrence formula:

L0(x) = 1, L1(x) = x, Lk+1(x) = 2k + 1

k + 1
xLk(x) + k

k + 1
Lk−1(x), k ≥ 1.

We recall that the set of Legendre polynomials is mutually orthogonal in L2(�), namely

(Lk, L j ) =
∫

�

Lk(x)L j (x)dx = 2

2k + 1
δ j,k .

Let N be a positive integer, we define [5]

ϕk(x) = 1√
4k + 6

(Lk(x) − Lk+2(x)) , 0 ≤ k ≤ N − 2,

ϕN−1(x) = 1

2
(L0(x) + L1(x)) ,

ϕN (x) = 1

2
(L0(x) − L1(x)) .

(2.4)

The following lemma is the key technique in our algorithm.
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Lemma 2.2 [22] For two integer j, k ∈ N, let us denote,

m j,k = mk, j = (ϕ j , ϕk) =
∫ 1

−1
ϕ j (x)ϕk(x)dx,

p j,k = pk, j = (ϕ′
j , ϕ

′
k) =

∫ 1

−1
ϕ′
j (x)ϕ

′
k(x)dx .

Then, for 0 ≤ j, k ≤ N − 2

m j,k = mk, j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

4k + 6

(
2

2k + 1
+ 2

2k + 5

)
, j = k,

− 1√
4k + 6

· 1√
4(k + 2) + 6

· 2

2k + 5
, j = k ± 2,

0, otherwise.

and

p j,k = pk, j = δ jk =
{
1, j = k,
0, otherwise.

Thanks to linear algebra arguments on can easily prove that

PN (�) = span {ϕk, 0 ≤ k ≤ N } ,

Consequently, the numerical solution uN of (2.3) can be expanded in terms of (ϕk)
N
k=0 with time-dependent

coefficients, namely

uN (x, t) =
N∑

k=0

αk(t)ϕk(x), (x, t) ∈ � × J. (2.5)

Inserting (2.5) into (2.3) and taking v = ϕ j , 0 ≤ j ≤ N , we obtain the following system of ODEs

N∑
k=0

m jkα
′
k(t) +

N∑
k=0

(p jk − q jk)αk(t) =
N∑

k=0

m jk Ak(t) + (I CN f, ϕ j ), 0 ≤ j ≤ N . (2.6)

where

m jk = (ϕk, ϕ j ), p jk = (ϕ′
k, ϕ

′
j ), q jk = K(ϕk, ϕ j ), Ak(t) =

∫ t

0
a(t − s)αk(s)ds.

with initial conditions

N∑
k=0

p jkαk(0) = (I CN u0, ϕ j ), 0 ≤ j ≤ N . (2.7)

Denote

A(t) = (A0(t), A1(t), . . . , AN (t))t ,

U(t) = (α0(t), α1(t), . . . , αN (t))t ,

U0 = (u00, u
0
1, . . . , u

0
N )t , u0j =

∫
�

I CN u0(x)φ j (x)dx,

F(t) = ( f0(t), f1(t), . . . , fN (t))t , f j (t) =
∫

�

I CN f (x, t)φ j (x)dx

M = [m jk]0≤ j,k≤N , P = [p jk]0≤ j,k≤N , Q = [q jk]0≤ j,k≤N .
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Then, the initial value problem (2.6) and (2.7) can be written in matrix formulation as follows:

MU′(t) + (P − Q)U(t) = MA(t) + F(t),

U(0) = U0.
(2.8)

The coefficientsm jk and p jk are already determined in Lemma (2.2). For the matrixQ, one can uses the values
of φ j (±1) to determinate its entries. In fact, since φ j (±1) = 0 for 0 ≤ j ≤ N − 2, hence Q is almost-null
matrix except the two last rows whose entries

qN−1,k =
∫

�

K2(x)ϕk(x)dx, qN ,k =
∫

�

K1(x)ϕk(x)dx, 0 ≤ k ≤ N .

2.2 Fully-discretization schema

For time advancing, we use the second-order Crank–Nicolson scheme to discretize the differential system
(2.8). For a given positive integer M , we define the step time 
t = T

M . Let ti = i
t, (i = 0 · · · , M), we
denote by αi

k and Ai
k the approximations of αk(ti ) and Ak(ti ), respectively.

The fully discretization LC–PSM/CN for (1.1)–(1.3) leads to the following recurrent algebraic system

(M + 
t (P − Q))Ui+1 = (M − 
t (P + Q))Ui + 
t (Fi+1 + Fi ) + 
tM(Ai) , i ≥ 1

MU0 = U(0)

where

Ui = (αi
0, α

i
1, . . . , α

i
N )t , Fi = ( f0(ti ), f1(ti ), . . . , fN (ti )

t , Ai = (Ai
0, A

i
1, . . . , A

i
N )t .

The above algebraic system can be solved easily using either direct or iterative methods. As a choice, on can
use QR factorization method, given its accurate results and ease of implementation.

3 Error analysis

In this section, we derive L2-error estimate for the error eN (t) = uN (t) − u(t). For this purpose, we first, in
the next subsection, recall a sequence of lemmas that will be needed to perform the error analysis.

3.1 Preliminaries

Now, we introduce two projection operators and their approximation properties. First, let PN : L2(�) →
PN (�) be the L2-orthogonal projection, namely

(PNv, ϕ) = (v, ϕ), ∀ϕ ∈ PN (�).

We also define the operator P1
N : H1(�) → PN (�) such that

P1
Nv(x) = v(−1) +

∫ x

−1
PN−1∂yv(y)dy.

From the definition of P1
N , one can obtain

(∂x P
1
Nv − ∂xv, ∂xϕ) = 0, ∀ϕ ∈ PN (�). (3.1)

Next, we give the approximation property of the projection operator P1
N and the interpolation operator I CN .

Lemma 3.1 [14] If v ∈ Hr (�) with r ≥ 1, then the following estimate holds

‖v − P1
Nv‖l ≤ CNl−r‖v‖r , 0 ≤ l ≤ 1. (3.2)

where C > 0 is a positive constant independent on N.
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Lemma 3.2 [14] Let v ∈ H1(�), there exists a positive constant C independent on N such that

N‖I CN v − v‖ + |I CN v|1 ≤ C‖v‖1. (3.3)

Moreover, if v ∈ Hr (�) for r ≤ 1, then the following estimate holds

‖v − I CN v‖r ≤ CNr−s‖v‖s, 0 ≤ r ≤ 1. (3.4)

where C > 0 is a positive constant independent on N.

Remark 3.3 Under the same assumptions of Lemma (3.2), we can obtain using approximation property (3.3)
the following inequality

‖I CN v‖ ≤ C‖v‖1. (3.5)

Now, we derive a basic estimate that will be used later in our proofs.

Lemma 3.4 [5] Let K(·, ·) defined by (2.2). Assume that K1, K2 ∈ L2(�). Then, for any w, v ∈ H1(�), the
following estimate holds

|K(w, v)| ≤ Cε

(‖w‖2 + ‖v‖2) + ε|v|21. (3.6)

3.2 Error estimates

In this subsection, we consider the stability and convergence of the semi-discrete approximation (2.3). We first
state a Gronwall-type inequality that will be used in the proof of our main results.

Lemma 3.5 Let E(t) and H(t) be two non-negative integrable functions on [0, T ] satisfying

E(t) ≤ H(t) + C1

∫ t

0
E(s)ds + C2

∫ t

0

∫ s

0
E(r)drdt, t ∈ [0, T ], (3.7)

where C1,C2 ∈ R
+. Then there exists C > 0 such that

E(t) ≤ eCt H(t), t ∈ [0, T ]. (3.8)

Proof For a non-negative function E(t), we perform a permutation of variables to obtain:

∫ t

0

∫ s

0
E(r)drds =

∫ t

0
(t − v)E(v)dv ≤ C

∫ t

0
E(s)ds.

Hence, inequality (3.7) of Lemma (3.5) becomes

E(t) ≤ H(t) + C
∫ t

0
E(s)ds, t ∈ [0, T ].

Now, applying the standard Gronwall inequality yields the desired estimate (3.8). 
�
Theorem 3.6 Let u0 ∈ H1(�) and f ∈ C1

(
0, T ; H1(�)

)
. Then the solution uN (t) of (2.3) satisfies

‖uN (t)‖2 +
∫ t

0
|uN (s)|21ds ≤ C

(∫ t

0
‖ f (s)‖21ds + ‖u0‖21

)
, t ∈ J. (3.9)
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Proof Let t ∈ J , setting uN (t) = v in

1

2

d

dt
‖uN (t)‖2 + |uN (t)|21 =

∫ t

0
a(t − s)(uN (s), uN (t))ds + (I CN f (t), uN (t))

+K(uN (t), uN (t)) =: I1 + I2 + I3, t ∈ J. (3.10)

We have to estimate the terms on the right-hand side of (3.10). For the first term I1, we use the hypothesis
(1.4) and then apply Cauchy and Young inequalities.

|I1| ≤
∫ t

0
|a(t − s)(uN (s), uN (t))ds

≤ a0

∫ t

0
|(uN (s), uN (t))ds

≤ a0
2

(
‖uN (t)‖2 +

∫ t

0
‖uN (s)‖2ds

)
.

(3.11)

Next, combining Cauchy and Young inequalities with approximation property (3.5) to estimate I2.

|I2| ≤ |(I CN f (t), uN (t))|
≤ 1

2
‖I CN f (t)‖2 + 1

2
‖uN (t)‖2

≤ C1‖ f (t)‖21 + 1

2
‖uN (t)‖2.

(3.12)

The estimate of I3 is an immediate consequence of Lemma (3.6), namely

|K(uN (t), uN (t))| ≤ Cε‖uN (t)‖2 + ε|uN (t)|1. (3.13)

Putting things together and choosing 0 < ε < 1 yields

1

2

d

dt
‖uN (t)‖2 + |uN (t)|21 ≤ C2‖uN (t)‖2 + C3‖ f (t)‖21 + C4

∫ t

0
‖uN (s)‖2ds. (3.14)

Integrating both sides of (3.14) form 0 to t , we obtain

E(t) ≤ C5

∫ t

0
E(s)ds + C6

∫ t

0

∫ s

0
E(r)drds + H(t), t ∈ J, (3.15)

where

E(t) = ‖uN (t)‖2 +
∫ t

0
|uN (s)|21ds,

H(t) =
∫ t

0
‖ f (s)‖21ds + ‖uN (0)‖2.

Thanks to the Gronwall-type inequality (3.5), we get

E(t) ≤ H(t)eCt , t ∈ J.

Because of uN (0) = I CN u0 = (I CN u0 − u0) + u0, we use approximation properties (3.3) and (3.5) to obtain
‖uN (0)‖ ≤ C‖u0‖21. Then it is easy to show the desired result. 
�
Let u(t) and uN (t) be the solutions to (2.1) and (2.3), respectively. Denoting

θN (t) = uN (t) − P1
Nu(t), and ρN (t) = P1

Nu(t) − u(t), ∀t ∈ J

Then, we have the following estimate.
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Lemma 3.7 Assume that u ∈ C1 (0, T ; Hr (�)) , r ≥ 2. Then the following estimate holds

‖θN (t)‖ ≤ CN−r , t ∈ J. (3.16)

where C > 0 is a positive constant independent on N.

Proof From (2.1), (2.3) and (3.1) we know that for a fixed t ∈ J the θN (t) satisfies for all v ∈ PN (�) the
following error equation:

(∂tθN (t), v) + (∂xθN (t), ∂xv) =
∫ t

0
a(t − s)(θN (s), v)ds +

∫ t

0
a(t − s)(ρN (s), v)ds +

(
I CN f (t) − f (t), v

)
− (∂tρN (t), v) + K(θN (t) + ρN (t), v). (3.17)

Setting v = θN (t) in (3.17), we obtain

1

2

d

dt
‖θN (t)‖2 + |θN (t)|21 ≤ I1 + I2 + I3 + I4 + I5. (3.18)

where

I1 =
∫ t

0
|a(t − s)(θN (s), θN (t))|ds, I2 =

∫ t

0
|a(t − s)(ρN (s), θN (t))|ds,

I3 = |
(
I CN f − f, θN (t)

)
|, I4 = | (∂tρN (t), θN (t)) |, I5 = |K(θN (t) + ρN (t), θN (t))|

Now, we estimate the terms on the right hand-side of inequality (3.17) using a standard procedure. For the
term I1, we apply Cauchy and Young inequalities and take into account (1.4),

I1 =
∫ t

0
|a(t − s)(θN (s), θN (t))|ds

≤ a0

∫ t

0
‖θN (t)‖ · ‖θN (s)‖ds

≤ C1

(
‖θN (t)‖2 +

∫ t

0
‖θN (s)‖2ds

)
(3.19)

In a similar manner, we can obtain for I2

I2 ≤ C

(
‖ρN (t)‖2 +

∫ t

0
‖θN (s)‖2ds

)

By virtue of approximation property (3.2), we bound I2 as follows

I2 ≤ C2N
−2r‖u(t)‖2r + C3

∫ t

0
‖θN (s)‖2ds (3.20)

For the term I3

I3 = |(I CN f (t) − f (t), θN (t))|
≤ ‖I CN f (t) − f (t)‖ · ‖θN (t)‖
≤ C4N

−2r‖ f (t)‖2r + ‖θN (t)‖2.
(3.21)

Similarly,

I4 ≤ C5N
−2r‖∂t u(t)‖2r + ‖θN (t)‖2. (3.22)

To estimate of the term I5 we use Lemma (3.4). Setting w = θN (t) + ρN (t) and v = θN (t) in (3.6) yields

|I5| = |K(θN (t) + ρN (t), θN (t))|
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≤ Cε

(‖θN (t) + ρN (t)‖2 + ‖θN (t)‖2) + ε|θN (t)|21 (3.23)

using the triangular inequality

|I5| ≤ Cε

(‖ρN (t)‖2 + ‖θN (t)‖2) + ε|θN (t)|21 (3.24)

hence, due to Lemma (3.1), on can obtain,

|I5| ≤ Cε‖θN (t)‖2 + ε|θN (t)|2 + C5N
−2r‖u‖2r (3.25)

In virtue of above estimates, the inequality (3.18) becomes

1

2

d

dt
‖θN (t)‖2 + |θN (t)|21 ≤ C4N

−2r
(
‖ f ‖2r + ‖∂t u‖2r + ‖u‖2r

)
+ Cε‖θN (t)‖2r + ε|θN (t)|21 (3.26)

By taking ε sufficiently small and integrating (3.26) over (0, t), we obtain

E(t) ≤ H(t) + C
∫ t

0
E(s)ds + C ′

∫ t

0

∫ s

0
E(r)drds, t ∈ J (3.27)

where

E(t) = ‖θN (t)‖2 +
∫ t

0
|θN (s)|21ds

H(t) = CN−2r
∫ t

0

(‖ f (s)‖2r + ‖∂t u(s)‖2r + ‖u(s)‖2r
)
ds + ‖θN (0)‖2

(3.28)

Gronwall-type inequality (3.5) implies

E(t) ≤ H(t)eCt , t ∈ J. (3.29)

Take into account,

θN (0) = P1
Nu0 − I CN u0 = (

P1
Nu0 − u0

) +
(
u0 − I CN u0

)

and approximation results (3.2) and (3.4), we obtain

‖θN (0)‖2 ≤ CN−2r‖u0‖2r (3.30)

Inserting (3.30) into (3.27) yields

‖θN (t)‖2 +
∫ t

0
|θN (s)|2dx ≤ C

(∫ t

0

(‖ f (s)‖2r + ‖∂t u(s)‖2r + ‖u(s)‖2r
)
ds + ‖u0‖2r

)

for all 0 < t ≤ T , which is the desired result. 
�
Now, we are in position to state our main result concerning the convergence of the semi-discrete approximation
(2.3).

Theorem 3.8 Let u(t) and uN (t) be the solution of (2.1) and (2.3), respectively. If u ∈ C1 (0, T ; Hr (�)) with
r ≥ 1, then the following error estimate holds,

‖u(t) − uN (t)‖ ≤ CN−r , t ∈ J. (3.31)

where C > 0 is a positive constant independent on N.

Proof Using triangular inequality, we have

‖u(t) − uN (t)‖ ≤ ‖uN (t) − P1
Nu(t)‖ + ‖P1

Nu(t) − u(t)‖ = ‖θN (t)‖ + ‖ρN (t)‖
By the aid Lemmas (3.2) and (3.7), for all t ∈ J we obtain

‖u(t) − uN (t)‖ ≤ CN−r + C ′N−r (3.32)

This completes the proof. 
�
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Fig. 1 Profiles of exact and approximate solutions, and the absolute error for step time τ = 10−3

Table 1 L∞-errors with different discretization parameters for Example (4.1)

Algorithm A2 [10] Mx = 20 Mx = 40 Mx = 80 Mx = 160
Nt = 40 Nt = 40 Nt = 40 Nt = 40

‖u∗ − uN‖∞ 6.8285e − 003 1.7008e − 003 4.2479e − 004 1.0617e − 004
Our method Mx = 4 Mx = 4 Mx = 4 Mx = 4

Nt = 40 Nt = 40 Nt = 40 Nt = 40
‖u∗ − uN‖∞ 2.9416e − 003 7.3521e − 004 1.8378e − 004 4.5932e − 005

Table 2 Absolute errors of some numerical solutions at t = 0.5 for Example (4.1)

(x, t) Our method Algorithm A2 [10]
Mx = 4, Nt = 640 Mx = 1280, Nt = 640

(0.2, 0.5) 1.1040e − 004 1.5000e − 004
(0.6, 0.5) 1.1540e − 004 1.6840e − 004
(1.0, 0.5) 1.0340e − 004 1.6220e − 004
CPU time (s) 8.08 438.62

Table 3 Spatial convergence rates at t = 1 for Example 4.2

N L2-error order L∞-error order

4 1.1202e−001 – 1.2161e−001 –
8 8.6098e−004 N−7.02 1.2361e−003 N−6.62

12 9.5949e−005 N−5.41 1.4962e−004 N−5.21

16 1.6561e−005 N−6.11 3.0725e−005 N−5.50

20 5.7758e−006 N−4.72 7.2971e−006 N−6.44

24 5.3747e−006 – 7.0248e−006 –

4 Numerical experiments

In this section, we carry out several numerical experiments to verify the efficiency and accuracy of the proposed
(LC–PSM), and we will compare our results against results obtained using other methods.
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Fig. 2 A L2-norm versus N . B Pointwise absolute errors with N = 20, 
t = 10−2 for Example (4.2) at t = 1

Example 4.1 In this first test problem, the following parabolic integrodifferential equation is considered

∂t u(x, t) − ∂2x u(x, t) = 2
∫ t

0
et−su(x, t)ds + f (x, t),

∂xu(0, t) = −6

13

∫ 1

−1
u(x, t)dx,

∂xu(1, t) = 6

13

∫ 1

−1
u(x, t)dx .

where f (x, t) = −(x2 − x − 2)(−3e−t − 4t + 2t2 + 4) − 2e−t and u0(x) = x2 − x − 2.
The exact solution to the above integrodifferential problem is given as

u∗(x, t) = (x2 − x − 2)e−t .

Figure 1 presents the computational results obtained by applying (LC–PSM) to the above test problem, where
the profiles of exact and approximate solutions as well as the absolute error are plotted.

From the numerical results illustrated in Fig. 1, one can observe that the approximate solution shows a
great agreement with the exact solution, which confirms that (LG–PSM) yields a very accurate an efficient
numerical method for the numerical resolution of nonlocal boundary value problems of integrodifferential
parabolic type.

For comparison purposes, in Tables 1 and 2we compared our computational resultswith the results obtained
in [10]. Obviously, the proposed (LC–PSM) in this paper gives more accurate solutions with less CPU time
than the finite difference schema used in mentioned reference.

Example 4.2 To examine the spatial discretization, we take in this example a test problem that has an analytic
solution with limited regularity. Let us consider the following problem:

∂t u(x, t) − ∂2x u(x, t) =
∫ t

0
e−(t−s)u(x, t)ds + f (x, t),

∂xu(−1, t) =
∫ 1

−1
x(x + 1)1/2(1 − x)u(x, t)dx,

∂xu(−1, t) =
∫ 1

−1

√
1 − x(x3 − x)u(x, t)d1x .
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The exact solution is given as the following:

u∗(x, t) = et (x + 1)
5
2 (x − 1)2.

We first choose a step time small enough so that the error of the temporal discretization can be eliminated,
and make the polynomial degree N varies. Table 3 shows the error in L2 and L∞-norms at a selected point
t = 1 and by going through each line one can observe an increasing accuracy until the error of the temporal
discretization becomes dominant.

To examine the theoretical result, we plot in Fig. 2 the decay rates of error in L2-norm versus N in a log-
scale and the lines of decay rates N−2 and N−4. As expected, L2-error of (LC-PSM) for the solved problem
in this example has a rate of convergence between N−3 and N−4 , which supports the results established in
Theorem (3.8) since u ∈ H3(�) and u /∈ H4(�)

5 Conclusions

In this paper, we are concerned in the implement and analysis of the spectral method to solve a class of inte-
grodifferential parabolic equations subject to nonlocal boundary conditions of Neumann-type. We combined
the Legendre spectral method based on Galerkin formulation to discretize the problem in the spatial direction
and the second-order Crank–Nicolson finite difference schema for the temporal discretization. Rigorous error
analysis has been carried out in L2-norm for the proposed method, and the computational results of numerical
examples have supported the theoretical results. Moreover, a comparison with fully finite-difference schema
clearly shows that the presented method is computationally superior with less required CPU time. It should
be noted that other high-order methods can be used for time integration to improve the accuracy of the fully
discretization. Convergence and stability of such combinations are still undiscussed.

In future works, we plan to investigate how to implement space–time spectral method for the resolution
of this class and other challenging models, such as nonlocal boundary value problems in the two-dimensional
case and fractional integrodifferential problems.
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