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Abstract The shift operator and its various generalizations are amongst the most widely studied operators on
a Hilbert space. In this paper, we characterize antinormal andm-isometric shift operator S on the Hilbert space
L2(T , λ) associated with a locally finite directed weighted tree T . We also discuss interesting connections
between antinormality and m-isometry of S.

Mathematics Subject Classification 47B37 · 47A05 · 05C05 · 05C63

1 Introduction

Throughout this paper, we denote the set of all natural numbers, the set of all integers, the set of all real numbers
and the set of all complex numbers by N, Z, R and C respectively. We denote the set of all non-negative
integers and set of all non-positive integers by Z+ and Z−, respectively. For a given set A, card(A) denotes the
cardinality of A. Let H denote a separable complex Hilbert space and, B(H) and N , respectively, be the set
of all linear bounded operators on H and the set of all normal operators on H . For a T ∈ B(H), T ∗ denotes
Hilbert adjoint of T .

A fascinating problem in the Hilbert space operator theory is to determine the distance between a particular
operator and a collection of operators. Important examples of such collections are the set of all unitary operators,
the set of all self adjoint operators, the set of all normal operators and the set of all compact operators. In
this setting, a deep and interesting case is whether there exists a best approximation. Holmes [8] studied best
normal approximation and introduced the notion of “antinormal operator”. A particularly simple but interesting
example of an antinormal operator is the classical right shift operator of multiplicity one on the Hilbert space
l2(N). Antinormal operators have been extensively studied by several authors. For the historical details, we
refer to [9,11–13,15,16].

Jabłoński et al. [10] introduced weighted shifts on directed trees. Martńez-Avendaño [14] analyzed the
dynamical property of shift operator on weighted directed trees. In this paper, we completely characterize the
antinormality of shift operator on weighted directed trees.

The natural generalization of an isometric operator is them-isometric operator on Hilbert space. The notion
of m-isometric operator was introduced by Agler [5]. As stated by Agler and Stankus [3,4,6] the concept of
m-isometries in case whenm > 1 is interesting and deep as its requires ideas from many areas of mathematics
such as distribution theory and function theory. Abdullah and Le [1] gave a result on m-isometry of unilateral
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weighted shift. We extend their result on the shift on a weighted directed tree. We also relate antinormality
and m-isometry of the shift on a weighted directed tree. We now state various definitions and results relevant
to our study.

Definition 1.1 [8] An operator T ∈ B(H) is said to be antinormal if d(T,N ) = infN∈N ‖T − N‖ = ‖T ‖.
Observe that an operator T ∈ B(H) is antinormal if and only if 0 ∈ B(H) is the best normal approximation.
We note that antinormality of an operator T ∈ B(H) is necessary as well as sufficient for antinormality of T ∗.

Definition 1.2 [7] An operator T ∈ B(H) is said to be Fredholm operator if range(T ) is closed and dimension
of both ker(T ) and ker(T ∗) are finite.

Definition 1.3 [2] The essential spectrum of an operator T ∈ B(H) is defined as σe(T ) = {α ∈ C :
T − α I is not Fredholm}.
Definition 1.4 The essential minimum modulus of an operator T ∈ B(H) is defined as me(T ) = inf{α ≥ 0 :
α ∈ σe(|T |)}, where |T | = (T ∗T )1/2.

Definition 1.5 For an operator T ∈ B(H), index of T is defined as

i(T ) =
{
dim(ker(T )) − dim(ker(T ∗)), if dim(ker(T )) < ∞or dim(ker(T ∗)) < ∞
0, otherwise.

Remark 1.6 [9] If i(T ) = 0 then T is not antinormal.

Theorem 1.7 [9] Let T ∈ B(H) with i(T ) < 0. Then the following conditions are equivalent:

(1) T is antinormal.
(2) me(T ) = ‖T ‖.
(3) d(T,U) = 1 + ‖T ‖, where U is the class of all unitary operators in B(H).

Definition 1.8 [5] Letm be a natural number and T ∈ B(H). Then T is said to be anm-isometry if T satisfies
the following equation:

m∑
k=0

(−1)k
(
m

k

)
T ∗kT k = 0. (1.1)

Moreover, T is said to be strictly m-isometry if m is the smallest natural number for which Eq. (1.1) holds.

Definition 1.9 Let V be a non-empty set and E be a subset of V ×V . Then (V, E) is known as directed graph.
An element of V is called a vertex and an element of E is called an edge.

In this paper we restrict to the case when V is a countable set. In a directed graph (V, E), card({u ∈ V :
(u, v) ∈ E}) and card({u ∈ V : (v, u) ∈ E}) are respectively called indegree of v and outdegree of v. A
directed graph (V, E) is said to be locally finite if for every vertex in V both the indegree and the outdegree
are finite. A directed graph (V, E) is said to be connected if its underlying graph is connected [17]. A finite
sequence {u1, u2, . . . , uk} for some k ≥ 2, of distinct vertices in V is called a directed circuit of (V, E) if
(ui , ui+1) ∈ E for each i = 1, 2, . . . , k − 1 and (uk, u1) ∈ E .

Definition 1.10 A directed graph T := (V, E) is called a directed tree if T does not have any directed circuits,
T is connected and the indegree of every vertex in T is at most one.

Definition 1.11 In a directed tree T a vertex is called a root if its indegree is zero. If the outdegree of a vertex
is zero then it is called a leaf.

We have adopted various notations introduced in [14]. Let T be a directed tree. For an edge (u, v) ∈ E ,
we define u = par(v) and call v as a child of u. For a vertex v ∈ V , par2(v) denotes par(par(v)) and for n ≥ 3
parn(v) = par(parn−1(v))whenever parn−1(v) is not a root. For u ∈ V define chi(u) = {v ∈ V : u = par(v)}
and for n ≥ 2, chin(u) = {u ∈ V : parn(v) = u}. Also, for u ∈ V , γ (u) denotes the cardinality of chi(u).

Remark 1.12 Let u, v, w ∈ V . If chi(u) = {v}, then v is also denoted by chi(u). Similarly, if chin(u) = {w}
for some n ≥ 2, then w is also denoted by chin(u).
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Definition 1.13 Two directed trees T = (V, E) and T̃ = (Ṽ , Ẽ) are said to be isomorphic if there exists a
one-to-one correspondence ψ from V onto Ṽ such that (u, v) ∈ E if and only if (ψ(u), ψ(v)) ∈ Ẽ .

Definition 1.14 Let G = (V, E) be a directed graph and W ⊆ V . Then, G \W denotes the directed graph by
removing all vertices of W from G and all edges whose at least one end vertex is in W .

Definition 1.15 Let T be a directed tree and λ = {λv ∈ R : λv > 0, v ∈ V } be a set. We call λ weight on
the vertex set V . We denote by L2(T , λ) the space of complex valued functions f : V → C such that∑

v∈V
| f (v)|2λv < ∞.

This is a Hilbert space endow with the inner product

〈 f, g〉 =
∑
v∈V

f (v)g(v)λv, f, g ∈ L2(T , λ).

Throughout this paper by “tree", we mean a locally finite directed tree. Also Z
+
T and Z

−
T , respectively,

denote the trees (Z+, {(i, i + 1) : i ∈ Z
+}) and (Z−, {(i, i − 1) : i ∈ Z

−}). For a tree T = (V, E) we define
Vleaves as the set of all leaves, V≥2 as the set {u ∈ V : γ (u) ≥ 2} and chi(V≥2) as the set

⋃
v∈V≥2

chi(v). Also,
we assign a integer value δT to the tree T as follows:

δT =
{
1, if tree has a root
0, otherwise.

Let � : V → (0, ∞) be such that �(u) =
(

1
λu

∑
v∈chi(u) λv

) 1
2

, for every u ∈ V . And a sequence in � is

a sequence of the form {�(μ(n))}∞n=1 , where μ : N → V is an injective function.

Definition 1.16 Let T be a tree and λ be weight on V . Then the shift S : L2(T , λ) → L2(T , λ) is the operator
defined as

(S f )(u) =
{
f (par(u)), u is not a root
0, otherwise,

where f ∈ L2(T , λ).

Theorem 1.17 [14] Let T be a tree and λ be weight on V . The shift S : L2(T , λ) → L2(T , λ) is bounded if
and only if

sup
u∈V

(
1

λu

∑
v∈chi(u)

λv

)
< ∞.

In either case,

‖S‖ = sup
u∈V

(
1

λu

∑
v∈chi(u)

λv

)1/2

.

Hilbert adjoint of S [14]: The Hilbert adjoint S∗ of the shift operator S on L2(T , λ) is given by

(S∗g)(u) = 1

λu

∑
v∈chi(u)

g(v)λv,

for each g ∈ L2(T , λ) and u ∈ V .
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2 Antinormality of the shift operator

Prior to our investigations on antinormality of S, we state some results. From the definition of S and S∗, we
have ker(S) = { f ∈ L2(T , λ) : f (u) = 0, f or each u ∈ V \Vleaves} and ker(S∗) = {

f ∈ L2(T , λ) :∑
v∈chi(u) f (v)λv = 0, f or each u ∈ V

}
. Thus, ker(S) is collection of all f ∈ L2(T , λ) such that f =∑

u∈Vleaves f (u)χu . Hence, dim(ker(S)) is finite if and only if card(Vleaves) is finite. Further, if card(Vleaves) is
finite then dim(ker(S)) = card(Vleaves).

Lemma 2.1 Dimension of ker(S∗) is finite if and only if card(V≥2) is finite. Moreover, if card(V≥2) is finite,
then dim(ker(S∗)) = card(chi(V≥2)) − card(V≥2) + δT .

Proof Let f = ∑
v∈V f (v)χv ∈ L2(T , λ). Then,

S∗( f ) =
∑
v∈V

f (v)S∗(χv)

=
∑

v∈V \{root}
f (v)

λv

λpar(v)

χpar(v)

=
∑
v∈V

(
1

λv

∑
w∈chi(v)

λw f (w)

)
χ

v. (2.1)

If v ∈ V≥2, then γ (v) ≥ 2. Let chi(v) = {w1, w2, . . . , wl} and f = ∑l
i=1 f (wi )χwi ∈ L2(T , λ)

satisfying
∑l

i=1 f (wi )λwi = 0 then from Eq. (2.1) f ∈ ker(S∗). Clearly, the collection of all such f forms a
subspace of dimension γ (v) − 1 ≥ 1, which is contained in ker(S∗). Also, for u1 �= u2, chi(u1) and chi(u2)
are disjoint sets. Therefore, dim(ker(S∗)) ≥ card(V≥2). Hence, if card(V≥2) is not finite, then dim(ker(S∗))
is also not finite.

Now assume that card(V≥2) is finite. If V≥2 is empty, then the result obviously holds. Let V≥2 =
{v1, v2, . . . , vk} and for each v j ∈ V≥2, chi(v j ) = {w j

1 , w
j
2 , . . . , w

j
m j }. We now consider the case when

the tree has a root. Let f = ∑
v∈V f (v)χv ∈ ker(S∗). Then, from Eq. (2.1), f (w) = 0 whenever par(w) has

unique child viz. w. Thus, f (w) = 0, whenever w ∈ V \(chi(V≥2) ∪ {root}. Hence
f =

∑
u∈V

f (u)χu

= f (root)χ root +
∑

u∈V \(chi(V≥2)∪{root})
f (u)χu +

∑
v∈chi(V≥2)

f (v)χv

= f (root)χ root + 0 +
∑

v∈chi(V≥2)

f (v)χv.

Therefore, f is linear combination of {χv : v ∈ chi(V≥2) ∪ {root}} with k(= card(V≥2)) extra conditions

m j∑
i=1

f (w j
i )λw

j
i

= 0, 1 ≤ j ≤ k.

This implies that ker(S∗) = {
f ∈ L2(T , λ) : f = f (root)χ root+∑

v∈chi(V≥2)
f (v)χv and

∑m j
i=1 f (w j

i )λw
j
i

=
0, 1 ≤ j ≤ k

}
, where V≥2 = {v1, v2, . . . , vk} and for each v j ∈ V≥2, chi(v j ) = {w j

1 , w
j
2 , . . . , w

j
m j }. Conse-

quently,

dim(ker(S∗)) = 1 + card(chi(V≥2)) − card(V≥2). (2.2)

Preceding arguments also implies that if card(V≥2) is finite and the tree has no root then ker(S∗) = {
f ∈

L2(T , λ) : f = ∑
u∈chi(V≥2)

f (v)χv and
∑m j

i=1 f (w j
i )λw

j
i

= 0, 1 ≤ j ≤ k
}
, where V≥2 = {v1, v2, . . . , vk}

and for each v j ∈ V≥2, chi(v j ) = {w j
1 , w

j
2 , . . . , w

j
m j }. Therefore,

dim(ker(S∗)) = card(chi(V≥2)) − card(V≥2). (2.3)
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Hence from Eqs. (2.2) and (2.3), we get

dim(ker(S∗)) = card(chi(V≥2)) − card(V≥2) + δT .

��
Remark 2.2 (1) It is worth noting that, if tree is not locally finite, then

dim(ker(S∗)) =
∑

u∈chi(V≥2)

[card(chi(V≥2)) − 1] + δT .

(2) In view of preceding definitions and the above lemma, the following statements follow easily.
(i) If card(V≥2) is finite then card(Vleaves) is also finite.
(ii) The card(V≥2) is finite if and only if card(chi(V≥2)) is finite.
(iii) 2 · card(V≥2) ≤ card(chi(V≥2)).

We now give a relation between card(V≥2), card(chi(V≥2)) and card(Vleaves).

Proposition 2.3 In a tree T , card(Vleaves) + card(V≥2) ≤ card(chi(V≥2)) + 1.

Proof First consider the case when the tree T is finite. In this case, using induction on number of vertices we
prove that the above inequality is an equality. Clearly equality holds for the tree with 1 and 2 vertices. Let the
assertion be true for the tree with k(≥ 2) vertices. Now, consider a tree T with k + 1 vertices. Then T has a
leaf v∗. Consequently, the tree T̃ = (Ṽ , Ẽ) = T \{v∗} has k vertices with two possibilities:

(1) If v∗ ∈ chi(V≥2), then card(Ṽleaves) = card(Vleaves) − 1. Further, in this case, we have following two
possibilities:
(a) If γ (par(v∗)) = 2 then card( ˜V≥2) = card(V≥2) − 1 and card(chi( ˜V≥2)) = card(chi(V≥2)) − 2. Since

equality holds for a tree with k vertices, therefore

card(Ṽleaves) + card(Ṽ≥2) = card(chi(Ṽ≥2)) + 1.

This implies

card(Vleaves) − 1 + card(V≥2) − 1 = card(chi(V≥2)) − 2 + 1.

Thus,

card(Vleaves) + card(V≥2) = card(chi(V≥2)) + 1.

(b) If γ (par(v∗)) ≥ 3 then card( ˜V≥2) = card(V≥2) and card(chi( ˜V≥2)) = card(chi(V≥2))−1. Therefore,

card(Ṽleaves) + card(Ṽ≥2) = card(chi(Ṽ≥2)) + 1.

Which gives

card(Vleaves) + card(V≥2) = card(chi(V≥2)) + 1.

(2) If v∗ /∈ chi(V≥2) then card(Ṽleaves) = card(Vleaves), card( ˜V≥2) = card(V≥2) and card(chi( ˜V≥2)) =
card(chi(V≥2)). Therefore card(Vleaves) + card(V≥2) = card(chi(V≥2)) + 1.

Thus, equality also holds for a tree with k + 1 vertices. Hence, it holds for any finite tree.
Now consider the case when the tree T is not finite. Let us split this case into two parts as follows:

(1) If card(V≥2) is not finite then card(chi(V≥2)) is also not finite. Thus in this case the result holds.
(2) If card(V≥2) is finite (which implies card(Vleaves) is also finite) then we can choose a finite subset W ⊆ V

such that T̃ = (
W, E∩(W×W )

)
is a treewith the properties that V≥2, chi(V≥2) and Vleaves are all contained

inW and the directed graph T \W is collection of finite number of linear trees each of which is isomorphic
to Z

+
T or Z−

T . Further, let W≥2 = {w ∈ W : γ (w) > 1} and Wleaves = {w ∈ W : w is lea f o f T̃ }. Then
W≥2 = V≥2, chi(W≥2) = chi(V≥2) and we have exactly two scenarios:
(a) T \W contains a linear tree which is isomorphic to Z+

T and card(Wleaves) > card(Vleaves).
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Fig. 1 A Finite tree

Fig. 2 Infinite tree in which card (V ≥ 2) is finite

(b) T \W does not contain any linear tree which is isomorphic to Z
+
T (in this case T \W is isomorphic to

Z
−
T )and card(Wleaves) = card(Vleaves).

Thus, we have card(Vleaves) ≤ card(Wleaves). Therefore,

card(Vleaves) + card(V≥2) ≤ card(Wleaves) + card(W≥2)

= card(chi(W≥2)) + 1

= card(chi(V≥2)) + 1.

Hence, the result holds for every tree T . ��
Remark 2.4 Above proposition can be visualized in the following trees. Figure 1 is a finite tree for which the
inequality of Proposition 2.3 becomes an equality. In Figure 2 tree T is not finite but card(V≥2) is finite. In
this tree, if we take W as collection of all the vertices such that V≥2, chi(V≥2) and Vleaves are all contained in
W , then T \W is collection of finite number of linear trees each of which is isomorphic to Z

+
T or Z−

T .

Corollary 2.5 For the S : L2(T , λ) → L2(T , λ), i(S) ≤ 1.

Proof Consider the case when dim(ker(S)) and dim(ker(S∗)) are both infinite then by definition, i(S) = 0.
The Remark 2.2 precludes the possibility that dim(ker(S)) is infinite and dim(ker(S∗)) is finite. If dim(ker(S))
is finite but dim(ker(S∗)) is infinite then i(S) = −∞. Now if dim(ker(S)) and dim(ker(S∗)) both are finite,
then

i(S) = dim(ker(S)) − dim(ker(S∗))
= card(Vleaves) − [card(chi(V≥2)) − card(V≥2) + δT ]
≤ 1 − δT

=
{
1, if the tree is without a root
0, otherwise.

Thus, i(S) ≤ 1. ��
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Remark 2.6 If i(S) = 1, then tree is not finite and by Corollary 2.5 δT = 0. This implies that tree has no root.
Again by Corollary 2.5 card(V≥2) is finite and card(Vleaves) = card(chi(V≥2))−card(V≥2)+1. Now repeating
the arguments of Proposition 2.3 above, it follows that there exists W ⊆ V such that T \W is isomorphic to
Z

−
T . In all other cases, the i(S) ≤ 0.

We now have the following propositions.

Proposition 2.7 If i(S) < 0 then S is antinormal if and only if for every ε > 0, there exists a finite subset
U ⊂ V such that

∣∣�(v) − ‖S‖∣∣ < ε for each v ∈ V \U.

Proof Let i(S) < 0. Then, Vleaves must be finite. For if, Vleaves is an infinite set then V≥2 is also an infinite set.
Hence both the dim(ker(S)) and dim(ker(S∗)) are infinite. Consequently i(S) = 0, which is a contradiction.

Now consider T = (S∗S)
1
2 . Since

(S∗S)χu =
⎧⎨
⎩

( 1
λu

∑
v∈chi(u)

λv

)
χu, u /∈ Vleaves

0, u ∈ Vleaves,

therefore,

Tχu =
⎧⎨
⎩

( 1
λu

∑
v∈chi(u)

λv

) 1
2 χu, u /∈ Vleaves

0, u ∈ Vleaves.

Thus, T is a diagonal operator. Hence, essential minimum modulus of S is

me(S) = inf{α ≥ 0 : α ∈ σe(T )}
= inf{α ≥ 0 : T − α I is not Fredholm}
= inf{α ≥ 0 : either dim(ker(T − α I )) is not finite or range(T − α I ) is not closed}
= inf{α ≥ 0 : α is a limit of some convergent sequence in �},

Now ‖S‖ = sup
u∈V

( 1
λu

∑
v∈chi(u)

λv

) 1
2 and i(S) < 0. Hence S is antinormal if and only if me(S) = ‖S‖. This

is equivalent to � has a convergent sequence and every convergent sequence in � converge to ‖S‖. As
supv∈V �(v) = ‖S‖, therefore S is antinormal if and only if for every ε > 0, there exists a finite subsetU ⊂ V
such that

∣∣�(v) − ‖S‖∣∣ < ε for each v ∈ V \U . ��
Proposition 2.8 If i(S) = 1 then S is antinormal if and only for every ε > 0, there exists a finite subset U ⊂ V
such that

∣∣�(v) − ‖S‖∣∣ < ε for each v ∈ V \U.

Proof Let i(S) = 1. Then by Remark 2.6, the tree T has no root and there exists a set of finite ver-
tices W = {w1, w2, . . . , wl} such that the tree T \W is isomorphic to the Z

−
T . Hence any sequence in{( 1

λu

∑
v∈chi(u) λv

)1/2 : u ∈ V
}
will lie eventually in

{( 1
λu

∑
v∈chi(u) λv

) 1
2 : u ∈ V \W}

. Also i(S∗) =
−i(S) = −1 < 0. Consider T = (SS∗) 1

2 . A simple computation shows that

(SS∗)χu = λu

λpar(u)

·
( ∑

v∈chi(par(u))

χ
v

)
, for each u ∈ V .

Therefore,

Tχu = λu(
λpar(u)

∑
v∈chi(par(u))

λv

)1/2 ·
( ∑

v∈chi(par(u))

χ
v

)
, for each u ∈ V .
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The above equation can also be expressed as

Tχu =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λu(
λpar(u)

∑
v∈chi(par(u))

λv

)1/2 · ∑
v∈chi(par(u))

χ
v, u ∈ W

(
λu

λpar(u)

) 1
2 · χu, u ∈ V \W.

Using the fact that W is finite set and T is diagonal operator on V \W , we get

me(S
∗) = inf{α ≥ 0 : α ∈ σe(T )}

= inf{α ≥ 0 : T − α I is not Fredholm}
= inf{α ≥ 0 : either dim(ker(T − α I )) is not finite or range(T − α I ) is not closed}

= inf
{
α ≥ 0 : αis a limit of some convergent sequence in

{(
1

λu

∑
v∈chi(u)

λv

) 1
2 : u ∈ V \W}}

,

= inf{α ≥ 0 : α is a limit of some convergent sequence in �},
Since i(S∗) < 0, therefore S∗ is antinormal if and only ifme(S∗) = ‖S∗‖. Also S is antinormal if and only

if S∗ is antinormal. Hence, S is antinormal if and only if me(S∗) = ‖S‖. Consequently S is antinormal if and
only for every ε > 0, there exists a finite subset U ⊂ V such that

∣∣�(v) − ‖S‖∣∣ < ε for each v ∈ V \U . ��
Combining above two propositions and Remark 1.6 we obtain the following result.

Theorem 2.9 S is antinormal if and only if i(S) �= 0, for every ε > 0, there exists a finite subset U ⊂ V such
that

∣∣�(v) − ‖S‖∣∣ < ε for each v ∈ V \U.

3 m-isometry of the shift operator

In this section, we investigate the m-isometry of the shift operator and relate it to its antinormality. From the
definition of m-isometry we have the following result.

Proposition 3.1 S is an m-isometry if and only if for every u ∈ V the following holds:

λu −
(
m

1

) ∑
v∈chi(u)

λv +
(
m

2

) ∑
v∈chi2(u)

λv − · · · + (−1)m
(
m

m

) ∑
v∈chim(u)

λv = 0. (3.1)

Remark 3.2 If S is an m-isometry for any m ≥ 1, then the tree is without leaves.

Proposition 3.3 S is an m-isometry if and only if for every u ∈ V , there exists a polynomial Pu of degree at
most m − 1 such that

∑
v∈chin(u) λv = Pu(n), for every n ∈ N ∪ {0}.

Proof Assume that S is an m-isometry. Let u ∈ V , define, bun = ∑
v∈chin(u) λv , n ≥ 1 and bu0 = λu . Then,

Eq. (3.1) becomes

bu0 −
(
m

1

)
bu1 +

(
m

2

)
bu2 − · · · + (−1)m

(
m

m

)
bum = 0.

More generally for every n ≥ 0, we have

bun −
(
m

1

)
bun+1 +

(
m

2

)
bun+2 − · · · + (−1)m

(
m

m

)
bun+m = 0. (3.2)

Now using theory of difference equations, the auxiliary equation of the recursive Eq. (3.2) is

1 −
(
m

1

)
r +

(
m

2

)
r2 − · · · + (−1)m

(
m

m

)
rm = 0.
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Above equation has 1 as the only zero with multiplicity m. Therefore, the general solution of Eq. (3.2) is

bun = A0(1)
n + A1n(1)n + A2n

2(1)n + · · · + Am−1n
m−1(1)n.

Thus,

bun =
∑

v∈chin(u)

λv = A0 + A1n + A2n
2 + · · · + Am−1n

m−1, f or each n ≥ 0, (3.3)

where A0, A1, . . . , Am−1 are real constants which can be determined by m initial conditions

bui =
∑

v∈chii (u)

λv, 0 ≤ i ≤ m − 1.

Conversely, let u ∈ V . Then, there exists a polynomial Pu of degree at most m − 1 such that bun =∑
v∈chin(u) λv = Pu(n) for every n ∈ N ∪ {0}.Let

Pu(n) = C0 + C1n + C2n
2 + · · · + Ckn

k,Ck �= 0 and 0 ≤ k ≤ m − 1.

This implies

bun = C0 + C1n + C2n
2 + · · · + Ckn

k,Ck �= 0 and 0 ≤ k ≤ m − 1.

Then, the sequence {bun}∞n=0 can be recursively obtained by

bun −
(
k + 1

1

)
bun+1 +

(
k + 1

2

)
bun+2 − · · · + (−1)k+1

(
k + 1

k + 1

)
bun+k+1 = 0.

Since k + 1 ≤ m, therefore for every n ≥ 0

bun −
(
m

1

)
bun+1 +

(
m

2

)
bun+2 − · · · + (−1)m

(
m

m

)
bun+m = 0.

In particular,

bu0 −
(
m

1

)
bu1 +

(
m

2

)
bu2 − · · · + (−1)m

(
m

m

)
bum = 0.

Thus, S is an m-isometry. ��
Corollary 3.4 Suppose S is an m-isometry. Then, S is strictly m-isometry if and only if max{deg(Pu) : u ∈
V } = m − 1.

Now onwards, whenever we talk about a polynomial Pu of a vertex u then it is presumed that S is an
m-isometry for some m ≥ 1.

Remark 3.5 If u ∈ V and v1, v2, . . . , vl ∈ chi(u), then Pu(1) = ∑l
i=1 λvi == ∑l

i=1 Pvi (0). Similarly,
Pu(n + 1) = ∑l

i=1 Pvi (n).

In [10, Proposition 8.1.6] Zenon Jan Jabłoński et al. characterized the normality of weighted shift operator
on trees. We state an equivalent form of this result as Proposition 3.6.

Proposition 3.6 S is normal if and only if the following conditions are satisfied.

(1) Tree is rootless and has no leaves,
(2) for every u ∈ V, γ (u) = 1 and
(3) for every u ∈ V, λu

λpar(u)
= β for some positive real number β.

Remark 3.7 Suppose S is an m-isometry and for a vertex u, deg(Pu) = k. Then, the following statements
hold.

(1) For every n ∈ N and for every v ∈ chin(u), deg(Pv) ≤ k.
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2

1

3

1

4

1

k

1

k + 1

Fig. 3 Tree on which shift operator is strictly 2-isometry but not antinormal

(2) For every n ∈ N there exists a v ∈ chin(u), deg(Pv) = k.

Using the above remarks, we have the following result.

Proposition 3.8 If S is an m-isometry and there exists u0 ∈ V such that Pu0 is constant polynomial, then
there are infinitely many u in V such that Pu is constant polynomial (in other words we have a sequence
{�(μ(n))}∞n=1 in � with �(μ(n)) = 1 for each n ≥ 1).

We now investigate a connection between antinormality andm-isometry of S. Recall that, if S is antinormal
then i(S) �= 0. Hence, either i(S) = 1 or i(S) < 0. If i(S) = 1, then the tree must have a leaf. Consequently
S can not be m-isometry for any m ≥ 1.

Theorem 3.9 If S is antinormal and i(S) = −k for some k ∈ N then S is an m-isometry for some m ≥ 2 if
and only if it is an isometry.

Proof One way the implication is trivial. On the other hand, suppose that S is antinormal and an m-isometry
for some m ≥ 2. As S is antinormal, there is a sequence {�(μ(n))}∞n=1 in � which converges to ‖S‖.
Also, since i(S) = −k, therefore card(V≥2) is finite, and the tree has no leaves. This implies that we can
choose a finite set W ⊆ V such that T \W is finite collection of trees each of which is isomorphic to Z

+
T

or Z−
T . Therefore there exists a tree T̃ = (Ṽ , Ẽ) in T \W such that a subsequence of {�(μ(n))}∞n=1 which

lies in
{( 1

λu

∑
v∈chi(u) λv

) 1
2 : u ∈ Ṽ

}
. Without loss of generality, let us assume that {�(μ(n))}∞n=1 lie in{( 1

λu

∑
v∈chi(u) λv

) 1
2 : u ∈ Ṽ

}
. Now assume that T̃ be isomorphic to Z+

T with root u0. Since for every m ∈ N,
Pu0 (m+1)
Pu0 (m)

= λchi(m+1) u0
λchim u0

, therefore for each n ∈ N there exists a mn ∈ N such that
Pu0 (mn+1)
Pu0 (mn)

= �(μ(n))2.

Further, choose a sequence (nl)∞l=1 inN such that (mnl )
∞
l=1 is an increasing sequence inN. Since�(μ(n))(nl)2

converges to ‖S‖2, so Pu0 (mnl +1)
Pu0 (mnl )

converge to ‖S‖2. But Pu0 is a non-zero polynomial, hence
Pu0 (mnl +1)
Pu0 (mnl )

converges to 1. Therefore, ‖S‖ = 1. Now consider the case that T̃ is isomorphic to Z
−
T with leaf w0. Since

for each vertex w in T̃ , Pw(n) > 0 therefore using Remark 3.5 we get Ppar(w)(n) = Pw(n − 1). Consequently
Pw0(−n) = λparn(w0) for every n ∈ N. Hence, ‖S‖ = 1. Thus S is an isometry. ��

Remark 3.10 It is worth noting that, if i(S) = −k, then tree must be locally finite. Therefore in the above
theorem, we can relax the condition that tree is locally finite.

Finally, we give some examples and counterexamples. In the following Figs. 3, 4, 5 and 6, a “•" represents
a vertex labeled by their corresponding weights and a line joining two vertices represent an edge with an arrow
pointing from vertex par(u) to vertex u.

Example 3.11 The shift operator on the following weighted tree is strictly 2-isometry but is not antinormal.
This follows from Corollary 3.4 and Theorem 2.9.

Example 3.12 Consider the shift operator S on the followingweighted tree. It can be readily seen fromTheorem
2.9 that S is antinormal. However, since weights of vertices grow exponentially, so S is not an m-isometry for
any m ∈ N.
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1 2 22 2k 2k+1

Fig. 4 Tree on which shift operator is antinormal but not m-isometry (∀m ≥ 1)
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1/4

1/4

1/4

1/4

1/4

1/2

1/2

1/2

Fig. 5 Tree on which shift operator is antinormal as well as an isometry

Example 3.13 The shift operator on the following weighted tree is antinormal as well as an isometry. This is
because

∑
v∈chi(u) λv = λu , for every vertex u in the following weighted tree.

The following example shows that when i(S) = −∞ and S is antinormal as well as an m-isometry then it
need not be an isometry.

Example 3.14 In the following figure a vertex u ∈ V is labeled by Pu(n), where Pu is the polynomial
corresponding to u and q j denotes the j th prime number.

Since the above tree has no leaves, therefore dim(ker(S)) = 0. Also card(V≥2) = ∞ . Hence i(S) = −∞.
For a vertex w ∈ V such that card(chi(par(w))) = 1, its corresponding polynomial Pw is determined by
Remark 3.5. For example Pw1(n) = (n + 1) + 3− 1

7 = n + 4− 1
7 . Since maxu∈V deg(Pu) = 2, therefore S is
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n2 + 3n+ 3

n2 + 3n+ 3

n2 + 3n+ 3

n2 + 3n+ 3

n2 + 3n+ 3

n2 + 3n+ 3

n+ 2 + 1
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n+ 2 + 1
3

n+ 2 + 1
5

n+ 2 + 1
7

n+ 2 + 1
qj

n+ 2 + 1
qj+1

n+ 3 + 1
2

n+ 3 + 1
3

n+ 3 + 1
5

n+ 3 + 1
7

n+ 3 + 1
qj

n+ 3 + 1
qj+1

n+ 2− 1
2

n+ 2− 1
3

n+ 2− 1
5

n+ 2− 1
7

n+ 2− 1
qj

n+ 2− 1
qj+1

n+ 3− 1
2

n+ 3− 1
3

n+ 3− 1
5

n+ 3− 1
7

n+ 3− 1
qj

n+ 3− 1
qj+1

Pw1(n)

Fig. 6 Tree on which shift operator is antinormal as well as strictly 3-isometry

strictly 3-isometry. We also note that Pu(0) is the weight of the vertex u. Further, from Theorem 2.9 it follows
that the shift operator S on the above tree is antinormal.

Finally, we obtain the following proposition followed by its corollary.

Proposition 3.15 If S is antinormal and strictly m-isometry for m ≥ 2 then for every u ∈ V deg(Pu) ≥ 1.

Proof On the contrary, suppose there exists a u0 in V such that deg(Pu0) = 0. Since S is strictly m-isometry
for m ≥ 2. Therefore ‖S‖ > 1. As deg(Pu0) = 0, by Proposition 3.8 there exists a sequence {�(μ(n))}∞n=1 in
� with �(μ(n)) = 1 for each n ≥ 1. Consequently, from Theorem 2.9 ‖S‖ = 1. This is a contradiction. ��
Corollary 3.16 If S is an antinormal m-isometry for some m ≥ 2 and i(S) = −∞ then S is an isometry if
and only if there exists a vertex u0 in V such that λu0 = ∑

v∈chin(u0) λv for every n ∈ N.
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