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Abstract In this paper,we discuss asymptotically flat and anti-de Sitter (AdS) boson star in (4+1)-dimensional
Gauss–Bonnet gravity. We describe the dependence of the mass, the charge and the radius of the boson star on
the model parameters, such as Gauss–Bonnet coupling α, cosmological constant � and gravitational constant
κ . The basic properties of the solutions of boson stars have been studied for the different negative values of
Gauss–Bonnet coupling. We found that when κ is large and α is negative enough, the spiral shrinks and pulls
back to the larger internal frequency ω, and there is only one branch exists. We have also observed that when
κ is small enough and if α is close to zero, the spiral will unfold.

Mathematics Subject Classification (2000) 34B15 · 83C05 · 83D05 · 83E50

1 Introduction

In relativistic field theory, there are basically two types of solitons. They are called topological and non-
topological solitons. Here we will consider the non-topological one which is called boson stars when coupled
to gravity. Boson stars arise in field theories with unbroken continuous symmetry. They carry a non-vanishing
Noether charge that is globally conserved. These solitons are localized, stable and regular solutions of the
nonlinear field equations. The study of boson stars in higher dimensions in Anti-de Sitter (AdS) space-time
has been considered bymany authors in recent years [13,18,28,29]. One of themainmotivations of the analysis
of Einstein’s equations with scalar field coupled to gravity in the presence of negative cosmological constant
may shed new light on generic properties of particle-like solutions in asymptotically AdS space-time. On the
other hand, the study of theories gravity coupled with scalar field attracted much interest by the discovery of
Higgs boson which was announced by the ATLAS and CMS collaborations in July 2012 [6]. This discovery
confirms the conjecture put forward in the 1960’s and proves the existence of scalar field in nature.

Another example of non-topological solitons are Q-balls and they also have been discussed extensively by
many authors [17,19]. Supersymmetric Q-balls and boson stars have been studied in [25,26]. Boson stars can
be constructed making Q-balls self-gravitating. Within the Standard model the supersymmetric Q-balls have
been considered as possible candidates for baryonic dark matter [23,32,33]. The detectability and gravitational
redshift for boson stars with a self-interaction was discussed in [34]. There have been also a lot of investigations
concerned with soliton and black hole solutions in AdS in Einstein–Gauss–Bonnet gravity [7–10,12,14] and
in pure Einstein gravity [11,15,16,21,22,24].
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In this paper, we study the Gauss–Bonnet boson stars in asymptotically flat and AdS space–time. We
construct the solutions numerically using COLSYS [3,4] (Fortran ODE solver package). We describe the
dependence of the mass M , charge Q and radius R of the boson stars on the model parameters such as the
Gauss–Bonnet coupling α, the cosmological constant � and the gravitational constant κ . Previously, this
subject has been studied in flat space-time in [28], but for positive α. Here we pay our attention to the negative
case of this coupling parameter and also extended it studying in AdS space-time.

The paper is organized as follows: in Sect. 2, we introduce the basic model for boson star and derive the
field equations using appropriate boundary conditions. Next, in Sect. 3, we present and discuss our numerical
results for different values of model parameters. And finally, in Sect. 4, some concluding remarks are given.

Throughout the paper, we use a space-like signature as (−, +, +,+) and a system of units c = 1.

2 The model

In this section we construct asymptotically flat and anti-de Sitter (AdS) boson stars in (4 + 1)-dimensional
Gauss–Bonnet gravity. We consider standard Einstein–Gauss–Bonnet theory minimally coupled to a complex
valued and self-interacting scalar field. The action for boson star model in five-dimensional anti-de Sitter
space-time in Gauss–Bonnet gravity reads:

S =
∫

d5x
√−g(R − 2� + α(RMNK L RMNK L − 4RMN RMN + R2) + 16πG5Lmatter), (1)

where � = −6/�2 is the cosmological constant, α is the Gauss–Bonnet coupling and G5 is Newton’s constant
in 5 dimensions. Lmatter is the matter Lagrangian for the complex scalar field ψ and reads :

Lmatter = −(∂μψ)∗(∂μψ) −U (ψ), (2)

whereU (ψ) is the scalar field potential that arises in gauge-mediated supersymmetric breaking in theMinimal
Supersymmetric extension of the Standard Model (MSSM) and it is given by the expression

U (ψ) =
{
m2|ψ |2 if |ψ | ≤ σ

m2σ 2 = const. if |ψ | > σ,
(3)

where σ corresponds to the scale below which super-symmetry is broken, while m denotes the scalar boson
mass. This potential is not differentiable at |ψ | = σ . Therefore the following approximation of the above
potential has been suggested [20]:

U (ψ) = m2σ 2
(
1 − exp

(
−|ψ |2

σ 2

))
. (4)

For simplicity we develop this potential into a series and keep the terms only up to 6th order in ψ

U (ψ) = m2|ψ |2 − m2|ψ |4
2σ 2 + m2|ψ |6

6σ 4 + O
(|ψ |8) . (5)

Using the variation principle we can derive the gravity and Klein–Gordon equations as follows:

GMN + α

2
HMN = 8πG5TMN , (6)

(
� − ∂U

∂|ψ |2
)

ψ = 0, (7)

where the tensor HMN is given by

HMN = 2
(
RMABC R

ABC
N − 2RMANB R

AB − 2RMAR
A
N + RRMN

)

−1

2
gMN

(
R2 − 4RAB R

AB + RABCDR
ABCD

)
, M, N , A, B,C = 0, 1, 2, 3, 4, (8)

and TMN is the energy–momentum tensor
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TMN = gMNL − 2
∂L

∂gMN

= −gMN

[
1

2
gK L (

∂Kψ∗∂Lψ + ∂Lψ∗∂Kψ
) +U (ψ)

]
+ ∂Mψ∗∂Nψ + ∂Nψ∗∂Mψ. (9)

Since thematter Lagrangian is invariant under the global U(1) transformation the system posses the locally con-
servedNoether current j M and the globally conservedNoether charge Q. The symmetry for this transformation
is given by

ψ → ψeiχ , (10)

with a conserved current:

j M = − i

2

(
ψ∗∂Mψ − ψ∂Mψ∗) , (11)

and a conserved charge, namely, the number of scalar particles:

Q =
∫

d4x
√−g j0. (12)

2.1 Ansatz, field equations and boundary conditions

We choose the following Ansatz for the metric:

ds2 = −N A2dt2 + 1

N
dr2 + r2

(
dθ2 + sin2 θdϕ2 + sin2 θ sin2 ϕdχ2) , (13)

where N and A are functions of r only. We further choose

N (r) = 1 − 2n(r)

r2
− �

6
r2, (14)

such that n(∞) will determine the gravitational mass of the solution at infinity. For the scalar field, we choose
the following stationary Ansatz

ψ(r, t) = φ(r)eiωt , (15)

where ω is the internal frequency and φ is function of r only.
Imposing the Ansatz (13) and (15) into the field equations (6), (7) we can derive the equations of motion

as follows:

A′(r) = 2κr3
(
A2N 2φ′2 + ω2φ2

)
3AN 2

(
r2 + 2α(1 − N )

) (16)

N ′(r) = 2r

(
1 − �r2

3 − N

r2 + 2α(1 − N )

)
− 2

3

κr3

N A2

(
ω2φ2 + A2NU (φ) + N 2A2φ′2

r2 + 2α(1 − N )

)
(17)

φ′′(r) = −
(
3

r
+ A′

A
+ N ′

N

)
φ′ −

(
ω2

N 2A2 − 1

2φN

∂U (φ)

∂φ

)
φ. (18)

Here the prime denotes the derivative with respect to r . These equations possess the following scaling sym-
metries:

r → r

m
, φ → σφ, ω → mω,

� → m2�, n → n/m2, α → α/
√
m (19)
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Fig. 1 We give the mass M as function of ω for different values of α: a κ = 0.0015; b κ = 0.0065; c κ = 0.02; d κ = 0.05.
Here � = 0

and the equations depend only on the dimensionless coupling constants �, α and

κ = 8πG5σ
2 = 8π

σ 2

M2
pl

(20)

where Mpl is the Planck mass.
To solve these equations, we have to set the appropriate boundary conditions at the origin r = 0 and as

well as at infinity. At the origin, we require the regularity conditions

φ′(0) = 0, n(0) = 0, (21)

and at infinity

φ(∞) = 0, A(∞) = 1. (22)

Since above system does not have any analytic solution we solve it numerically.

2.2 Definition of mass, charge and radius

As shown before in [1,2,5,27,30,31], we follow [28] and use the same definitions for the radius R, charge Q
and mass M as follows:

R = 1

Q

∫
d4xr

√−g j0 = 2π2

Q

∞∫

0

dr r4
ωφ2

AN
, (23)

Q =
∫

d4x
√−g j0 = 2π2

∞∫

0

dr r3
ωφ2

AN
. (24)
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Fig. 2 The charge Q as function of ω for different values of α: a κ = 0.0015; b κ = 0.0065; c κ = 0.02; d κ = 0.05. Here
� = 0

Since A ≡ 1 and n ≡ 0 when κ = 0, we can use the following definition of mass

M = −
∫

d4x
√−gT 0

0 = 2π2

∞∫

0

dr r3A

(
Nφ′2 + ω2φ2

N
+U (φ)

)
, (25)

and for κ 	= 0 case we can use the asymptotic behaviour of the metric function at infinity and the mass can be
read off as

n(r 
 1) = M + n1r
−� + O(r−�) + · · · , (26)

where M � n(∞) and n1 is a constant that depends on AdS radius �.

3 Numerical results

The goal of the paper is to study the basic properties of the boson stars in the presence of negativeGauss–Bonnet
coupling in 5-dimensional asymptotically flat and AdS space-time. Let us first start with a flat space-time.

3.1 Flat space-time: � = 0

In Figs. 1, 2, 3 and 4, we plot the mass M , charge Q, the radius R and φ(0), respectively, as function of
ω for different values of Gauss–Bonnet coupling and κ . For small negative values of α, we observe that the
behaviour is similar to the standard Einstein gravity case if κ is large. We separate the existence of solutions
into three regions. The 1st fundamental branch of solution exists up to ωmin. After that point, there is a second
branch which exists extending backwards in ω up to a critical value ωcr where a third branch of solutions with
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Fig. 3 The radius R as function of ω for different values of α: a κ = 0.0015; b κ = 0.0065; c κ = 0.02; d κ = 0.05. Here� = 0

spiralling behaviour continues. For large negative values of α, this spiralling behaviour disappears. But it is
very difficult to find the exact value for α where the 3rd branch disappears. If one compare the 3rd and 2nd
branches we can easily see from Figs. 1, 2 and 3 that the mass M , charge Q and radius R always take the
higher values on the 3rd branch than the value of 2nd branch at ωcr. The values of the 2nd branch are lower
than the values of the 1st branch at ωmin. If we continue decreasing α further the 2nd branch also disappears.
As a result we end up only with one fundamental branch. In [28], they observed that for large enough positive
α the spiral unfolds. We also observed similar effect in Figs. 1a, 2a and 3a for the negative case if the values of
κ and α are small enough (say κ = 0.0015 and α < −2.0). If we keep κ fixed and decrease α further we again
observe the spiralling behaviour for large negative values of α (see Fig. 5). Similarly, fixing α and increasing
κ lead the solutions spiralling (see Figs. 6, 7).

We have also studied the behaviour of the scalar field function at the origin. It is plotted in Fig. 4. In this
figure, we give the values of the scalar field function at the origin, φ(0), as function of ω for different values of
α and κ . As shown from Fig. 4, we find that the range of values of φ(0) is limited and the maximal value for
φ(0) decreases with decreasing α. In the positive α case (see [28]) the ωmin decreases with increasing α and
ωcr takes oscillating behaviour. But in the case when α is negative, the values of ωmin increase with decreasing
α and ωcr first decreases until some critical α = αcr and then it starts to increase further with decreasing α. It is
shown more clearly in Fig. 8. At the critical point (the point which two solutions join) numerics become very
difficult. In this point, the tip of the metric function N (r) at some r = rcr and as well the central value of the
metric function A(0) seems to drop forward to zero. To understand the behaviour of these solutions in more
detail we plotted the profiles of metric function in Figs. 9, 10 and 11. Our observations show that the value of
metric function A(r) at the origin and the tip of the metric function N (r) decrease with increasing φ(0) for
fixed α and κ . Numerically, it is very difficult to reach A(0) = 0 and N (rcr) = 0 limit which corresponds to
φ(0) → ∞. It would be interesting to see wether A(0) ≡ 0 and N (rcr) ≡ 0 at the critical point. Since our
numerical code does not converge near φ(0) → ∞, we could not reach this point.

As we can see from Fig. 12, the minima of the metric function N (r) increases with decreasing α for fixed
value of φ(0). Hence it takes opposite character for the metric function A(r). The value of metric function
A(r) at the origin decreases with decreasing α.
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Fig. 4 φ(0) as function of ω for different values of α: a κ = 0.0015; b κ = 0.0065; c κ = 0.02; d κ = 0.05. Here � = 0
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Fig. 5 Mass–radius relation: M as function of R for different values of α: a κ = 0.0015; b κ = 0.0065. Here � = 0

The comparison of the M , Q, R as function of ω, and the mass–radius diagram for α > 0 with α < 0 case
is presented respectively in Figs. 13 and 14. Our analysis show that any changes in α and κ does not affect to
maximal frequency and it is always ωmax = 1 for � = 0 case (see Figs. 6 and 13).

3.2 Anti-de Sitter space-time: � < 0

Now let us consider � 	= 0 case. The analysis show that the general pattern of the solutions does not change
extremely in this case. As shown in Figs. 15, 16, 17, 18, 19 and 20, the effect of α and κ is same as� = 0 case.
As increasing κ and decreasing α, the maximal mass Mmax, maximal charge Qmax and minimal frequency
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Fig. 6 We show the mass M , charge Q and φ(0) as function of ω for different values of κ . Here α = 0 and � = 0
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ωmin decrease. For small negative values of α, we observe that the behaviour is similar to the flat case if κ is
large. Similarly as in the flat case, here we separate the existence of solutions into three regions (see Fig. 21).
The 1st fundamental branch of solution exists up to ωmin. After that point there is a second branch which exists
extending backwards in ω up to a critical value ωcr where a third branch of solutions with spiralling behaviour
continues. For large negative values of α this spiralling behaviour disappears. If one compare the 3rd and 2nd
branches, we can easily see from Fig. 17 that the mass M , charge Q and radius R always take the higher values
on the 3rd branch than the value of 2nd branch at ωcr when κ is large. But when κ is small enough we observe
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Fig. 10 The profiles of functions with equal mass as indicated with squares in Fig. 9. Here � = 0

Fig. 11 Profiles of functions at the different values of φ(0) as indicated with circles in Fig. 9. Here � = 0

the opposite, the values of the 3nd branch are lower than the values of the 2nd branch at ωcr. If we continue
decreasing α further, 2nd branch also disappears. As a result we end up only with one fundamental branch.
Similarly, as in the flat case, when α is negative, the values of ωmin increase with decreasing α and ωcr first
decreases until some critical α = αcr and then it starts to increase further with decreasing α. It is shown more
clearly in Fig. 22 for � = −0.02 and κ = 0.01.

Next we discuss the properties of solutions for different values of cosmological constant� for fixedGauss–
Bonnet coupling α and the gravitational constant κ . If one compare the maximal mass of boson stars for� < 0
with � = 0 case (see Figs. 23, 24), it is shown clearly from the figures that in the flat case it is always higher
than AdS case. The same feature occurs for maximal charge Qmax and maximal radius Rmax. In the flat case,
the maximal charge and the maximal radius is always bigger than the case in AdS.
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Fig. 15 We give the mass M , the charge Q, φ(0) as function of ω for different values of α. Here κ = 0.0015 and � = −0.02
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Fig. 17 We give the mass M , the charge Q, φ(0) as function of ω for different values of α. Here κ = 0.01 and � = −0.02
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Fig. 19 We give the mass M , the charge Q, φ(0) as function of ω for different values of κ . Here α = 0 and � = −0.02
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Comparing the flat case with the AdS space time the small decrease of � lowers the maximal mass Mmax
suddenly. These can be seen in Fig. 23a. But with decreasing �, the maximal frequency ωmax increases being
ωmax > 1.

4 Conclusion

In this paper, we have studied the properties of asymptotically flat and anti-de Sitter boson stars in five-
dimensional Gauss–Bonnet gravity in more detail for different values of the cosmological constant �, Gauss–
Bonnet coupling α and the gravitational constant κ . First, we studied the flat case. In [28], the authors showed
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Fig. 23 The comparison of the mass M , charge Q, radius R and φ(0) for different values of �. Here α = 0 and κ = 0.01
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Fig. 24 Mass–radius relation: M as function of R for different values of �. Here α = 0 and κ = 0.01

that the spiralling behaviour characteristic for boson stars is observed for α = 0. But our analysis show that
this is valid only if κ is large enough. We find that the spiralling behaviour disappears for small enough κ even
when α = 0. We also observed that the maximal mass M , the maximal charge Q and the maximal frequency
is always larger in excited solutions than the ground solutions. Comparing the flat case with the AdS space
time the small decrease of � lowers the maximal mass Mmax, maximal charge Qmax and minimal frequency
ωmin. On the basis of our numerical analysis, we can state:

• the maximal mass Mmax, the maximal charge Qmax, the maximal radius Rmax and the minimal radius Rmin
of the boson star decreases with decreasing cosmological constant �;

• the minimal and the maximal internal frequency increases with decreasing cosmological constant �;
• the ωmin increases with decreasing Gauss–Bonnet coupling α in both flat and AdS space-time;
• the ωcr decreases with decreasing Gauss–Bonnet coupling α in both flat and AdS space-time;
• the ωmin and ωcr increases with increasing gravitation constant κ;
• the maximal mass Mmax, the maximal charge Qmax, the maximal radius Rmax and the minimal radius Rmin
decreases with increasing κ in both flat and AdS space-time.

It has been previously shown [25] that the boson star solutions exist only in a limited parameter range of ω.
This parameter range depends on the choice of potential and the cosmological constant �. In a flat space-time
for our potential (5) it obeys ω ∈ [0 : 1]. However, we observed that the maximal frequency increases with
decreasing � and it is always bigger than one (ωmax > 1) in the AdS space-time. We find that changing
the Gauss–Bonnet coupling α or the gravitational constant κ does not make any influence on the maximal
frequency ωmax in both flat and AdS space-time.
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