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Abstract In the present paper, we prove the almost everywhere convergence and divergence of subsequences
of Cesàro means with zero tending parameters of Walsh–Fourier series.
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1 Introduction

We denote the set of non-negative integers by N. By a dyadic interval in I := [0, 1), we mean one of the form

I (l, k) :=
[

l
2k

, l+1
2k

)
for some k ∈ N, 0 ≤ l < 2k . Given k ∈ N and x ∈ [0, 1), let Ik(x) denote the dyadic

interval of length 2−k which contains the point x . Also, use the notation In := In (0) (n ∈ N) , I k (x) :=
I\Ik (x). Let

x =
∞∑
n=0

xn2
−(n+1)

be the dyadic expansion of x ∈ I, where xn = 0 or 1, and if x is a dyadic rational number, we choose the
expansion which terminate in 0′s. We also use the following notation:

Ik(x) = Ik (x0, x1, ..., xk−1) .

For any given n ∈ N, it is possible to write n uniquely as

n =
∞∑
k=0

εk (n) 2k,

where εk (n) = 0 or 1 for k ∈ N. This expression will be called the binary expansion of n and the numbers
εk (n) will be called the binary coefficients of n. Denote for 1 ≤ n ∈ N, |n| := max{ j ∈ N:ε j (n) �= 0}, that
is 2|n| ≤ n < 2|n|+1.
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Set the definition of the nth (n ∈ N) Walsh–Paley function at point x ∈ I as

wn (x) = (−1)

∞∑
j=0

ε j (n)x j
.

Denote by � the logical addition on I. That is, for any x, y ∈ I and k, n ∈ N

x � y :=
∞∑
n=0

|xn − yn| 2−(n+1).

Define the binary operator ⊕ : N×N→N by

k ⊕ n =
∞∑
i=0

|εi (k) − εi (n)| 2i . (1)

It is well known (see, e.g., [13], p. 5) that

wm⊕n (x) = wm (x)wn (x) , x ∈ [0, 1), n,m ∈ N. (2)

The Walsh–Dirichlet kernel is defined by

Dn (x) =
n−1∑
k=0

wk (x) .

Set

D∗
n := wnDn .

Recall that [9,13]

D2n (x) = 2nχIn (x) , (3)

where χE is the characteristic function of the set E .
Dyadic shift transformations of a function on the unit interval I will be denoted by τy f and it will be

defined as
(
τy f

)
(x) := f (x � y) (x ∈ I) .

The Fejér kernel of Walsh–Fourier series defined by

Kn (x) = 1

n

n−1∑
j=0

Dj (x) .

The partial sums of the Walsh–Fourier series are defined as follows:

Sm( f, x) =
m−1∑
j=0

f̂ ( j) w j (x),

where the number

f̂ ( j) =
∫

I

f w j

is said to be the j th Walsh–Fourier coefficient of the function f.
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The space L1 (I) is defined by { f : I → R : ‖ f ‖1 < ∞}, where

‖ f ‖1 :=
∫

I

| f (x)| dx .

The space weak-L1 (I) consists of all (Lebesgue) measurable functions f for which

‖ f ‖weak−L1(I)
:= sup

λ>0
λmes (| f | > λ) < +∞.

Let f ∈ L1 (I). Then, the maximal function given by

E∗ ( f, x) = sup
n∈N

1

|In(x)|

∣∣∣∣∣∣∣

∫

In(x)

f (u) du

∣∣∣∣∣∣∣
, x ∈ I.

For each n ∈ N, let An represent the σ -algebra generated by the collection of dyadic intervals
{I (k, n) : k = 0, 1, ..., 2n − 1}. Thus, every element of An is a finite union of intervals of the form[
k2−n, (k + 1) 2−n

)
or an empty set.

Let L (An) represent the collection of An-measurable functions on I. By the Paley Lemma ( see [13], Ch.
1, p. 12), L (An) coincides with the collection of Walsh polynomials of order less than 2n .

A sequence of functions ( fn : n ∈ N) is called a dyadic martingale if each fn belongs to L (An) and
∫

E

fn+1 =
∫

E

fn (E ∈ An, n ∈ N) .

It is clear that the 2nth partial sums of anyWalsh series is a dyadic martingale. Conversely, it is easy to see that
every dyadic martingale can be obtained in this way. Thus investigation of 2nth partial sums of Walsh series
leads to the study of dyadic martingales. It is well known that ( fn : n ∈ N) is dyadic martingale if and only if
fn ∈ L (An) and

S2n ( fn+1) = fn (n ∈ N) .

A martingale ( fn : n ∈ N) will be called regular if there is an integrable function f , such that fn = S2n ( f )
for all n ∈ N.

Let A denote the collection of sequences β := {βn : n ∈ N} which satisfy βn ∈ L (An) for n ∈ N and

‖β‖ := sup
n∈N

‖βn‖∞ < ∞.

For a given β ∈ A and f ∈ L1 (I), the martingale transform of f is defined by

T (β) f :=
∞∑
n=0

βn�n f,

where �n f := S2n+1 ( f ) − S2n ( f ) for n ∈ N. The maximal martingale transform is defined by

T∗ (β) f := sup
N∈N

∣∣∣∣∣
N∑

n=0

βn�n f

∣∣∣∣∣ .

In fact, we will use the following theorem (see [13], Ch. 3, Theorem 4; see more details in [16]).

Theorem MT There exists an absolute constant c, such that

λmes
({

T∗ (β) f > λ
}) ≤ c ‖β‖ ‖ f ‖1

for all f ∈ L1 (I) , λ > 0, and β ∈ A.
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The (C, αn) means of the Walsh–Fourier series of the function f is given by

σαn
n ( f, x) = 1

Aαn
n−1

n∑
j=1

Aαn−1
n− j S j ( f, x) = 1

Aαn
n−1

n−1∑
j=0

Aαn
n−1− j f̂ ( j) w j (x) ,

where

Aαn
n := (1 + αn) . . . (n + αn)

n!
for any n ∈ N, αn �= −1,−2, .... It is known that [20]

Aαn
n =

n∑
k=0

Aαn−1
k , Aαn−1

n = αn

αn + n
Aαn
n . (4)

The (C, αn) kernel is defined by

K αn
n = 1

Aα
n−1

n∑
j=1

Aαn−1
n− j D j = 1

Aαn
n−1

n−1∑
j=0

Aαn
n− j−1w j .

The idea of Cesàro means with variable parameters of numerical sequences is due to Kaplan [11] and the
introduction of these (C, αn) means of Fourier series is due to Akhobadze ( [1], [2]) who investigated the
behavior of the L1-norm convergence of σ

αn
n ( f ) → f for the trigonometric system.

The first result with respect to the a.e. convergence of the Walsh–Fejér means σ
αn
n ( f ) for all integrable

function f with constant sequence αn = α > 0 is due to Fine [4] (see also Weisz [17]). On the rate of
convergence of Cesà ro means in this constant case, see the paper of Yano [19], Fridli [5]. Approximation
properties of Cesàro means of negative order with constant sequence were investigated by the second author
[8].

For n :=∑∞
i=0 εi (n) 2i (εi (n) = 0, 1, i ∈ N), set the two variable function

P (n, α) :=
∑∞

i=0
εi (n) 2iαn (n ∈ N) , α := {αn : n ∈ N} .

The function P (n, α) was introduced by Abu Joudeh and Gát in [10]. Also, set for sequence α :=
{αn : n ∈ N} and positive reals K the subset of natural numbers

PK (α) :=
{
n ∈ N : P (n, α)

nαn
≤ K

}
.

Under some conditions on {αn : n ∈ N} , Abu Joudeh and Gàt in [10] proved the almost everywhere
convergence of the Cesàro (C, αn) means of integrable functions. In particular, the following is proved.

Theorem JG Suppose that αn ∈ (0, 1). Let f ∈ L1 (I). Then, we have the almost everywhere convergence
σ

αn
n ( f ) → f provided that PK (α) � n → ∞.

The definition of the variation of an n ∈ N with binary coefficients

(εk (n) : k ∈ N)

was introduced in [13] by

V (n) :=
∞∑
i=0

|εi (n) − εi+1 (n)| .

In this paper, we define the weighted version of variation of an n ∈ N with binary coefficients
(εk (n) : k ∈ N) by

V (n, α) :=
∞∑
i=0

|εi (n) − εi+1 (n)| 2iαn (n ∈ N) .
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Set for sequence α := {αn : n ∈ N} and positive reals K the subset of natural numbers

VK (α) :=
{
n ∈ N : V (n, α)

nαn
≤ K < ∞

}
.

It is easy to see that PK (α) � V2K (α). On the other hand, if αn → 0, then there exists K , such that
2n − 1 ∈ VK (α) for all n, but there does not exist K , such that 2n − 1 ∈ PK (α) for all n. In this paper,
we are going to improve Theorem JG and to replace the condition PK (α) � n → ∞ by the condition
VK (α) � n → ∞. In particular, the following will be proved.

Theorem 1.1 Suppose that αn ∈ (0, 1). Let f ∈ L1 (I). Then, we have the almost everywhere convergence
σ

αn
n ( f ) → f provided that VK (α) � n → ∞.

From the proof of Theorem 1.1, we can obtain pointwise growth of Ces àro means with varying parameters
of Walsh–Fourier series. The following is true.

Theorem 1.2 Let f ∈ L1 (I) and

lim
n→∞

V (n, α)

nαn
= ∞.

Then, we have the almost everywhere convergence

lim
n→∞

nαnσ
αn
n ( f, x)

V (n, α)
= 0.

Let lim
n→∞ αn = 0. We investigate two cases:

a) lim
n→∞ (αn log n) > 0 and b) lim

n→∞ (αn log n) = 0 . For case a), we have

V (n, α)

nαn
≤ c

2|n|αn

|n|∑
i=0

2iαn ≤ cα−1
n ,

and for case b), we obtain

V (n, α)

nαn
≤ c

2|n|αn

|n|∑
i=0

2iαn ≤ c|n|2|n|αn
2|n|αn ≤ c|n|.

Hence, from Theorem 1.2, we get the following.

Corollary 1.3 Let f ∈ L1 (I) and

lim
n→∞ αn = 0.

Then, we have the almost everywhere convergence:
(a) If lim

n→∞ (αn log n) > 0 , then lim
n→∞

(
αnσ

αn
n ( f, x)

) = 0;
(b) If lim

n→∞ (αn log n) = 0 , then lim
n→∞

σ
αn
n ( f,x)
log n = 0.

Theorem 1.4 Let f ∈ L1 (I) and αn ∈ (0, 1). Then, the operator σ
αn
n ( f ) is of weak type (L1, L1).

Theorem 1.4 imply

Corollary 1.5 Let f ∈ L1 (I) and αn ∈ (0, 1). Then, σαn
n ( f ) → f in measure as n → ∞.

Theorem 1.6 Let f ∈ L1 (I). Then, there exists a sequence μ j ( f ), such that for each subsequence of natural
numbers with n j ≥ μ j ( f ), we have the a. e. relation

σ
αn j
n j ( f ) → f .

For the subsequence of the partial sums, we are going to prove the following.
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Theorem 1.7 For each sequence of natural numbers ν j ↑ ∞, there exists a function f ∈ L1 (I) and an
another sequence of natural numbers with N j ≥ ν j for which we have the everywhere divergence of SN j ( f ).

The a. e. divergence of Cesàro means with varying parameters of Walsh–Fourier series was investigated
by Tetunashvili [14]. In particular, the following is proved: Assume that {αn} is such that for a positive number
n0, we have

αn ≤ c

log2 n
, 0 ≤ c < 1, n > n0. (5)

Then, there exists such a function f that the sequence σ
αn
n ( f ) diverges everywhere unboundedly.

In this paper, we improve this theorem of Tetunashvili (5) in a way that we enlarge the set of sequences
(αn) for which we have divergence results of the Cesàro means with variable parameters. In particular, the
following is true.

Theorem 1.8 Assume that {αn} is such that for some positive integer n0, we have

c1
log2 n

≤ αn ≤ c0 log2 log2 n

log2 n
, 0 ≤ c0 <

1

2
, n > n0.

Then, there exists a integrable function f that the sequence σ
αn
n ( f ) diverges almost everywhere unboundedly.

The boundedness of maximal operators of subsequences of (C, αn)− means of partial sums of Walsh–
Fourier series from the Hardy space Hp into the space L p is studied in [7]. In particular, the following is
proved.

Theorem GG Let p > 0. Then, there exists a positive constant cp, such that
∥∥∥∥ sup
N∈N

∣∣∣ f ∗
∣∣∣K αN

2N

∣∣∣
∣∣∣
∥∥∥∥
p

≤ cp ‖ f ‖Hp

(
f ∈ Hp

)
.

Weisz [18] generalized Theorem GG for both the Cesàro and Riesz means by taking the supremum over
all indices n ∈ Nv . Here, Nv denotes the set of all n = 2n1 + · · · + 2nv with a fixed parameter v. In particular,
the following is proved.

Theorem W (Weisz [18]) Let p > 0. Then, there exists a positive constant cp, such that
∥∥∥∥∥ sup
n∈PK (α)

∣∣ f ∗ K αn
n

∣∣
∥∥∥∥∥
p

≤ cp ‖| f |‖Hp

(| f | ∈ Hp
)
.

2 Auxiliary results

We shall need the following.

Lemma 2.1 Let k, n ∈ N. Then

c1 (1 + αn) (2 + αn) k
αn < Aαn

k < c2 (1 + αn) (2 + αn) k
αn , −2 < αn < −1;

c1 (1 + αn) k
αn < Aαn

k < c2 (1 + αn) k
αn , −1 < αn < 0;

c1 (d) kαn < Aαn
k < c2 (d) kαn , 0 < αn ≤ d.

The proof can be found in the paper of Akhobadze [1].
Set

n(s) :=
∞∑
j=s

ε j (n) 2 j , n(s) = n − n(s+1) =
s∑

j=0

ε j (n) 2 j .
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Lemma 2.2 Let αn ∈ (0, 1) , 1 ≤ n ∈ N. Then, we have

K αn
n = 1

Aαn
n−1

|n|∑
s=0

εs (n) wn(s)−1

2s−1∑
j=1

Aαn−2
n(s−1)+ j j K j

− 1

Aαn
n−1

|n|∑
s=0

εs (n) wn(s)−1A
αn−1
n(s)−12

s K2s

+ 1

Aαn
n−1

|n|∑
s=0

εs (n) wn(s)−1A
αn
n(s)−1D2s

=: T (1)
n + T (2)

n + T (3)
n . (6)

Proof of Lemma 2.2 We can write

Aαn
n−1K

αn
n =

n−1∑
j=0

Aαn
n− j−1w j =

|n|∑
s=0

εs (n)

n(s)−1∑

j=n(s+1)

Aαn
n− j−1w j

=
|n|∑
s=0

εs (n)

2s−1∑
j=0

Aαn
n(s)− j−1w j+n(s+1)

=
|n|∑
s=0

εs (n) wn(s+1)

2s−1∑
j=0

Aαn
n(s)− j−1w j .

Since

n(s) − j − 1 = n(s−1) + 2s − 1 − j, εs (n) = 1,

(otherwise nothing to be investigated here) and

2s − 1 − j = (2s − 1
)⊕ j

from (2), we obtain

Aαn
n−1K

αn
n =

|n|∑
s=0

εs (n) wn(s+1)

2s−1∑
j=0

Aαn
n(s−1)+ jw(2s−1)⊕ j

=
|n|∑
s=0

εs (n) wn(s)−1

2s−1∑
j=0

Aαn
n(s−1)+ jw j . (7)

Applying Abel’s transformation (twice), we get

2s−1∑
j=0

Aαn
n(s−1)+ jw j =

2s−1∑
j=1

Aαn−2
n(s−1)+ j j K j − Aαn−1

n(s)−12
s K2s + Aαn

n(s)−1D2s .

Hence, from (7), we conclude (6). ��
From (4), we can write

∣∣∣T (1)
n

∣∣∣ ≤ 2

Aαn
n−1

|n|∑
s=0

εs (n)

2s−1∑
j=1

Aαn−1
n(s−1)+ j

∣∣K j
∣∣ := T̃ (1)

n .

123



248 Arab. J. Math. (2022) 11:241–259

Lemma 2.3 Let αn ∈ (0, 1) , n ∈ N and f ∈ L1 (I), such that supp ( f ) ⊂ IN
(
u′) , ∫

IN (u′)
f = 0 for some

dyadic interval IN
(
u′). Then, we have

∫

I N (u′)

sup
n∈N

∣∣∣ f ∗ T̃ (1)
n

∣∣∣ ≤ c ‖ f ‖1 .

Proof of Lemma 2.3 Let n ≤ 2N . From the condition of the lemma, it is easy to see that f ∗ T̃ (1)
n = 0. Hence,

we can suppose that n > 2N . Without lost of generality, we may assume that u′ = 0. It is easy to see that

f ∗
(
T̃ (1)
n

2

)
= f ∗

⎛
⎝ 1

Aαn
n−1

|n|∑
s=0

εs (n)

2s−1∑
j=1

Aαn−1
n(s−1)+ j

∣∣K j
∣∣
⎞
⎠

=
∫

IN

f (u)
1

Aαn
n−1

|n|∑
s=0

εs (n)

2s−1∑
j=1

Aαn−1
n(s−1)+ j

∣∣K j (x � u)
∣∣ du

=
∫

IN

f (u)
1

Aαn
n−1

N∑
s=0

εs (n)

2s−1∑
j=1

Aαn−1
n(s−1)+ j

∣∣K j (x � u)
∣∣ du

+
∫

IN

f (u)
1

Aαn
n−1

|n|∑
s=N+1

εs (n)

2N−1∑
j=1

Aαn−1
n(s−1)+ j

∣∣K j (x � u)
∣∣ du

+
∫

IN

f (u)
1

Aαn
n−1

|n|∑
s=N+1

εs (n)

2s−1∑

j=2N

Aαn−1
n(s−1)+ j

∣∣K j (x � u)
∣∣ du

= 1

Aαn
n−1

N∑
s=0

εs (n)

2s−1∑
j=1

Aαn−1
n(s−1)+ j

∣∣K j (x)
∣∣
∫

IN

f (u) du

+ 1

Aαn
n−1

|n|∑
s=N+1

εs (n)

2N−1∑
j=1

Aαn−1
n(s−1)+ j

∣∣K j (x)
∣∣
∫

IN

f (u) du

+
∫

IN

f (u)
1

Aαn
n−1

|n|∑
s=N+1

εs (n)

2s−1∑

j=2N

Aαn−1
n(s−1)+ j

∣∣K j (x � u)
∣∣ du

=
∫

IN

f (u)
1

Aαn
n−1

|n|∑
s=N+1

εs (n)

2s−1∑

j=2N

Aαn−1
n(s−1)+ j

∣∣K j (x � u)
∣∣ du.

It is easy to see from (4) and Lemma 2.1 that

1

Aαn
n−1

|n|∑
s=1

εs (n)

2s−1∑
j=1

Aαn−1
n(s−1)+ j

= 1

Aαn
n−1

|n|∑
s=1

εs (n)

n(s)−1∑
j=n(s−1)+1

Aαn−1
j

= 1

Aαn
n−1

|n|∑
s=1

εs (n)
(
Aαn
n(s)−1 − Aαn

n(s−1)

)
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≤ 1

Aαn
n−1

|n|∑
s=1

(
Aαn
n(s)

− Aαn
n(s−1)

)

<
An(|n|)
Aαn
n−1

≤ c. (8)

Set

K ∗
2N := sup

n≥2N
|Kn| .

It is proved in [6] that
∫

I N

K ∗
2N ≤ c < ∞, N ∈ N.

Then, from (8), we have

∫

I N

sup
n≥2N

1

Aαn
n−1

|n|∑
s=N+1

2s−1∑

j=2N

Aαn−1
n(s−1)+ j

∣∣K j (u)
∣∣ du

≤ sup
n≥2N

1

Aαn
n−1

|n|∑
s=N+1

2s−1∑

j=2N

Aαn−1
n(s−1)+ j

∫

I N

K ∗
2N

≤ c sup
n≥2N

1

Aαn
n−1

|n|∑
s=N+1

2s−1∑

j=2N

Aαn−1
n(s−1)+ j ≤ c < ∞.

Consequently
∫

I N

sup
n∈N

∣∣∣ f ∗ T̃ (1)
n

∣∣∣

=
∫

I N

sup
n≥2N

∣∣∣∣∣∣∣

∫

IN

f (u)
1

Aαn
n−1

|n|∑
s=N+1

εs (n)

2s−1∑

j=2N

Aαn−1
n(s−1)+ j

∣∣K j (x � u)
∣∣ du

∣∣∣∣∣∣∣

≤
∫

I N

⎛
⎜⎝
∫

IN

| f (u)| sup
n≥2N

1

Aαn
n−1

|n|∑
s=N+1

2s−1∑

j=2N

Aαn−1
n(s−1)+ j

∣∣K j (x � u)
∣∣ du

⎞
⎟⎠ dx

=
∫

IN

| f (u)|
⎛
⎜⎝
∫

I N

sup
n≥2N

1

Aαn
n−1

|n|∑
s=N+1

2s−1∑

j=2N

Aαn−1
n(s−1)+ j

∣∣K j (x � u)
∣∣ dx

⎞
⎟⎠ du

≤ c ‖ f ‖1 .
This completes the proof of Lemma 2.3. ��
Lemma 2.4 The operator sup

n∈N

∣∣∣ f ∗ T̃ (1)
n

∣∣∣ is of type (L∞, L∞).

Proof of Lemma 2.4 Since (see [13]) sup
n

‖Kn‖1 < 2 from (8) (or even see [15] sup
n

‖Kn‖1 ≤ 17/15), we have

sup
n∈N

∥∥∥T̃ (1)
n

∥∥∥
1

≤ sup
n∈N

1

Aαn
n−1

|n|∑
s=0

εs (n)

2s−1∑
j=1

Aαn−1
n(s−1)+ j ≤ c < ∞,
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which implies the boundedness of operator sup
n∈N

∣∣∣ f ∗ T̃ (1)
n

∣∣∣ from the space L∞ to the space L∞. ��

Combine Lemmas 2.3 and 2.4 to have the following.

Lemma 2.5 The operator sup
n∈N

∣∣∣ f ∗ T̃ (1)
n

∣∣∣ is of weak type (L1, L1).

Since
∣∣∣ f ∗ T (1)

n

∣∣∣ ≤ | f | ∗ T̃ (1)
n ,

from Lemma 2.5, we obtain

Lemma 2.6 The operator sup
n∈N

∣∣∣ f ∗ T (1)
n

∣∣∣ is of weak type (L1, L1).

Analogously, we can prove

Lemma 2.7 The operator sup
n∈N

∣∣∣ f ∗ T (2)
n

∣∣∣ is of weak type (L1, L1).

3 Proofs of main results

Proof of Theorem 1.1 We have

wnT
(3)
n = 1

Aαn
n−1

|n|∑
s=0

εs (n) wnwn(s)−1A
αn
n(s)−1D2s .

From (2), we get (εs (n) = 1; otherwise, there is nothing to be discussed here)

wnwn(s)−1 = wnwn(s+1)+2s−1 = wnwn(s+1)w2s−1

= wn⊕n(s+1)w2s−1 = wn(s)w2s−1

= w2swn(s−1)w2s−1 = w2swn(s−1)⊕(2s−1)
.

Since n(s−1)⊕(2s−1) < 2s from (3), we have

D2swn(s−1)⊕(2s−1)
= D2s .

Consequently

wnT
(3)
n = 1

Aαn
n−1

|n|∑
s=0

εs (n) Aαn
n(s)−1w2s D2s

= 1

Aαn
n−1

|n|∑
s=0

εs (n) Aαn
n(s)−1

(
D2s+1 − D2s

)

= 1

Aαn
n−1

|n|∑
s=1

(εs−1 (n) − εs (n)) Aαn
n(s−1)−1D2s

+ 1

Aαn
n−1

|n|∑
s=1

εs (n)
(
Aαn
n(s−1)−1 − Aαn

n(s)−1

)
D2s

+ 1

Aαn
n−1

ε|n| (n) Aαn
n(|n|)−1D2|n|+1
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− 1

Aαn
n−1

ε0 (n) Aαn
n(0)−1D1

=: T (31)
n + T (32)

n + T (33)
n + T (34)

n . (9)

From the condition of Theorem 1.1, we can write

sup
n∈N

(
| f | ∗

∣∣∣T (3)
n

∣∣∣
)

= sup
n∈N

(
| f | ∗

∣∣∣wnT
(3)
n

∣∣∣
)

≤ sup
n∈N

(
| f | ∗

∣∣∣wnT
(31)
n

∣∣∣
)

+ sup
n∈N

(
| f | ∗

∣∣∣wnT
(32)
n

∣∣∣
)

+ sup
n∈N

(
| f | ∗

∣∣∣wnT
(33)
n

∣∣∣
)

+ sup
n∈N

(
| f | ∗

∣∣∣wnT
(34)
n

∣∣∣
)

≤ cE∗ (x, | f |) 1

nαn

|n|∑
s=1

|εs−1 (n) − εs (n)| 2sαn

+cE∗ (x, | f |) 1

Aαn
n−1

|n|∑
s=1

(
Aαn
n(s−1)−1 − Aαn

n(s)−1

)

+cE∗ (x, | f |)
≤ cK E∗ (x, | f |) . (10)

Since the operator E∗ (x, | f |) is of weak type (L1, L1), we obtain that
∥∥∥∥∥ sup
n∈VK (α)

(
| f | ∗

∣∣∣T (3)
n

∣∣∣
)∥∥∥∥∥

weak−L1

≤ cK ‖ f ‖1 . (11)

Combining Lemmas 2.6, 2.7, estimation (11) from (6) we conclude that
∥∥∥∥∥ sup
n∈VK (α)

∣∣σαn
n f

∣∣
∥∥∥∥∥

weak−L1

≤ cK ‖ f ‖1 . (12)

Using the standard argument of Marcinkiewicz and Zygmund [12] from the estimation (12), we obtain the
validity of Theorem 1.1. ��
Proof of Theorem 1.2 From (6), we have

nαn
(
f ∗ K αn

n
)

V (n, α)
=

nαn

(
f ∗ T (1)

n

)

V (n, α)
+

nαn

(
f ∗ T (2)

n

)

V (n, α)
+

nαn

(
f ∗ T (3)

n

)

V (n, α)
. (13)

Lemmas 2.6 and 2.7 imply that

sup
n

∣∣∣ f ∗ T (l)
n

∣∣∣ < ∞ a. e. for f ∈ L1 (I) , l = 1, 2.

Hence

lim
n→∞

nαn

(
f ∗ T (l)

n

)

V (n, α)
= 0 a. e. l = 1, 2. (14)

Using estimation (10), we have

sup
n

nαn

(
f ∗ T (3)

n

)

V (n, α)
≤ cE∗ (x, | f |) .

123



252 Arab. J. Math. (2022) 11:241–259

Since the operator E∗ (x, | f |) is of weak type (L1, L1), we obtain that the maximal operator

sup
n

nαn

(
f ∗ T (3)

n

)

V (n, α)

is of weak type (L1, L1). It is clear that

nαn

(
W ∗ T (3)

n

)

V (n, α)
→ 0 as n → ∞

for every Walsh polynomial W . By the well-known density argument, we conclude that

lim
n→∞

nαn

(
f ∗ T (3)

n

)

V (n, α)
= 0 a. e. (15)

Combining (13)–(15), we conclude the proof of Theorem 1.2. ��
Proof of Theorem 1.4 From (6), we have

σαn
n ( f ) = f ∗ K αn

n = f ∗ T (1)
n + f ∗ T (2)

n + f ∗ T (3)
n . (16)

Applying Lemmas 2.6 and 2.7, we conclude that the operators f ∗ T (l)
n , l = 1, 2 are of weak type (L1, L1).

Now, we consider the operator f ∗ T (3)
n . From (9), we have

f ∗ T (3)
n

= wn

(
( f wn) ∗ wnT

(3)
n

)

= wn

Aαn
n−1

∞∑
s=0

εs (n) Aαn
n(s)−1

(
( f wn) ∗ (D2s+1 − D2s

))

= wn

∞∑
s=0

εs (n) Aαn
n(s)−1

Aαn
n−1

�s ( f wn)

= T (β) ( fwn) , (17)

where

β :=
(

ε0 (n) Aαn
n(0)−1

Aαn
n−1

, ...,
ε|n| (n) Aαn

n(|n|)−1

Aαn
n−1

, 0, ...

)
.

Since ‖β‖ ≤ 1 from Theorem MT, we get that the operator
∣∣∣( fwn) ∗ wnT

(3)
n

∣∣∣ is of weak type (L1, L1).

Consequently
∥∥∥ f ∗ T (3)

n

∥∥∥
weak−L1(I)

≤ c ‖ f ‖1 . (18)

From (16), we complete the proof of Theorem 1.4. ��
Proof of Theorem 1.7 Basically, we use the method of Schipp (see [13], Ch. 4, Theorem 12) with some
necessary modifications. For natural numbers n, k, set

in :=
�n/2�∑
k=1

22k−1 < 2n, gn := sgn Din ,

R(n)
k := r2n+kτk/2n gn, Qn :=

2n−1∏
k=0

(
1 + R(n)

k

)
.
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Then, in the sequel, we prove

S22n+k+in (Qn, x) − S22n+k (Qn, x) = r2n+k(x)gn(x � k/2n). (19)

Since Qn is the sum of the product of terms R(n)
k , then we have to check R := R(n)

l1
. . . R(n)

ls
for l1 < · · · < ls

and let the empty product be 1. If the case is the latter, i.e., R = 1, then the left-hand side of (19) is zero.
Therefore, suppose that we are checking not the empty product. Then

R = R(n)
l1

. . . R(n)
ls

= r2n+l1 . . . r2n+ls

(
τl12−n gn . . . τls2−n gn

) =: r2n+l1 . . . r2n+ls h,

where function h is An measurable. Therefore, in the case of k < ls , we have

S22n+k (R) = 0.

Besides, in the case of k > ls , we have

S22n+k (R) = R.

That is, in both cases, the left-hand side of (19) is

S22n+k+in (R, x) − S22n+k (R, x) = r2n+k(x)Sin (Rr2n+k, x), (20)

which can be different from zero only in the case when s = 1 and ls = k. In this situation, it is exactly

r2n+k Sin (R
(n)
k r2n+k) = r2n+k Sin (τk2−n gn) = r2n+kτk2−n gn = R(n)

k . (21)

Just add a few details to equality (21): Let a = 2�n/2� − 1 . Then, in = 21 + 23 + . . . 2a . It is easy to have
that

gn(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1, if x ∈ Ia,
ra(x), if x ∈ Ia−2\Ia,
ra(x)ra−2(x), if x ∈ Ia−4\Ia−2,

. . . ,

ra(x)ra−2(x) · · · r3(x), if x ∈ I1\I3,
0, if x ∈ I\I1.

Let ei = 1/2i+1. It gives that gn is the sum of functions gn,ε

gn,ε(x) := 1

2a
D2a (x) + 1

2a
D2a (x + εa−2ea−2 + εa−1ea−1)ra(x)

+ 1

2a−2 D2a−2(x + εa−4ea−4 + εa−3ea−3)ra(x)ra−2(x)

+ · · · + 1

23
D23(x + ε1e1 + ε2e2)ra(x)ra−2(x) · · · r3(x),

where each εi is either 0 or 1, but εa−2 + εa−1, εa−4 + εa−3, . . . , ε1 + ε2 �= 0 and we do the summing with
respect to ε. That is, gn =∑ε gn,ε . Then, for any of the addends of type gn,ε , we have

Sin
(
ra · · · ra−2i D2a−2i (· + εa−2i−2ea−2i−2 + εa−2i−1ea−2i−1)

)

= ra · · · ra−2i D2a−2i (· + εa−2i−2ea−2i−2 + εa−2i−1ea−2i−1),

and consequently, Sin gn = gn . In other words, (19) is proved. Let nm ∈ N, x ∈ I be arbitrary and suppose that
nm is a cube and nm ≥ ν2m+1. Then, there exists one k ∈ {0, 1, ..., 2nm − 1}, such that

x � k2−nm ∈ Inm . (22)

Set

N2m := 22
nm+k, N2m+1 := 22

nm+k + inm ,m = 1, 2, ....
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It is easy to see that

N2m ≥ 22
nm

> nm ≥ v2m+1 > v2m

and

N2m+1 ≥ 22
nm

> nm ≥ v2m+1.

Hence

N j ≥ v j , j = 1, 2, ....

Let

f (x) :=
∞∑

m=1

Qnm (x)
3
√
n2m

.

Since ‖Qn‖1 = 1 (see [13, ch. 4, Theorem 12]), then f ∈ L1 (I). From the definition of function Qn , it follows
for its spectrum:

sp(Qn j ) ⊂
[
0, 22

n j+1)
,

and since

N2m ≥ 22
nm ≥ 22

n j+1
( j < m) ,

we obtain

SN2m+1

(
Qn j , x

)− SN2m

(
Qn j , x

) = 0, j < m. (23)

On the other hand, check the same difference of partial sums for Qn j ( j > m). Let again R := R
(n j )

l1
. . . R

(n j )

ls
be different from the empty product. Then∣∣SN2m+1

(
Qn j , x

)− SN2m

(
Qn j , x

)∣∣
= ∣∣Sinm (R · r2nm+k)

∣∣
=
∣∣∣Sinm

(
r2n j +l1 · · · r2n j +ls · r2nm+k · h

)∣∣∣ = 0, (24)

because the function h is An j measurable.
From (20), (21), (22), (23), and (24), we obtain∣∣SN2m+1 ( f, x) − SN2m ( f, x)

∣∣

= 1
3
√
n2m

∣∣SN2m+1

(
Qnm , x

)− SN2m

(
Qnm , x

)∣∣

= 1
3
√
n2m

∣∣Sinm (τk2−nm gnm , x)
∣∣

= 1
3
√
n2m

∣∣(τk2−nm gnm
) ∗ Dinm (x)

∣∣

= 1
3
√
n2m

∣∣gnm ∗ (τk2−nm Dinm (x)
)∣∣

= 1
3
√
n2m

∣∣gnm ∗ Dinm (0)
∣∣

= 1
3
√
n2m

∥∥Dinm

∥∥
1 ≥ cn1/3m .

It means that for every x ∈ I, we have

sup
m

∣∣SN2m+1 ( f, x) − SN2m ( f, x)
∣∣ = ∞,

provided that Nm ≥ νm . This completes the proof of Theorem 1.7. ��

123



Arab. J. Math. (2022) 11:241–259 255

Proof of Theorem 1.8 During the proof, we apply some idea of Bochkarev [3]. Consider the function WN (t)
defined by

WN (t)

:=
⎧⎨
⎩

2N√
N

3N−1∑
j=2N

w2 j (t) , t ∈
1⋃

y0=0
· · ·

1⋃
y3N−1=0

I4N (y0, ..., y3N−1, y2N , ..., y3N−1)

0, otherwise
.

Set

n (N , x) =
3N−1∑
j=2N

ε j (x) 2
j +

4N−1∑
j=3N

ε j−N (x) 2 j , (25)

where ε j (x) = 0, 1 which will be defined below. We suppose that

x ∈ I3N+1 (x0, ..., x3N−1, 1 − x2N ) .

Denote

E ′
N :=

1⋃
x0=0

· · ·
1⋃

x3N−1=0

I3N+1 (x0, ..., x3N−1, 1 − x2N ) ,

E ′ :=
∞⋂
k=1

∞⋃
N=k

E ′
N .

It is easy to see that

mes
(
E ′) = 1.

and

I3N+1 (x0, ..., x3N−1, 1 − x2N ) ∩ I4N (y0, ..., y3N−1, y2N , ..., y3N−1) = ∅.

Let {Nv} be a subsequence for which x ∈ E ′
Nv

, v = 1, 2, ..... Without lost of generality, we can suppose that
N ′

v = N . Since

(x � t)2N � (x � t)3N = 1, t ∈ supp (WN ) , x ∈ E ′,

then from (3) and (9), we have (for the sake of brevity A
αn(N ,x)
n(N ,x)−1 will be denoted as A

αn
n(N ,x)−1 which will not

cause misunderstand)

WN ∗ T (3)
n(N ,x)

= 1

Aαn
n(N ,x)−1

3N∑
j=2N

ε j (x) A
αn
n( j)(N ,x)−1

×
∫

I

WN (t)wn(N ,x) (x � t) D∗
2 j (x � t) dt.

Set

q (N , x) :=
4N−1∑
j=3N

ε j−N (x) 2 j .

Then, we can write

wn(N ,x) (t) = wn(N ,x)−q(Nx) (t) wq(N ,x) (t) = 1, t ∈ supp (WN ) .
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Consequently

WN ∗ T (3)
n(N ,x)

= wn(N ,x) (x)

Aαn
n(N ,x)−1

3N∑
j=2N

ε j (x) A
αn
n( j)(N ,x)−1

2N√
N

×
1⋃

y0=0

· · ·
1⋃

y3N−1=0

∫

I4N (y0,...,y3N−1,y2N ,...,y3N−1)

(
3N−1∑
i=2N

w2i (t)

)
D∗
2 j (x � t) dt

= wn(N ,x) (x)√
N Aαn

n(N ,x)−1

3N∑
j=2N

ε j (x) A
αn
n( j)(N ,x)−1

×
1⋃

y0=0

· · ·
1⋃

y3N−1=0

∫

I3N (y0,...,y3N−1)

(
3N−1∑
i=2N

w2i (t)

)
D∗
2 j (x � t) dt

= wn(N ,x) (x)√
N Aαn

n(N ,x)−1

3N−1∑
j=2N

ε j (x) A
αn
n( j)(N ,x)−1

∫

I

(
3N−1∑
i=2N

w2i (t)

)
D∗
2 j (x � t) dt

= wn(N ,x) (x)√
N Aαn

n(N ,x)−1

3N−1∑
j=2N

ε j (x) A
αn
n( j)(N ,x)−1w2 j (x) .

Two cases are possible:

(a)

3N−1∑
k=2N

xk <
N

3
;

(b)

3N−1∑
k=2N

xk ≥ N

3
.

First, we consider the case a) and let us define digits εk (x) by εk (x) = 1 − xk . Then, we can write

∣∣∣WN ∗ T (3)
n(N ,x)

∣∣∣ ≥ c√
N24Nαn

∑
2N≤ j≤2N+(2N )/3

2 jαn ≥ c√
N22Nαnαn

.

Since

αn ≤ c0 log log n (N , x)

log (N , x)
≤ c0 log (4N )

2N
(n > n0) ,

we obtain

∣∣∣WN ∗ T (3)
n(N ,x)

∣∣∣ ≥ cN 1/2−c0

log (4N )
. (26)

Now, we consider the case b). The digits εk (x) define by εk (x) = xk . Analogously, we can prove the
validity of estimation (26).
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Set

γN := N 1/2−c0

log (4N )
.

Let {Nv : v ≥ 1} be a subsequence for which
x ∈ ENv , v = 1, 2, ...,

Nv+1 ≥ 2Nv, (27)

γNv ≥ v4, (28)
v−1∑
j=1

2N j
√
N j√

γN j

<

√
γNv

v
. (29)

Let

f (t) :=
∞∑
j=1

WNj (t)
√

γN j

.

It is easy to show that

‖WN‖1 = 2N√
N

1⋃
x0=0

· · ·
1⋃

x3N−1=0

∫

I4N (x0,...,x3N−1,x2N ,...,x3N−1)

∣∣∣∣∣∣
3N−1∑
j=2N

w2 j (t)

∣∣∣∣∣∣
dt

= 1√
N

1⋃
x0=0

· · ·
1⋃

x3N−1=0

∫

I3N (x0,...,x3N−1)

∣∣∣∣∣∣
3N−1∑
j=2N

w2 j (t)

∣∣∣∣∣∣
dt

= 1√
N

∫

I

∣∣∣∣∣∣
3N−1∑
j=2N

w2 j (t)

∣∣∣∣∣∣
dt ≤ 1√

N

⎛
⎜⎝
∫

I

∣∣∣∣∣∣
3N−1∑
j=2N

w2 j (t)

∣∣∣∣∣∣

2

dt

⎞
⎟⎠

1/2

= 1.

Then, from (28), we conclude that f ∈ L1 (I).
It is easy to see that

f ∗ T (3)
n(Nv,x)

=
v−1∑
j=1

1√
γN j

(
WNj ∗ T (3)

n(Nv,x)

)
+ 1√

γNv

(
WNv ∗ T (3)

n(Nv,x)

)
. (30)

We can write (see (6) and (25))

WNj ∗ T (3)
n(Nv,x)

= 1

Aαn
n(Nv,x)−1

3Nv−1∑
k=2Nv

εk (x) Aαn
n(k)(Nv,x)−1

(
WNj ∗ (wn(k)(Nv,x)−1D2k

))

+ 1

Aαn
n(Nv,x)−1

4Nv−1∑
k=3Nv

εk−Nv (x) Aαn
n(k)(Nv,x)−1

(
WNj ∗ (wn(k)(Nv,x)−1D2k

))
. (31)

Let

n(k) (Nv, x) − 1 = 2k − 1 + n(k+1) (Nv, x) .

Suppose that n(k+1) (Nv, x) �= 0. Then, it is easy to see that

WNj ∗ (wn(k)(Nv,x)−1D2k
) = 0, j < v, 2Nv ≤ k < 3Nv.
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Hence,we can suppose that there exists k0 ∈ {2Nv, ..., 3Nv − 1}, such thatn(k0+1) (Nv, x) = 0 and εk0 (x) = 1.
Since n(k0) (Nv, x) �= 0, we conclude that

WNj ∗ (wn(k)(Nv,x)−1D2k
) = 0

when k < k0. Consequently, we have (w−1 = 0)

1

Aαn
n(Nv,x)−1

3Nv−1∑
k=2Nv

εk (x) Aαn
n(k)(Nv,x)−1

(
WNj ∗ (wn(k)(Nv,x)−1D2k

))

=
Aαn
n(k0)

(Nv,x)−1

Aαn
n(Nv,x)−1

(
WNj ∗ (w2k0−1D2k0

))

=
Aαn
n(k0)

(Nv,x)−1

Aαn
n(Nv,x)−1

(
WNj ∗ D2k0

)

=
Aαn
n(k0)

(Nv,x)−1

Aαn
n(Nv,x)−1

S2k0
(
WNj

)

=
Aαn
n(k0)

(Nv,x)−1

Aαn
n(Nv,x)−1

WNj . (32)

Analogously, we can prove that

1

Aαn
n(Nv,x)

4Nv−1∑
k=3Nv

εk−Nv (x) Aαn
n(k)(Nv,x)−1

(
WNj ∗ (wn(k)(Nv,x)−1D2k

))

=
Aαn
n(k0)

(Nv,x)−1

Aαn
n(Nv,x)−1

WNj . (33)

Combining (31)–(33) from (29), we get
∣∣∣∣∣∣
v−1∑
j=1

1√
γN j

(
WNj ∗ T (3)

n(Nv,x)

)
∣∣∣∣∣∣

≤
v−1∑
j=1

∣∣WNj

∣∣
√

γN j

≤
v−1∑
j=1

2N j
√
N j√

γN j

<

√
γNv

v
. (34)

From (26), (30), and (34), we conclude that
(
x ∈ E ′)

∣∣∣ f ∗ T (3)
n(Nv,x)

∣∣∣ ≥ c
√

γNv → ∞ as v → ∞. (35)

From (6), we can write

f ∗ K αn
n(Nv,x)

= f ∗ T (1)
n(Nv,x)

+ f ∗ T (2)
n(Nv,x)

+ f ∗ T (3)
n(Nv,x)

. (36)

Lemmas 2.6 and 2.7 imply that

sup
n

∣∣∣ f ∗ T (l)
n

∣∣∣ < ∞ a. e. for f ∈ L1 (I) , l = 1, 2. (37)

Let E0 be the set for which (37) does not hold. Denote E := E ′\E0. Then, it is evident that mes(E) = 1. Let
x ∈ E . Then, (35)–(37) imply that

sup
n

∣∣σαn
n ( f, x)

∣∣ = ∞ (x ∈ E) .

Theorem 1.8 is proved. ��
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