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Abstract In this paper, we consider a one-dimensional linear Bresse system in a bounded open interval with
one infinite memory acting only on the shear angle equation. First, we establish the well posedness using the
semigroup theory. Then, we prove two general (uniform and weak) decay estimates depending on the speeds
of wave propagations and the arbitrary growth at infinity of the relaxation function.
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1 Introduction

In this paper, we consider aBresse system in one-dimensional open bounded interval subjected to homogeneous
Dirichlet–Neumann–Neumann boundary conditions and with the presence of one infinite memory acting on
the shear angle equation. Precisely, we are concerned with the following problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ1ϕt t − k1(ϕx + ψ + lw)x − lk3(wx − lϕ) = 0,

ρ2ψt t − k2ψxx + k1(ϕx + ψ + lw) +
∫ +∞

0
g(s)ψxx (x, t − s) ds = 0,

ρ1wt t − k3(wx − lϕ)x + lk1(ϕx + ψ + lw) = 0,
ϕ(0, t) = ψx (0, t) = wx (0, t) = ϕ(L , t) = ψx (L , t) = wx (L , t) = 0,
ϕ(x, 0) = ϕ0(x), ϕt (x, 0) = ϕ1(x),
ψ(x,−t) = ψ0(x, t), ψt (x, 0) = ψ1(x),
w(x, 0) = w0(x), wt (x, 0) = w1(x),

(1.1)

where (x, t) ∈]0, L[×R+, g : R+ → R+ is a given function, and L , l, ρi , i = 1, 2, and k j , j = 1, 2, 3, are
positive constants. The integral term in system (1.1) represents the infinite memory, and the state (unknown)
is

(ϕ, ψ,w) :]0, L[×]0,+∞[→ R
3.
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Our objective is to establish the well posedness and the asymptotic stability of this problem in terms of the
growth of g at infinity and the speeds of wave propagations given by

s1 =
√
k1
ρ1

, s2 =
√
k2
ρ2

and s3 =
√
k3
ρ1

. (1.2)

The Bresse system is known as the circular arch problem and is given by the following equations:

ρ1ϕt t = Qx + lN + F1, ρ2ψt t = Mx − Q + F2, ρ1wt t = Nx − lQ + F3,

with

N = k0(wx − lϕ), Q = k(ϕx + lw + ψ) and M = bψx ,

where ρ1, ρ2, l, k, k0 and b are positive physical constants, N , Q and M denote, respectively, the axial force,
the shear force and the bending moment, and w, ϕ and ψ represent, respectively, the longitudinal, vertical and
shear angle displacements. Here,

ρ1 = ρA, ρ2 = ρ I, k0 = E A, k = k′GA, b = E I and l = R−1,

such that ρ, E , G, k′, A, I and R are positive constants and denote, respectively, the density, the modulus of
elasticity, the shear modulus, the shear factor, the cross-sectional area, the second moment of area of the cross-
section and the radius of curvature. Finally, F1, F2 and F3 are the external forces defined in ]0, L[×]0, +∞[.
For more reading about this matter, we refer to Lagnese et al. [18,19]. It is worth noting that the system
considered by Bresse [3] is obtained by taking

(F1, F2, F3) = (0, −γψt , 0), (1.3)

with γ > 0.
To stabilize the Bresse system, various dampings have been employed and several decay results have been

established. Alabau-Boussouira et al. [1] considered the case (1.3) and proved that the exponential stability is
equivalent to

s1 = s2 = s3. (1.4)

When (1.4) is not satisfied, they showed that the norm of solutions decays polynomially to zero with rates
depending on the regularity of the initial data. These latter results were extended and improved in [22] by
considering a locally distributed dissipation (that is, γ in (1.3) is replaced by a non-negative function a :
]0, L[→ R+ which is positive only on a part of ]0, L[). In their work, the authors of [22] obtained a better
decay rate when (1.4) does not hold. The exponential stability result of [1] was also established by Soriano et
al. [29] for the case of indefinite damping. That is, when γ = a(x), where a :]0, L[→ R is a function with a
positive average on ]0, L[ and such that

∥
∥
∥
∥a −

∫ L

0
a(x) dx

∥
∥
∥
∥
L2(]0,L[)

is small enough. In such a situation, a may change sign in ]0, L[. Also, some optimal polynomial decay rates
for Bresse systems for the case (1.3) were proved in [7] when (1.4) does not hold. Wehbe and Youcef [31]
treated the case

(F1, F2, F3) = (0,−a1(x)ψt , −a2(x)wt ),

where ai :]0, L[→ R+ are non-negative functions which can vanish on some part of ]0, L[, and proved that
the exponential stability holds if and only if s1 = s2. When s1 �= s2, a polynomial decay rate depending on the

regularity of the initial data was obtained. This rate, in the case of classical solutions, is t− 1
2+ε .

When only the first and second equations are controlled by means of linear frictional dampings; that is,

(F1, F2, F3) = (−γ1ϕt , −γ2ψt , 0),
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with γi > 0, the equivalence between the exponential stability and the equality s1 = s3 was established in
[2]. In addition, a polynomial stability was also shown when s1 �= s3, where the decay rate depends on the
regularity of the initial data. In the particular case of classical solutions, the polynomial decay of [2] is of the

rate t− 1
2 and it is optimal. Soufyane and Said-Houari [30] looked into the case of three frictional dampings in

the whole space R (instead of ]0, L[) and established some polynomial stability estimates. For stabilization
via nonlinear frictional dampings, we refer the readers to [4,28].

Concerning the stabilization via heat effect, one of the earliest results concerning the asymptotic behavior
of the Bresse system is due to Liu and Rao [20], where a Bresse system of the form

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ρ1ϕt t − k(ϕx + ψ + lw)x − lk0(wx − lϕ) + lγχ = 0,
ρ2ψt t − bψxx + k(ϕx + ψ + lw) + γ θx = 0,
ρ1wt t − k0(wx − lϕ)x + lk(ϕx + ψ + lw) + γχt = 0,
ρ3θt − θxx + γψxt = 0,
ρ3χt − χxx + γ (wx − lϕ)t = 0,

(1.5)

in a bounded interval, together with initial and boundary conditions, has been considered. In that work, Liu
and Rao [20] proved that the norm of solutions decays exponentially if and only if (1.4) holds. Otherwise,
the solutions decay polynomially with rates depending on the regularity of the initial data. For the classical
solutions, with boundary conditions of Dirichlet–Neumann–Neumann or Dirichlet–Dirichlet–Dirichlet type,

these rates are of the form t− 1
4+ε or t− 1

8+ε, respectively, where ε > 0 is an arbitrary “small” constant. Other
results similar to those of [20] were obtained in [8] for the Bresse system (1.5) without χ . The obtained decay

for classical solutions when (1.4) is not satisfied is, in general, of the rate t− 1
6+ε ; whereas the rate is t− 1

3+ε

when s1 �= s2 and s1 = s3. Najdi and Wehbe [21] extended the results of [8] to the case where the thermal

dissipation is locally distributed, and improved the polynomial stability estimate to t− 1
2 when (1.4) is not

satisfied. Recently, Keddi et al. [16] studied a thermoelastic Bresse system with Cattaneo’s thermal dissipation
of the form

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ρ1ϕt t − k(ϕx + ψ + lw)x − lk0(wx − lϕ) = 0,
ρ2ψt t − bψxx + k(ϕx + ψ + lw) + γ θx = 0,
ρ1wt t − k0(wx − lϕ)x + lk(ϕx + ψ + lw) = 0,
ρ3θt + qx + γψxt = 0,
τqt + βq + θx = 0,

in a bounded interval, where ϕ , ψ and w are, respectively, the vertical, shear angle and longitudinal displace-
ments, θ and q denote the temperature difference and the heat flux, and ρ1, ρ2, ρ3, k, k0, b, β, γ and τ are
positive constants. Under suitable relations between the constants, the authors of [16] showed exponential
and optimal polynomial decay rates. The same system was treated by Said-Houari and Hamadouche [25] in
the whole space R, where they showed that the coupling of the Bresse system with the heat conduction of
the Cattaneo theory leads to a loss of regularity of the solution and they proved that the decay rate of the
solution in the L2-norm is of the rate t−1/12. For more problems of thermoelastic Bresse systems, we refer the
reader to [24], where a global existence was proved using two heat equations, and to [26,27], where Cauchy
thermoelastic Bresse problems were treated.

Concerning the stability of Bresse systems via memories, there are only very few results. For instance,
Guesmia and Kafini [10] discussed, without restrictions on the speeds, the stability issue for the case when the
three equations are controlled via infinite memories of the form

F1 = −
∫ +∞

0
g1(s)ϕxx (x, t − s) ds, F2 = −

∫ +∞

0
g2(s)ψxx (x, t − s) ds,

F3 = −
∫ +∞

0
g3(s)wxx (x, t − s) ds,

where gi : R+ → R+ are differentiable, non-increasing and integrable functions on R+. Their decay estimate
depends only on the growth of the relaxation functions gi at infinity, which are allowed to have a decay rate
at infinity arbitrary close to 1

s . The same stability estimate of [10] was later established in [11] when only two
infinite memories are considered, that is

(F1, F2, F3) =
(

0, −
∫ +∞

0
g2(s)ψxx (x, t − s) ds, −

∫ +∞

0
g3(s)wxx (x, t − s) ds

)

, (1.6)
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(F1, F2, F3) =
(

−
∫ +∞

0
g1(s)ϕxx (x, t − s) ds, 0,−

∫ +∞

0
g3(s)wxx (x, t − s) ds

)

(1.7)

or

(F1, F2, F3) =
(

−
∫ +∞

0
g1(s)ϕxx (x, t − s) ds, −

∫ +∞

0
g2(s)ψxx (x, t − s) ds, 0

)

, (1.8)

under the following conditions on the speeds of wave propagations:

s1 = s2 in cases (1.6) and (1.7), s1 = s3 in case (1.8). (1.9)

When (1.9) does not hold, a weak stability estimate was given in [11], where the decay rate depends also on
the smoothness of the initial data. Similar results were obtained in [15] when the memory term acts on the
longitudinal displacements. However, when the memory term acts on the vertical displacements, it was proved
in [14] that the system can not be exponentially stable even if the speeds of wave propagations are equal, but
it is still polynomially stable.

To the best of our knowledge, the only known stability results for Bresse systems with only one infinite
memory acting on the shear angle displacements are the ones obtained in [6] in case

(F1, F2, F3) =
(

0,−
∫ +∞

0
g(s)ψxx (x, t − s) ds, 0

)

, (1.10)

where g : R+ → R+ is differentiable, non-increasing and integrable function on R+. In [6], it was assumed
that g satisfies, for α1, α2 > 0,

− α2g(s) ≤ g′(s) ≤ −α1g(s), ∀s ∈ R+, (1.11)

andwas shown that the exponential stability holds if and only if (1.4) is satisfied.Otherwise, only the polynomial

stability with a decay rate of type t− 1
2 and its optimality were obtained. Notice that the condition (1.11) implies

that g converges exponentially to zero at infinity and satisfies

g(0)e−α2s ≤ g(s) ≤ g(0)e−α1s, ∀s ∈ R+. (1.12)

Our goal in this work is to study the well posedness and asymptotic stability of system (1.1) in terms of
the arbitrary growth at infinity of the kernel g and the speeds of wave propagations (1.2). We prove that the
systems is well posed and its energy converges to zero when time goes to infinity and provide two general
decay estimates: a uniform stability estimate under (1.4), and another weak stability result in general. Our
results generalize those of [6] and allow a wider class of relaxation functions. See Remark 3.3 below.

The proof of the well posedness is based on the semigroup theory. For the stability estimates, we use the
energy method and an approach introduced by the present authors in [12,13].

The paper is organized as follows. In Sect. 2, we present our assumptions on the relaxation function g
and state and prove the well posedness of (1.1). In Sect. 3, we present our stability results. The proof of our
uniform and weak decay estimates are given, respectively, in Sects. 4 and 5.

2 Well posedness

In this section, we discuss the well posedness of (1.1) using the semigroup approach. Following the method
of [5], we consider the functional

η(x, t, s) = ψ(x, t) − ψ(x, t − s) in ]0, L[×R+ × R+. (2.1)

This functional satisfies
⎧
⎨

⎩

ηt + ηs − ψt = 0 in ]0, L[×R+ × R+,
ηx (0, t, s) = ηx (L , t, s) = 0 in R+ × R+,
η(x, t, 0) = 0 in ]0, L[×R+.

(2.2)
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Let η0(x, s) = η(x, 0, s),

U0 = (
ϕ0, ψ0, w0, ϕ1, ψ1, w1, η

0)T , (2.3)

U = (ϕ, ψ,w, ϕt , ψt , wt , η)T (2.4)

and

g0 =
∫ +∞

0
g(s) ds. (2.5)

Then, the system (1.1) takes the following abstract form:
{
Ut = AU,

U (t = 0) = U0,
(2.6)

where A is the linear operator defined by

AU =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ϕt
ψt
wt

k1ρ̄1ϕxx − l2k3ρ̄1ϕ + k1ρ̄1ψx + lρ̄1(k1 + k3)wx

−k1ρ̄2ϕx + 1ρ̄2
(
k2 − g0

)
ψxx − k1ρ̄2ψ − lk1ρ̄2w + 1ρ̄2

∫ +∞

0
gηxx ds

−lρ̄1(k1 + k3)ϕx − lk1ρ̄1ψ + k3ρ̄1wxx − l2k1ρ̄1w
ψt − ηs

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Let

L2 =
{

v : R+ → H1∗ (]0, L[),
∫ L

0

∫ +∞

0
gv2x ds dx < +∞

}

(2.7)

and

H = H1
0 (]0, L[) × (

H1∗ (]0, L[))2 × L2(]0, L[) × (
L2∗(]0, L[))2 × L2, (2.8)

where

L2∗(]0, L[) =
{

v ∈ L2(]0, L[),
∫ L

0
v dx = 0

}

(2.9)

and

H1∗ (]0, L[) =
{

v ∈ H1(]0, L[),
∫ L

0
v dx = 0

}

. (2.10)

The domain D(A) of A is defined by

D(A) =
{
V = (v1, . . . , v7)

T ∈ H, AV ∈ H, v7(0) = 0, ∂xv2(0) = ∂xv3(0) = 0, (2.11)

∂xv2(L) = ∂xv3(L) = 0, ∂xv7(·, 0) = ∂xv7(·, L) = 0
}
;

that is, according to the definition of H and A,

D(A) =
{
(v1, . . . , v7)

T ∈ H, (v1, . . . , v6)
T ∈ H1

0 (]0, L[) × (
H1∗ (]0, L[))2 × H1

0 (]0, L[) × (
H1∗ (]0, L[))2 ,

v1, v3 ∈ H2(]0, L[), (
k2 − g0

)
∂xxv2 +

∫ +∞

0
g∂xxv7 ds ∈ L2∗(]0, L[), ∂sv7 ∈ L2,

v7(0) = 0, ∂xv2(0) = ∂xv3(0) = ∂xv2(L) = ∂xv3(L) = 0, ∂xv7(·, 0) = ∂xv7(·, L) = 0
}
.
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More generally, for n ∈ N,

D(An) =

⎧
⎪⎨

⎪⎩

H if n = 0,
D(A) if n = 1,{
V ∈ D(An−1), AV ∈ D(An−1)

}
if n = 2, 3, . . . .

Remark 2.1 As in [11], by integrating on ]0, L[ the second and third equations in (1.1), and using the boundary
conditions, we get

∂t t

(∫ L

0
ψ dx

)

+ k1
ρ2

∫ L

0
ψ dx + lk1

ρ2

∫ L

0
w dx = 0 (2.12)

and

∂t t

(∫ L

0
w dx

)

+ l2k1
ρ1

∫ L

0
w dx + lk1

ρ1

∫ L

0
ψ dx = 0. (2.13)

Therefore, (2.12) implies that

∫ L

0
w dx = − ρ2

lk1
∂t t

(∫ L

0
ψ dx

)

− 1

l

∫ L

0
ψ dx . (2.14)

Substituting (2.14) into (2.13), we get

∂t t t t

(∫ L

0
ψ dx

)

+
(
k1
ρ2

+ l2k1
ρ1

)

∂t t

(∫ L

0
ψ dx

)

= 0. (2.15)

Let l0 =
√

k1
ρ2

+ l2k1
ρ1

. Then, solving (2.15), we find

∫ L

0
ψ dx = c̃1 cos (l0t) + c̃2 sin (l0t) + c̃3t + c̃4, (2.16)

where c̃1, . . . , c̃4 are real constants. By combining (2.14) and (2.16), we get

∫ L

0
w dx = c̃1

(
ρ2l20
lk1

− 1

l

)

cos (l0t) + c̃2

(
ρ2l20
lk1

− 1

l

)

sin (l0t) − c̃3
l
t − c̃4

l
. (2.17)

Let

(ψ̃0(x), w̃0(x)) = (ψ0(x, 0), w0(x)).

Using the initial data of ψ and w in (1.1), we see that
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c̃1 = k1
ρ2l20

∫ L

0
ψ̃0 dx + lk1

ρ2l20

∫ L

0
w̃0 dx,

c̃2 = k1
ρ2l30

∫ L

0
ψ1 dx + lk1

ρ2l30

∫ L

0
w1 dx,

c̃3 =
(

1 − k1
ρ2l20

)∫ L

0
ψ1 dx − lk1

ρ2l20

∫ L

0
w1 dx,

c̃4 =
(

1 − k1
ρ2l20

)∫ L

0
ψ̃0 dx − lk1

ρ2l20

∫ L

0
w̃0 dx .

Let

ψ̃ = ψ − 1

L
(c̃1 cos (l0t) + c̃2 sin (l0t) + c̃3t + c̃4) (2.18)
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and

w̃ = w − 1

L

(

c̃1

(
ρ2l20
lk1

− 1

l

)

cos (l0t) + c̃2

(
ρ2l20
lk1

− 1

l

)

sin (l0t) − c̃3
l
t − c̃4

l

)

. (2.19)

Then, from (2.16) and (2.17), one can check that
∫ L

0
ψ̃ dx =

∫ L

0
w̃ dx = 0, (2.20)

and, hence,
∫ L

0
η̃ dx = 0, (2.21)

where

η̃(x, t, s) = ψ̃(x, t) − ψ̃(x, t − s) in ]0, L[×R+ × R+.

Therefore, Poincaré’s inequality

∃ c0 > 0 :
∫ L

0
v2 dx ≤ c0

∫ L

0
v2x dx, ∀v ∈ H1∗ (]0, L[) (2.22)

is applicable for ψ̃ , w̃ and η̃, provided that ψ̃, w̃ ∈ H1(]0, L[). In addition, (ϕ, ψ̃, w̃) satisfies the boundary
conditions and the first three equations in (1.1) with initial data

ψ0 − 1

L
(c̃1 + c̃4), ψ1 − 1

L
(l0c̃2 + c̃3),

w0 − 1

L

(

c̃1

(
ρ2l20
lk1

− 1

l

)

− c̃4
l

)

and w1 − 1

L

(

c̃2l0

(
ρ2l20
lk1

− 1

l

)

− c̃3
l

)

instead of ψ0, ψ1, w0 and w1, respectively. In the sequel, we work with ψ̃ , w̃ and η̃ instead of ψ , w and η,
but, for simplicity of notation, we use ψ , w and η instead of ψ̃ , w̃ and η̃, respectively.

Now, to prove the well posedness of (2.6), we make the following hypothesis:
(H1) The function g : R+ → R+ is differentiable, non-increasing and integrable on R+ such that there

exists a positive constant k0 such that, for any

(ϕ, ψ,w)T ∈ H1
0 (]0, L[) × (

H1∗ (]0, L[))2 ,

we have

k0

∫ L

0

(
ϕ2
x + ψ2

x + w2
x

)
dx ≤

∫ L

0

((
k2 − g0

)
ψ2
x + k1(ϕx + ψ + lw)2 + k3(wx − lϕ)2

)
dx . (2.23)

Moreover, there exists a positive constant β such that

− βg(s) ≤ g′(s), ∀s ∈ R+. (2.24)

Remark 2.2 1. It is evident that (2.23) implies that

k0

∫ L

0

(
ϕ2
x + ψ2

x + w2
x

)
dx ≤

∫ L

0

(
k2ψ

2
x + k1(ϕx + ψ + lw)2 + k3(wx − lϕ)2

)
dx . (2.25)

On the other hand, thanks to (2.22) applied for ψ and w, and Poincaré’s inequality

∃ c̃0 > 0 :
∫ L

0
v2 dx ≤ c̃0

∫ L

0
v2x dx, ∀v ∈ H1

0 (]0, L[) (2.26)
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applied for ϕ, there exists a positive constant k̃0 such that, for any

(ϕ, ψ, w)T ∈ H1
0 (]0, L[) × (

H1∗ (]0, L[))2 ,

we have
∫ L

0

(
k2ψ

2
x + k1(ϕx + ψ + lw)2 + k3(wx − lϕ)2

)
dx ≤ k̃0

∫ L

0

(
ϕ2
x + ψ2

x + w2
x

)
dx . (2.27)

Thus, from (2.25) and (2.27), we deduce that the right hand side of the inequality (2.25) defines a norm
on H1

0 (]0, L[) × (
H1∗ (]0, L[))2 equivalent to the natural norm of

(
H1(]0, L[))3.

2. As in [11], we conclude from (2.23) that

k0 + g0 − k2 ≤ 0. (2.28)

Indeed, for the choice ϕ = w = 0, (2.23) gives

(
k0 + g0 − k2

)
∫ L

0
ψ2
x dx ≤ k1

∫ L

0
ψ2 dx, ∀ψ ∈ H1∗ (]0, L[).

This inequality implies, forψ(x) = cos (λx)− 1
λL sin (λL) and λ ∈]0, +∞[ (notice thatψ ∈ H1∗ (]0, L[)),

(
k0 + g0 − k2

)
(

L − 1

2λ
sin (2λL)

)

≤ k1
λ2

(

L + 1

2λ
sin (2λL) − 2

λ2L
sin2 (λL)

)

, ∀λ > 0.

By letting λ go to +∞, we deduce (2.28).

According to Remark 2.2, we notice that, under the hypothesis (H1), the sets L2 andH are Hilbert spaces
equipped, respectively, with the inner products that generate the norms, for v ∈ L2 and V = (v1, . . . , v7)

T ∈
H,

‖v‖2L2
=

∫ L

0

∫ +∞

0
gv2x ds dx (2.29)

and

‖V ‖2H =
∫ L

0

((
k2 − g0

)
(∂xv2)

2 + k1(∂xv1 + v2 + lv3)
2 + k3(∂xv3 − lv1)

2) dx (2.30)

+
∫ L

0

(
ρ1v

2
4 + ρ2v

2
5 + ρ1v

2
6

)
dx + ‖v7‖2L2

.

Now, a simple computation implies that, for any V = (v1, . . . , v7)
T ∈ D(A),

〈AV, V 〉H = 1

2

∫ L

0

∫ +∞

0
g′(∂xv7)2 ds dx . (2.31)

Since g is non-increasing, we deduce from (2.31) that

〈AV, V 〉H ≤ 0. (2.32)

This implies that A is dissipative. Notice that, according to (2.24) and the fact that g is non-increasing, we see
that, for v ∈ L2,

∣
∣
∣
∣

∫ L

0

∫ +∞

0
g′v2x ds dx

∣
∣
∣
∣ = −

∫ L

0

∫ +∞

0
g′v2x ds dx

≤ β

∫ L

0

∫ +∞

0
gv2x ds dx

≤ β‖v‖2L2
< +∞,
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so the integral in the right hand side of (2.31) is well defined.
Next, we follow the proof given in [11] to prove that I d−A is surjective, where I d is the identity operator.

Let F = ( f1, . . . , f7)T ∈ H. We seek the existence of V = (v1, . . . , v7)
T ∈ D(A), a solution of the equation

(I d − A)V = F. (2.33)

The first three equations in (2.33) take the form
⎧
⎨

⎩

v4 = v1 − f1,
v5 = v2 − f2,
v6 = v3 − f3.

(2.34)

Using (2.34), the last equation in (2.33) is equivalent to

∂sv7 + v7 = v2 + f7 − f2. (2.35)

By integrating (2.35) and using the fact that v7(0) = 0 (from (2.11)), we get

v7(s) = (1 − e−s)(v2 − f2) + e−s
∫ s

0
eτ f7(τ ) dτ, (2.36)

We see that, from (2.34), if (v1, v2, v3) ∈ H1
0 (]0, L[) × (

H1∗ (]0, L[))2, then (v4, v5, v6) ∈ H1
0 (]0, L[) ×

(
H1∗ (]0, L[))2. On the other hand, using Fubini theorem, Hölder’s inequality and noting that f7 ∈ L2, we get

∫ L

0

∫ +∞

0
g(s)

(

e−s
∫ s

0
eτ ∂x f7(τ ) dτ

)2

ds dx

≤
∫ +∞

0
e−2s g(s)

(∫ s

0
eτ dτ

)∫ s

0
eτ (∂x f7(τ ))2 dτ ds dx

≤
∫ L

0

∫ +∞

0
e−s(1 − e−s)g(s)

∫ s

0
eτ (∂x f7(τ ))2 dτ ds dx

≤
∫ L

0

∫ +∞

0
e−s g(s)

∫ s

0
eτ (∂x f7(τ ))2 dτ ds dx

≤
∫ L

0

∫ +∞

0
eτ (∂x f7(τ ))2

∫ +∞

τ

e−s g(s) ds dτ dx

≤
∫ L

0

∫ +∞

0
eτ g(τ )(∂x f7(τ ))2

∫ +∞

τ

e−s ds dτ dx

≤
∫ L

0

∫ +∞

0
g(τ )(∂x f7(τ ))2 dτ dx

≤ ‖ f7‖2L2

< +∞,
∫ L

0

∫ +∞

0
g(s)

(

e−s
∫ s

0
eτ ∂x f7(τ ) dτ

)2

ds dx ≤
∫ L

0

∫ +∞

0
e−2s g(s)

(∫ s

0
eτ dτ

)∫ s

0
eτ (∂x f7(τ ))2 dτ ds dx

≤
∫ L

0

∫ +∞

0
e−s(1 − e−s)g(s)

∫ s

0
eτ (∂x f7(τ ))2 dτ ds dx

≤
∫ L

0

∫ +∞

0
e−s g(s)

∫ s

0
eτ (∂x f7(τ ))2 dτ ds dx

≤
∫ L

0

∫ +∞

0
eτ (∂x f7(τ ))2

∫ +∞

τ

e−s g(s) ds dτ dx

≤
∫ L

0

∫ +∞

0
eτ g(τ )(∂x f7(τ ))2

∫ +∞

τ

e−s ds dτ dx

≤
∫ L

0

∫ +∞

0
g(τ )(∂x f7(τ ))2 dτ dx

≤ ‖ f7‖2L2

< +∞,

123



164 Arab. J. Math. (2022) 11:155–178

then

s �→ e−s
∫ s

0
eτ f7(τ ) dτ ∈ L2,

and therefore, (2.36) implies that v7 ∈ L2. Moreover, ∂sv7 ∈ L2 by (2.35). Therefore, to prove that (2.33)
admits a solution V ∈ D(A), it is enough to show that

∂xv7(·, 0) = ∂xv7(·, L) = 0 (2.37)

and (v1, v2, v3) exists and satisfies the required regularity and boundary conditions in D(A), that is

(v1, v2, v3)
T ∈ (

H2(]0, L[) ∩ H1
0 (]0, L[)) × H1∗ (]0, L[) × (

H2(]0, L[) ∩ H1∗ (]0, L[))2 , (2.38)

(
k2 − g0

)
∂xxv2 +

∫ +∞

0
g∂xxv7 ds ∈ L2∗(]0, L[) (2.39)

and

∂xv2(0) = ∂xv3(0) = ∂xv2(L) = ∂xv3(L) = 0. (2.40)

Let us assume that (2.37)–(2.40) hold. Multiplying the fourth, fifth and sixth equations in (2.33) by ρ1ṽ1,
ρ2ṽ2 and ρ1ṽ3, respectively, integrating their sum over ]0, L[, using the boundary conditions (2.37) and (2.40),
and inserting (2.34) and (2.36), we get that (v1, v2, v3) solves the variational problem

a1
(
(v1, v2, v3)

T , (ṽ1, ṽ2, ṽ3)
T
)

= ã1
(
(ṽ1, ṽ2, ṽ3)

T
)

, (2.41)

for any (ṽ1, ṽ2, ṽ3)
T ∈ H1

0 (]0, L[) × (
H1∗ (]0, L[))2, where

a1
(
(v1, v2, v3)

T , (ṽ1, ṽ2, ṽ3)
T
)

(2.42)

=
∫ L

0
(k1(∂xv1 + v2 + lv3)(∂x ṽ1 + ṽ2 + lṽ3) + k3(∂xv3 − lv1)(∂x ṽ3 − lṽ1)) dx

+
∫ L

0

(
ρ1v1ṽ1 + ρ2v2ṽ2 + ρ1v3ṽ3 + (k2 − g̃0)∂xv2∂x ṽ2

)
dx,

g̃0 =
∫ +∞

0
e−sg(s) ds and

ã1
(
(ṽ1, ṽ2, ṽ3)

T
) =

∫ L

0
(ρ1( f1 + f4)ṽ1 + ρ2( f2 + f5)ṽ2 + ρ1( f3 + f6)ṽ3) dx

+(g0 − g̃0)
∫ L

0
∂x f2∂x ṽ2 dx

−
∫ L

0

(∫ +∞

0
e−sg(s)

∫ s

0
eτ ∂x f7(τ ) dτ ds

)

∂x ṽ2 dx .

(2.43)
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We note that, as before, using again Fubini theorem, Hölder’s inequality and the fact that f7 ∈ L2,
∫ L

0

(∫ +∞

0
e−sg(s)

∫ s

0
eτ ∂x f7(τ ) dτ ds

)2

dx

≤
∫ L

0

(∫ +∞

0
e−sg(s)

∫ s

0
eτ |∂x f7(τ )| dτ ds

)2

dx

≤
∫ L

0

(∫ +∞

0
eτ |∂x f7(τ )|

∫ +∞

τ

g(s)e−s ds dτ

)2

dx

≤
∫ L

0

(∫ +∞

0
eτ g(τ )|∂x f7(τ )|

∫ +∞

τ

e−s ds dτ

)2

dx

≤
∫ L

0

(∫ +∞

0
g(τ )|∂x f7(τ )| dτ

)2

dx

≤
∫ L

0

(∫ +∞

0
g(τ ) dτ

)(∫ +∞

0
g(τ )(∂x f7(τ ))2 dτ

)

dx

≤ g0‖ f7‖2L2

< +∞,
∫ L

0

(∫ +∞

0
e−sg(s)

∫ s

0
eτ ∂x f7(τ ) dτ ds

)2

dx ≤
∫ L

0

(∫ +∞

0
e−sg(s)

∫ s

0
eτ |∂x f7(τ )| dτ ds

)2

dx

≤
∫ L

0

(∫ +∞

0
eτ |∂x f7(τ )|

∫ +∞

τ

g(s)e−s ds dτ

)2

dx

≤
∫ L

0

(∫ +∞

0
eτ g(τ )|∂x f7(τ )|

∫ +∞

τ

e−s ds dτ

)2

dx

≤
∫ L

0

(∫ +∞

0
g(τ )|∂x f7(τ )| dτ

)2

dx

≤
∫ L

0

(∫ +∞

0
g(τ ) dτ

)(∫ +∞

0
g(τ )(∂x f7(τ ))2 dτ

)

dx

≤ g0‖ f7‖2L2
< +∞,

which implies that

x �→
∫ +∞

0
e−sg(s)

∫ s

0
eτ ∂x f7(τ ) dτ ds ∈ L2(]0, L[).

On the other hand, g̃0 ≤ g0 < k2 (by (2.28)). Then, by virtue of (2.23) and (2.27), we have a1 is a bilinear,
continuous and coercive form on

(
H1
0 (]0, L[) × (

H1∗ (]0, L[))2
)

×
(
H1
0 (]0, L[) × (

H1∗ (]0, L[))2
)

,

and ã1 is a linear and continuous form on H1
0 (]0, L[)× (

H1∗ (]0, L[))2. Consequently, using the Lax–Milgram
theorem, we deduce that (2.41) has a unique solution

(v1, v2, v3)
T ∈ H1

0 (]0, L[) × (
H1∗ (]0, L[))2 .

Therefore, using classical elliptic regularity arguments, we conclude that the forth, fifth and sixth equations
in (2.33) are satisfied with (v1, v2, v3)

T satisfying (2.38) and (2.40), and, using (2.34) and (2.36), v7 satisfies
(2.37) and (2.39). Thus, we deduce that (2.33) admits a unique solution V ∈ D(A), and then I d − A is
surjective.

The operator −A is then linear maximal monotone, and D(A) is dense inH. Finally, thanks to the Hille–
Yosida theorem (see [23]), we deduce from (2.32) and (2.33) thatA generates a C0-semigroup of contractions
in H. This gives the following well-posedness results of (2.6) (see [17,23]).
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Theorem 2.3 Assume that (H1) holds. For any n ∈ N and U 0 ∈ D(An), (2.6) has a unique solution

U ∈
n⋂

k=0

Cn−k
(
R+; D

(
Ak

))
. (2.44)

3 Stability

In this section, we study the stability of (2.6), where the obtained two (uniform and weak) decay rates of
solution depend on the speeds of wave propagations (1.2) and the growth of g at infinity characterized by the
following additional hypothesis:

(H2) Assume that g(0) > 0 and there exists a non-increasing differentiable function ξ : R+ → R
∗+ such

that

g′(s) ≤ −ξ(s)g(s), ∀s ∈ R+. (3.1)

We start by considering the case where the speeds of wave propagations (1.2) satisfy (1.4).

Theorem 3.1 Assume that (H1), (H2) and (1.4) are satisfied such that

l is small enough. (3.2)

Let U 0 ∈ H be such that

ξ ≡ constant or sup
s∈R+

∫ L

0

(
η0x (x, s)

)2
dx < +∞. (3.3)

Then, there exist constants β0 ∈]0, 1] and α1 > 0 such that, for all α0 ∈]0, β0[, the solution of (2.6) satisfies

‖U (t)‖2H ≤ α1

(

1 +
∫ t

0
(g(s))1−α0 ds

)

e
−α0

∫ t

0
ξ(s) ds

+ α1

∫ +∞

t
g(s) ds, ∀t ∈ R+. (3.4)

When (1.4) does not hold, we prove the following weaker stability result for (2.6).

Theorem 3.2 Assume that (H1), (H2) and (3.2) are satisfied. Let U0 ∈ D(A) be such that

ξ ≡ constant or sup
s∈R+

max
k=0,1

∫ L

0

(
∂ks η0x (x, s)

)2
dx < +∞ (3.5)

and

s1 = s3. (3.6)

Then, there exists a positive constant α1 such that

‖U (t)‖2H ≤
α1

(

1 +
∫ t

0
ξ(s)

∫ +∞

s
g(τ ) dτ ds

)

∫ t

0
ξ(s) ds

, ∀t > 0. (3.7)

Remark 3.3 1. If (3.1) holds with ξ ≡ constant, then (3.4) and (3.7) give, respectively, for some positive
constants d1 and d2,

‖U (t)‖2H ≤ d1e
−d2t , ∀t ∈ R+ (3.8)

and

‖U (t)‖2H ≤ d1
t

, ∀t > 0. (3.9)

Therefore, this particular case includes the results of [6]. The estimates (3.8) and (3.9) give the best decay
rates which can be obtained from (3.4) and (3.7), respectively.
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2. When ξ ≡ constant, condition (3.1) implies that g converges exponentially to zero at infinity. However,
when ξ �= constant, condition (3.1) allows s �→ g(s) to have a decay rate arbitrarily close to 1

s at infinity,
which represents the critical limit, since g is integrable onR+. To illustrate our general stability estimates,
we give here some particular examples of g satisfying (3.1), and show the specific corresponding decay
rates given by (3.4) and (3.7).
(i) Let g(t) = de−(1+t)q with 0 < q < 1 and d > 0 (g converges to zero at infinity faster than any

polynomial). Then, (3.1) holds with ξ(t) = q(1 + t)q−1, and consequently, (3.4) and (3.7) give,
respectively, for two positive constants c1 and c2,

E(t) ≤ c1e
−c2(1+t)q , ∀t ∈ R+

and

E(t) ≤ c1(1 + t)−q , ∀t ∈ R+.

(ii) Let g(t) = d(1+t)−q with q > 1 and d > 0 (g has atmost a polynomial decay at infinity). Assumption
(3.1) holds with ξ(t) = q(1+t)−1, and consequently, (3.4) and (3.7) give, respectively, for two positive
constants c1 and c2,

E(t) ≤ c1(1 + t)−c2 , ∀t ∈ R+

and

E(t) ≤ c1(ln(1 + t))−1, ∀t > 0.

To prove (3.4) and (3.7), we will consider suitable multipliers and construct appropriate Lyapunov func-
tionals satisfying some differential inequalities, for any U0 ∈ D(A) and t ∈ R+; so all the calculations are
justified. By integrating these differential inequalities, we get (3.4) and (3.7), for any U 0 ∈ D(A). By simple
density arguments (D(A) is dense in H), (3.4) remains valid, for any U 0 ∈ H.

We will use c, throughout the rest of this paper, to denote a generic positive constant which depends
continuously on the initial data U 0 and the fixed parameters in (1.1), (2.22) and (2.26), and can be different
from step to step. When c depends on some new constants y1, y2, . . ., introduced in the proof, the constant c
is noted cy1 , cy1,y2 , . . ..

Let us consider the energy functional E associated to (2.6) defined by

E(t) = 1

2
‖U (t)‖2H. (3.10)

From (2.6) and (2.31), we see that

E ′
i (t) = 1

2

∫ L

0

∫ +∞

0
g′η2x ds dx . (3.11)

Recalling that g is non-increasing, (3.11) implies that E is non-increasing, and consequently, (2.6) is dissipative.

4 Proof of uniform decay (3.4)

First, we consider the following functional:

I (t) = −ρ2

∫ L

0
ψt

∫ +∞

0
g(s)η ds dx . (4.1)

Lemma 4.1 For any δ0 > 0, there exists cδ0 > 0 such that

I ′(t) ≤ −ρ2
(
g0 − δ0

)
∫ L

0
ψ2
t dx + δ0

∫ L

0

(
ψ2
x + (ϕx + ψ + lw)2

)
dx

+cδ0

∫ L

0

∫ +∞

0

(
g(s) − g′(s)

)
η2x ds dx .

(4.2)
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Proof First, we note that

∂t

∫ +∞

0
g(s)η ds = ∂t

∫ t

−∞
g(t − s)(ψ(t) − ψ(s)) ds

=
∫ t

−∞
g′(t − s)(ψ(t) − ψ(s)) ds +

(∫ t

−∞
g(t − s) ds

)

ψt ;

that is

∂t

∫ +∞

0
g(s)η ds =

∫ +∞

0
g′(s)η ds + g0ψt . (4.3)

Second, using Young’s and Hölder’s inequalities, we get the following inequality: for all λ > 0, there exists
cλ > 0 such that, for any v ∈ L2(]0, L[) and η̂ ∈ {η, ∂xη},

∣
∣
∣
∣

∫ L

0
v

∫ +∞

0
g(s)η̂ ds dx

∣
∣
∣
∣ ≤ λ

∫ L

0
v2 dx + cλ

∫ L

0

∫ +∞

0
g(s)η̂2 ds dx . (4.4)

Similarly,
∣
∣
∣
∣

∫ L

0
v

∫ +∞

0
g′(s)η̂ ds dx

∣
∣
∣
∣ ≤ λ

∫ L

0
v2 dx − cλ

∫ L

0

∫ +∞

0
g′(s)η̂2 ds dx . (4.5)

Now, direct computations, using the first equation in (1.1), integrating by parts and using the boundary condi-
tions and (4.3), yield

I ′(t) = −ρ2g0
∫ L

0
ψ2
t dx +

∫ L

0

(∫ +∞

0
g(s)ηx ds

)2

dx

+ (
k1 − g0

)
∫ L

0
ψx

∫ +∞

0
g(s)ηx ds dx

+k1

∫ L

0
(ϕx + ψ + lw)

∫ +∞

0
g(s)η ds dx

−ρ2

∫ L

0
ψt

∫ +∞

0
g′(s)η ds dx .

Using (4.4) and (4.5) for the last three terms of this equality, Poincaré’s inequality (2.22) for η, and Hölder’s
inequality to estimate

(∫ +∞

0
g(s)∂xη ds

)2

,

we get (4.2). ��
Lemma 4.2 Let

J (t) = ρ2

∫ L

0
(ϕx + ψ + lw)ψt dx + k2ρ1

k1

∫ L

0
ψxϕt dx

−ρ1
k1

∫ L

0
ϕt

∫ +∞

0
g(s)ψx (t − s) ds dx .

(4.6)

Then, for any δ0, ε0, ε1, ε2 > 0, there exist cδ0 , cε0 > 0 such that

J ′(t) ≤ −k1

∫ L

0
(ϕx + ψ + lw)2 dx +

(

δ0 + lk2k3ε1
2k1

+ lk3g0ε2
2k1

) ∫ L

0
(wx − lϕ)2 dx

+δ0

∫ L

0
ϕ2
t dx +

(
lk2k3
2k1ε1

+ lk3g0

2k1ε2

)∫ L

0
ψ2
x dx +

∫ L

0

(
cε0ψ

2
t + ε0w

2
t

)
dx

+
(
k2ρ1
k1

− ρ2

) ∫ L

0
ψxtϕt dx + cδ0

∫ L

0

∫ +∞

0
(g(s) − g′(s))η2x ds dx .

(4.7)
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Proof First, notice that

∂t

∫ +∞

0
g(s)ψx (t − s) ds = ∂t

∫ t

−∞
g(t − s)ψx (s) ds

= g(0)ψx (t) +
∫ t

−∞
g′(t − s)ψx (s) ds

= −
∫ +∞

0
g′(s)ψx (t) ds +

∫ +∞

0
g′(s)ψx (t − s) ds;

that is

∂t

∫ +∞

0
g(s)ψx (t − s) ds = −

∫ +∞

0
g′(s)ηx ds. (4.8)

Now, by exploiting the first two equations in (1.1), integrating by parts, using (4.8) and the boundary conditions,
we get

J ′(t) = −k1

∫ L

0
(ϕx + ψ + lw)2 dx +

(
k2ρ1
k1

− ρ2

) ∫ L

0
ψxtϕt dx + ρ2

∫ L

0
ψ2
t dx

+ρ2l
∫ L

0
ψtwt dx + lk3

k1

(
k2 − g0

)
∫ L

0
(wx − lϕ)ψx dx

+ρ1
k1

∫ L

0
ϕt

∫ +∞

0
g′(s)ηx ds dx + lk3

k1

∫ L

0
(wx − lϕ)

∫ +∞

0
g(s)ηx ds dx .

By applying (4.4), (4.5) and Young’s inequality for the last four terms of the above equality, we deduce (4.7).
��

Lemma 4.3 Let

K (t) = −ρ1

∫ L

0
(ϕx + ψ + lw)wt dx − k3ρ1

k1

∫ L

0
(wx − lϕ)ϕt dx . (4.9)

Then, for any ε0 > 0, there exists cε0 > 0 such that

K ′(t) ≤ lk1

∫ L

0
(ϕx + ψ + lw)2 dx − lk23

k1

∫ L

0
(wx − lϕ)2 dx + cε0

∫ L

0
ψ2
t dx

+
∫ L

0

(
lρ1k3
k1

ϕ2
t + (−lρ1 + ε0)w

2
t

)

dx + ρ1

(
k3
k1

− 1

)∫ L

0
wtϕxt dx .

(4.10)

Proof Using the first and third equations in (1.1), integrating by parts, recalling (4.8) and using the boundary
conditions, we find

K ′(t) = lk1

∫ L

0
(ϕx + ψ + lw)2 dx − lk23

k1

∫ L

0
(wx − lϕ)2 dx + ρ1

(
k3
k1

− 1

)∫ L

0
ϕxtwt dx

−lρ1

∫ L

0
w2
t dx + lk3ρ1

k1

∫ L

0
ϕ2
t dx − ρ1

∫ L

0
ψtwt dx .

By applying Young’s inequality for the last four term of the above equality, we obtain (4.10). ��
Lemma 4.4 Let

P(t) = −ρ1k3

∫ L

0
(wx − lϕ)

∫ x

0
wt (y, t) dy dx

−ρ1k1

∫ L

0
ϕt

∫ x

0
(ϕx + ψ + lw)(y, t) dy dx .

(4.11)

Then, for any ε0, δ1 > 0, there exists cε0 > 0 such that

P ′(t) ≤ k21

∫ L

0
(ϕx + ψ + lw)2 dx − k23

∫ L

0
(wx − lϕ)2 dx + cε0

∫ L

0
ψ2
t dx

+
(
−ρ1k1 + ε0 + lρ1|k3−k1|δ1

2

) ∫ L

0
ϕ2
t dx + ρ1

(

k3 + c̃0l|k3 − k1|
2δ1

) ∫ L

0
w2
t dx .

(4.12)
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Proof By exploiting the first and third equations in (1.1), integrating by parts and using (2.20) and the boundary
conditions, we get

P ′(t) = −ρ1k3

∫ L

0
w2
t dx + ρ1k1

∫ L

0
ϕ2
t dx − k21

∫ L

0
(ϕx + ψ + lw)2 dx

+k23

∫ L

0
(wx − lϕ)2 dx + ρ1

∫ L

0
ϕt

∫ x

0
(k1ψt (y, t) + l(k1 − k3)wt (y, t)) dy dx .

(4.13)

Noting that the functions

x �→
∫ x

0
ψt (y, t) dy and x �→

∫ x

0
wt (y, t) dy

vanish at 0 and L (because of (2.20)), then, applying (2.26), we have

∫ L

0

(∫ x

0
ψt (y, t) dy

)2

dx ≤ c̃0

∫ L

0
ψ2
t dx (4.14)

and
∫ L

0

(∫ x

0
wt (y, t) dy

)2

dx ≤ c̃0

∫ L

0
w2
t dx . (4.15)

By applying Young’s inequality for the last term in (4.13), and recalling (4.14) and (4.15), we con-
clude (4.12). ��
Lemma 4.5 Let

R(t) = −
∫ L

0
(ρ1ϕϕt + ρ2ψψt + ρ1wwt ) dx . (4.16)

Then, for any δ0 > 0, there exists cδ0 > 0 such that

R′(t) ≤
∫ L

0

((
k2 + δ0 − g0

)
ψ2
x + k1(ϕx + ψ + lw)2 + k3(wx − lϕ)2

)
dx

−
∫ L

0

(
ρ1ϕ

2
t + ρ2ψ

2
t + ρ1w

2
t

)
dx + cδ0

∫ L

0

∫ +∞

0
g(s)η2x ds dx .

(4.17)

Proof By exploiting the first three equations in (1.1), integrating by parts and using the boundary conditions,
we find

R′(t) =
∫ L

0

((
k2 − g0

)
ψ2
x + k1(ϕx + ψ + lw)2 + k3(wx − lϕ)2

)
dx

−
∫ L

0

(
ρ1ϕ

2
t + ρ2ψ

2
t + ρ1w

2
t

)
dx +

∫ L

0
ψx

∫ +∞

0
g(s)ηx ds dx .

By applying (4.4) for the last term in this equality, we arrive at (4.17). ��
Lemma 4.6 Let

D(t) = −ρ2

∫ L

0
ψx

∫ x

0
ψt (y, t) dy dx . (4.18)

Then, for any δ0, δ2 > 0, there exists cδ0 > 0 such that

D′(t) ≤ ρ2

∫ L

0
ψ2
t dx +

(
k1
2δ2

+ g0 + δ0 − k2

)∫ L

0
ψ2
x dx

+ c̃0k1δ2
2

∫ L

0
(ϕx + ψ + lw)2 dx + cδ0

∫ L

0

∫ +∞

0
g(s)η2x ds dx .

(4.19)
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Proof By exploiting the second equation in (1.1), integrating by parts and using the boundary conditions, we
find

D′(t) = ρ2

∫ L

0
ψ2
t dx + (

g0 − k2
)
∫ L

0
ψ2
x dx −

∫ L

0
ψx

∫ +∞

0
g(s)ηx ds dx

+k1

∫ L

0
ψx

∫ x

0
(ϕx (y, t) + ψ(y, t) + lw(y, t)) dy dx .

(4.20)

Noting that the function

x �→
∫ x

0
(ϕx (y, t) + ψ(y, t) + lw(y, t)) dy

vanishes at 0 and L (because of (2.20)), then, applying (2.26), we have

∫ L

0

(∫ x

0
(ϕx (y, t) + ψ(y, t) + lw(y, t)) dy

)2

dx ≤ c̃0

∫ L

0
(ϕx + ψ + lw)2 dx . (4.21)

Then, application of Young’s inequality and (4.4) for the last two terms in (4.20), and use of (4.21) yield (4.19).
��

Let N , N1, N2, N3, N4, N5 > 0 and

F := NE + N1 I + N2P + N3K + N4R + N5D + J. (4.22)

Then, by combining (4.2), (4.7), (4.10), (4.12), (4.17) and (4.19), we obtain

F ′(t) ≤
∫ L

0

(
l1ϕ

2
t + l2ψ

2
t + l3w

2
t + l4ψ

2
x + l5(wx − lϕ)2 + l6(ϕx + ψ + lw)2

)
dx

+NE ′(t) + cN1,N4,N5,δ0

∫ L

0

∫ +∞

0

(
g(s) − g′(s)

)
η2x ds dx

+δ0cN1,N4,N5

∫ L

0

(
ψ2
x + (ϕx + ψ + lw)2 + (wx − lϕ)2 + ϕ2

t + ψ2
t

)
dx

+
(
k2ρ1
k1

− ρ2

) ∫ L

0
ψxtϕt dx + N3ρ1

(
k3
k1

− 1

)∫ L

0
wtϕxt dx

+ε0cN2,N3

∫ L

0

(
ϕ2
t + w2

t

)
dx + cN2,N3,ε0

∫ L

0
ψ2
t dx,

(4.23)

where

l1 = −ρ1k1N2 − ρ1N4 + lρ1|k3 − k1|δ1N2

2
+ lρ1k3N3

k1
,

l2 = −ρ2g
0N1 − ρ2N4 + ρ2N5,

l3 = −lρ1N3 − ρ1N4 + ρ1

(

k3 + lc̃0|k3 − k1|
2δ1

)

N2,

l4 = −
(

k2 − k1
2δ2

)

N5 + k2N4 + lk2k3
2k1ε1

+ g0
(

N5 − N4 + lk3
2k1ε2

)

,

l5 = −k23N2 − lk23N3

k1
+ k3N4 + lk2k3ε1

2k1
+ lk3g0ε2

2k1

l6 = −k1 + k21N2 + lk1N3 + k1N4 + c̃0k1δ2N5

2
.

Using (2.23), (2.30), (3.10) and (3.11), we get from (4.23) that

F ′(t) ≤
∫ L

0

(
l1ϕ

2
t + l2ψ

2
t + l3w

2
t + l4ψ

2
x + l5(wx − lϕ)2 + l6(ϕx + ψ + lw)2

)
dx (4.24)
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+ δ0cN1,N4,N5E(t) + (N − cN1,N4,N5,δ0)E
′(t) + cN1,N4,N5,δ0

∫ L

0

∫ +∞

0
g(s)η2x ds dx

+
(
k2ρ1
k1

− ρ2

) ∫ L

0
ψxtϕt dx + N3ρ1

(
k3
k1

− 1

)∫ L

0
wtϕxt dx

+ ε0cN2,N3

∫ L

0

(
ϕ2
t + w2

t

)
dx + cN2,N3,ε0

∫ L

0
ψ2
t dx .

At this point, we choose carefully the constants N , Ni , δi and εi to get suitable values of li .
First, let us take

N3 = δ1 = 1, ε1 = k3
k2

, ε2 = k3
2g0

, δ2 = k1
k2 − g0

, N4 = k3N2, N5 = 4k3N2;

thus, the li ’s take the forms
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

l1 = −ρ1(k1 + k3)N2 + lρ1
( |k1−k3|

2 N2 + k3
k1

)
,

l2 = −ρ2(g0N1 − 3k3N2),

l3 = −lρ1
(
1 − c̃0|k1−k3|

2 N2

)
,

l4 = −(k2 − g0)k3N2 + l
k1

(
k22
2 + (g0)2

)

,

l5 = − lk23
4k1

< 0,

l6 = −k1
(
1 −

(
k1 + k3 + 2c̃0k1k3

k2−g0

)
N2

)
+ lk1.

Now, we choose N2 > 0 so small that

1 − c̃0|k1 − k3|N2 > 0, 1 −
(

k1 + k3 + 2c̃0k1k3
k2 − g0

)

N2 > 0,

then, take ε0 = 1
2cN2,N3

lρ1, so that we have

⎧
⎪⎨

⎪⎩

l̃1 = l1 + ε0cN2,N3 = −ρ1(k1 + k3)N2 + lρ1
(
1
2 + |k1−k3|

2 N2 + k3
k1

)
,

l̃2 = l2 + cN2,N3,ε0 ,

l̃3 = l3 + ε0cN2,N3 = − lρ1
2 (1 − c̃0|k1 − k3|N2) < 0.

Next, we recall (3.2) to select l > 0 small enough such that

l̃1 < 0, l4 < 0, l6 < 0.

After that, we pick N1 > 0 very large so that l̃2 < 0. Then, we find that

l̂ := 2max

{
1

ρ1
l̃1,

1

ρ2
l̃2,

1

ρ1
l̃3,

1

k2
l4,

1

k3
l5,

1

k1
l6

}

< 0

and, using (2.30) and (3.10),

∫ L

0

(
l̃1ϕ

2
t + l̃2ψ

2
t + l̃3w

2
t + l4ψ

2
x + l5(wx − lϕ)2 + l6(ϕx + ψ + lw)2

)
dx + δ0cN1,N4,N5E(t)

≤ l̂
2

∫ L

0

(
ρ1ϕ

2
t + ρ2ψ

2
t + ρ1w

2
t + k2ψ

2
x + k3(wx − lϕ)2 + k1(ϕx + ψ + lw)2

)
dx + δ0cN1,N4,N5E(t)

≤ (l̂ + δ0cN1,N4,N5)E(t) + l̂g0

2

∫ L

0
ψ2
x dx − l̂

2

∫ L

0

∫ +∞

0
g(s)η2x ds dx

≤ (l̂ + δ0cN1,N4,N5)E(t) − l̂
2

∫ L

0

∫ +∞

0
g(s)η2x ds dx .

(4.25)
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Finally, we take δ0 > 0 small enough so that

l̂ + δ0cN1,N2,N5 < 0.

Consequently, we obtain from (4.24) and (4.25), for some positive constants c, c̃1,

F ′(t) ≤ −c̃1E(t) + (N − c)E ′(t) + c
∫ L

0

∫ +∞

0
g(s)η2x ds dx

+
(
k2ρ1
k1

− ρ2

) ∫ L

0
ψxtϕt dx + N3ρ1

(
k3
k1

− 1

)∫ L

0
wtϕxt dx .

(4.26)

Now, we estimate the integral of gη2x in (4.26).
Case ξ ≡ constant. From (3.1), we have

ξ(t)
∫ L

0

∫ +∞

0
g(s)η2x ds dx =

∫ L

0

∫ +∞

0
ξg(s)η2x ds dx

≤ −
∫ L

0

∫ +∞

0
g′(s)η2x ds dx,

then, using (3.11), we find

ξ(t)
∫ L

0

∫ +∞

0
g(s)η2x ds dx ≤ −2E ′(t). (4.27)

Case ξ �= constant. Following the arguments of [12] and [13], and using (3.1) and the fact that ξ is
non-increasing, we get

ξ(t)
∫ L

0

∫ t

0
g(s)η2x ds dx ≤

∫ L

0

∫ t

0
ξ(s)g(s)η2x ds dx

≤ −
∫ L

0

∫ t

0
g′(s)η2x ds dx,

then, recalling (3.11), we obtain

ξ(t)
∫ L

0

∫ t

0
g(s)η2x ds dx ≤ −2E ′(t). (4.28)

On the other hand, the definition of E , (2.23) and the fact that E is non-increasing imply that
∫ L

0
ψ2
x (x, t) dx ≤ cE(0).

Therefore,
∫ L

0
η2x dx =

∫ L

0

(
η0x (x, s − t) + ψx (x, t) − ψx (x, 0)

)2
dx

≤ c

(

E(0) + sups∈R+

∫ L

0

(
η0x (x, s)

)2
dx

)

.

Then, using the boundedness condition on η0 in (3.3), we deduce that

ξ(t)
∫ L

0

∫ +∞

t
g(s)η2x ds dx ≤ cξ(t)

∫ +∞

t
g(s)ds. (4.29)

Hence, by combining (4.28) and (4.29), we find

ξ(t)
∫ L

0

∫ +∞

0
g(s)η2x ds dx ≤ −2E ′(t) + cξ(t)

∫ +∞

t
g(s)ds. (4.30)
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Finally, multiplying (4.26) by ξ(t) and combining with (4.27) and (4.30), we get for the two previous cases,
for some c̃2 > 0,

ξ(t)F ′(t) ≤ −c̃1ξ(t)E(t) + cξ(t)
∫ +∞

t
g(s)ds + (N − c)ξ(t)E ′(t) − c̃2E

′(t)

+
(
k2ρ1
k1

− ρ2

)
ξ(t)

∫ L

0
ψxtϕt dx + N3ρ1

(
k3
k1

− 1

)

ξ(t)
∫ L

0
wtϕxt dx .

(4.31)

On the other hand, from (2.23), (2.30) and (3.10), we deduce that there exists a positive constant γ
(independent of N ) satisfying

|N1 I + N2P + N3K + N4R + N5D + J | ≤ γ E,

which, combined with (4.22), implies that

(N − γ )E ≤ F ≤ (N + γ )E . (4.32)

Choosing N so that

N ≥ c and N > γ,

noting that E ′ ≤ 0 and using (4.31) and (4.32), we deduce that F ∼ E and

F̃ ′(t) ≤ −c̃1ξ(t)E(t) + ch(t) + ξ ′(t)F(t)

+
(
k2ρ1
k1

− ρ2

)
ξ(t)

∫ L

0
ψxtϕt dx + N3ρ1

(
k3
k1

− 1

)

ξ(t)
∫ L

0
wtϕxt dx,

(4.33)

where

F̃ = ξF + c̃2E and h(t) = ξ(t)
∫ +∞

t
g(s)ds.

From (4.32) and the relation 0 ≤ ξ(t)F(t) ≤ ξ(0)F(t), we see that

c̃2E ≤ F̃ ≤ (c̃2 + ξ(0)(N + γ ))E . (4.34)

Therefore, (4.33) implies that, for any α0 ∈]0, β0[, where β0 = min
{
1, c̃1

c̃2+ξ(0)(N+γ )

}
,

F̃ ′(t) ≤ −α0ξ(t)F̃(t) + ch(t)

+
(
k2ρ1
k1

− ρ2

)
ξ(t)

∫ L

0
ψxtϕt dx + N3ρ1

(
k3
k1

− 1

)

ξ(t)
∫ L

0
wtϕxt dx,

(4.35)

Since the last two terms in (4.35) vanish (thanks to (1.4)), then (4.35) implies that

∂t

⎛

⎜
⎝e

α0

∫ t

0
ξ(s) ds

F̃(t)

⎞

⎟
⎠ ≤ ce

α0

∫ t

0
ξ(s) ds

h(t).

Therefore, by integrating over [0, T ] with T ≥ 0, we get

F̃(T ) ≤ e
−α0

∫ T

0
ξ(s) ds

⎛

⎜
⎝F̃(0) + c

∫ T

0
e
α0

∫ t

0
ξ(s) ds

h(t)dt

⎞

⎟
⎠ ,

which implies, according to (4.34), that

E(T ) ≤ ce
−α0

∫ T

0
ξ(s) ds

⎛

⎜
⎝1 +

∫ T

0
e
α0

∫ t

0
ξ(s) ds

h(t) dt

⎞

⎟
⎠ . (4.36)
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Since

e
α0

∫ t

0
ξ(s) ds

h(t) = 1

α0
∂t

⎛

⎜
⎝e

α0

∫ t

0
ξ(s) ds

⎞

⎟
⎠

∫ +∞

t
g(s) ds,

then, by integration by parts, we obtain

∫ T

0
e
α0

∫ t

0
ξ(s) ds

h(t) dt

= 1

α0

⎛

⎜
⎜
⎝e

α0

∫ T

0
ξ(s) ds ∫ +∞

T
g(s) ds −

∫ +∞

0
g(s) ds +

∫ T

0
e
α0

∫ t

0
ξ(s) ds

g(t) dt

⎞

⎟
⎟
⎠ .

Consequently, combining with (4.36), we arrive at

E(T ) ≤ c

⎛

⎜
⎜
⎝e

−α0

∫ T

0
ξ(s) ds

+
∫ +∞

T
g(s) ds

⎞

⎟
⎟
⎠

+ce
−α0

∫ T

0
ξ(s) ds ∫ T

0
e
α0

∫ t

0
ξ(s) ds

g(t) dt.

(4.37)

On the other hand, (3.1) implies that

∂t

⎛

⎜
⎝e

α0

∫ t

0
ξ(s) ds

(g(t))α0

⎞

⎟
⎠ = α0(g(t))

α0−1(ξ(t)g(t) + g′(t))e
α0

∫ t

0
ξ(s) ds

≤ 0,

and, hence,

e
α0

∫ t

0
ξ(s) ds

(g(t))α0 ≤ (g(0))α0 .

Therefore,

∫ T

0
e
α0

∫ t

0
ξ(s) ds

g(t) dt ≤ (g(0))α0
∫ T

0
(g(t))1−α0 dt. (4.38)

Finally, (3.10) and (4.38) give (3.4).

5 Proof of weak decay (3.7)

In this section, we treat the case when (1.4) does not hold but (3.6) holds. In this case, the last term in (4.35)
vanishes. Therefore, we need to estimate

(
k2ρ1
k1

− ρ2

)

ξ(t)
∫ L

0
ψxtϕt dx
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using the following system resulting from differentiating (1.1) with respect to time t :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ρ1ϕt t t − k1(ϕxt + ψt + lwt )x − lk3(wxt − lϕt ) = 0,

ρ2ψt t t − k2ψxxt + k1(ϕxt + ψt + lwt ) +
∫ +∞

0
g(s)ψxxt (x, t − s) ds = 0,

ρ1wt t t − k3(wxt − lϕt )x + lk1(ϕxt + ψt + lwt ) = 0,
ϕt (0, t) = ψxt (0, t) = wxt (0, t) = ϕt (L , t) = ψxt (L , t) = wxt (L , t) = 0.

(5.1)

System (5.1) is well posed for initial data U0 ∈ D(A) thanks to Theorem 2.3, where Ut ∈ C(R+;H). Let
U 0 ∈ D(A) and Ẽ be the energy of (5.1) defined by

Ẽ(t) = 1

2
‖Ut (t)‖2H. (5.2)

Similarly to (3.11), we have

Ẽ ′(t) = 1

2

∫ L

0

∫ +∞

0
g′η2xt ds dx ≤ 0; (5.3)

so Ẽ is non-increasing. We use an idea introduced in [9] to get the following lemma.

Lemma 5.1 For any ε > 0, there exists cε > 0 such that

∣
∣
∣
∣

(
k2ρ1
k1

− ρ2

) ∫ L

0
ψxtϕt dx

∣
∣
∣
∣ ≤ cε

∫ L

0

∫ +∞

0
g(s)η2xt ds dx + εE(t) − cεE

′(t). (5.4)

Proof We have, by the definition of η,

(
k2ρ1
k1

− ρ2

) ∫ L

0
ψxtϕt dx = 1

g0

(
k2ρ1
k1

− ρ2

) ∫ L

0
ϕt

∫ +∞

0
g(s)ηxt ds dx

+ 1
g0

(
k2ρ1
k1

− ρ2

) ∫ L

0
ϕt

∫ +∞

0
g(s)ψxt (t − s) ds dx .

(5.5)

Using (4.4) and (3.10), we get, for all ε > 0,

∣
∣
∣
∣
1
g0

(
k2ρ1
k1

− ρ2

) ∫ L

0
ϕt

∫ +∞

0
g(s)ηxt ds dx

∣
∣
∣
∣ ≤ ε

2 E(t)

+cε

∫ L

0

∫ +∞

0
g(s)η2xt ds dx .

(5.6)

On the other hand, by integrating with respect to s and using the definition of η, we obtain

∫ L

0
ϕt

∫ +∞

0
g(s)ψxt (t − s) ds dx = −

∫ L

0
ϕt

∫ +∞

0
g(s)∂s(ψx (t − s)) ds dx

=
∫ L

0
ϕt

(

g(0)ψx (t) +
∫ +∞

0
g′(s)ψx (t − s) ds

)

dx

= −
∫ L

0
ϕt

∫ +∞

0
g′(s)ηx ds dx .

Therefore, using (4.5) and (3.11),

∣
∣
∣
∣
1

g0

(

−k2ρ1
k1

− ρ2

)∫ L

0
ϕt

∫ +∞

0
g(s)ψxt (t − s) ds dx

∣
∣
∣
∣ ≤ ε

2
E(t) − cεE

′(t). (5.7)

Inserting (5.6) and (5.7) into (5.5), we obtain (5.4). ��

123



Arab. J. Math. (2022) 11:155–178 177

Now, using (3.6), combining (4.35) and (5.4), and choosing ε small enough, we find

F̃ ′(t) ≤ −cξ(t)E(t) + ch(t) − cξ(t)E ′(t)

+cξ(t)
∫ L

0

∫ +∞

0
g(s)η2xt ds dx .

(5.8)

On the other hand, using the boundedness condition on η0 in (3.5), we have (as for (4.27) and (4.30))

ξ(t)
∫ L

0

∫ +∞

0
g(s)η2xt ds dx ≤ −cẼ ′(t) + ch(t). (5.9)

Hence, combining (5.8) and (5.9), we have

(
F̃(t) + cẼ(t) + cξ(t)E(t)

)′ ≤ −cξ(t)E(t) + ch(t), (5.10)

since ξ is non-increasing. Therefore, by integrating on [0, T ] and using the fact E is non-increasing, we get

cE(T )

∫ T

0
ξ(t) dt ≤ F̃(0) + cẼ(0) + cξ(0)E(0) + c

∫ T

0
h(t) dt,

which gives (3.7), since (3.10).

Comments.

1. This work generalizes the results of [6] and allows a wider class of relaxation functions.
2. Note that when w = l = 0, we obtain the Timoshenko system and our results reduce to those of [12].
3. It would be very interesting to obtain these general decay results without conditions (3.2) and (3.3).
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