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Abstract In this paper, we determine a sufficient condition for the irreducibility of the family of representations
of the braid group constructed by C. M. Egea and E. Galina without requiring that the representations are self-
adjoint. Then, we construct a new subfamily of multi-parameter representations (ψm, Vm), 1 ≤ m < n, of
dimension Vm = (n

m

)
. Finally, we study the irreducibility of (ψm, Vm).

Mathematics Subject Classification 20F36

1 Introduction

Let Bn be the braid group on n strings. Ed. Formanek classified all irreducible representations of Bn of
dimension at most n [3]. In [5], I. Sysoeva extended this classification to representations of dimensions n.
It was shown that all irreducible complex specialization of the representations of Bn of dimension n ≥ 9
are equivalent to the tensor product of a one-dimensional representation and a specialization of the standard
representations. It was proved that for n ≥ 7 every irreducible complex representation of Bn of corank two is
equivalent to a specialization of the standard representation [5]. In [4], Larsen and Rowell proved that there
are no irreducible unitary representations of Bn with dimension n + 1 for n ≥ 16. In [6], I. Sysoeva proved
that there are no irreducible representations of dimension n + 1 for n ≥ 10.

In [2], Egea and Galina made a step forward in the classification of irreducible representations of the braid
group Bn . They introduced a new family of finite-dimensional complex representations of Bn , which contains
the standard representation. They gave a sufficient condition for members of this family to be irreducible.
Moreover, they provided explicitly a subfamily of one parameter, self-adjoint representations (φm, Vm), 1 ≤
m < n. The question of irreducibility of this family was further studied.

In our work, we determine a sufficient condition for the irreducibility of the family of representations of the
braid group constructed by Egea and Galina without requiring that the representations are self-adjoint. Then,
we construct a multi-parameter family of representations whose irreducibility will be studied.

In Sect. 2, we present the results of the paper of Egea and Galina [2]. More precisely, we define the family
of finite-dimensional representations of the braid group, which was constructed in [2]. Then, we present a
theorem, given in [2], which gives a sufficient condition for members of this family to be irreducible. In the
hypothesis of the theorem, the representation is assumed to be self-adjoint. A specific family of representations
was computed in their work.

M. N. Abdulrahim (B) · R. S. Kahil
Department of Mathematics and Computer Science, Beirut Arab University, P.O. Box 11-5020 Beirut, Lebanon
E-mail: mna@bau.edu.lb

R. S. Kahil
E-mail: rsk349@student.bau.edu.lb

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40065-021-00352-y&domain=pdf
http://orcid.org/0000-0001-5628-8240


304 Arab. J. Math. (2022) 11:303–311

In Sect. 3, we show that the self-adjoint condition required for members of this family is not needed to show
their irreducibility. Moreover, we give explicitly another subfamily (ψm, Vm), 1 ≤ m < n, which contains
non-self-adjoint representations. For all 1 ≤ m < n, (ψm, Vm) is a multi-parameter representation, where
dim Vm = (n

m

)
. Finally, we study the irreducibility of (ψm, Vm). More precisely, we show that for n > 2 and

n �= 2m, (ψm, Vm) is an irreducible representation of Bn for all 1 ≤ m < n, and if n = 2m, then (ψm, Vm) is
the sum of two representations of Bn .

2 Definitions and known results

In this section, we list results of the paper of Egea and Galina. We present the family of finite-dimensional
representations of the braid group containing the standard representation constructed in their work [2].

Definition 2.1 [1]. The braid group on n strings Bn is the abstract groupwith generators τ1, . . . , τn−1 satisfying
the following conditions:

τiτi+1τi = τi+1τiτi+1, i = 1, 2, ..., n − 2

τiτ j = τ jτi , |i − j | ≥ 2.

Definition 2.2 [7]. Let V be a finite-dimensional inner product space over C with inner product 〈 , 〉. Given a
linear operator T ∈ L(V ), the adjoint of T is defined to be the operator T ∗ ∈ L(V ) for which

〈T v, w〉 = 〈v, T ∗w〉, for all v, w ∈ V .

A self-adjoint operator is an operator that is equal to its own adjoint. That is, T is self-adjoint if T = T ∗. If,
in addition, an orthonormal basis has been chosen, then the operator T is self-adjoint if and only if the matrix
describing T with respect to this basis is Hermitian.

Definition 2.3 [7]. A self-adjoint representation π of a groupG is a linear representation on a complex Hilbert
space V , such that π(g) is a self-adjoint operator for every g ∈ G.

Now, we introduce the family of representations of Bn constructed by Egea and Galina in [2]. Then, we
present the main theorem that finds a sufficient condition for the irreducibility. A construction of such a family
that satisfies the hypothesis of the theorem was made.

The authors in [2] considered n non-negative integers z1, z2, . . . , zn not necessarily different; a set X which
is the set of all the possible n-tuples obtained by permuting the coordinates of the fixed n-tuple (z1, z2, . . . , zn).
For example, if n = 3, then

X = {(z1, z2, z3), (z1, z3, z2), (z2, z1, z3), (z2, z3, z1)(z3, z1, z2), (z3, z2, z1)}.
They considered a complex vector space V with orthonormal basis β = {vx : x ∈ X}. The dimension of V is
the cardinality of X . Then, they defined a representation φ : Bn → Aut (V ), such that

φ(τk)(vx ) = qxk ,xk+1vσk(x) .

Here, qxk ,xk+1 is a non-zero complex number that only depends on the places k and k + 1 of x = (x1, . . . , xn),
and

σk(x1, ..., xn) = (x1, ..., xk−1, xk+1, xk, xk+2, ..., xn).

With these notations, the authors in [2] obtained the following theorems.

Theorem 2.4 [2]. (φ, V) is a representation of the braid group Bn.

Theorem 2.5 [2]. If φ(τk) is a self-adjoint operator for all k, and for any pair x, y ∈ X, there exists j , 1
≤ j ≤ n − 1, such that |qx j ,x j+1 |2 �= |qy j ,y j+1 |2, then (φ,V) is an irreducible representation of the braid group
Bn.
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Example 2.6 [2] Let z1, . . . , zn ∈ {0, 1}, such that z1 = z2 = · · · = zm = 1 and zm+1 = · · · = zn = 0. If Vm
is the vector space with basis βm = {vx , x ∈ X}, then dimVm = (n

m

)
. For each x = (x1, . . . , xn) ∈ X , let

qxk ,xk+1 =
{
1 i f xk = xk+1
t i f xk �= xk+1

where t is real number, t �= 0, 1, −1. Let φm : Bn → Aut (Vm) be a representation given by

φm(τk)(vx ) = qxk ,xk+1vσk(x) .

The representation they obtained is self-adjoint. Thus, they used Theorem 2.2 to get the following result.

Theorem 2.7 [2]. Let n > 2. Then, (φm, Vm) is an irreducible representation of Bn, for all 1 ≤ m < n, such
that 2m �= n.

If n = 2m then (φm, Vm) is sum of two irreducible representations of Bn.

3 Construction and main theorems

In this section, we deal with the representation in Sect. 2without requiring the condition “φ(τk) is self- adjoint”,
as stated in the hypothesis of Theorem 2.2 and we still obtain that the representation is irreducible. We then
construct a multi-parameter representation of high degree, and study its irreducibility.

Theorem 3.1 If for any pair x, y ∈ X, there exists k, 1 ≤ k ≤ n − 1, such that qxk ,xk+1qxk+1,xk �=
qyk ,yk+1qyk+1,yk , then (φ,V) is an irreducible representation of the braid group Bn .

Proof Let W be a non-zero invariant subspace of V . Consider β = {vx ; x ∈ X} a basis for V . We now follow
the steps adopted in [2] to show that if one of the basis vectors vx belongs to W , then vy belongs to W for any
vy ∈ β. Since elements in X are obtained by permutation of a fixed element, it follows that any two elements
are permutations of each other. Thus, for any two elements x, y ∈ X , there exists a permutation σ formed of a
product of transpositions, such that σ(x) = y. For vx ∈ W . We let σ = σi1 ...σil . Then, τ = τi1 . . . τil satisfies
φ(τ)(vx ) = λvy for some non-zero complex number λ. Hence, W contains vy , and, therefore, W contains the
basis β. Next, we show that vx belongs to W for some x ∈ X .

We have

(φ(τk))
2(vx ) = φ(τk)(qxk ,xk+1vσk (x)) = qxk ,xk+1qxk+1,xkvσ 2

k (x) = qxk ,xk+1qxk+1,xkvx .

Hence, the matrices (φ(τk))
2 are diagonal in the basis β for all k, 1 ≤ k ≤ n−1.We now consider any of these

diagonal matrices. Without loss of generality, we consider (φ(τ1))
2. Since the matrix (φ(τ1))

2 is diagonal,
then any invariant subspace of V , in particular W , contains either an eigenvector vx for some x ∈ X or a
linear combination of its eigenvectors corresponding to the same eigenvalue. If vx ∈ W , then we are done.
Otherwise, we assume that W contains a linear combination a1vx1 + a2vx2 + · · · + arvxr , where at least two
of the coefficients are non-zeros. Here, x1, . . . , xr ∈ X and vx1, . . . , vxr ∈ β are the eigenvectors of (φ(τ1))

2

corresponding to the same eigenvalue. We now show that if any linear combination of such vectors belongs to
W , then one of the basis elements belongs to W . In particular, we prove that if any such linear combination of
r vectors, with r more than one, belongs to W , then we can obtain a non-zero linear combination of at most
r − 1 vectors that belongs to W . We consider

a1vx1 + a2vx2 + · · · + arvxr ∈ W, (1)

where a1, . . . , ar are different from zero. By hypothesis, for each pair of vectors in the basis β, say vx1 and vx2 ,
there exists k, 1≤ k ≤ n−1, such that qx1k ,x1k+1

qx1k+1,x
1
k

�= qx2k ,x2k+1
qx2k+1,x

2
k
. Since a1vx1 +a2vx2 +· · ·+arvxr ∈

W , it follows that:

(φ(τk))
2(a1vx1 + a2vx2 + · · · + arvxr )

= a1qx1k ,x1k+1
qx1k+1,x

1
k
vx1 + a2qx2k ,x2k+1

qx2k+1,x
2
k
vx2 + · · · + arqxrk ,xrk+1

qxrk+1,x
r
k
vxr ∈ W. (2)
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Multiplying (2) by (qx1k ,x1k+1
qx1k+1,x

1
k
)−1 and subtracting it from (1), we get

(1 − (qx1k ,x1k+1
qx1k+1,x

1
k
)−1(qx2k ,x2k+1

qx2k+1,x
2
k
))a2vx2 + · · ·

+(1 − (qx1k ,x1k+1
qx1k+1,x

1
k
)−1(qxrk ,xrk+1

qxrk+1,x
r
k
))arvxr ∈ W.

Having that

1 − (qx1k ,x1k+1
qx1k+1,x

1
k
)−1(qx2k ,x2k+1

qx2k+1,x
2
k
) �= 0,

we get a non-zero linear combination of at most r − 1 vectors that belongs to W . Repeating this process, we
obtain one of the basis vectors in W . Therefore, W = V . 
�
Remark If φ(τk) is self-adjoint, then the condition qxk ,xk+1qxk+1,xk �= qyk ,yk+1qyk+1,yk is equivalent to
|qx j ,x j+1 |2 �= |qy j ,y j+1 |2, which is stated in the hypothesis of Theorem 2.2.

The previous theorem motivates the construction of new irreducible representations of the braid group. In
[2], the authors constructed a subfamily of one parameter, self-adjoint representations (φm, Vm). We instead
construct a subfamily of multi-parameter representations (ψm, Vm) which contains non-self-adjoint represen-
tations.

We consider n non-negative integers z1, z2, . . . , zn , not necessarily different; a set X which is the set
of all the possible n-tuples obtained by permuting the coordinates of the fixed n-tuple (z1, z2, . . . , zn). Let
z1, . . . , zn ∈ {0, 1}, such that z1 = z2 = · · · zm = 1 and zm+1 = · · · = zn = 0. Then, the cardinality of X is
equal to

(
n

m

)
= (n)!

m!(n − m)! .

If Vm is the vector space with basis βm = {vx , x ∈ X}, then dim Vm = (n
m

)
. For each x = (x1, . . . , xn) ∈ X ,

we let

qxk ,xk+1 =
⎧
⎨

⎩

rk i f xk = xk+1
pk i f xk > xk+1
qk i f xk < xk+1,

where rk, pk, qk ∈ R − {0}, r2k �= pkqk , and pkqk > 0 for any k.
Let ψm : Bn → Aut (Vm) be given by

ψm(τk)(vx ) = qxk ,xk+1vσk(x) .

WeNow, consider the lexicographic order in X . Let n = 5 andm = 3. Then, we have dimVm =10. The ordered
basis in that case is

β := {v(0,0,1,1,1), v(0,1,0,1,1), v(0,1,1,0,1), v(0,1,1,1,0), v(1,0,0,1,1), v(1,0,1,0,1),

v(1,0,1,1,0), v(1,1,0,0,1), v(1,1,0,1,0), v(1,1,1,0,0)},
and the matrices in this basis are as follows:

ψ3(τ1) =

⎛

⎜⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜
⎝

r1 0 0 0 0 0 0 0 0 0
0 0 0 0 p1 0 0 0 0 0
0 0 0 0 0 p1 0 0 0 0
0 0 0 0 0 0 p1 0 0 0
0 q1 0 0 0 0 0 0 0 0
0 0 q1 0 0 0 0 0 0 0
0 0 0 q1 0 0 0 0 0 0
0 0 0 0 0 0 0 r1 0 0
0 0 0 0 0 0 0 0 r1 0
0 0 0 0 0 0 0 0 0 r1

⎞

⎟⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟
⎠

,
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ψ3(τ2) =

⎛

⎜
⎜⎜
⎜⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎝

0 p2 0 0 0 0 0 0 0 0
q2 0 0 0 0 0 0 0 0 0
0 0 r2 0 0 0 0 0 0 0
0 0 0 r2 0 0 0 0 0 0
0 0 0 0 r2 0 0 0 0 0
0 0 0 0 0 0 0 p2 0 0
0 0 0 0 0 0 0 0 p2 0
0 0 0 0 0 q2 0 0 0 0
0 0 0 0 0 0 q2 0 0 0
0 0 0 0 0 0 0 0 0 r2

⎞

⎟
⎟⎟
⎟⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎠

,

ψ3(τ3) =

⎛

⎜
⎜⎜
⎜⎜
⎜⎜⎜
⎜⎜
⎜⎜
⎝

r3 0 0 0 0 0 0 0 0 0
0 0 p3 0 0 0 0 0 0 0
0 q3 0 0 0 0 0 0 0 0
0 0 0 r3 0 0 0 0 0 0
0 0 0 0 0 p3 0 0 0 0
0 0 0 0 q3 0 0 0 0 0
0 0 0 0 0 0 r3 0 0 0
0 0 0 0 0 0 0 r3 0 0
0 0 0 0 0 0 0 0 0 p3
0 0 0 0 0 0 0 0 q3 0

⎞

⎟
⎟⎟
⎟⎟
⎟⎟⎟
⎟⎟
⎟⎟
⎠

,

ψ3(τ4) =

⎛

⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜⎜
⎜⎜
⎝

r4 0 0 0 0 0 0 0 0 0
0 r4 0 0 0 0 0 0 0 0
0 0 0 p4 0 0 0 0 0 0
0 0 q4 0 0 0 0 0 0 0
0 0 0 0 r4 0 0 0 0 0
0 0 0 0 0 0 p4 0 0 0
0 0 0 0 0 q4 0 0 0 0
0 0 0 0 0 0 0 0 p4 0
0 0 0 0 0 0 0 q4 0 0
0 0 0 0 0 0 0 0 0 r4

⎞

⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟⎟
⎟⎟
⎠

.

As Vm is a complex vector space of finite dimension with an orthonormal basis βm , then using Definition
2.2, we get that ψm(τk) is a self-adjoint operator iff qk = pk for any k, 1 ≤ k ≤ n − 1 .

We now study the irreducibility of (ψm, Vm). In what follows, pk and qk satisfy the conditions stated for
(ψm, Vm). That is, pk, qk ∈ R − {0} and pkqk > 0 for any 1 ≤ k ≤ n − 1. To do so, we introduce some
definitions and prove a lemma to prove Theorem 3.3.

Definition 3.2 Let x = (x1, . . . , xn) and w = (w1, . . . , wn) be any two elements in X. Let σ = σi1 ...σil be a
permutation sending x to w, where for 1 ≤ j ≤ l and 1 ≤ i j < n, σi j is the transposition acting on an element
x = (x1, ..., xn), by swapping the entries xi j and xi j+1, with xi j �= xi j+1. We introduce Px,w a positive real
number given by

Px,w = P(σi1) . . . P(σil ), where

P(σi j ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

qi j p
−1
i j

i f σi j is acting on an element,x = (x1, ..., xn) where
xi j = 0 and xi j+1 = 1

pi j q
−1
i j

i f σi j is acting on an elementx = (x1, ..., xn) where
xi j = 1 and xi j+1 = 0.

Given the vectors x andw. If we have two permutations that send x tow, then the additional transpositions
in the longer permutation will be even in number, and their corresponding values P(σi j )’s will be cancelled
out. Thus, it is easy to see that Px,w is independent of the choice of the permutation that sends x to w. For
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example, let x = (0, 0, 1, 1) andw = (0, 1, 1, 0). Consider the permutation σ = σ3σ2 that sends x tow. Thus,
we have

x = (0, 0, 1, 1)
σ2−→ (0, 1, 0, 1)

σ3−→ (0, 1, 1, 0) = w.

We get that

Px,w = P(σ3)P(σ2) = q3 p
−1
3 q2 p

−1
2 .

Considering another permutation, σ = σ1σ3σ1σ2 that also sends x to w. Then, we get

x = (0, 0, 1, 1)
σ2−−→ (0, 1, 0, 1)

σ1−−→ (1, 0, 0, 1)
σ3−−→ (1, 0, 1, 0)

σ1−−→ (0, 1, 1, 0) = w.
Now, Px,w = p1q

−1
1 q3 p

−1
3 q1 p

−1
1 q2 p

−1
2 = q3 p

−1
3 q2q

−1
2 .

We consider the case n = 2m and we give the following definitions and lemmas.

Definition 3.3 For n = 2m, we observe that for any x ∈ X , there is a yx ∈ X , where yx is obtained from x by
replacing the zeros by ones and the ones by zeros. For example

if x = (1, 0, 0, 1), then yx = (0, 1, 1, 0).

For any x ∈ X , we define λx a non-zero positive real number defined as follows:

λx = √
Pyx ,x .

Equivalently, we define λyx a positive real number, as

λyx = √
Px,yx .

For example, we use the above definition to find λ(1,...,1,0,...,0), where
(1, . . . , 1, 0, . . . , 0) is the last element in the ordered set X .

Example 3.4 Let X be the set of all the possible n-tuples obtained by permuting the coordinates of the fixed
n-tuple (z1, z2, . . . , zn), and z1, . . . , zn ∈ {0, 1}, such that z1 = z2 = · · · = zm = 1 and zm+1 = · · · = zn = 0.
For n = 2m, let x = (0, . . . , 0, 1, . . . , 1) and yx = (1, . . . , 1, 0, . . . , 0), be the first and last elements in the
ordered set X , respectively. We consider a permutation that sends x to yx in the following way: move each
zero in the (m− i)th place to the (n− i)th place, starting from i = 0 till i = m−1. This is done by a sequence
of transpositions starting from σm−i till σn−i−1, for each i . We then observe that this permutation will contain
each of the transpositions σk , k times for 1 ≤ k ≤ m, and n − k times for m + 1 ≤ k ≤ n − 1. Having

Px,w = P(σi1) . . . P(σil ),

we obtain that

λ(1,...,1,0,...,0) =
√

(q1 p
−1
1 )(q2 p

−1
2 )2 . . . (qm p−1

m )m(qm+1 p
−1
m+1)

m−1 . . . (qn−1 p
−1
n−1) .

Lemma 3.5 For any two elements x and w in X, we have

λx = λ−1
yx (3)

and

λx Px,w = λw. (4)

Proof For any two elements x and w in X , let σ = σi1 ...σil be the permutation that sends the element x to
w. Since yx is obtained from x by replacing the zeros with ones and the ones with zeros, and yw is obtained
from w in a similar way, it follows that σ also sends yx to yw. Moreover, according to the definition of Px,w
and Pyx ,yw , we observe that Px,w = P−1

yx ,yw . Also, if σ is a permutation that sends the element x to w, then its
inverse, σ−1 = (σi1 ...σil )

−1 = σil ...σi1 , is a permutation that sends w to x . The permutation σ−1 will contain
the same transpositions as that of σ but by reversing the order of zeros and ones for each transposition. In other
words, if, in σ , σi j acts on an element where the i thj entry is 0 and i thj+1 entry is 1, then in σ−1, it will act on

an element where the i thj entry is 1 and i thj+1 entry is 0. Thus, we also have that Px,w = P−1
w,x . In particular,
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Pyx ,x = P−1
x,yx . Therefore, λx = λ−1

yx . Given any three vectors x, y and w in X. Since Px,w is independent of
the choice of the permutation sending x to w, it follows that Py,wPx,y = Px,w. We get that

λx Px,w = √
Pyx ,x Px,w = √

Pyx ,x
√
P2
x,w = √

Pyx ,x Px,wPx,w =

= √
Pyx ,wPx,w =

√
Pyx ,wP−1

yx ,yw = √
Pyx ,wPyw,yx = √

Pyw,w = λw.


�
Theorem 3.6 Let n > 2. Then, (ψm, Vm) is an irreducible representation of Bn for all 1 ≤ m < n, such that
n �= 2m.

If n = 2m, then (ψm, Vm) is the sum of two representations of Bn.

Proof Suppose that n �= 2m. In this case, we follow the steps used in [2] to show the irreducibility of
(ψm, Vm). Let x �= y ∈ X , then there exists i , 1 ≤ i ≤ n, such that xi �= yi . If i > 1, we may suppose that
xi−1 = yi−1; thus, qxi−1,xi �= qyi−1,yi where one of them is equal to ri−1 and the other is either pi−1 or qi−1.
Thus, qxi−1,xi qxi ,xi−1 �= qyi−1,yi qyi ,yi−1, where one of them is equal to r2i−1 and the other is equal to pi−1qi−1.
If i = 1, x1 �= y1, and n �= 2m, then there exists 1 ≤ l < n, such that xl �= yl and xl+1 = yl+1.
Then, qxl ,xl+1 �= qyl ,yl+1 , where one of them is equal to rl and the other is equal to pi−1 or qi−1. Thus,
qxl ,xl+1qxl+1,xl �= qyl ,yl+1qyl+1,yl , where one of them is equal to r2l and the other is equal to plql . Therefore, by
Theorem 3.1, ψm is an irreducible representation.

For n = 2m, X = {x, yx : x ∈ Y, Y ⊂ X}, with yx obtained from x by replacing the zeros by ones and the
ones by zeros. The set Y can be considered as the set containing the first m elements of the ordered set X . For
example, if

X := {(0, 0, 1, 1), (0, 1, 0, 1), (0, 1, 1, 0), (1, 0, 0, 1), (1, 0, 1, 0), (1, 1, 0, 0)},
then

Y := {(0, 0, 1, 1), (0, 1, 0, 1), (0, 1, 1, 0)}.
Given x ∈ X . It is easy to see that the vectors x and y = yx have the property that qxk ,xk+1qxk+1,xk =
qyk ,yk+1qyk+1,yk for any k, 1 ≤ k ≤ n − 1. Thus, the sufficient condition for irreducibility is not satisfied in the
case n = 2m. Now, let β1 = {vx + λyx vyx ; x ∈ Y } and β2 = {vx − λyx vyx ; x ∈ Y }. Let W1 and W2 be the
vector spaces generated by β1 and β2, respectively. For x ∈ Y , vx +λyx vyx ∈ W1, then λyx (λ

−1
yx vx +vyx ) ∈ W1.

Since λx = λ−1
yx , it follows that vyx + λxvx ∈ W1. We obtain that vx + λyx vyx ∈ W1 for any x ∈ X. We claim

that W1 and W2 are two invariant subspaces of Vm . We prove that W1 is invariant and a similar proof follows
for W2.
Let x = (x1, x2, . . . , xn) ∈ X and vx + λyx vyx be an element in W1. Given any 1 ≤ l < n, and using Lemma
3.2, we consider the following cases:

Case 1: If xl = xl+1, then yxl = yxl+1 . Thus

φ(τl)(vx + λyx vyx ) = rl(vx + λyx vyx ) ∈ W1.

Case 2: If xl = 0 and xl+1 = 1, then yxl = 1 and yxl+1 = 0. Thus

φ(τl)(vx + λyx vyx ) = qlvσl (x) + plλyx vσl (yx ) = ql(vσl (x) + plq
−1
l λyx vσl (yx )).

Since σl(yx ) = yσl (x) and Pyx ,σl (yx ) = plq
−1
l , it follows that:

plq
−1
l λyx = λyx × Pyx ,σl (yx ) = λσl (yx ).

Therefore, ql(vσl (x) + plq
−1
l λyx vσl (yx )) ∈ W1.

Case 3: If xl = 1 and xl+1 = 0, then yxl = 0 and yxl+1 = 1. Thus

φ(τl)(vx + λyx vyx ) = plvσl (x) + qlλyx vσl (yx ) = pl(vσl (x) + ql p
−1
l λyx vσl (yx )).
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Since σl(yx ) = yσl (x) and Pyx ,σl (yx ) = ql p
−1
l , it follows that:

ql p
−1
l λyx = λyx × Pyx ,σl (yx ) = λσl (yx ).

Therefore, pl(vσl (x) + ql p
−1
l λyx vσl (yx )) ∈ W1.

Since β1 is a basis for W1, then the dimension of W1 is equal to cardinality of β1, which is half that of Vm .

Thus, it is equal to

(n
m

)

2
. 
�

Example 3.7 We consider the representation (ψm, Vm) as previously defined, but for n = 4 and m = 2. We
compute explicitly the two invariant subspaces W1 and W2 in this case. Consider the following set:

X = {(0, 0, 1, 1), (0, 1, 0, 1), (0, 1, 1, 0), (1, 0, 0, 1), (1, 0, 1, 0), (1, 1, 0, 0)}
Y = {(0, 0, 1, 1), (0, 1, 0, 1), (0, 1, 1, 0)}

and the ordered basis

β := {v(0,0,1,1), v(0,1,0,1), v(0,1,1,0), v(1,0,0,1), v(1,0,1,0), v(1,1,0,0)}.
The matrices in this basis are as follows:

ψ2(τ1) =

⎛

⎜⎜
⎜⎜
⎜
⎝

r1 0 0 0 0 0
0 0 0 p1 0 0
0 0 0 0 p1 0
0 q1 0 0 0 0
0 0 q1 0 0 0
0 0 0 0 0 r1

⎞

⎟⎟
⎟⎟
⎟
⎠

, ψ2(τ2) =

⎛

⎜⎜
⎜⎜
⎜
⎝

0 p2 0 0 0 0
q2 0 0 0 0 0
0 0 r2 0 0 0
0 0 0 r2 0 0
0 0 0 0 0 p2
0 0 0 0 q2 0

⎞

⎟⎟
⎟⎟
⎟
⎠

,

ψ2(τ3) =

⎛

⎜
⎜⎜
⎜⎜
⎝

r3 0 0 0 0 0
0 0 p3 0 0 0
0 q3 0 0 0 0
0 0 0 0 p3 0
0 0 0 q3 0 0
0 0 0 0 0 r3

⎞

⎟
⎟⎟
⎟⎟
⎠

,

where rk, pk, qk ∈ R − {0}, r2k �= pkqk , pkqk > 0 for any k. Next, we compute λx for each x in X .
We consider the permutation P = σ2σ1σ3σ2 that sends (0,0,1,1) to (1,1,0,0). Thus, for λ(1,1,0,0) in β1, we have

λ(1,1,0,0) =
√

(q1 p
−1
1 )(q2 p

−1
2 )2(q3 p

−1
3 ).

λ(1,1,0,0) = (q1 p
−1
1 )

1
2 (q2 p

−1
2 )(q3 p

−1
3 )

1
2 .

Note that σ2(1, 1, 0, 0) = (1, 0, 1, 0), then

λ(1,0,1,0) = λ(1,1,0,0) × (p2q
−1
2 ) = (q1 p

−1
1 )

1
2 (q3 p

−1
3 )

1
2 .

Since σ3(1, 0, 1, 0) = (1, 0, 0, 1), then

λ(1,0,0,1) = λ(1,0,1,0) × (p3q
−1
3 ) = (q1 p

−1
1 )

1
2 (q3 p

−1
3 )

−1
2 .

Thus, we have the following two invariant subspaces:

W1 =< v(0,0,1,1) + (q1 p
−1
1 )

1
2 (q2 p

−1
2 )(q3 p

−1
3 )

1
2 v(1,1,0,0), v(0,1,0,1) +

(q1 p
−1
1 )

1
2 (q3 p

−1
3 )

1
2 v(1,0,1,0), v(0,1,1,0) + (q1 p

−1
1 )

1
2 (q3 p

−1
3 )

−1
2 v(1,0,0,1) >

W2 =< v(0,0,1,1) − (q1 p
−1
1 )

1
2 (q2 p

−1
2 )(q3 p

−1
3 )

1
2 v(1,1,0,0), v(0,1,0,1)

−(q1 p
−1
1 )

1
2 (q3 p

−1
3 )

1
2 v(1,0,1,0), v(0,1,1,0) − (q1 p

−1
1 )

1
2 (q3 p

−1
3 )

−1
2 v(1,0,0,1) > .
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4 Conclusion

We weakened the conditions for the family of representations given by Egea and Galina to be irreducible. The
sufficient condition obtained in ourwork is equivalent to that in [2] ifwe assume further that the representation is
self-adjoint.We also constructedmulti-parameter representations (ψm, Vm)of the braid group Bn , which satisfy
the sufficient condition of irreducibility when n �= 2m (1 ≤ m < n), and is the sum of two representations
of Bn when n = 2m. Such irreducible representations can be useful in the progress of the classification of
irreducible representations of Bn .
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