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Abstract In this paper, we investigate an uncertain multiobjective optimization problem involving nonsmooth
and nonconvex functions. The notion of a (local/global) robust weak sharp efficient solution is introduced.
Then,we establish necessary and sufficient optimality conditions for local and/or the robustweak sharp efficient
solutions of the considered problem. These optimality conditions are presented in terms of multipliers and
Mordukhovich/limiting subdifferentials of the related functions.

Mathematics Subject Classification 90C25 · 90C46 · 49K99 · 90C30

1 Introduction

In reality, it is common that the input data associatedwith the objective function and the constraints of programs
are uncertain or incomplete due to prediction errors, measurement errors, or lack of information; that is, they
are not known precisely when the problem is solved (see [1]). Robust optimization has come out as a noticeable
determinism framework for investigating mathematical programming problems with data uncertainty. Many
researchers have been studied intensively both theoretical and applied aspects in the area of robust optimization;
see, e.g., [1–20] and the references therein.

In [12,13], Kuroiwa and Lee studied scalarizations and optimality theorems for uncertain multiobjective
optimization problemwhen involved functions are convex. Then, in [16], Lee andKim proved nonsmooth opti-
mality theorems for weakly robust efficient solutions and properly robust efficient solutions for multiobjective
optimization problem with data uncertainty, and soon later, Lee and Lee [18] studied optimality conditions
and duality theorems for uncertain semi-infinite multiobjective optimization problems. Besides, for nonconvex
optimization problems, Chuong [11] established necessary/sufficient optimality conditions for robust (weakly)
efficient solutions and robust duality theorems of uncertain multiobjective optimization in terms of multipliers
and Mordukhovitz/limiting subdifferentials of the related functions.
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On the other hand, the notion of a weak sharp solution in general mathematical programming problems was
first introduced in [21]. It is an extension of a sharp minimizer (or equivalently, strongly unique minimizer)
in [22] to include the possibility of non-unique solution set. It has been acknowledged that the weak sharp
minimizer plays important roles in stability/sensitivity analysis and convergence analysis of a wide range of
numerical algorithms in mathematical programming (see [23–26] and references therein). In the context of
optimization, much attention has been paid to concerning necessary and/or sufficient conditions for weak sharp
solutions in various types of problems (see, [27–34] and references therein).

Very recently, with the intention to answer the question “How about optimality condition for weak sharp
solutions, particularly, in a robust optimization?”, Kerdkaew and Wangkeeree [35] introduced robust weak
sharp and robust sharp solution to a convex cone-constrained optimization problem with data uncertainty and
some optimality conditions for the robust weak sharp solutions problem were established. Moreover, as an
application, the authors presented the characterization of the robust weak sharp weakly efficient solution sets
for convex uncertain multiobjective optimization problems. Soon later, Kerdkaew et al. [36] investigated a
robust optimization problem involving nonsmooth and nonconvex real-valued functions and obtained some
optimal solutions for robust weak sharp solution of the problem.

Motivated by above-mentioned works, especially [34–36], we aim to establish necessary and sufficient
optimality conditions for the robust weak sharp efficient solutions of an uncertain multiobjective optimization
problem with data incertainty in both objective and constraints functions. Our obtained optimality conditions
are presented in terms of multipliers and limiting/Mordukhovich subdifferential of the related functions. In
addition, some examples are also provided for analyzing and illustrating the obtained results.

The rest of the paper is organized as follows. Section 2 contains some basic definitions from variational
analysis and several auxiliary results. Here, we introduce a new concept of a solution, which involves robust-
ness and weak sharp efficiency, namely the robust weak sharp efficient solution. In Sect. 3, the first part of main
results concluding a nonsmooth Fermat rule for the local robust weak sharp efficient solutions of the uncer-
tain multiobjective optimization problem is presented. In Sect. 4, another part of results are some sufficient
optimality conditions for robust weak sharp efficient solutions of the considered problem. Section 5 devotes
to concluding remarks.

2 Preliminary

We begin this section by fixing notations and definitions including the notations generally used in variational
analysis, the Mordukhovich generalized differentiation notions (see more details in [37,38]), which are the
main tools for our study. Throughout this paper, Rn denotes the Euclidean space with dimension n. The inner
product and norm in Rn are denoted by symbols 〈·, ·〉 and ‖ · ‖, respectively. The symbols Rn+,B and B(x0, r)
stand for the nonnegative orthant of Rn, closed unit ball in R

n , and the open ball with center at x0 and radius
r > 0 for any x0 ∈ R

n , respectively. For a nonempty subset S ⊆ R
n , the closure, boundary, and convex hull

of S are denoted by clS, bdS, and coS, respectively, while the notation x
S−→ x0 means that x → x0 and x ∈ S.

Let a point x0 ∈ S be given. The set S is said to be closed around x0 if there is a neighborhood U of x0,
such that S ∩ U is closed. Moreover, the set S is said to be locally closed if it is closed around every x0 ∈ S.

Given a set-valued mapping F : Rn → 2R
n
, the sequential Painlevé–Kuratowski upper/outer limit of F as

x → x0 is denoted by

Lim sup

x
S−→x0

F(x) :=
{
x∗ ∈ R

n : ∃xn S−→ x0, ∃x∗
n → x∗ with x∗

n ∈ F (xn) , ∀n ∈ N

}
.

Let S be closed around x0. Recall that the contingent cone of S at x0 is denoted by T (S, x0) and defined
by

T (S, x0) := {v ∈ R
n : ∃vn → v, ∃tn ↓ 0 s.t. x0 + tnvn ∈ S, ∀n ∈ N

}
,

while the Fréchet (or regular) normal cone of S at x0, which is a set of all the Fréchet normals, has the form
N̂ (S, x0) and is defined by

N̂ (S, x0) :=
⎧⎨
⎩x

∗ ∈ R
n : lim sup

x
S−→x0

〈x∗, x − x0〉
‖x − x0‖ ≤ 0

⎫⎬
⎭ .
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Note that the Fréchet (or regular) normal cone N̂ (S, x0) is a closed convex subset ofRn andwe set N̂ (S, x0) = ∅
if x0 /∈ S. The notation N (S, x0) stands for the Mordukhovich (or basic, limiting) normal cone of S at x0. It
is defined by

N (S, x0) :=
{
x∗ ∈ R

n : ∃xn S−→ x0, ∃x∗
n → x∗ with x∗

n ∈ N̂ (S, xn), ∀n ∈ N

}
.

Observe that the Mordukhovich normal cone is obtained by the Fréchet normal cones by taking the sequential
Painlevé–Kuratowski upper/outer limit (see [37] for more details) as

N (S, x0) = Lim sup

x
S−→x0

N̂ (S, x). (2.1)

Specially, in the case that S is a convex set, then we obtain the following relations:

N̂ (S, x0) = N (S, x0) = T (S, x0)
◦ = {x∗ ∈ R

n : 〈x∗, x − x0〉 ≤ 0,∀x ∈ S
}
.

Let h : Rn → R := R ∪ {±∞} be an extended real-valued function, we define

domh := {x ∈ R
n : h(x) < +∞} ,

and

epih := {(x, α) ∈ X × R | α ≥ h(x)} ,

denotes the domain and the epigraph of h, respectively. Let x0 ∈ domh and ε ≥ 0 be given. Then, analytic
ε-subdifferential of function h at x0, which has the form ∂̂εh(x0) is defined by

∂̂εh(x0) :=
⎧⎨
⎩x

∗ ∈ R
n : lim inf

x→x0,
x �=x0

h(x) − h(x0) − 〈x∗, x − x0〉
‖x − x0‖ ≥ −ε

⎫⎬
⎭ .

In the special case that ε = 0, the analytic ε-subdifferential ∂εh(x0) of h at x0 reduces to the general Fréchet sub-
differential of h at x0, which is denoted by ∂̂h(x0). Besides, ∂h(x0) denotes the Mordukhovich subdifferential
of h at x0. It is defined by

∂h(x0) :=
{
x∗ ∈ R

n : ∃xn h−→ x0, ∃x∗
n → x∗ with x∗

n ∈ ∂̂h(xn), ∀n ∈ N

}
,

where xn
h−→ x0 means xn → x0 and h(xn) → h(x). In addition, we have the following equation, which

presents the relation between the Mordukovich subdifferential of h at x0 ∈ X with |h(x0)| < ∞ and the
Mordukovich normal cone of epih :

∂h(x0) =
{
x∗ ∈ X : (x∗, −1

) ∈ N
(
epih, xh0

)}
,

where xh0 = (x0, h(x0)). In the case that x /∈ domh, we set ∂̂h(x0) = ∂h(x0) = ∅. It is obvious that for any
x ∈ R

n, ∂̂h(x0) ⊆ ∂h(x0) and specially, the following relation is fulfilled if h is a convex function:

∂̂h(x0) = ∂h(x0) = {x∗ ∈ R
n : 〈x∗, x − x0〉 ≤ h(x) − h(x0), ∀x ∈ R

n} .
Besides, the distance function d(·, S) : Rn → R and the indicator function δ(·, S) : Rn → R ∪ {+∞} of

S are, respectively, defined by

d(x, S) := inf
y∈S ‖x − y‖, ∀x ∈ R

n,

and

δ(x, S) =
{
0; x ∈ S,
+∞; x /∈ S.

By above notations and definitions, we get ∂̂δ(x0, S) = N̂ (S, x0) and ∂δ(x0, S) = N (S, x0). Simultane-
ously, ∂̂d(x0, S) = B ∩ N̂ (S, x0) and ∂d(x0, S) ⊆ B ∩ N (S, x0).

Next, we recall some useful and important propositions and definitions for this paper. First of all, the
following lemma is established by virtue of [37, Corollary 1.81].
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Lemma 2.1 ([37, Corollary 1.81]) If h is locally Lipschitz at x0, with modulus l > 0, then we always have

‖x∗‖ ≤ l, ∀x∗ ∈ ∂h(x0). (2.2)

The following necessary optimality condition, called generalized Fermat rule, for a function to attain its local
minimum plays a key role for our analysis.

Lemma 2.2 ([37,38]) Let h : Rn → R ∪ {+∞} be a proper lower semicontinuous function. If h attains a
local minimum at x0 ∈ R

n, then 0Rn ∈ ∂̂h(x0), which implies 0Rn ∈ ∂h(x0).

Werecall the following fuzzy sum rule for the Fréchet subdifferential and the sum rule for theMordukhovich
subdifferential, which are important in the sequel.

Lemma 2.3 ([37,38]) Let f, h : Rn → R ∪ {+∞} be proper lower semicontinuous around x0 ∈ dom f ∩
domh. If f is Lipschitz continuous around x0, then

(1) for every x∗ ∈ ∂̂( f + h)(x0) and every ε > 0, there exist x1, x2 ∈ B(x0, ε), such that

| f (x1) − f (x0)| < ε, |h(x2) − h(x0)| < ε and x∗ ∈ ∂̂ f (x1) + ∂̂h(x2) + εB.

(2) ∂( f + h)(x0) ⊆ ∂ f (x0) + ∂h(x0).

To conclude this section, we recall the concepts of classical, uncertain, and robust multiobjective optimiza-
tion problems, respectively. Let � be a nonempty locally closed subset of Rn and fi , g j : Rn → R, i ∈ I :=
{1, . . . ,m}, j ∈ J := {1, . . . , p} be given. Consider the following multiobjective optimization problem:

min
x∈�

{
( f1(x), . . . , fm(x)) : g j (x) ≤ 0, j ∈ J

}
. (MP)

Themultiobjective optimization problem (MP) in the face of data uncertainty in both the objective function and
the constraints can be written by the following uncertain multiobjective optimization problem: For q0, qi ∈
N, j ∈ J := {1, 2, . . . ,m}, let Ui , i ∈ I and V j , j ∈ J be nonempty compact subsets of Rq0 and R

qi ,
respectively. We consider the following uncertain optimization problem:

min
x∈�

{
( f1(x, u1), . . . , fm(x, um)) : g j (x, v j ) ≤ 0, v j ∈ V j , j ∈ J

}
, (UMP)

where fi : Rn ×Ui → R, i ∈ I and g j : Rn ×V j → R, j ∈ J are given real-valued functions, x is the vector
of decision variable, and ui , i ∈ I and v j , j ∈ J are uncertain parameters belonging to sequentially compact
topological spaces Ui , i ∈ I and V j , j ∈ J, respectively. In fact, the uncertainty sets can be apprehended
in the sense that parameters ui , i ∈ I and v j , j ∈ J are not known exactly at the time of the decision. For
examining the uncertain optimization problem (UMP), we treat the robust approach for (UMP), which is the
worst-case approach for (UMP). The following robust multiobjective optimization problem (RMP) associates
with (UMP); it is a robust counterpart of (UMP):

min
x∈�

{(
max
u1∈U1

f1(x, u1), . . . , max
um∈Um

fm(x, um)

)
: g j (x, v j ) ≤ 0, ∀v j ∈ V j , j ∈ J

}
. (RMP)

The robust feasible set K is denoted by

K := {x ∈ � : g j (x, v j ) ≤ 0,∀v j ∈ V j , j ∈ J
}
. (2.3)

Now, we recall the following concept of robust efficient solutions for (UMP), which can be found in the
literature; see, e.g., [14].

Definition 2.4 The vector x0 ∈ R
n is said to be a local robust efficient solution for (UMP) if it is a local

efficient solution for (RMP), i.e., there exists a neighborhood U of x0, such that

max
u∈U

f (x, u) − max
u∈U

f (x0, u) /∈ −R
m+ \ {0}, ∀x ∈ K ∩U,

where f := ( f1, f2, . . . , fm), u = (u1, . . . , um) ∈ U := U1 × · · · × Um and

max
u∈U

f (x, u) :=
(
max
u1∈U1

f1 (x, u1) , . . . , max
um∈Um

fm (x, um)

)
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and

max
u∈U

f (x0, u) :=
(
max
u1∈U1

f1 (x0, u1) , . . . , max
um∈Um

fm (x0, um)

)
.

In addition, if U = R
n, then x0 ∈ K is said to be a global robust efficient solution for (UMP).

Next, we introduce a new concept of a robust solution, which is related to robustness and weak sharp
efficiency, namely the (local/global) robust weak sharp efficient solution.

Definition 2.5 A point x0 ∈ K is said to be a local robust weak sharp efficient solution for (UMP) if it is
a local weak sharp efficient solution for (RMP), i.e., there exist a neighborhood U of x0 and a real number
η > 0, such that

max
1≤i≤m

{
max
ui∈Ui

fi (x, ui ) − max
ui∈Ui

fi (x0, ui )

}
≥ ηd(x, S), ∀x ∈ K ∩U, (2.4)

where S := {x ∈ K : maxu∈U f (x, u) = maxu∈U f (x0, u)}. Specially, if U = R
n, then x0 ∈ K is said to be

a global robust weak sharp efficient solution for (UMP).

Remark 2.6 If the term ηd(x, S) in the right-hand side of inequality (2.4) is replaced by η‖x − x0‖, then the
point x0 is said to be local robust sharp efficient solution for (UMP). Similarly, if U = R

n , then x0 is said to
be a global robust sharp efficient solution for (UMP).

It is simple to see that every (local) robust sharp efficient solution or robust weak sharp efficient solution of
a problem must also be a (local) robust efficient solution of the problem. In contrast, the converse implication
does not need to be true. In the case that the solution set is singleton, the robust efficient solution of (UMP) is
a robust weak sharp efficient solution of the problem. However, there are many cases that the problem, which
has a robust weak sharp efficient solution, has no robust sharp efficient solution.

Example 2.7 Let f : R × U → R
2 and g : R × V → R

2 be defined by f (x, u) = (x2 + u1, x2 +
u2) and g(x, v) = (min{x, 0} + v1,min{x, 0} + v2) where x ∈ R, u ∈ U := [−1, 0] × [−1, 0] and v ∈
V := [−1, 0] × [−1, 0], and let � := [−1, 1]. Clearly, the robust feasible set is K = [−1, 1]. Observe that
x0 := (0, 0) ∈ K is a global robust efficient solution of (UMP). Assume that x0 is a local robust sharp efficient
solution of (UMP), then there exist η, ε > 0, such that x2 ≥ η‖x−x0‖, ∀x ∈ K ∩U, holds withU := (−ε, ε).
It can be seen that S = {(0, 0)} and the inequality deduces to x2 ≥ η‖x‖, ∀x ∈ K ∩ (−ε, ε), which is a
contradiction.

3 Necessary optimality conditions for robust weak sharp efficient solutions

In this section,we focus our attention on establishing somenecessary optimality conditions for the local (global)
robustweak sharp efficient solutions of uncertainmultiobjective optimization problems in termsof the advanced
tools of variational analysis and generalized differentiation. Concretely, using the generalized Fermat rule, the
Mordukhovich subdifferential for maximum functions, the fuzzy sum rule for Fréchet subdifferentials, and
the sum rule for Mordukhovich subdifferentials, we establish a necessary condition for the local robust weak
sharp efficient solution of the problem (UMP).

First, for given arbitrary x0 ∈ �, we set

Ui (x0) :=
{
u∗
i ∈ Ui : fi

(
x0, u

∗
i

) = max
ui∈Ui

fi (x0, ui )

}
,

V j (x0) :=
{
v∗
j ∈ V j : g j

(
x0, v

∗
j

)
= max

v j∈V j

g j
(
x0, v j

)}
,

J (x0) := { j ∈ J : g j
(
x0, v j

) = 0, ∀v j ∈ V j
}
.

In what follows, throughout this section, we assume that gi : Rn × V j → R is a function, such that for each
fixed v j ∈ V j , j ∈ J, g j (·, v j ) is locally Lipschitz continuous, while each function fi : Rn × U → R, i ∈ I
satisfies the following conditions:
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(C1) For a fixed x0 ∈ �, there exists rx0 > 0, such that the function fi (x, ·) : Ui → R, i ∈ I is upper
semicontinuous for all x ∈ B(x0, rx0) and fi (·, ui ) is Lipschitz continuous in x , uniformly for ui ∈ Ui ,
i.e., for some real number l > 0, for all x, y ∈ � and ui ∈ Ui , one has

‖ fi (x, ui ) − fi (y, ui )‖ ≤ li ‖x − y‖ .

(C2) The multifunction ∂x fi (·, ·) : R
n × U → 2R

n
is closed at (x0, ui ) for each ui ∈ Ui (x0), where the

symbol ∂x stands for the Mordukhovich subdifferential operation with respect to x .

Remark 3.1 (i) The assumption (C1) guarantees that the function maxui∈Ui f (·, ui ), i ∈ I, is defined and
locally Lipschitz of rank li (see, e.g., [41]). When dealing with subgradients of a supremum/max function
over a compact set, this assumption has been widely used in the literature (see, e.g., [15,42–44]).

(ii) The assumption (C2) related to the closedness of the partial subdifferential operation with respect to the
first variable is a relaxed property of subdifferentials for convex functions in the finite-dimensional setting
(see [11,45] fore more details).

To obtain the necessary optimality condition for local robust weak sharp efficient solutions of (UMP), we
now state a constraint qualification for the uncertain multiobjective optimization problem with the feasible set
K defined in (2.3).

Definition 3.2 ([11]) Given arbitrary x0 ∈ �, the constraint qualification (CQ) is said to be satisfied at x0 if

0 /∈ co
{∪∂g j

(·, v j
)
(x0) : v j ∈ V j (x0), j = 1, . . . , p

}
.

Remark 3.3 We can see that the (CQ) defined in Definition 3.2 reduces to the constraint qualification defined
in [39, Definition 3.2] when � = R

n . As well as, it is not hard to verify that this (CQ) reduces to the extended
Mangasarian–Fromovitz constraint qualification (see [40]) in the smooth setting when � = R

n .

Next, we establish the following necessary optimality condition for local robust sharp solutions of (UMP)
under the (CQ).

Theorem 3.4 Let x0 ∈ K be given. Suppose that there exists a neighborhood U of x0, such that the constraint
qualification (CQ) is satisfied at any x ∈ K ∩U. If x0 is a local robust weak sharp efficient solution for (UMP),
then there exist real numbers η, r > 0, such that for any x ∈ S ∩ B(x0, r),

ηB ∩ N̂ (S, x) ⊆
m∑
i=1

λi co

⎛
⎝ ⋃

ui∈Ui (x)

∂ fi (·, ui ) (x)

⎞
⎠

+
⋃

μ j∈Mj (x)

⎛
⎝∑

j∈J

μ j∂g j
(·, v j

)
(x)

⎞
⎠+ N (�, x), (3.1)

where λi ≥ 0, i ∈ I not all zero with
∑m

i=1 λi = 1 and Mj (x) = {μi ≥ 0 : μ j g j (x, v j ) = 0, v j ∈ V j
}
for

all j ∈ J.

Proof Suppose that x0 ∈ K is a local robust weak sharp efficient solution for (UMP). Then, there exist real
numbers η, r1 > 0, such that

max
1≤i≤m

{
max
ui∈Ui

fi (x, ui ) − max
ui∈Ui

fi (x0, ui )

}
≥ ηd(x, S), ∀x ∈ K ∩ B (x0, r1) . (3.2)

By assumption, there exists r2, such that the (CQ) is satisfied at any x ∈ S ∩ B(x0, r2). By choosing r ∈
(0,min 1

2r1, r2), we then take arbitrary x ∈ S ∩ B(x0, r). Observe that, from ∂̂d(x, S) = B ∩ N̂ (S, x),
whenever x∗ ∈ B ∩ N̂ (S, x) we have x∗ ∈ ∂̂d(x, S). By the definition of ∂̂d(·, S), for any ε > 0, there exists
r3 ∈ (0, 1

2r1), such that
〈
x∗, y − x

〉 ≤ d(x, S) + ε‖y − x‖, (3.3)

for all x ∈ B(x, r3). It is clear by the triangle inequality and the fact that r, r3 < 1
2r1 that B(x, r3) ⊆ B(x0, r1).

Indeed, if z ∈ B(x, r3), then ‖z − x0‖ ≤ ‖z − x‖ + ‖x − x0‖ < r3 + r < r1, which means z ∈ B(x0, r1).
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Hence, we derive from (3.2) that max1≤i≤m
{
maxui∈Ui fi (x, ui ) − maxui∈Ui fi (x0, ui )

} ≥ ηd(x, S) for all
x ∈ K ∩ B(x0, r1). This together with (3.3) implies that

max
1≤i≤m

{
max
ui∈Ui

fi (y, ui ) − max
ui∈Ui

fi (x0, ui )

}
+ ηε‖y − x‖ ≥ η

〈
x∗, y − x

〉
, (3.4)

for all y ∈ K ∩ B(x, r3). Note that x ∈ K and maxu∈U f (x, u) = maxu∈U f (x0, u), since x ∈ S. Then, the
following function ϕ : Rn → R ∪ {+∞} defined by

φ(y) := − η
〈
x∗, y − x

〉+ max
1≤i≤m

{
max
ui∈Ui

fi (y, ui ) − max
ui∈Ui

fi (x0, ui )

}

+ ηε‖y − x‖ + δ(y, K ), ∀y ∈ R
n,

attains its local minimizer at x . Indeed, for each y ∈ R
n, φ(y) ≥ 0, while φ(x) = 0. Therefore, we arrive

0 ∈ ∂̂φ(x) by applying the generalized Fermat rule (Lemma 2.3). Since for each ui ∈ Ui , i ∈ I, fi (·, ui ) is
locally Lipschitz continuous at x, the function f̃ : Rn → R, defined by

f̃ (y) := max
1≤i≤m

{
max
ui∈Ui

fi (y, ui ) − max
ui∈Ui

fi (x0, ui )

}

is also locally Lipschitz continuous at x . Let γ > 0 be the modulus of the locally Lipschitz continuity of f̃ .
Additionally, since the robust feasible set K is locally closed, one has δ(·, K ) is lower semicontinuous around x .
Clearly, the function ‖·−x‖ is Lipschitz continuous with modulus 1. Therefore, by applying Lemma 2.3(i), we
have that, for the proceeding ε > 0, there exist xε

1, x
ε
2, x

ε
3 ∈ B(x, ε), such that | f̃ (xε

1)| < ε, ηε‖xε
2 − x‖ < ε,

δ(xε
3, K ) < ε, and

ηx∗ ∈ ∂̂ f̃ (xε
1) + ηε̂∂‖ · −x‖ (xε

2

)+ ∂̂δ (·, K )
(
xε
3

)+ εB.

It then follows from δ(xε
3, K ) < ε that xε

3 ∈ K and so ∂̂δ(·, K )(xε
3) = N̂ (K , xε

3). Since f̃ is Lipschitz
continuous around x with a constant γ and xε

1 ∈ B(x, ε), we have from [37, Proposition 1.85] with ε = 0
for all sufficiently small ε > 0 that ∂̂ f̃ (xε

1) ⊆ γB. Simultaneously, we also arrive ∂̂‖xε
2 − x‖ ⊆ B. By these

inclusions, the compactness of B, and the fact that xε
1, x

ε
2, x

ε
3 ∈ B(x, ε), we obtain x1

f̃−→ x, xε
2

‖·−x‖−−−→
x, xε

3
K−→ x0, as ε ↓ 0, which yield

ηx∗ ∈ ∂ f̃ (x) + N (K , x). (3.5)

Since f satisfies (C1) and (C2), by the same fashion using to prove inequality (3.4) in Theorem 3.3 of [11],
we obtain that for each fixed i ∈ I

∂ max
ui∈Ui

fi (·, ui ) (x) ⊆ co {∪∂ fi (·, ui ) (x) : ui ∈ Ui (x)} . (3.6)

Furthermore, by applying the formula for the Mordukhovich subdifferential of maximum functions (see [25,
Theorem 3.46(ii)]) and Lemma 2.3(ii), we have from maxu∈U f (x, u) = maxu∈U f (x0, u) that there exist
λi ≥ 0, i ∈ I with

∑m
i=1 λi = 1, such that

∂ f̃ (x) ⊆
m∑
i=1

λi co {∪∂ fi (·, ui ) (x) : ui ∈ Ui (x)} . (3.7)

On the other hand, we put


 := {x ∈ R
n : gi

(
x, v j

) ≤ 0,∀v j ∈ V j , j ∈ J
}
.

Hence, K = � ∩ 
. Observe that the (CQ) holds at x , since r < r2 and x ∈ S ∩ B(x0, r). In addition, as
0 ∈ N (�, x), the following inclusion always holds:
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⋃
μ j∈Mj (x)

⎛
⎝ ∑

j∈J (x)

μ j∂g j
(·, v j

)
(x)

⎞
⎠

⊆
⋃

μi∈Mi (x)

⎛
⎝ ∑

j∈J (x)

μ j∂g j
(·, v j

)
(x)

⎞
⎠+ N (�, x).

Since the (CQ) is satisfied at x, there do not existμi ≥ 0 and v j ∈ V j , j ∈ J (x), such that
∑

j∈J (x) μ j �= 0
and

0 ∈
∑
j∈J (x)

μ j∂g j
(·, v j

)
(x) + N (�, x).

By applying [37, Corollary 4.36], we arrive

N (
, x) ⊆
⋃

μi∈Mi (x)

⎛
⎝ ∑

j∈J (x)

μ j∂g j
(·, v j

)
(x)

⎞
⎠ . (3.8)

It follows from [37, Corollary 3.37] that:

N (K , x) = N (� ∩ 
, x) ⊆ N (�, x) + N (
, x). (3.9)

By setting μ j = 0 for every j ∈ J \ J (x), (3.8) and (3.9) imply the following inclusion:

N (K , x) ⊆
⋃

μ j∈Mj (x)

⎛
⎝∑

j∈J

μ j∂g j (·, v j )(x)

⎞
⎠+ N (�, x). (3.10)

Observe that x ∈ S ∩ B(x0, r) and x∗ ∈ B ∩ N̂ (K , x) are arbitrary.
Hence, we can verify (3.1) by combining (3.5), (3.7) and (3.10). ��

Remark 3.5 (i) In the case that f is a real-valued function and g j , j ∈ J are assumed to be continuous
functions, such that for each u ∈ U ⊆ R

q0 , and for each fixed v j ∈ V j , f (·, u) and gi (·, v j ) are convex
functions, respectively, our considered problem reduces to a convex optimization problem with data uncer-
tainty that was studied in [14]. Although, in [14, Proposition 2.1], the authors employed the assumptions
of the convexity of objective and constraint functions and the convexity of parameter uncertain sets to
establish the necessary optimality conditions for a robust solution, in Theorem 3.4 the necessary optimal-
ity conditions for a local robust weak sharp solution, which also is a local robust solution, without these
mentioned assumptions.

(ii) In the case that fi , i ∈ I and g j , j ∈ J are without uncertainty, our considered problem reduces to
a multiobjective optimization problem involving nonsmooth and nonconvex functions. Necessary and
sufficient conditions for weak sharp efficient solutions of such multiobjective optimization problems were
established in [34].

The following example shows that the (CQ) being satisfied around x0 ∈ K is essential for Theorem 3.4.

Example 3.6 Let f : R × U → R
2 be defined by f (x, u) := ( f1(x, u1), f2(x, u2)) with

fi (x, ui ) = ui min{0, x + 1}, i = 1, 2,

where x ∈ R and ui ∈ Ui := [0, 1], i = 1, 2. Furthermore, let g : R×V → R be defined by g(x, v) := v−x3,
where x ∈ R, and v ∈ V := [−1, 0]. Take � := [−1, 1] and consider the problem (UMP). It is not hard
to see that for each i = 1, 2, fi satisfies (C1) and (C2), and the robust feasible set is K = [0, 1]. Consider
x0 := 0 ∈ K with its neighborhood U = (− 1

2 ,
1
2 ). Choosing a positive real number η = 1 > 0, we can verify

that x0 is a local robust weak sharp efficient solution of the problem (UMP). Simultaneously, we get from
direct calculating that ∂ fi (·, ui )(x0) = {0}, ui ∈ Ui , i = 1, 2, ∂g(·, v)(x0) = {0}, ∀v ∈ V, N (�, x0) = {0}
and N (K , x0) = −R+. It follows that the (CQ) is not satisfied at x0.
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Furthermore, we get ηB ∩ N̂ (K , x0) = [−η, 0], while

co
2∑

i=1

λi

⎛
⎝ ⋃

ui∈Ui (x0)

∂ fi (·, ui )(x0)
⎞
⎠+

⋃
μ∈M(x0)

μ∂g(·, v)(x0) + N (�, x0) = {0},

which shows that (3.1) does not hold for every η, δ > 0. Hence, condition (CQ) is vital. It is obvious that the
functions fi (·, ui ), i = 1, 2 and g(·, v) are not convex. Therefore, [35, Theorem 4.2] is not applicable for this
example.

The following result is established easily by means of the basic concepts of variational analysis.

Corollary 3.7 Let x0 ∈ K be given. Suppose that there exists a neighborhoodU of x0, such that the constraint
qualification (CQ) is satisfied at any x ∈ K ∩U. If x0 is a local robust weak sharp efficient solution for (UMP),
then there exist real numbers η, r > 0, such that for any x ∈ S ∩ B(x0, r) and x∗ ∈ ηB ∩ N̂ (S, x)

x∗ ∈
m∑
i=1

λi co

⎛
⎝ ⋃

ui∈Ui (x)

∂ fi (·, ui )(x)
⎞
⎠+

⋃
μ j∈Mj (x)

⎛
⎝∑

j∈J

μ j∂g j (·, v j )(x)

⎞
⎠+ N (�, x), (3.11)

where λi ≥ 0, i ∈ I not all zero with
∑m

i=1 λi = 1 and Mj (x) = {μi ≥ 0 : μ j g j (x, v j ) = 0, v j ∈ V j
}
for

all j ∈ J.

Specially, if x0 ∈ K is a local sharp efficient solution for (RMP), i.e., a local robust sharp efficient solution
for (UMP), the point x0 is isolated in the solution set of (RMP). Therefore, we obtain that N̂ (S, x) = R

n

and the (CQ) only needs to be fulfilled at x0. The following result, which presents the necessary optimality
conditions for the local robust sharp efficient solution of (UMP), is obtained if (CQ) is satisfied at x0.

Corollary 3.8 Let x0 ∈ K be given and the constraint qualification (CQ) be satisfied at x0. Assume that x0 is
a local robust sharp efficient solution for (UMP), then there exist real numbers η > 0, such that

ηB ⊆
m∑
i=1

λi co

⎛
⎝ ⋃

ui∈Ui (x0)

∂ fi (·, ui )(x0)
⎞
⎠+

⋃
μ j∈Mj (x0)

⎛
⎝∑

j∈J

μ j∂g j (·, v j )(x0)

⎞
⎠+ N (�, x0),

where λi ≥ 0, i ∈ I not all zero with
∑m

i=1 λi = 1 and Mj (x0) = {μi ≥ 0 : μ j g j (x0, v j ) = 0, v j ∈ V j
}
for

all j ∈ J.

4 Sufficient optimality conditions for robust weak sharp efficient solutions

In this section, we focus on the sufficient optimality conditions for robust weak sharp efficient solution of
uncertain multiobjective optimization problems. To formulate sufficient conditions for robust sharp solutions
of problem (UMP) in the next theorem, we need the concept of generalized convexity at a given point for
a family of real-valued functions. We set f := ( f1, . . . , fm) and g := (g1, . . . , gp) for convenience in the
sequel.

Definition 4.1 ([11]) ( f, g) is said to be generalized convex at x0 ∈ R
n if for any x ∈ R

n, z∗u ∈
∂ fi (·, u)(x0), u ∈ Ui (x0), i ∈ I and x∗

v ∈ ∂g j (x0, v), v ∈ V j (x0), j ∈ J, there exists w ∈ R
n , such that

fi (x, u) − fi (x0, u) ≥ 〈z∗u, w〉,
g j (x, v) − g j (x0, v) ≥ 〈x∗

v , w〉.
Remark 4.2 If fi (·, u), u ∈ Ui , i ∈ I are convex and g j (·, v), v ∈ V j , j ∈ J are convex, then ( f, g) is
generalized convex at any x0 ∈ R

n with w := x − x0 for each x ∈ R
n .

Next, we focus on the sufficiency of the considered problem. In the following theorem, we established the
sufficient optimality conditions for robust weak sharp efficient solution for the problem (UMP).
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Theorem 4.3 For the problem (UMP), let � := R
n . Assume that x0 ∈ K satisfies the condition (3.11) with

real numbers η and r. If ( f, g) is generalized convex at x0, then x0 is a robust weak sharp efficient solution
for the problem (UMP).

Proof Since x0 ∈ K satisfy the condition (3.11) with real numbers η and r , for any x ∈ S ∩ B(x0, r)
and x∗ ∈ ηB ∩ N̂ (S, x), there exist λi ≥ 0, λik ≥ 0, z∗ik ∈ ∂ fi (·, uik )(x0), uik ∈ Ui (x0),

∑ki
k=1 λik =

1, k = 1, . . . , ki , ki ∈ N, and μ ∈ R
p
+, μ jl ≥ 0, x∗

jl
∈ ∂gi (·, v jl )(x0), v jl ∈ V j (x0),

∑l j
l=1 μl j = 1, l =

1, . . . , l j , l j ∈ N, such that
∑

i∈I λi +∑ j∈J μ j = 1 and

x∗ =
∑
i∈I

λi

⎛
⎝

ki∑
k=1

λik z
∗
ik

⎞
⎠+

∑
j∈J

μ j

⎛
⎝

l j∑
l=1

μ jl x
∗
jl

⎞
⎠ .

Since 0 ∈ ηB ∩ N̂ (S, x) and we have

0 =
∑
i∈I

λi

⎛
⎝

ki∑
k=1

λik z
∗
ik

⎞
⎠+

∑
j∈J

μ j

⎛
⎝

l j∑
l=1

μ jl x
∗
jl

⎞
⎠ . (4.1)

Clearly, if the solution set of (UMP) is a singleton set of {x0}, then it is also a robust weak sharp efficient
solution of the problem. Assume that x0 is a robust efficient solution but not a robust weak sharp efficient
solution for problem (UMP). Then, there exists x̃ ∈ K , such that for all η > 0

0 < max
1≤i≤m

{
max
ui∈Ui

fi (x̃, ui ) − max
ui∈Ui

fi (x0, ui )

}
< ηd(x, S), ∀x ∈ K . (4.2)

It follows from the generalized convexity of ( f, g) and (4.1) that there exists w ∈ R
n , such that:

0 =
∑
i∈I

λi

⎛
⎝

ki∑
k=1

λik z
∗
ik

⎞
⎠+

∑
j∈J

μ j

⎛
⎝

l j∑
l=1

μ jl x
∗
jl

⎞
⎠

≤
∑
i∈I

λi

⎛
⎝

ki∑
k=1

λik
[
fi
(
x̃, uik

)− fi
(
x0, uik

)]
⎞
⎠

+
∑
j∈J

μ j

⎛
⎝

l j∑
l=1

μ jl

[
g j
(
x̃, v jl

)− g j
(
x0, v jl

)]
⎞
⎠ . (4.3)

Therefore, one has

∑
i∈I

λi

⎛
⎝

ki∑
k=1

λik fi
(
x0, uik

)
⎞
⎠+

∑
j∈J

μ j

⎛
⎝

l j∑
l=1

μ jl g j
(
x0, v jl

)
⎞
⎠

≤
∑
i∈I

λi

⎛
⎝

ki∑
k=1

λik fi
(
x̃, uik

)
⎞
⎠+

∑
j∈J

μ j

⎛
⎝

l j∑
l=1

μ jl g j
(
x̃, v jl

)
⎞
⎠ . (4.4)

Since v jl ∈ V j (x0), g j (x0, vi j ) = supv j∈V j
g j (x0, v j ), ∀ j ∈ J, ∀ j = 1, . . . , jl . From (4.1), we have

μ j g j (x0, v ji ) = 0 for j ∈ J and l = 1, . . . , l j . Furthermore, for each x̃ ∈ K , μ j g j (x̃, v jl ) ≤ 0 for j ∈ J and
l = 1, . . . , l j . Hence, by (4.4), we have

123



Arab. J. Math. (2022) 11:313–326 323

∑
i∈I

λi

⎛
⎝

ki∑
k=1

λik fi
(
x0, uik

)
⎞
⎠

=
∑
i∈I

λi

⎛
⎝

ki∑
k=1

λik fi
(
x0, uik

)
⎞
⎠+

∑
j∈J

μ j

⎛
⎝

l j∑
l=1

μ jl g j
(
x0, v jl

)
⎞
⎠

≤
∑
i∈I

λi

⎛
⎝

ki∑
k=1

λik fi
(
x̃, uik

)
⎞
⎠+

∑
j∈J

μ j

⎛
⎝

l j∑
l=1

μ jl g j
(
x̃, v jl

)
⎞
⎠

≤
∑
i∈I

λi

⎛
⎝

ki∑
k=1

λik fi
(
x̃, uik

)
⎞
⎠ .

This together with uik ∈ Ui (x0), i ∈ I implies that

ki∑
k=1

λik max
ui∈Ui

fi
(
x0, uik

) ≤
k1∑
k=1

λik fi
(
x̃, uik

) ≤
ki∑
k=1

λik max
ui∈Ui

fi (x̃, ui ) ,

which yields

max
ui∈Ui

fi (x0, ui ) − max
ui∈Ui

fi (x̃, ui ) ≤ 0 ≤ ηd(x, S), ∀η > 0.

This contradicts (4.2). Hence, we can conclude that x0 is a robust weak sharp efficient solution of (UMP),
and so, the proof is complete. ��
Remark 4.4 In Theorem 4.3, the sufficient optimality conditions for a robust weak sharp efficient solution are
established, while the assumptions of the convexity of objective and constraint functions and the convexity of
parameter uncertain sets are dropped. However, these assumptions are employed in [15].

Specially, under some appropriate convexity and affineness conditions, by employing the approximate
projection theorem, we establish the following sufficient optimality conditions for the local and global robust
weak sharp efficient solutions of the problem (UMP), respectively.

Theorem 4.5 Let x0 ∈ K be given. Suppose that � is closed and convex set, and K is convex. Assume that for
each ui ∈ Ui and v j , j ∈ J, fi (·, ui ) and g j (·, v j ) are convex and

⋃
ui∈Ui (x) ∂ fi (·, ui )(x) is convex. If there

exist real numbers η, r > 0, such that for every x ∈ S ∩ B(x0, r)

ηB ∩ N (S, x) ⊆
m∑
i=1

λi

⎛
⎝ ⋃

ui∈Ui (x)

∂ fi (·, ui ) (x)

⎞
⎠

+
⋃

μ j∈Mj (x)

⎛
⎝∑

j∈J

μ j∂g j
(·, v j

)
(x)

⎞
⎠

+ N (�, x), (4.5)

then x0 is a local robust weak sharp efficient solution of (UMP).

Proof Since � is closed and convex, and for each v j ∈ V j , j ∈ J, the functions g j (·, v j ), j ∈ J are convex,
the robust feasible set K is closed and convex. Therefore, it follows from the convexity of S and the local
Lipschitz continuity of each fi (·, ui ), i ∈ I where ui ∈ Ui , i ∈ I that the robust feasible set S is closed and
convex. Assume that there exist real numbers η, r ∈ (0,+∞), such that (4.5) holds. To verify that x0 is a local
robust weak sharp efficient solution of (UMP), we let r1 ∈ (0, 1

2r) be given. We claim that

max
1≤i≤m

{
max
ui∈Ui

fi (y, ui ) − max
ui∈Ui

fi (x0, ui )

}
≥ ηd(x, S), ∀y ∈ K ∩ B(x0, r1). (4.6)
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Let y ∈ K ∩B(x0, r1) be arbitrary. It is not hard to see that (4.6) holds trivially if y ∈ K andmaxu∈U f (y, u) =
maxu∈U f (x0, u), i.e., y ∈ S. On the other hand, if y /∈ S, then we have from x0 ∈ S that 0 < d(y, S) ≤ ‖y−
x0‖ < r1. Clearly, we obtain 1

r1
d(y, S) ∈ (0, 1). By following Theorem 2.3 [34], for any γ ∈ ( 1

r1
d(y, S), 1),

there exist

x ∈ S and x∗ ∈ B ∩ N (S, x),

such that

min
{
d(y, S),

〈
x∗, y − x

〉〉} > γ ‖y − x‖. (4.7)

Therefore, we arrive ‖y − x‖ < 1
γ
d(y, S), and so x ∈ B(x0, r), since ‖x − x0‖ ≤ ‖x − y‖ + ‖y − x0‖ <

r1 + r1 < r. Since x ∈ S ∩ B(x0, r), x∗ ∈ B ∩ N (S, x) and (4.5) holds, there exist λi ≥ 0 with
∑

i∈I λi =
1, u∗

i ∈ ∂ fi (·, ūi )(x), ∃ūi ∈ Ui (x), i ∈ I, μ̄ j ∈ Mj (x) ≥ 0, v∗
j ∈ ∂g j (·, v j )(x), j ∈ J, and b ∈ N(�, x),

such that

ηx∗ =
∑
i∈I

λi u
∗
i +
∑
j∈J

μ jv
∗
j + b. (4.8)

Observe that y ∈ �, since y ∈ K ⊆ �. By the convexity of ω, we obtain 〈b, y − x〉 ≤ 0. Furthermore, since
for each ui ∈ Ui , i ∈ I and v j ∈ V j ,maxui∈Ui fi (·, ui ) and g(·, v j ) are convex functions, one has

〈
u∗
i , y − x

〉 ≤ max
ui∈Ui

fi (y, ui ) − max
ui∈Ui

fi (x, ui ) , ∀ui ∈ Ui , i ∈ I, (4.9)
〈
v∗
i , y − x

〉 ≤ g j
(
y, v j

)− g j
(
x, v j

)
, ∀v j ∈ V j , j ∈ J. (4.10)

Since y is a robust feasible solution of (UMP), we have g j (y, v j ) ≤ 0,∀v j ∈ V j , j ∈ J. Hence, it follows
from g j (y, v j ) ≤ 0,∀v j ∈ V j , j ∈ J, equality (4.8), 〈b, y − x〉 ≤ 0, inequalities (4.9)-(4.10) and x ∈ S that
x ∈ K ,maxu∈U f (x, u) = maxu∈U f (x0, u) and:

〈ηx∗, y − x〉 =
〈∑
i∈I

λi u
∗
i +
∑
j∈J

μ jv
∗
j , y − x

〉

≤
∑
i∈I

λi

(
max
ui∈Ui

fi (y, ui ) − max
ui∈Ui

fi (x, ui )

)

+
∑
j∈J

μ j
(
g j
(
y, v j

)− g j
(
x, v j

))

≤
∑
i∈I

λi max

(
max
ui∈Ui

fi (y, ui ) − max
ui∈Ui

fi (x, ui )

)

+
∑
j∈J

μ j
(
g j
(
y, v j

)− g j
(
x, v j

))

≤
∑
i∈I

λi max

(
max
ui∈Ui

fi (y, ui ) − max
ui∈Ui

fi (x, ui )

)

=max

(
max
ui∈Ui

fi (y, ui ) − max
ui∈Ui

fi (x, ui )

)
. (4.11)

Observe that x ∈ S, so we have d(y, S) ≤ ‖y − x‖. By inequalities (4.7), (4.11), and d(y, S) ≤ ‖y − x‖,
we obtain ηγ d(y, S) ≤ ηγ ‖y − x‖ ≤ 〈ηx∗, y − x〉 ≤ max(maxui∈Ui fi (y, ui ) − maxui∈Ui fi (x, ui )). Take
γ → 1, then inequality (4.6) is fulfilled as y ∈ K ∩ B(x0, r1) is arbitrary. Therefore, the conclusion that x0 is
a local robust weak sharp efficient solution for (UMP) is verified. ��
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5 Concluding remarks

In this paper, we investigate an uncertain muliobjective optimization problem involving nonsmooth and non-
convex functions. We establish necessary and sufficient optimality conditions for robust weak sharp efficient
solutions of the considered problem. These optimality conditions are presented in terms of multipliers and
Mordukhovich subdifferentials of the related functions. To fulfill our goals, many tools are used in this paper,
which has mainly the following three light spots:

(1) In the discussion on the necessary optimality conditions for the local robust weak sharp efficient solution of
(UMP), we employ the generalized Fermat rule, theMordukhovich subdifferential for maximum functions,
the fuzzy sum rule for Fréchet subdifferentials, and the sum rule for Mordukhovich subdifferentials.

(2) In the discussions on such necessary optimality conditions, the assumptions of convexity conditions of
objective function, constraint function, and uncertain sets are not assumed.

(3) In the discussion on the sufficient optimality conditions for the robust weak sharp efficient solutions of
(UMP), we employ the generalized convexity, approximate projection theorem, and some appropriate
convexity and affineness conditions.
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