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Abstract This study is devoted to some periodic matrix difference equations, through their associated product
of companion matrices in blocks. Linear recursive sequences in the algebra of square matrices in blocks and
the generalized Cayley–Hamilton theorem are considered for working out some results about the powers of
matrices in blocks. Two algorithms for computing the finite product of periodic companion matrices in blocks
are built. Illustrative examples and applications are considered to demonstrate the effectiveness of our approach.

Mathematics Subject Classification 39A06 · 15B99

1 Introduction

It is well known that the scalar homogeneous linear difference equations of order r ≥ 2, defined by

yn+r = a1(n)yn+r−1 + · · · + ar (n)yn, for n ≥ 0, (1.1)

where the coefficients a1(n), . . . , ar (n) are functions of n, occur in several fields of mathematics and applied
sciences. Several methods have been provided in the literature for solving Eq. (1.1) (see, for example, [15,17],
and references therein). Recently, the homogeneous linear difference equations (1.1) with periodic coefficients,
i.e., a j (n + p) = a j (n), have been solved in [4,5], using properties of the generalized Fibonacci sequences in
the algebra of square matrices. More precisely, in [4], Eq. (1.1) has been studied under its equivalent matrix
equation:

Y (n + 1) = C(n)Y (n), f or n ≥ 0, (1.2)

where Y (n) and C(n) are given as follows:

C(n) =

⎛
⎜⎜⎜⎜⎝

a1(n) a2(n) · · · ar (n)
1 0 · · · 0
0 1 · · · 0
...

...
...

...
0 · · · 1 0

⎞
⎟⎟⎟⎟⎠

and Y (n) =

⎛
⎜⎜⎝

y(n + r − 1)
y(n + r − 2)

...
y(n)

⎞
⎟⎟⎠ .
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In the sequel, we use the notation C(n) = C[a1(n), a2(n), · · · , ar (n)]r×r , for these companion matrices
of order r . Since Y (n + 1) = C(n)...C(1)C(0)Y (0), the main problem for studying the matrix equation (1.2),
is reduced to the study of the product of companion matrices:

B(n) = C(n)C(n − 1)...C(1)C(0), for n ≥ 1.

In the last years, the product of companion matrices has attracted much attention, because this product occurs
in various fields of mathematics and applied sciences, such that the Floquet system theory related to the linear
difference equations (see [4,5,16,17]). Diverse methods for computing the product of companion matrices
have been proposed in the literature. For instance, in [16], the authors developed an explicit formula for
the entries of the product of companion matrices. Then, they applied their results to solve linear difference
equations of variable coefficients. Another expression for the product of companion matrices was obtained in
[17], based on the study of solutions of non-homogeneous and homogeneous linear difference equations of
order N, with variable coefficients. Recently, it was shown in [4,5] that the product of companion matrices
plays a central role, for investigating a large class of periodic-discrete homogeneous difference equations via
generalized Fibonacci sequences. Moreover, through the key of generalized Fibonacci sequences, there are
still some interesting and relevant problems that can be examined.

In this paper, we aim to study the linear difference matrix equations defined by

Yn+r = A1(n)Yn+r−1 · · · + Ar (n)Yn, for n ≥ 0, (1.3)

where Y0, · · · , Yr−1 are in C
d and stand for the initial values, and the coefficients A1(n), · · · , Ar (n) are

square matrices in C
d×d , the algebra of square matrices of order d , with complex coefficients, representing

periodic matrices functions of n, that is, A j (n + p) = A j (n), for every n ≥ 0, i.e., p = min{N ∈ N, N ≥
1 A j (n + N ) = A j (n), for j = 1, ..., r and n ≥ 0}.

The class of discrete linear matrix equations (1.3) appears in many applied fields, such as economics,
population dynamics, and signal processing. For instance, periodic matrix models are often used to study
seasonal temporal variation of structured populations (see [6] for example). They can also occur in many
practical control systems (see [20] for example).

In our exploration, we are looking forward to studying properties of some periodic matrix difference
equations (1.3), throughout their closed relation with the product of companion matrices in blocks. First, we
formulate the main result on the solutions of the linear matrix difference equation (1.3), through the product of
companion matrices in blocks and powers of matrix in blocks. As a matter of fact, we utilize the generalized
Cayley–Hamilton theorem for giving rise to a new result that allows us to compute the powers of matrices
in blocks. Moreover, we outline the recursive method for investigating two algorithms to compute the finite
product of companion matrices in blocks. To highlight the importance of our results, special cases, significant
examples and applications are provided.

The outline of this study is as follows. Section 2 is devoted to some basic properties of the periodic matrix
difference equations (1.3), where the product of periodic companionmatrices in blocks is considered. Section 3
concerns the study of the powers of matrices in the algebra of square matrices in blocks. More precisely, using
the generalized Cayley–Hamilton Theorem and the linear recursiveness in the algebra of square matrices in
blocks, we give an explicit expression of the powers of a square matrix in blocks. Here, the Kronecker product
(or tensor product) of matrices plays a central role. In Sect. 4, we develop two algorithms for computing the
finite product of companionmatrices in blocks, where a recursive sequence ofmatrices is considered. In Sect. 5,
gathering the results of Sects. 2, 3 and 4, we then employ those to examine some special class of periodic
matrix difference equations (1.3).

2 Periodic matrix difference equations: general setting

In the same way to the scalar case, the matrix equation associated to Eq. (1.3) is given by

Z(n + 1) = C(n)Z(n) f or n ≥ 0, (2.1)

where Z(n) = (Y (n+r −1),Y (n+r −2), ..., Y (n))� ∈ C
dr and C(n) is a matrix of order dr , i.e., inCdr×dr

given by

C(n) = C[A1(n), · · · , Ar (n)]r×r =

⎛
⎜⎜⎝

A1(n) A2(n) · · · Ar (n)
1d×d �d×d · · · �d×d

...
. . .

. . .
...

�d · · · 1d×d �d×d

⎞
⎟⎟⎠

r×r

, (2.2)
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where 1d×d and �d×d are, respectively, the identity matrix and the zero matrix of order d × d. We
observe that the matrix C(n) is a companion matrix in blocks. In the sequel, we use the notation C(n) =
C[A1(n), A2(n), · · · , Ar (n)]r×r , for these companion matrices in blocks of order r . As for the scalar case,
the main problem for studying the matrix equation (2.1), is reduced to the study of the following product of
companion matrices in blocks:

B(n) = C(n − 1)...C(0), for n ≥ 1.

Since A j (n + p) = A j (n), for every j (1 ≤ j ≤ r ) and n ≥ 0, we then infer that C(n + p) = C(n),
for every n ≥ 0, where p ≥ 1 is the period. Here we are concerned with the finite product of companion
matrices in blocks. It is worthwhile to point out that this class of companion matrices in blocks arises in
various mathematical and applied fields (see, for example, [18]). In this work, we will emphasize its key role
for providing the solutions of Eq. (2.1).

Let us consider the matrix equations (2.1) and (2.2) related to the periodic matrix difference equation (1.3).
Suppose that n = kp. Then we have

Z(kp) = C(kp − 1)Z(kp − 1) = C(kp − 1)C(kp − 2) · · ·C(kp − p)Z(kp − p) = BZ(kp − p),

where Z(kp) = (Ykp+r−1, Ykp+r−2, · · · , Ykp)� and B = C(p−1) · · ·C(0). Due to the periodicity condition,
we show that Eq. (2.1) takes the form

Z(kp) = Bk Z(0)

where Z(0) = (Yr−1, · · · , Y0)�. For n = kp + 1, we get

Z(kp + 1) = C(kp)Z(kp) = C(0)Bk Z(0),

and for n = kp + p − 1, we have

Z(kp + p − 1) = C(kp + p − 2)Z(kp + p − 2) = C(p − 2) · · ·C(0)Bk Z(0).

Thus, for every n ≡ i[p], i.e n = kp + i (0 ≤ i ≤ p − 1), the solution of the matrix equations (2.1) and (2.2)
related to the periodic matrix difference equation (1.3) is given as follows.

Theorem 2.1 Consider the periodic matrix equations (2.1) and (2.2) of period p ≥ 2, with the initial condi-
tions vector Z(0) = (Yr−1, · · · , Y0)�. Then, the solution Z(n) of (2.1) and (2.2) is given by

Z(kp + i + 1) = C(i) · · ·C(0)Bk Z(0) , i = 0, · · · p − 1, (2.3)

where B = C(p − 1) · · ·C(0).

Theorem 2.1 shows that there is a closed link between the periodic matrices difference equations and
product of companion matrices in blocks. More precisely, in expression (2.3) appears a finite product of
companion matrices in blocks and the powers of the matrix B = C(p − 1) · · ·C(0), which is itself a finite
product of companion matrices in blocks.

To establish more results, concerning the explicit representation of the solutions of the periodic matrix
equations (2.1) and (2.2), we are led to study the two following problems. The first one is related to the powers
of matrices in blocks and the second concerns the finite product of companion matrices in blocks. In the first
problem, our approach revolves around the generalized Cayley–Hamilton Theorem. In the whereas, for the
second problem we manage to build two recursive algorithms for computing this finite product of companion
matrices in blocks.

3 Linear recursive relation in the algebra of square matrices, generalized Cayley–Hamilton theorem
and powers of matrices in blocks

Recently, great interest has been brought to the use of the product ofKronecker in the algebra of squarematrices.
Indeed, the techniques of this operation has been successfully proven to be very important for studying several
problems, in various fields of mathematics and other exact or applied sciences. Especially, in the resolution of
matrix and matrix differential equations (see for example, [1,2,12] and references therein).
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3.1 Kronecker product and linear recursive relation in the algebra of square matrices in blocks

In this subsection,we are interested in the use of thematrixKronecker product for studying some linear recursive
relation in the algebra of square matrices in blocks, and their use for the computation of the powers of matrices
in blocks through the generalized Cayley–Hamilton Theorem. In fact, using the product of Kronecker, we
extend the results of [3], to the algebra of square matrices in blocks.

For reason of clarity, let us recall that the Kronecker product can be defined for two matrices of arbitrary
size over any ring. In the sequel of this study, we consider only the square matrices, whose entries are in the
fields of real R or complex numbers C (see for example, [11,19]). Let us start by recalling the definition of
Kronecker product. That is, let Cd×d and C

r×r be the algebras of square matrices of order d ≥ 1 and r ≥ 1,
respectively.

Definition 3.1 The Kronecker product of the matrix A = (ai j )1≤i, j≤r ∈ C
r×r with the matrix B =

(bi j )1≤i, j≤d ∈ C
d×d is defined as follows:

A ⊗ B = (ai, j B)1≤i, j≤r . (3.1)

Note that, there is other denomination for the Kronecker product such that tensor product, direct product or
left direct product (see, for example, [11]). For more details, an interesting overview on the Kronecker product
is given by K. Schnack in [19]. The Kronecker tensor product has several important algebraic properties, we
refer to what we will use in this section. Let first remark that for r = 1, we have A = a1,1 ∈ C

1×1 = C, thus
the tensor product (3.1) takes the form

A ⊗ B = (ai, j B)1≤i, j≤1 = a1,1B,

which allows to see that the tensor product coincides with the usual multiplication of matrices by scalars.
Or equivalently, the tensor product can be viewed as an extension of the usual multiplication of matrices by
scalars.

Expression (3.1) shows that A ⊗ B is an element of GL(r,Cd×d), the algebra of square matrices of order
r ≥ 1, with coefficients in C

d×d . Moreover, we can also see that A ⊗ B can be identified with an element of
C
rd×rd , the algebra of square matrices of order rd , with coefficients in C. Therefore, we have the following

known isomorphisms of algebras:

C
r×r ⊗ C

d×d � C
rd×rd � GL(r,Cd×d) � GL(d,Cr×r ).

In the sequel, we will use the notationMd	r to designate without distinction the previous notations of C
r×r ⊗

C
d×d .
A method for computing the powers of the matrices of Cr×r , the algebra of square matrices, has been

considered in [3]. This method is based on the linear recursive sequences of Fibonacci type in the algebra
of square matrices Cr×r , and can be extended here as follows. More precisely, for computing the powers of
the matrix in blocks, we introduce the notion of linear recursive sequences of Fibonacci type in the algebra
of square matrices Md	r = GL(r,Cd×d). Let A0, A2, · · · , Ar−1 be a family of commuting matrices in
GL(r,Cd×d), and B0, B1, · · · , Br−1 (r > 2) a given sequence of GL(r,Cd×d). Let {Yn}n≥0 be a sequence
of GL(r,Cd×d) defined by Y0 = B0, Y1 = B1, · · · ,Yr−1 = Br−1 and the matrix difference equation of
Fibonacci type,

Yn+1 = A0Yn + A1Yn−1 + · · · + Ar−1Yn−r+1 for n > r − 1.

In other words, the sequence {Yn}n≥0 is called a generalized Fibonacci sequence, where A0, A2, · · · , Ar−1
are the coefficients, and Y0, Y1, · · · ,Yr−1 stand for the initial conditions. As it was shown in [3], we have

Yn = ρ(n, r)W0 + ρ(n − 1, r)W1 + · · · + ρ(n − r + 1, r)Wr−1, for every n ≥ r, (3.2)

where Ws = Ar−1Bs + · · · + As Br−1 for s = 0, 1, · · · , r − 1 and

ρ(n, r) =
∑

k0+2k1+...+rkr−1=n−r

(k0 + ... + kr−1)!
k0!...kr−1! Ak0

0 ...Akr−1
r−1 , for every n ≥ r (3.3)

with ρ(r, r) = 1r×r = diag(1d×d , ..., 1d×d) = 1r×r ⊗1d×d (the r -by-r diagonal matrix in which the entries
of the main diagonal are all 1d×d ) and ρ(n, r) = �r×r ⊗ �d×d , if n < r .
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The preceding expressions (3.2) and (3.3) combined with the generalized Cayley–Hamilton are useful for
computing the powers of the matrix in blocks B = C(p − 1) · · ·C(0). For this propose, we employ the result
of the generalized Fibonacci sequence, that allows us to obtain a tractable expression for the powers of a block
matrix A of GL(r,Cd×d).

3.2 Generalized Cayley–Hamilton theorem and powers of companion matrices in blocks

We first recall the generalized Cayley–Hamilton Theorem for matrices given in [13,14]. Let us consider the
square matrix in blocks:

A =
⎛
⎜⎝
A11 · · · A1r
...

. . .
...

Ar1 · · · Arr

⎞
⎟⎠ , (3.4)

where the Ai j ∈ C
d×d are commutative, i.e., Ai j Akl = Akl Ai j , for every i , j (1 ≤ i, j, k, l ≤ r ). Also, consider

the Cayley–Hamilton theorem for block matrices, for the matrix A defined by (3.4). Following Kaczorek [13,
Theorem 4] (for more details see also [14]), the matrix characteristic polynomial of A, is given by

Definition 3.2 The matrix characteristic polynomial of the square matrix in blocks A, defined by (3.4), is

P(S) = det[1r×r ⊗ S − A] = Sr − D0S
r−1 + · · · − Dr−1, (3.5)

where S ∈ C
d×d is the matrix (block) eigenvalue of A, ⊗ denotes the Kronecker product of matrices.

The matrix determinant (3.5) is obtained by developing the determinant of the matrix considering its
commuting blocks as scalar entries (see [13,14]). More precisely, it was shown in [13,14] that the matrices
Di (i = 0, · · · , r − 1) are obtained by developing the determinant of the matrix [1d×d ⊗ S − A] considering
its blocks as scalar entries. Then, we have

P(A) = Ar −
r−1∑
i=0

(1r×r ⊗ Dr−i )A
i = 0 (3.6)

We now turn our attention to the theory of generalized Fibonacci sequence, to extend some properties
established in the case of matrices with scalar coefficients, to the case of matrices in blocks. Equation (3.6)
leads to get

An = (1r×r ⊗ D0)A
n−1 + (1r×r ⊗ D2)A

n−2 + · · · + (1r×r ⊗ Dr−1)A
n−r ,

for everyn ≥ r .Weobserve that the sequence {An}n≥0 is nothing else but only a generalizedFibonacci sequence
of order r , with matrices coefficients 1d×d ⊗ Dr−i (0 ≤ i ≤ r − 1) and initial conditions A0, A1, · · · , Ar−1.
In an entirely similar way followed when the matrix has scalar coefficients in [3], we manage to obtain the
following result for the block matrix.

Theorem 3.3 Let A be a matrix in blocks and P(S) = det[1r×r ⊗ S − A] = Sr − D0Sr−1 + · · · − Dr−1 be
the matrix characteristic polynomial of A. Then, we have

An = ρ(n, r)W0 + ρ(n − 1, r)W1 + · · · + ρ(n − r + 1, r)Wr−1, (3.7)

for any n ≥ r , where Ws = (1r×r ⊗ Dr−1)As + · · · + (1r×r ⊗ Ds)Ar−1 for s = 0, 1, · · · , r − 1, the ρ(n, r)
is given by ρ(r, r) = 1r×r ⊗ 1d×d , with ρ(p, r) = 1r×r ⊗ �d×d for p < r , and

ρ(n, r) =
∑

k0+2k1+···+rkr−1=n−r

(k0 + · · · + kr−1)!
k0!k1! · · · kr−1! (1r×r ⊗ D0)

k0 · · · (1r×r ⊗ Dr−1)
kr−1 . (3.8)
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It seems for us that the result of Theorem 3.3 is not current in the literature. Comparing to the linked results
in this subject, we establish here a handed expression that can be a key to resolve diverse questions in this
subject. Notably, those on the similar matrix equations (see, for example [2,7–9,13,14]).

To give more light to the content of Theorem 3.3, we examine the following special situation. Suppose

that r = 2 and A =
(

A11 A12
�d×d A22

)
, with A11, A12 and A22 are matrices of order d , in addition they satisfy the

commutativity condition Ai j Akl = Akl Ai j (1 ≤ i, j, k, l ≤ 2). Then, we have P(S) = det[12×2 ⊗ S − A] =
S2 − (A11 + A22)S + A11A22. Employing expressions (3.7) and (3.8), we obtain

An = ρ(n, 2)W0 + ρ(n − 1, 2)W1,

for every n ≥ 1, where

W0 =
(

A2
11 A11A12 + A22A12

�d×d A2
22

)
and W1 =

(−A2
11A22 −A11A22A12

�d×d −A11A2
22

)
.

What ismore, in this case ,wehaveρ(n, 2) = ∑
k0+2k1=n−2

(k0+k1)!
k0!k1! (12×2⊗(A11+A22))

k0(12×2(−A11A22))
k1 .

Now, if we suppose the condition A11 = −A22, we obtain the following explicit expressions of ρ(n, 2):

ρ(n, 2) =
{

(12×2 ⊗ A11)
2k−2 if n = 2k,

12×2 ⊗ �2×2 if n = 2k + 1.

Therefore, we have the following proposition.

Proposition 3.4 Under the preceding data, we have

An =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
A2k
11 �d×d

�d×d A2k
11

)
if n = 2k(k ≥ 1),

(
A2k−1
11 A2k−2

11 A12

�d×d A2k−1
11

)
if n = 2k + 1(k ≥ 2).

As a numerical application of Proposition 3.4, consider thematrix A =
(

A11 A12
�2×2 A22

)
, where A11 =

(
2 0
0 2

)
,

A12 =
(
1 1
2 1

)
, A21 = �2×2 (null matrix of order 2) and A22 = −2× 12×2. Then, a direct computation shows

that

An =

⎧⎪⎪⎨
⎪⎪⎩

22k ×
(
12×2 �2×2
�2×2 12×2

)
if n = 2k(k ≥ 1),

22k−1 ×
(
12×2 A22(k)
�2×2 12×2

)
if n = 2k + 1(k ≥ 2),

where A22(k) =
(
2 2
1 2

)
.

Proposition 3.4 and its numerical application illustrate the efficient role of Theorem 3.3. Moreover, our
main goal, is to apply Theorem 3.3 to calculate the powers of the matrix B = C(p− 1) · · ·C(0), in the aim to
provide solutions of the periodic matrix difference equations (2.1) and (2.2), in some special cases, that will
be more exploited in Sect. 5.
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4 Two algorithms for the product of companion matrices in blocks

4.1 Algorithm 1: product of block companion matrices

In this section, we develop the first algorithm for computing the finite product of companionmatrices in blocks.
Recall that this product appears in the solutions of the matrix expressions (2.3) of Theorem 2.1.
Let us consider the companion matrix in blocks (2.2), namely,

C(m) = C[A1(m), A1(m), · · · , Ar (m)]r×r ,

where A1(m), · · · , Ar (m) are matrices of order d . We shall give an explicit formula for the matrix

B(m) = C(1) · · ·C(m) = B(m−1)C(m).

The main idea behind this algorithm is to build an iterative formula that calculates recursively the entries B(m)
i j

of the matrix B(m), using from the entries of the matrix C(1). More precisely, this recursive process is based
on a sequence of matrices D(k)(m), whose entries constructed recursively, using the given sequence A j (m).
To this matter, we set

B(m) =
⎛
⎜⎝
B(m)
11 · · · B(m)

1r
...

. . .
...

B(m)
r1 · · · B(m)

rr

⎞
⎟⎠ ,

where B(m)
i j (1 ≤ i, j ≤ r) are matrices of order d . The steps of our first algorithm are as follows. Let

D(0)
j (m) = 1d×d , D

(1)
j (m) = A j (m) and D(l)

i, j+k(m) = �d×d when j + k > r . Then, we have

B(m)
i j = B(m−1)

i1 D(1)
j (m) + B(m−1)

i j+1 D(0)
j (m)

= [B(m−2)
i1 A1(m − 1) + B(m−2)

i2 Id ]D(1)
j (m)

+ [B(m−2)
i1 D(1)

j+1(m − 1) + B(m−2)
i j+2 D(0)

j+1(m − 1)]D(0)
j (m)

= B(m−2)
i1 [A1(m − 1)D(1)

j (m) + A j+1(m − 1)D(0)
j (m)]

+ B(m−2)
i2 D(1)

j (m) + B(m−2)
i j+2 D(0)

j (m).

Let us define Dj (2) by the following relation:

D(2)
j (m) = A1(m − 1)D(1)

j (m) + A j+1(m − 1)D(0)
j (m).

Thus, by substituting D(2)
j (m) in the last formula of B(m)

i j , we obtain

B(m)
i j = B(m−2)

i1 D(2)
j (m) + B(m−2)

i2 D(1)
j (m) + B(m−2)

i j+2 D(0)
j (m)

= [B(m−3)
i1 D(1)

1 (m − 2) + B(m−3)
i2 D(0)

j (m − 2)]D(2)
j (m)

+ [B(m−3)
i1 D(1)

2 (m − 2) + B(m−3)
i3 D(0)

2 (m − 2)]D(1)
j (m)

+ [B(m−3)
i1 D(1)

j+2(m − 2) + B(m−3)
i j+3 D(0)

j+2(m − 2)]D(0)
j (m).

Now, let define D(3)
j (m) by taking

D(3)
j (m) = A1(m − 2)D(2)

j (m) + A2(m − 2)D(1)
j (m) + A j+2(m − 2)D(0)

j (m),

hence, we show that B(m)
i j is given by

B(m)
i j = B(m−3)

i1 D(3)
j (m) + B(m−3)

i2 D(2)
j (m) + B(m−3)

i3 D(1)
j (m) + B(m−3)

i j+3 D(0)
j (m).
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Using the same recurrent process above, we obtain

B(m)
i j = [B(m−4)

i1 D(1)
1 (m − 3) + B(m−4)

i2 D(0)
1 (m − 3)]D(3)

j (m)

+ [B(m−4)
i1 D(1)

2 (m − 3) + B(m−4)
i3 D(0)

j (m − 3)]D(2)
j (m)

+ [B(m−4)
i1 D(1)

3 (m − 3) + B(m−4)
i4 D(0)

3 (m − 3)]D(1)
j (m)

+ [B(m−4)
i1 D(1)

j+3(m − 3) + B(m−4)
i j+4 D(0)

j+3(m − 3)]D(0)
j (m).

We can continue this process by taking

D(4)
j (m) = A1(m − 3)D(3)

j (m) + A2(m − 3)D(2)
j (m) + A3(m − 3)D(1)

j (m) + A j+3(m − 3)D(0)
j (m),

and thus, we get

B(m)
i j = B(m−4)

i1 D(4)
j (m) + B(m−4)

i2 D(3)
j (m) + B(m−4)

i3 D(2)
j (m)

+ B(m−4)
i4 D(1)

j (m) + B(m−4)
i j+4 D(0)

j (m).

Finally, by recurrence we have the following result.

Theorem 4.1 Consider the block matrix C(m) given by (2.2), where A1(m), · · · , Ar (m) are matrices of order
d. Then the entries {B(m)

i j }1≤i, j≤r of the product of the partitioned companion matrices B(m) = C(1) · · ·C(m)

are given as follows.
For every m > r , we have

B(m)
i j = B(1)

i1 D(m−1)
j (m) + B(1)

i2 D(m−2)
j (m) + · · · + B(1)

ir D(m−r)
j (m). (4.1)

For every m ≤ r , we have

B(m)
i j = B(1)

i1 D(m−1)
j (m) + B(1)

i2 D(m−2)
j (m) + · · · + B(1)

im−1D
(1)
j (m) + B(1)

i j+m−1D
(0)
j (m), (4.2)

where ⎧⎨
⎩

D(0)
j (m) = 1d×d , D(1)

j (m) = A j (m),

D(2)
j (m) = A1(m − 1)D(1)

j (m) + A j+1(m − 1)D(0)
j (m),

and for every k > 2, we set

D(k)
j (m) = A1(m − k + 1)D(k−1)

j (m) + A2(m − k + 1)D(k−2)
j (m)

+ · · · +
+ Ak−1(m − k + 1)D(1)

j (m) + A j+k−1(m − k + 1)D(0)
j (m).

Theorem 4.1 shows the main role of the bi-indexed relations (4.1) and (4.2), for generating the B(m)
i j from

the entries of the matrix B(1) = C(1), using the matrix D(k)
j (m).

It should be made clear that, since the product of matrices is not commutative, the order of matrices in
formulas (4.1) and (4.2) need to be respected.

For more illustration of Theorem 4.1, we examine the following special case.

Proposition 4.2 Consider the companion matrix in blocks:

C(m) = C[A1(m), A2(m)]2×2 =
(
A1(m) A2(m)
1d×d �d×d

)
.

Then, for every m ≥ 2, the entries of the matrix

B(m) =
(
B(m)
11 B(m)

12
B(m)
21 B(m)

22

)
,
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are given as follows:

{
B(m)
11 = A1(1)D

(m−1)
1 (m) + A2(1)D

(m−2)
1 (m), B(m)

22 = D(m−1)
2 (m),

B(m)
12 = A1(1)D

(m−1)
2 (m) + A2(1)D

(m−2)
2 (m), B(m)

21 = D(m−1)
1 (m),

where

D(m−1)
j (m) =

⎧⎪⎨
⎪⎩

1d×d if m = 1, for j = 1, 2,

A j (m) if m = 2, for j = 1, 2,

A1(2)D
(m−2)
j (m) + A2(2)D

(m−3)
j (m) if m > 2, for j = 1, 2.

That is, for m = 2, by a straightforward computation, we get

{
B(2)
11 = A1(1)D

(1)
1 (2) + A2(1)D

(0)
1 (2), B(2)

12 = A1(1)
(1), D(1)

2 (2)

B(2)
21 = D(1)

1 (2), B(2)
22 = D(1)

2 (2),

where D(0)
1 (2) = D(0)

2 (2) = 1d , D
(1)
1 (2) = A1(2) and D(1)

2 (2) = A2(2). In addition, for m = 3, we obtain

{
D(1)
1 (3) = A1(3), D(1)

2 (3) = A2(3),

D(2)
1 (3) = A1(2)A1(3) + A2(2), D(2)

2 (3) = A1(2)A2(3).

Thence, we obtain

{
B(3)
11 = A1(1)A1(2)A1(3) + A1(1)A2(2) + A2(1)A1(3), B(3)

21 = A1(2)A1(3) + A2(2),

B(3)
12 = A1(1)A1(2)A1(3) + A1(1)A2(2), B(3)

22 = A1(2)A2(3) + A2(2).

Consider the following numerical example. Suppose that

C(1) =
(
C11(1) C12(1)
12×2 �2×2

)
, C(2) =

(
C11(2) 12×2
12×2 �2×2

)
, C(3) =

(
C11(3) C12(3)
12×2 �2×2

)
,

where �2×2 is the null matrix of order 2 and 12×2 is the identity matrix of order 2, C11(1) =
(
1 0
0 2

)
,

C12(1) =
(
1 1
1 1

)
, C11(2) =

(
1 −1
0 0

)
, C11(3) =

(
2 1
1 1

)
and C12(3) =

(
1 0

−1 0

)
. By applying the formula

above, we obtain the entries of the matrix B(3) = C(1)C(2)C(3) as follows:

B(3) =
(
B(3)
11 B(3)

12

B(3)
21 B(3)

22

)
,

where B(3)
11 =

(
5 2
4 4

)
, B(3)

12 =
(−2 0

0 0

)
, B(3)

21 =
(
1 0
0 1

)
and B(3)

22 =
(−2 0

0 0

)
.

Now, we turn out to the matrix of order r , related to Eqs. (1.1) and (1.2), defined by

C(m) = C[a1(m), a2(m), · · · , ar (n)]r×r ,

where a j : N → R, 1 ≤ j ≤ r , are scalar functions of m. It seems to us evident to derive explicit formulas for

the entries {α(m)
i j }1≤i, j≤r of the product of companion matrices B(m) = C(1) · · ·C(m) , since our method is

recursive and novel. We can now proceed analogously to Theorem 4.1, and then we obtain a new expression
of α

(m)
i j given by the following corollary.
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Corollary 4.3 Let α(m)
i j be the (i, j)-entry of the product B(m). Then, for m > r , we have

α
(m)
i j = D(m−1)

j (m)α
(1)
i1 + D(m−2)

j (m)α
(1)
i2 + · · · + D(m−r)

j (m)α
(1)
ir ,

and for m ≤ r ,

α
(m)
i j = D(m−1)

j (m)α
(1)
i1 + D(m−2)

j (m)α
(1)
i2 + · · · + D(1)

j (m)α
(1)
im−1 + D(0)

j (m)α
(1)
i j+m−1,

where

D(0)
j (m) = 1, D(1)

j (m) = a j (m), D(2)
j (m) = a1(m − 1)D(1)

j (m) + a j+1(m − 1)D(0)
j (m),

and for every k > 2, we set

D(k)
j (m) =a1(m − k + 1)D(k−1)

j (m) + a2(m − k + 1)D(k−2)
j (m) + · · · +

ak−1(m − k + 1)D(1)
j (m) + a j+k−1(m)D(0)

j (m).

In the aim to give more light in the previous result of Corollary 4.3, we study the case m = 3. Let
{a1(1), a2(1), a3(1), a1(2), a2(2), a3(2), a1(3), a2(3), a3(3)} be a set of real or complex numbers. Consider
the following three companion matrices:

C(1) = [a1(1), a2(1), a3(1)],C(2) = [a1(2); a2(2), a3(2)];C(3) = [a1(3), a2(3), a3(3)].
Applying the result of Corollary 4.3, a direct computation leads to get

B(3) = C(1)C(2)C(3) =
⎛
⎝

α11 α12 α13
a1(3)a1(2) + a2(2) a2(3)a1(2) + a3(2) a3(3)a1(2)

a1(3) a2(3) a3(3)

⎞
⎠ ,

where α11 = a1(3)a1(2)a1(1) + a1(3)a2(1) + a1(2)a1(1) + a3(1), α12 = a2(3)a1(2)a1(1) + a2(3)a2(1) +
a3(2)a1(1) and α13 = a3(3)a1(2)a1(1) + a3(3)a2(1). We illustrate this situation by the following numerical
application.

Example 4.4 A straightforward computation of the following product of companion matrices, B(3) =⎛
⎝

−1 2 3
1 0 0
0 1 0

⎞
⎠

⎛
⎝
2 2 −1
1 0 0
0 1 0

⎞
⎠

⎛
⎝
4 1 2
1 0 0
0 1 0

⎞
⎠, permits us to obtain, B(3) =

⎛
⎝

1 1 0
10 1 4
4 1 2

⎞
⎠ . Meanwhile, the useful of this

algorithm appears better for large m, where the computation becomes heavy and not feasible by hand.

4.2 Algorithm 2: product of companion matrices in blocks

In this section, we manage to provide another recursive algorithm to calculate the entries of the matrix B(m) =
C(m) · · ·C(1) = C(m)B(m−1), our approach reposes in the techniques of generalized Fibonacci sequences in
the algebra of square matrices in blocks, given in Sect. 3.2.

We set

C(k) =

⎛
⎜⎜⎝

A1(k) A2(k) · · · Ar (k)
1d×d �d×d · · · �d×d

...
. . .

. . .
...

�d×d · · · 1d×d �d×d

⎞
⎟⎟⎠ ,

where A1(k), · · · , Ar (k) are matrices of order d , and

B(m) =
⎛
⎜⎝
B(m)
11 · · · B(m)

1r
...

. . .
...

B(m)
r1 · · · B(m)

rr .

⎞
⎟⎠

To express recursively the entries B(m)
i j of the matrix B(m), we consider a family of generalized Fibonacci

sequences in the algebra GL(r,Cd×d), defined as follows.
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Definition 4.5 Let 1 ≤ s ≤ m, we consider the r family {Y (k)
n (s)}n≥0 of generalized Fibonacci sequences in

defined GL(r,Cd×d) for 1 ≤ k ≤ r by

Y (k)
n+1(s) = A1(s)Y

(k)
n (s) + · · · + Ar (s)Y

(k)
n−r+1(s), (4.3)

with mutually different sets of initial conditions defined as follows. For s = 1, the initial conditions of the
sequence {Y (k)

n (1)}n≥0 are given by

Y (k)
q (1) =

{
1d×d if q = r − k (0 ≤ q ≤ r − 1), (1 ≤ k ≤ r),

�d×d if not .
(4.4)

For s ≥ 2 and1 ≤ k ≤ r , the initial conditions of the sequence {Y (k)
n (s)}n≥0 are related to those {Y (k)

n (s−1)}n≥0,
as follows:

Y (k)
l (s) = Y (k)

l+1(s − 1) = B(s−1)
r−l,k , for every 0 ≤ l ≤ r − 1 and 2 ≤ s ≤ m. (4.5)

Therefore, using a straightforward computation, it ensues that we can rewrite de matrix B(m−1) under the
form:

B(m−1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Y (1)
r−1(m) · · · Y ( j)

r−1(m) · · · Y (r)
r−1(m)

Y (1)
r−2(m) · · · Y ( j)

r−2(m) · · · Y (r)
r−2(m)

... · · · · · · ...

Y (1)
r−i (m) · · · Y ( j)

r−i (m) · · · Y (r)
r−i (m)

... · · · · · · ...

Y (1)
0 (m) · · · Y ( j)

0 (m) · · · Y (r)
0 (m)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Thence, employing the recursive relation (4.3) satisfied at order r by Y (k)
n (m), we get

B(m) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Y (1)
r (m) · · · Y ( j)

r (m) · · · Y (r)
r (m)

Y (1)
r−1(m) · · · Y ( j)

r−1(m) · · · Y (r)
r−1(m)

... · · · · · · ...

Y (1)
r−i+1(m) · · · Y ( j)

r−i+1(m) · · · Y (r)
r−i+1(m)

... · · · · · · ...

Y (1)
1 (m) · · · Y ( j)

1 (m) · · · Y (r)
1 (m)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

By induction, we observe that for m < r (m ≥ 1), we obtain

B(m) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Y (1)
r (m) Y (2)

r (m) · · · Y (r−1)
r (m)

Y (1)
r (m − 1) Y (2)

r (m − 1) · · · Y (r)
r (m − 1)

... · · · · · · ...

Y (1)
r (0) Y (2)

r (0) · · · Y (r)
r (0)

Y (1)
r−1(0) Y (2)

r−1(0) · · · Y (r)
r−1(0)

... · · · · · · ...

Y (1)
r−m(0) Y (2)

r−m(0) · · · Y (r)
r−m(0)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

For m ≥ r , we observe that by induction, we get

B(m)
i j = Y ( j)

r−i+1(m) = B(m−1)
i−1, j = · · · = B(m−i+1)

1 j = Y ( j)
r (m − i + 1).
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for every 1 ≤ i, j ≤ r . Hereafter, we derive that

B(m) =

⎛
⎜⎜⎜⎝

Y (1)
r (m) Y (2)

r (m) · · · Y (r)
r (m)

Y (1)
r (m − 1) Y (2)

r (m − 1) · · · Y (m−2)
r (m − 1)

... · · · · · · ...

Y (1)
r (m − r + 1) Y (2)

r (m − r + 1) · · · Y (r)
r (m − r + 1)

⎞
⎟⎟⎟⎠ .

The main idea here is to take advantage of the fact that {Y (k)
n (s)}n≥0 are r -generalized Fibonacci sequences

for 1 ≤ k ≤ r . Indeed, we have established that the entries of the matrix B(m) are obtained by considering
only the initial conditions defined by (4.4) and (4.5), and the terms of the Fibonacci sequence Y ( j)

r (m − j + 1)
(1 ≤ j ≤ r ) once we reach the order r .

We can observe that for the two preceding algorithms, the commutativity condition A j (k)Ai (k) =
Ai (k)A j (k) is not necessary.

5 Study of the p-periodic matrix difference equations in blocks: some special cases

Let us first recall that for resolving the discrete linear matrix equation (1.3) of order r , the first step consists
in transforming this equation into a discrete linear matrix equation (2.1) of order 1. Thus, the resolution of
Eq. (1.3) is equivalent to that of Eq. (2.1), through the computation of the powers of the companion matrix in
blocks (2.2). Therefore, the solution of (1.3), is obtained via Theorems 2.1, Theorem 3.3 and the Algorithms
1 and 2. The previous procedure will be illustrated in this section.

More precisely, in this section, we are interested in making use of all the material provided in the above
sections for exploring some special cases of the p-periodic matrix difference equations in blocks. Yet, some
particular cases are treated and some examples are given, to make this study more affordable.

5.1 Solutions of the matrix equation Yn+2 = A(n)Yn , where A(n) is p-periodic

Consider the periodic matrix difference equation:

Yn+2 = A(n)Yn, n ≥ 0, (5.1)

where A(n) is p-periodic (with period p ≥ 2) square matrix of order d , and Y0, Y1 stand for the initial
conditions. We assume that A(i)A( j) = A( j)A(i) for 0 ≤ i, j ≤ p − 1. This equation (5.1) can be written
under the following matrix equation:

Z(n + 1) = C(n)Z(n), n ≥ 0, (5.2)

where

C(n) =
(

�d A(n)
1d×d �d×d

)
and Z(n) =

(
Yn+1
Yn

)
.

It ensues that C(n) is p-periodic emanated from the fact that A(n) is p-periodic. We consider the matrix
B = C(p−1)C(p−2) · · ·C(1)C(0). Thus, employing Theorem 2.1, we need to distinguish two cases p = 2
and p > 2. If p = 2, then for every n = 2k (k ≥ 1), the matrix equation (5.2) takes the form:

Z(2k) = Bk Z(0),

where Z(2k) = (Y2k+1, Y2k)�, Z(0) = (Y1, Y0)� the vector of initial conditions, and B = C(1)C(0). In
addition, if p > 2, for every n = kp + i (k ≥ 1) (0 ≤ i ≤ p − 1), the matrix equation (5.2) takes the form:

Z(kp + i + 1) = C(i)C(i − 1) · · ·C(0)Bk Z(0),

where Z(kp + i + 1) = (Ykp+i+1,Ykp+i )
�, Z(0) = (Y1, Y0)� the vector of initial conditions.
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We start by giving the expression of B in terms of A(p − 1), · · · , A(1), A(0), using the Algorithm 1 (see
Sect. 4.1). For reason of clarity, we consider the case of r = 2. For p = 2, a straightforward application of the
Algorithm 1 shows that

B = C(1)C(0) =
(
B(2)
11 B(2)

12

B(2)
21 B(2)

22

)
,

where the entries of the matrix B are given by

B(2)
11 = A(1)D(0)

1 (2), B(2)
12 = �d×d , B(2)

21 = D(1)
1 (2) and B(2)

22 = D(1)
2 (2),

where D(0)
1 (2) = 1d×d , D

(1)
1 (2) = �d×d and D(1)

2 (2) = A(0). Thus, when the matrix A(n) is 2-periodic, the
solutions of the 2-periodic matrix equation (5.1) are given by the following proposition.

Proposition 5.1 The unique solution of the 2-periodic matrix difference equation Yn+2 = A(n)Yn, n ≥ 0
(A(n) is 2-periodic), with the prescribed initial conditions Y0 and Y1, is given by

Y2n+1 = A(1)nY1 and X2n = A(0)nY0.

Example 5.2 Consider the scalar linear difference equation of the form

xn+2 = a(n)xn,

where a : N → R is a 2-periodic scalar function of n and x0, x1 stand for the initial conditions. Then, the
matrix A(n) is reduced to one element a(n), thus the unique solution of Eq. (5.1) is given by Proposition 5.1
as follows:

x2n+1 = a(1)nx1, x2n = a(0)nx0. (5.3)

This class of equations has been studied in [5]. The method used consists in transforming equation (5.1) into
the equivalent linear difference equation with constant coefficients,

xn+4 = c0xn+2 + c1xn, (5.4)

where c0, c1 are the coefficients of the characteristic polynomial P(z) = z2−(a(0)+a(1))z−a(0)a(1) = (z−
a(0))(z−a(1)), of the matrix B = C(1)C(0). Using formulas of corollary 4.3, we obtain B =

(
α

(2)
11 α

(2)
12

α
(2)
21 α

(2)
22

)
=

(
a(1) 0
0 a(0)

)
. Therefore, the form of the solutions of Eq. (5.4) are given in [5, Proposition 3.6] as follows:

x2n = a(0)n

a(0) + a(1)

(
A0

a(0)
+ A2

a(0)2

)
+ a(1)k

a(1) − a(0)

(
A0

a(1)
+ A2

a(1)2

)
, (5.5)

x2n+1 = a(0)n

a(0) + a(1)

(
A1

a(0)
+ A3

a(0)2

)
+ a(1)k

a(1) − a(0)

(
A1

a(1)
+ A3

a(1)2

)
. (5.6)

In addition, starting from (5.5) to (5.6), a direct computation implies that x2n = a(0)nx0 and x2n+1 = a(1)nx0.
Therefore, we show that the two solutions (5.3) and (5.5)–(5.6) are the same results.

Now, we turn to the case when r = 2 and the period p ≥ 3. In this case, the entries of the matrix
B = C(1)C(0) are given by

B(p)
11 = A(p − 1)D(p−2)

1 (p), B(p)
12 = A(p − 1)D(p−2)

2 (p), B(p)
21 = D(p−1)

1 (p), B(p)
12 = D(p−1)

2 (p),

where

D(0)
j (p) = 1d×d , D(1)

j (p) = A j (0), D(2)
j (p) = A1(1)D

(1)
j (p) + A j+1D

(0)
j (p),
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and for every k > 2, we have

D(k)
j (p) = A1(k − 1)D(k−1)

j (p) + · · · + Ak−1(k − 1)D(1)
j (p) + A j+k−1(k − 1)D(0)

j (p).

We need to distinguish two cases. When p is even, a straightforward computation, shows that

B =
(
A(p − 1)A(p − 3) · · · A(1) �d×d

�d×d A(p − 2)A(p − 4) · · · A(0)

)
.

Hence, for every k ≥ 2, we have

Bk =
(

(A(p − 1)A(p − 3) · · · A(1))k �d×d

�d×d (A(p − 2)A(p − 4) · · · A(0))k

)
.

However, when p is odd, we have

B =
(

�d×d A(p − 1)A(p − 3) · · · A(0)
A(p − 2)A(p − 4) · · · A(1) �d×d

)
.

In this case for calculating the powers Bk , for k ≥ 2, we need to utilize Theorem 3.3 of Sect. 3.2. Indeed, in
this case, P(S) = det[12×2 ⊗ S − B] = S2 − A(p − 1)A(p − 2) · · · A(1)A(0), and it follows from Theorem
3.3 that for every k ≥ 1, we have

Bk = ρ(k, 2)W0 + ρ(k − 1, 2)W1,

with

W0 =
(
W11(0) �d×d
�d×d W22(0)

)
and W1 =

(
�d×d W12(1)
W21(1) �d×d

)
,

where W11(0) = W22(0) = A(p − 1)A(p − 2) · · · A(1)A(0) and W12(1) = A(p − 1)A(p − 2)2A(p −
3) · · · A(1)2A(0), W21(1) = A(p − 1)2A(p − 2)A(p − 3)2 · · · A(0)2. In addition, once again, we need to
distinguish two cases: when k is odd or even, for giving the expression of ρ(k, 2):

ρ(k, 2) =
{
12×2 ⊗ (A(p − 1)A(p − 2) · · · A(1)A(0))

k
2−1, if k is even,

12×2 ⊗ �d×d , if k is odd.

Thence, we obtain

Bk =
(
B11(k) �d×d
�d×d B22(k)

)
for k even,

and

Bk =
(

�d×d Bk
12

Bk
21 �d×d

)
for k odd,

where B11(k) = B22(k) = (A(p − 1)A(p − 2) · · · A(1)A(0))
k
2 and B12(k) = (A(p − 2)A(p −

4) · · · A(1))
k−1
2 −1(A(p−1)A(p−3) · · · A(0))

k+1
2 , B22(k) = (A(p−1)A(p−3) · · · A(0))

k−1
2 (A(p−2)A(p−

4) · · · A(1))
k+1
2 .

With this results at our disposal, we can express the solution of the matrix equation Yn+2 = A(n)Yn .
Indeed, when A(n) is periodic of period p > 2, we have the following result.

123



Arab. J. Math. (2021) 10:555–574 569

Proposition 5.3 Let p ≥ 3 be an even integer. Consider the p-periodic matrix equation Yn+2 = A(n)Yn, n ≥
0, with the initial conditions vector (Y1, Y0)�. Then, for every n = kp + i (i = 0, · · · , p − 1), the unique
solution is given by

⎧⎪⎨
⎪⎩

Ykp+1 = (A(p − 1)A(p − 3) · · · A(1))kY1, (i = 0),

Ykp+2 = (A(p − 2)A(p − 4) · · · A(2))k A(0)k+1Y0, (i = 1),

Ykp+p = (A(p − 2)A(p − 4) · · · A(0))k+1Y0, (i = p − 1),

and for every i = 3, · · · , p − 2, we have

Ykp+i+1 =
{

(A(p − 1)A(p − 3) · · · A(i + 1))k(A(i − 1)A(i − 3)A(1))k+1Y1, if i is even,

(A(p − 2)A(p − 4) · · · A(i + 1))k(A(i − 1)A(i − 3)A(0))k+1Y0, if i is odd.

Similarly, when the period p is odd, we have to consider two cases. For k is even, the vector solution is given
by

⎧⎨
⎩

Ykp+1 = DY1,

Ykp+i+1 = A(i − 1)A(i − 3) · · · A(1)DY1, if i is even,

Ykp+i+1 = A(i − 1)A(i − 3) · · · A(0)DY0 if i is odd,

where D = (A(p − 1)A(p − 2) · · · A(0))
k
2 .

When k is odd, we get

⎧⎪⎨
⎪⎩

Ykp+1 = Bk
1Y0,

Ykp+i+1 = A(i − 1)A(i − 3) · · · A(1)Bk
1Y0, if i is even,

Ykp+i+1 = A(i − 1)A(i − 3) · · · A(0)Bk
2Y1, if i is odd,

where Bk
1 = (A(p− 2)A(p− 4) · · · A(1))

k−1
2 −1(A(p− 1)A(p− 3) · · · A(0))

k+1
2 and Bk

2 = (A(p− 1)A(p−
3) · · · A(0))

k−1
2 (A(p − 2)A(p − 4) · · · A(1))

k+1
2 .

For more illustration, we propose the following example.

Example 5.4 Consider the 3-periodic matrix equation (5.1) of order 2, such that A(0) =
(
1 1
0 0

)
, A(1) =

(−1 −1
0 0

)
and A(2) =

(
2 1
0 1

)
. Thus, we have B = C(2)C(1)C(0) =

(
�2×2 A(2)A(0)
A(1) �2×2

)(
�2×2 B12
B21 �2×2

)
,

where B12 =
(
2 2
0 0

)
and B21 =

(−1 −1
0 0

)
. By a simple verification, we remark that A(i)A( j) = A( j)A(i)

for 0 ≤ i, j ≤ 2. Then, applying results of Proposition 5.3, the solutions of the 3-periodic matrix equation
(5.1) are described as follows. If k is even, we have

Ykp+1 = E
k
2
1 Y1, Ykp+2 = E

k
2
2 A(0)

k
2+1Y0, Ykp+3 = E

k
2
3 A(1)

k
2+1Y1,

and, if k is odd, we get

Ykp+1 = A(1)
k−1
2 −1E

k+1
2

3 Y0, Ykp+2 = A(2)
k−1
2 E

k+1
2

4 Y1, Ykp+3 = A(1)
k−1
2 E

k+1
2

3 Y0,

where E1 = A(2)A(1)A(0), E2 = A(2)A(1), E3 = A(2)A(0) and E4 = A(1)A(0).
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5.2 Solutions of the matrix equation Yn+r = A(n)Yn, A(n) is p-periodic

In this subsection, we apply Algorithm 2 to solve the equation

Yn+r = A(n)Yn, n ≥ 0, (5.7)

where A(n) is a p-periodic matrix (with period p ≥ 2) of order d , and Y0,Y1 stand for the initial conditions.
We assume that A(i)A( j) = A( j)A(i) for 0 ≤ i, j ≤ p− 1. In a similar way as before, we can formulate Eq.
(5.7) under the following matrix equation:

Z(n + 1) = C(n)Z(n), n ≥ 0,

whereC(n) is the companion matrix in blocksC(n) = C[�d×d , · · · , �d×d , A(n)]r×r and Z(n) is the column
vector Z(n) = (Yn+r−1, Yn+r−2, · · · , Yn)T . Consider the product of companion matrices in blocks B =
C(p−1) · · ·C(0). For 1 ≤ m ≤ p−1, the product of companionmatrices in blocks B(m) = C(m−1) · · ·C(0)

is given by B(m) =
⎛
⎜⎝
B(m)
11 · · · B(m)

1r
...

. . .
...

B(m)
r1 · · · B(m)

rr

⎞
⎟⎠. We point out that for m = p we have B = B(p). To give the form

of the matrix B, we propose to apply the Algorithm 2 (the Algorithm 1 can also be used here). We need to
distinguish three cases. When p = r , a direct computation, using Algorithm 2, allows us to have

B =
⎛
⎜⎝
Y (r−1)
r (0) Y (r−1)

r (1) · · · Y (r−1)
r (r − 1)

... · · · · · · ...

Y (0)
r (0) Y (0)

r (1) · · · Y (0)
r (r − 1)

⎞
⎟⎠ .

Thus, we obtain
B = diag(A(p − 1), A(p − 2), ..., A(0))r×r .

Therefore, for every k ≥ 1, we have

Bk = diag(A(p − 1)k, A(p − 2)k, ..., A(0)k)r×r .

In this case, the solution of the p-periodic matrix equation (5.7) is given by the following proposition.

Proposition 5.5 Consider the p-periodic matrix difference equation (5.7) with the initial conditions vector
(Yr−1, · · · , Y0)�. Suppose that the period p satisfies p = r . Then, for n = kp, the solution of Eq. (5.7) is
given by

Ykp+r = A(0)k+1Y0, Ykp+r−1 = A(p − 1)kYr−1, · · · , Ykp+1 = A(1)kY1,

and if n = kp + i , for i = 1, · · · , p − 2, we have

Ykp+i+r = A(i)k+1Yi , · · · , Ykp+r = A(0)k+1Y0,

Ykp+r−1 = A(p − 1)k+1Yr−1, · · · , Ykp+i+1 = A(i + 1)kYi+1.

Finally, for n = (k + 1)p − 1, we have

Y(k+1)p+r−1 = A(p − 1)k+1Yr−1, · · · , Y(k+1)p = A(0)k+1Y0.

When p < r , in a similar way by employing the Algorithm 2, we get

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Y (p−1)
r (0) Y (p−1)

r (1) · · · Y (p−1)
r (r − 1)

... · · · · · · ...

Y (0)
r (0) Y (0)

r (1) · · · Y (0)
r (r − 1)

Y (0)
r−1(0) Y (0)

r−1(1) · · · Y (0)
r−1(r − 1)

... · · · · · · ...

Y (0)
p (0) Y (0)

p (1) · · · Y (0)
p (r − 1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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By a straightforward computation, we obtain

Bi,r−p+i = A(p − i) i = 1, · · · , p, Bi,i+1 = 1d×d i = p + 1, · · · , r − p, and Bi, j = �d×d if not.

Thence, we have

B =
(
B1 B2
B3 B4

)
,

where B1 = �p×r−p is the null matrix of order p × r − p, B2 = diag(A(p − 1), A(p − 2), ..., A(0))p×p
(diagonal matrix of order p × p), B3 = 1r−p×r−p (identity matrix of order r − p × r − p), B4 = �r−p×p is
the null matrix of order r − p × p.

To express the solution of Eq. (5.7) when p < r , we need to compute the powers Bk of the matrix B given
above using the Theorem 3.3. Unfortunately, it is not straightforward to derive the expression of the matrix
polynomial P(S) = det[1r×r ⊗ S− A] = Sr −D0Sr−1+· · ·−Dr−1 of B. Therefore, we propose to examine
the following example, when p = 3 and r = 5 as follows.

Example 5.6 Consider the matrix equation

Yn+5 = A(n)Yn,

where A(n) is periodic with period p = 3, such that A(0) =
(
1 1
1 1

)
, A(1) =

(
2 −1

−1 2

)
and A(2) =

(
0 1
1 0

)
.

Thus, applying Algorithm 2, we get the entries of the matrix B = C(2)C(1)C(0) as follows:

B =

⎛
⎜⎜⎜⎝

�2×2 �2×2 A(2) �2×2 �2×2
�2×2 �2×2 �2×2 A(1) �2×2
�2×2 �2 �2×2 �2×2 A(0)
12×2 �2×2 �2×2 �2×2 �2×2
�2×2 12×2 �2×2 �2×2 �2×2

⎞
⎟⎟⎟⎠ .

Let n = kp + i (i = 0, 1, 2) and k = k′ p + s (s = 0, 1, 2, 3, 4), and we set D = A(2)A(1)A(0). The
solution of the 3-periodic matrix difference equation Yn+5 = A(n)Yn prescribed to the initial conditions
vector (Y4,Y3, Y2, Y1,Y0)� is given by

(1) When k = 5k′, we have
{
Ykp+i+r−l = Dk′

A(l)Yl , for l = i, i − 1, · · · , 0,

Ykp+i+r−l = Dk′
Yi+r−l , for l = i + 1, · · · , r − 1.

(2) When k = 5k′ + 1, we have
⎧⎪⎪⎨
⎪⎪⎩

Ykp+7 = A(1)k
′
(A(0)A(2))k

′+1Y0,

Ykp+l+1 = Dk′
A(l − 1)Yl−1, for 1 ≤ l ≤ 5,

Ykp+1 = Dk′
Y4.

(3) When k = 5k′ + 2, we have
{
Ykp+l+1 = Dk′

A(l + 2)Yl+2, for 0 ≤ l ≤ 2,

Ykp+l+1 = Dk′
A(l)A(l + 2)Yl−3, for l = 3, 4, 5, 6.

(4) When k = 5k′ + 3, we have
⎧⎪⎪⎨
⎪⎪⎩

Ykp+7 = Dk′+1Y1,

Ykp+6 = Dk′+1Y0,

Ykp+l+1 = Dk′
A(l)A(l + 2)Yl for l = 0, 1, 2, 3, 4.
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(5) When k = 5k′ + 4, we have
{
Ykp+l+1 = Dk′+1Yl−2, for l = 2, 3, 4, 5, 6,

Ykp+2 = Dk′
A(l)A(l + 2)Yl+3, for l = 0, 1.

Finally, for p > r , once again we need to discuss two cases. The first case consists in p = kr and k > 1.
By following the same approach using yet Algorithm 2, we get B = (Bi, j )1≤i, j≤r , where

Bi,i = A(p − i)A(p − r − i) · · · A(r − i), Bi, j = �d for i �= j.

Thus, we obtain

B(p) = diag(B1, B2, · · · , Br )r×r ,

where Bi = A(p − i)A(p − r − i) · · · A(r − i) (i = 1, · · · , r ). Therefore, for every k ≥ 1, we have

Bk = diag(Bk
1 , B

k
2 , · · · , Bk

r )r×r . (5.8)

The second case is when p = kr + s and s = 1, · · · , r − 1. Then, a direct computation shows that the entries
of the matrix B = (Bi, j )1≤i, j≤r are given by

⎧⎨
⎩

Bi,r−s+i = A(p − i)A(p − i − r) · · · A(p − i − kr), if i = 1, · · · , s,

Bi,i−s = A(p − s − i)A(p − s − i − r) · · · A(p − s − i − (k − 1)r),when i = s + 1, · · · , r,

Bi, j = �d×d i f not.

In other words, we have

B =
(

�s×r−s B1
B2 �r−s×s

)
,

where �k×m is the null matrix of order k × m and

B1 = diag(B(1)
1 , B(2)

1 , ..., B(s)
1 )s×s and B2 = diag(B(s+1)

2 , B(s+2)
2 , ..., B(r)

2 )r−s×r−s,

such that B(i)
1 = A(p − i)A(p − r − i) · · · A(p − kr − i) for i = 1, · · · , s and B(i)

2 = A(p − i)A(p − r −
i) · · · A(p − (k − 1)r − i) for i = s + 1, · · · , r .

For more illustration, we examine the particular case of the matrix equation (5.7) of order 3, where A(n)
is periodic of period 4. The solution is given by Theorem 3.3 as follows:

Z(kp + i + 1) = C(i) · · ·C(0)Bk Z(0), for i = 0, 1, 2, 3,

where B = C(3)C(2)C(1)C(0). Then, using the generalized Cayley–Hamilton Theorem 3.3 for computing
the powers Bk of the matrix B, we get the following result.

Proposition 5.7 Let n = kp + i (i = 0, · · · , 3) and k = 3k′ + s (s = 0, 1, 2). The solution of the matrix
difference equation Yn+3 = A(n)Yn where A(n) is periodic with period p = 4, prescribed to the initial
conditions vector (Y2, Y1,Y0)�, is given by

(1) When k = 3k′, we have
⎧⎪⎨
⎪⎩

Ykp+6 = Dk′
A(3)A(0)Y0,

Ykp+l+1 = Dk′
A(l − 2)Yl−2, for l = 2, 3, 4,

Ykp+l+1 = Dk′Yl+1, for l = 0, 1.

(2) When k = 3k′ + 1, we have
⎧⎪⎪⎨
⎪⎪⎩

Ykp+l+1 = Dk′
A(l − 1)A(l − 2)A(l − 3)Yl−4, for l = 4, 5,

Ykp+l+1 = Dk′
A(l − 1)A(l + 2)Yl−1, for l = 1, 2, 3,

Ykp+1 = Dk′
A(2)Y2.
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(3) When k = 3k′ + 2, we have

⎧⎪⎪⎨
⎪⎪⎩

Ykp+l+1 = Dk′+1Yl−3, for l = 3, 4, 5,

Ykp+l+1 = Dk′
(

3∏
j=0 j �=l+1

A( j))Yl , for l = 0, 1, 2,

where we denote by D = A(3)A(2)A(1)A(0).

6 Discussion and concluding remarks

In this paper, we have been interested in the study of a class of periodic matrix difference equations. While
formulating the result on the solutions of this class of equations, we were led to deal with two new problems.
The first one concerns the expression of the powers of matrices in blocks. To this aim, we proposed a method
for computing the powers of matrices in blocks based on the linear recursive sequences of Fibonacci type
in the algebra of square matrices, and the generalized Cayley–Hamilton theorem. Here, the combinatorial
expression for the linear sequences of Fibonacci type in the algebra of square matrices GL(r,Cd×d), and
the Kronecker product play a central role. The second problem deals with the computation of the product of
companion matrices in blocks. To this matter, we developed two recursive algorithms to calculate the entries
of the resulting matrix product: Algorithm 1 is an iterative process based on a sequence of matrices, while
Algorithm 2 reposes merely on a family of a Fibonacci sequences in the algebra of square matrices. General
results are established and special cases are considered. To the best of our knowledge, the results of this
investigation present a pilot study to solve periodic matrix difference equations.

It is worth noting that, for reason of clarity and simplicity, in the examples illustrating our results, the
matrices are mostly small matrices. However, the general results and algorithms show that our method can
work for matrices of large size. On the other side, the programming code of the two algorithms is actually
of interest, both for the purpose to treat the matrices of large size and to study as concrete application of the
periodic matrix model of Samuelson–Hicks. Partial results have been established, which illustrate that this
type of method can be used more effectively.

Finally, a recent literature shows that the generalized Cayley–Hamilton Theorem constitutes an important
tool for dealing with various applied and theoretical topics. Especially, the generalized Cayley–Hamilton
Theorem can be used as new technique for solving some matrix and matrix differential equations (see, for
example [2,7–9,13,14]). As for the periodic matrix model of Samuelson–Hicks, it seem for us that our results
and algorithms, can be also used effectively for studying some topics, related to the generalized Cayley–
Hamilton Theorem.
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