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Abstract In this work, a numerical scheme based on combined Lucas and Fibonacci polynomials is proposed
for one- and two-dimensional nonlinear advection–diffusion–reaction equations. Initially, the given partial
differential equation (PDE) reduces to discrete form using finite difference method and θ− weighted scheme.
Thereafter, the unknown functions have been approximated by Lucas polynomial while their derivatives by
Fibonacci polynomials. With the help of these approximations, the nonlinear PDE transforms into a system of
algebraic equations which can be solved easily. Convergence of the method has been investigated theoretically
as well as numerically. Performance of the proposed method has been verified with the help of some test
problems. Efficiency of the technique is examined in terms of root mean square (RMS), L2 and L∞ error
norms. The obtained results are then compared with those available in the literature.

Mathematics Subject Classification 65Mxx

1 Introduction

Partial differential equations (PDEs) have dominant applications in various physical, chemical, and biological
processes. These processes are mostly modeled in the form of heat, Laplace, and wave-type differential
equations. Finding analytical solution of these PDEs is not an easy task. Therefore, researchers are trying to
develop an accurate and efficient numerical method for solving these PDEs. Here we construct general heat
type time dependent PDEs of the following form:

∂t Y (ξ, η, t)+αY (ξ, η, t)∇Y (ξ, η, t)+γ Y (ξ, η, t) = β	Y (ξ, η, t)+g(ξ, η, t), ξ, η ∈ 
, t ∈ [0, T ], (1)

with initial and boundary conditions

Y (ξ, η, 0) = φ1(ξ, η), ξ, η ∈ 
 and Y (ξ, η, t) = φ2(ξ, η, t), ξ, η ∈ ∂
,
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where g is source term depends on space and time, 
, ∂
 are spatial domain and boundary of the domain,
respectively, α and γ are positive constants, ∇ = ∂ξ + ∂η and 	 = ∂ξξ + ∂ηη represents Laplacian operator.
When α = 0 and β = 1 Eq. (1) becomes heat equation which is used to model thermal conductivity over a
solid body. This equation is also used to model other real-world phenomenons like Black–Scholes model; it
is applied for price estimation, and in chemical process it is designed in the form of diffusion equation [18].
In the form of advection-diffusion equation it describes heat transfer in a solid body and dissipation of salt in
ground water. In image processing it handles image at different scales [28]. The solution of this equation plays
a significant role to examine behavior of such physical processes. Different numerical methods have been used
for solution of heat equation by many researchers. A comparative study between the classical finite difference
and finite element method was investigated by BenyamMebrate [25]. B-spline and finite element method have
been used by Darbel et al. [12]. Hooshmandasl et al. [18] used wavelet methods to solve one dimensional heat
equations, while Dehghan [13] used second order finite difference scheme for two-dimensional heat equations.
In [34], the authors applied haar wavelet method for two-dimensional fractional reaction–diffusion equations.
In [2], the authors applied fifth-kind Chebyshev polynomials for the spectral solution of convection–diffusion
equation.

When α = 1 and β = 1/Re (‘Re’ is Reynolds number), then Eq. (1) becomes well-known Burger
equation which was experienced in the field of turbulence, shock wave theory, viscous fluid flow, gas dynamics,
cosmology, traffic flow, quantum field, and heat conduction [27]. The low-kinematic viscosity shocks and
the relation between cellular and large-scale structure of the universe have been described by one- and three-
dimensional Burger equations.When traffic is treated as one-dimensional incompressible fluid, then the density
wave in traffic flow which changes from non-uniform to uniform distribution is described by Burger equation
[10]. The Burger equation was first introduced by Bateman in viscous fluid flow, which was then extended by
Burger in (1948) to examine turbulence phenomena and that is why it is known as Burger equation [27]. Due to
wide applications of Burger equationmany numerical methods have been implemented to study behavior of the
model.One-dimensionalBurger equation has been solved using various techniques in [23,35].Mittal and Jiwari
[27] implemented differential quadrature method for solution of Burger-type equation. Similarly El-sayed and
Kaya [20] solved two-dimensional Burger equation using decomposition method. Liao [24] used fourth-order
finite difference technique for the study of two-dimensional Burger equation. Oruc [33] applied meshless
pseudo-spectral method to modified Burgers equations. The same author in [30] studied three-dimensional
fractional convection–diffusion equation using meshless method based on multiple-scale polynomials. In this
work, we study afore mentioned models by using combination of Lucas and Fibonacci polynomials. These
polynomials can be directly obtained as a special case from the work done in [4,6]. These polynomials are non-
orthogonal and do not require domain and problem transformation which is important point of the proposed
scheme. Also the higher order derivative of unknown functions can be easily approximated via Lucas and
Fibonacci Polynomials. Second, it is straightforward and produces better accuracy for less number of nodal
points. Many researchers applied these polynomials for the solution of fractional differential equations (FDEs)
such as Elhameed and Youssri [3], who applied Lucas polynomial in a Caputo sense to FDEs. Moreover
they computed the solution of fractional pantograph differential equations (FPDEs) using generalized Lucas
polynomials [39]. Other polynomials applied for approximation of FDEs are studied in [5,7]. Cetin [11] used
Lucas polynomial approach to study a system of higher order differential equation, whereas Bayku [9] applied
hybrid Taylor–Lucas collocation technique for delay differential equations. Mostefa [29] obtained solution
of integro differential equation using Lucas series. Farshid et al. [26] applied Fibonacci polynomials for
solution of Voltera–Fredholm integral equations. Omer Oruc [31,32] applied a combined Lucas and Fibonacci
polynomials approach for numerical solution of evolutionary equation for the first time. Recently, Ali et al.
[8,15,17] applied Lucas polynomials coupled with finite differences and obtained accurate solution of various
classes of one- and two-dimensional PDEs. In this paper, we implement the proposed method to one- and
two-dimensional Burger and heat equations. The simulation is carried out with the help of MATLAB 2013
using Intel core-i7 machine with 4GB RAM. The error bound of the scheme is also investigated in this work.
The paper is organized as follows: In Sect. 2 we define basic definitions and important concept which will be
used in this work. In Sect. 3 methodology of the proposed scheme is formulated. Error analysis of the method
is described in Sect. 4. Numerical experiments are presented in Sect. 5 followed by conclusion of the paper.

2 Basic concepts and definition

In this section, we describe some necessary definitions and concepts required for our subsequent development.
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Definition 2.1 [22] Lucas polynomials are the generalization of well-known Lucas numbers which are gen-
erated by linear recursive relation as follows:

Lk(ξ) = ξLk−1(ξ) + Lk−2(ξ), for k ≥ 2, (2)

with L0(ξ) = 2 and L1(ξ) = ξ , by putting ξ = 1, Eq (2) gives Lucas numbers.

Definition 2.2 [22] Fibonacci polynomials can be generated by the following linear recursive relation:

Fk(ξ) = ξFk−1(ξ) + Fk−2(ξ) for k ≥ 2, (3)

where F0(ξ) = 0, and F1(ξ) = 1, by putting ξ = 1, Eq. (3) generate Fibonacci numbers.

Function Approximation. Let Y (ξ) be square integrable on (0, 1) and suppose that it can be expressed in
terms of the Lucas polynomials given as follows:

Y (ξ) =
N∑

k=0

ck Lk(ξ) = CL(ξ), (4)

where C = [c0, c1, ..., cN ]T is (N + 1) × 1 vector of unknown coefficients and L(ξ) = [L0(ξ), L1(ξ), ...,
LN (ξ)] is (N + 1) × (N + 1) matrix of Lucas polynomials. Similarly the mth order derivative of the function
Y (ξ) can be approximated in terms of finite Lucas series is given as follows:

Y (m)(ξ) =
N∑

k=0

ck L
(m)
k (ξ) = CL(m)(ξ), (5)

in which L(m)(ξ) =
[
L(m)
0 (ξ), L(m)

1 (ξ), ..., L(m)
N (ξ)

]
is square matrix.

Corollary 2.3 [22]: Let L(m)
k (ξ) be the mth order derivative of Lucas polynomials; Then it can be expanded

in terms of Fibonacci polynomials by the following relation:

L(m)
k (ξ) = k(Fk(ξ)Dm−1), m ≥ 1, (6)

where D is (N + 1) × (N + 1) differentiation matrix such that:

D =

⎡

⎢⎢⎣

0 0 . . . 0
0
... d
0

⎤

⎥⎥⎦ ,

in which d is square matrix of order N × N defined as:

dm,k =
{
m sin (k−m)π

2 , if k > m,

0, otherwise.

For example, if we choose N = 3, then we have

D =
⎡

⎢⎣

0 0 0 0
0 0 1 0
0 0 0 2
0 0 0 0

⎤

⎥⎦ ,

and for m = 2 the second-order derivative of L(ξ) can be obtained using Eq. (6)

L
′′
(ξ) = k(F(ξ)D) = k[0, 1, ξ, ξ2 + 1]

⎡

⎢⎢⎣

0 0 0 0
0 0 1 0
0 0 0 2
0 0 0 0

⎤

⎥⎥⎦ , (7)
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where k = [0, 1, 2, 3] after element wise multiplication we get

L
′′
(ξ) = [0, 0, 2, 6x] (8)

Now assume a two-dimensional continuous function Y (ξ, η) can be written in terms of Lucas polynomials as
follows:

Y (ξ, η) ≈
N∑

k=0

N∑

m=0

ckmLk(ξ)Lm(η) =
N∑

k=0

N∑

m=0

ckmLkm(ξ, η) = CL(ξ, η), (9)

where C = [c00, ..., c0N , cN0, ..., cNN ]T is Lucas unknown coefficients vector of order (N + 1)2 × 1, and
L(ξ, η) = [L00(ξ, η), ..., L0N (ξ, η), LN0(ξ, η), ..., LNN (ξ, η)] is square matrix of order (N + 1)2.

3 Solution methodology

Consider the following evolutionary equation:

∂t Y (x, t) + £Y (x, t) = g(x, t) x ∈ 
, t ∈ [0, T ], (10)

where £ is differential operator and g(x, t) is a given smooth function. The initial and boundary conditions are
given as follows:

Y (x, 0) = Y0(x), x ∈ 
 and BY (x, t) = f (x, t), x ∈ ∂
, (11)

where B is boundary operator. To approximate Eq. (10), first we define time discretization given by the
following:

tn = (n − 1)δt, n = 1, 2, ..., M

where δt = T/M is time step size for variable t and T is final time. Now applying finite difference scheme to
temporal part and θ−weighted scheme to spatial part of Eq. (10), one can write

1

δt
[Yn+1(x) − Yn(x)] + θ£Yn+1(x) + (1 − θ)£Yn(x) = gn+1(x), (12)

where Yn+1(x) = Y (x, tn+1) and so forth. By putting θ = 0.5, the scheme in Eq. (12) represents Crank–
Nicolson which is O(δt2) accurate in time.
For discretization of spatial domain 
 = [a, b] we use regular grid point defined as follows:

xi = a + b − a

M
(i − 1), i = 1, 2, ..., N + 1, xi ∈ 


For (n + 1) time level and at the collocation point x = (ξi , η j ) Eq. (9) can be written as follows:

Yn+1(ξi , η j ) =
N∑

k=0

N∑

m=0

cn+1
km Lk(ξi )Lm(η j ), i, j = 0, 1, . . . , N . (13)

Using Eq. (13) in Eq. (12), we have

1

δt

[
N∑

k=0

N∑

m=0

cn+1
km Lk(ξi )Lm(η j ) −

N∑

k=0

N∑

m=0

cnkmLk(ξi )Lm(η j )

]
+ θ

[
N∑

k=0

N∑

m=0

cn+1
km £(Lk(ξi )Lm(η j ))

]

+(1 − θ)

[
N∑

k=0

N∑

m=0

cnkm£(Lk(ξi )Lm(η j ))

]
= gn+1(ξi , η j ), (ξi , η j ) ∈ 
.
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The above equation can also be written as

N∑

k=0

N∑

m=0

[
Lk(ξi )Lm(η j ) + θ δt £(Lk(ξi )Lm(η j ))

]
cn+1
km

=
N∑

k=0

N∑

m=0

[
Lk(ξi )Lm(η j ) + (1 − θ) δt £(Lk(ξi )Lm(η j ))

]
cnkm + gn+1(ξi , η j ), (ξi , η j ) ∈ 
. (14)

The boundary conditions (11) transform to

N∑

k=0

N∑

m=0

cn+1
km B(Lk(ξi )Lm(η j )) = f n+1(ξi , η j ), (ξi , η j ) ∈ ∂
. (15)

Matrix form of Eqs. (14) and (15) is given by

HCn+1 = GCn + Bn+1. (16)

For k,m = 0, . . . , N elements for the above matrices can be obtained in the following:

H =
{
Lk(ξi )Lm(η j ) + δtθ£(Lk(ξi )Lm(η j )), (ξi , η j ) ∈ 
,

B(Lk(ξi )Lm(η j )), (ξi , η j ) ∈ ∂
,
(17)

G =
{
Lk(ξi )Lm(η j ) + δt (1 − θ) £(Lk(ξi )Lm(η j )), (ξi , η j ) ∈ 
,

0, (ξi , η j ) ∈ ∂
,
(18)

Bn+1 =
{
gn+1(ξi , η j ), (ξi , η j ) ∈ 
,

f n+1(ξi , η j ), (ξi , η j ) ∈ ∂
,
(19)

where H, G and B are (N + 1)2 order square matrices. The unknown coefficient vector C can be obtained
by solving Eq. (16). Once the values of unknown coefficient are computed the solution of the problem under
consideration can be obtained from Eq. (9).

4 Truncation error estimate

To study the error estimate of the proposed scheme, we follow the approach of Abd-Elhameed and Youssri [3].

Theorem 4.1 Let Y (ξ, η) and Y ∗(ξ, η) be exact and approximate solutions of Eq. (1). Moreover, we expand
Y (ξ, η) in terms of Lucas sequence. Then truncation error is given as

|e| <
4 exp(2κ) cosh2(2P)κ2(N+1)

((N + 1)!)2 . (20)

Proof Consider the absolute error between exact and approximate solution

|e| = |Y (ξ, η) − Y ∗(ξ, η)| (21)

where Y (ξ, η) = ∑∞
k=0

∑∞
m=0 λkλmLk(ξ)Lm(η) and Y ∗(x, y) = ∑M

k=0
∑M

m=0 λkλmLk(ξ)Lm(η). Then the
truncated term is given as

|e| =
∞∑

k=N+1

∞∑

m=N+1

λkλmLk(ξ)Lm(η). (22)

It is shown in [3]

|Lm(ξ)| ≤ 2ϑm, |λm | ≤ Pm cosh(2P)

m! ,
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where ϑ is well-known golden ratio. Therefore, Eq. (22) implies that

|e| ≤ 4 cosh2(2P)

∞∑

k=N+1

∞∑

m=N+1

κk+m

k!m! ,

where κ = Pϑ . The above inequality can also be written as

|e| ≤ 4 exp (2κ) cosh2(2P)

[
1 − 
(N + 1, κ)


(N + 1)

]2
. (23)

Here, 
(N + 1, κ) is the incomplete gamma function and 
(N + 1) is complete gamma function [36]. In
integral form Eq. (23) can be written as

|e| ≤ 4 exp(2κ) cosh2(2P)

(N !)2
[∫ κ

0
t N exp(−t)dt

]2
.

As, exp(−t) < 1, therefore, for all t > 0, we have

|e| <
4 exp(2κ) cosh2(2P)κ2(N+1)

((N + 1)!)2 .

This completes the proof. 
�

5 Numerical examples

In this section, one- and two-dimensional Burgers’ and diffusion equations have been solved using the proposed
method. Performance of the technique is examined by computing L2, L∞, and root mean square (RMS) error
norms for different collocation points N and time T . The obtained results are then compared with available
results in the literature.

Example 5.1 When α = 0, β = 1, γ = 0 and g(ξ, t) = 0 then Eq. (1) becomes heat equation given by

∂t Y (ξ, t) − ∂ξξY (ξ, t) = 0, (24)

with initial and boundary conditions

Y (ξ, 0) = sin(ξ), 0 ≤ ξ ≤ 1 and Y (0, t) = 0, Y (1, t) = sin(1)e−t for t ≥ 0,

and exact solution [18].
Y (ξ, t) = sin(ξ)e−t .

Comparison of the above equations with Eqs. (10) and (11) gives

£ = −∂ξξ , g(ξ, t) = 0, Y0(ξ) = sin(ξ), and f (ξ, t) = 0.

Applying the technique discussed in Sect. 2, Eq. (14) takes the following form:

N∑

k=0

cn+1
k Lk(ξ) − δtθ

N∑

k=0

cn+1
k L

′′
k(ξ) =

N∑

k=0

cnk Lk(ξ) + δt (1 − θ)

N∑

k=0

cnk L
′′
k(ξ), (25)

where L
′′
k(ξ) represents second-order derivative of Lucas polynomials which can be obtained using Eq. (6).

The matrices in Eq. (17)–(19) takes the following form:

H =
{
Lk(ξi ) − δtθkFk(ξi )D, i = 1, ..., N − 1,
Lk(ξi ), i = 0, N ,

(26)

G =
{
Lk(ξi ) + δt (1 − θ)kFk(ξi )D, i = 1, ..., N − 1,
0, i = 0, N ,

(27)
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Table 1 Error norms for N = 16, δt = 0.001 of Example 5.1

Present method [18]
T L2 L∞ RMS CPU time L2 L∞

0.1 2.14E –09 3.01E –09 2.08E –09 0.09500 4.46E –06 1.07E –05
0.3 2.75E –09 3.82E –09 2.66E –09 10.11596 2.15E –07 3.45E –06
0.5 2.39E –09 3.32E –09 2.31E –09 0.15753 3.18E –06 5.13E –06
0.7 1.97E –09 2.74E –09 1.91E –09 0.16876 4.71E –06 7.45E –06
0.9 1.62E –09 2.25E –09 1.57E –09 0.19902 6.04E –06 9.47E –06
1 1.47E –09 2.04E –09 1.42E –09 0.21293 6.55E –06 1.02E –05

Table 2 Spatial convergence when T = 1, δt = 0.001 for Example 5.1

dξ CPU time L∞ L2 RMS

1/3 0.0316 5.20E –04 3.67E –04 3.00E –04
1/4 0.0169 2.19E –04 2.31E –04 1.42E –04
1/5 0.0164 1.50E –05 1.42E –05 8.56E –06
1/6 0.0201 9.99E –07 1.62E –06 7.42E –07
1/7 0.0223 5.96E –08 6.90E –08 3.37E –08
1/8 0.0271 1.25E –09 1.60E –09 7.04E –10
1/9 0.0339 1.01E –09 1.71E –09 1.38E –09

Table 3 Error norm for N = 20, δt = 0.001 of Example 5.1

T 1 2 3 4 5

L∞ 2.04E –09 7.52E –10 2.76E –10 1.02E –10 3.74E –11
L2 5.92E –09 2.18E –09 8.01E –10 2.95E –10 1.08E –10
RMS 1.43E –09 5.26E –10 1.94E –10 7.12E –11 2.62E –11

Bn+1 =
{
0, i = 1, 2, . . . , N − 1,
sin(ξi )e−t , i = 0, N .

(28)

The problem has been solved for different values of nodal points N, and time T. Computed solutions are
compared with the results provided by Chebyshev wavelet method in the form of various error norms which
are shown in Table 1. It is clear from the table that proposed scheme gives excellent results than cited work.
Numerical convergence and Cpu time have been reported in Table 2 for various values of N . From the table it
can be observed that the solution converges as the nodal point N increases. i.e. (dξ decreases). Error norms
for large time level are recorded in Table 3 and better results noticed than that for small time level. Solution
profile and absolute errors are presented in Fig. 1 which show that exact and approximate solution are well
matched with each other showing efficiency of the proposed scheme.

Example 5.2 Consider Eq. (1), with α = 0, β = 1, γ = −2 and g(ξ, t) = 0, defined as homogeneous heat
equation given as follows

∂t Y (ξ, t) = ∂ξξY (ξ, t) + 2Y (ξ, t), 0 ≤ ξ ≤ 1, 0 ≤ t ≤ 1.

with exact solution
Y (ξ, t) = sinh(ξ)e−t

Initial and boundary conditions are extracted from exact solution. The problem has been solved by adopting
the procedure discussed in Sect. 2. The results are computed for different values of N and T . RMS, L2, and L∞
error norms have been calculated and comparison is made with available results in literature [18] for different
values of T, N = 16, δt = 0.001 that are shown in Table 4. From the table, it is straightforward that the
results achieved using the proposed method are better than those available in literature which show proficiency
of the method used. For convergence in space the results obtained are shown in Table 5 for different values
of dξ showing that the solution converges as the value dξ decreases. Graphs of solutions along with absolute
errors for T = 1 and N=15 are plotted in Fig. 2. The figure shows that exact and approximate solutions are
closely matched.
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Fig. 1 Solution profile when T = 0.1, δt = 0.001, N = 15 of Example 5.1

Table 4 Error norms when N = 16, δt = 0.001 of Example 5.2

Present method [18]
T L∞ L2 RMS CPU time L∞ L2

0.1 3.20E –09 2.26E –09 2.20E –09 0.09610 8.44E –03 6.01E –03
0.3 3.69E –09 2.66E –09 2.58E –09 0.15702 8.10E –03 2.59E –03
0.5 3.13E –09 2.25E –09 2.18E –09 0.13122 7.43E –03 4.78E –03
0.7 2.57E –09 1.85E –09 1.79E –09 0.17758 9.18E –03 5.88E –03
0.9 2.11E –09 1.51E –09 1.47E –09 0.20781 1.07E –03 6.89E –03
1 1.91E –09 1.37E –09 1.33E –09 0.22148 1.15E –03 7.39E –03

Table 5 Space convergence for T = 1 and δt = 0.001 of Example 5.2

dξ CPU time L∞ L2 RMS

1/3 0.0395 4.47E –04 3.16E –04 2.58E –04
1/4 0.0420 2.03E –04 1.48E –04 1.28E –04
1/5 0.0594 1.81E –05 1.17E –05 1.05E –05
1/6 0.0922 9.70E –07 7.37E –07 6.73E –07
1/7 0.1274 7.31E –08 4.47E –08 4.14E –08
1/8 0.1643 1.55E –09 7.11E –09 6.65E –09
1/9 0.2232 1.49E –09 1.35E –09 1.27E –09

Example 5.3 Consider α = 1, γ = 0, g(x, t) = 0 in Eq. (1); we get the following two-dimensional nonlinear
Burger equation:

∂t Y (ξ, η, t) + Y (ξ, η, t)
{
∂ξY (ξ, η, t) + ∂ηY (ξ, η, t)

} = β
{
∂ξξY (ξ, η, t) + ∂ηηY (ξ, η, t)

}
. (29)

There are two cases.
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Fig. 2 Solution profile when T = 1, δt = 0.001, N = 15 of Example 5.2

Case 1: In this case the exact solution is given as [16]

Y (ξ, η, t) = 1

1 + e
ξ+η−t
2β

, 0 ≤ ξ, η ≤ 1. (30)

Initial and boundary conditions are extracted from the exact solution. The nonlinear part in Eq. (29) can be
linearized by the following formula [8]:

(Y ∂ξY )n+1 = Yn+1∂ξY
n . (31)

Applying the technique discussed in Sect. 2 Eq. (14) takes the following form:

N∑

k=0

N∑

m=0

[
Lk(ξi )Lm(η j ) − δtθβ

{
(kFk(ξi )D)Lm(η j ) + Lk(ξi )(mFm(η j )D)

} + δtθLk(ξi )Lm(η j )

{
∂ξY

n(ξi , η j ) + ∂ηY
n(ξi , η j )

}]
cn+1
km

=
N∑

k=0

N∑

m=0

[
Lk(ξi )Lm(η j ) + δt(1 − θ)β

{
(kFk(ξi )D)Lm(η j ) + Lk(ξi )(mFm(η j )D)

} −

−δt (1 − θ)Lk(ξi )Lm(η j )
{
∂ξY

n(ξi , η j ) + ∂ηY
n(ξi , η j )

}]
cnkm .

The matrices H, G and B in Eq. (16) for k,m = 0, 1, . . . , N , are given as follows:

H =

⎧
⎪⎨

⎪⎩

Lk(ξi )Lm(η j ) − δtθβ
{
(kFk(ξi )D)Lm(η j ) + Lk(ξi )(mFm(η j )D)

}

+δtθLk(ξi )Lm(η j )
{
∂ξYn(ξi , η j ) + ∂ηYn(ξi , η j )

}
, (ξi , η j ) ∈ 
,

Lk(ξi )Lm(η j ), (ξi , η j ) ∈ ∂
,

(32)
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Table 6 Error norms of Example 5.3 case 1 for δt = 0.0025

Present method [19]
T β N L∞ L2 RMS CPU time L∞ L2

1 100 6.50E –05 1.03E –04 1.00E –04 0.36900 7.88E –04 4.03E –03
0.25 400 2.12E –05 1.85E –05 1.07E –05 3.21356 8.55E –05 8.47E –04

0.1 100 1.79E –04 1.69E –04 1.29E –04 0.34902 7.18E –04 3.68E –03
400 5.88E –05 2.03E –05 1.12E –05 3.13794 3.54E –04 1.96E –03

Present method [16]
T β N L∞ L2 RMS CPU time L∞ L2

16 1.32E –05 1.25E –05 1.36E –04 0.08960 5.81E –05 1.53E –04
0.5 1 64 1.98E –05 3.07E –05 6.75E –05 0.36905 6.36E –05 2.77E –04

256 1.56E –05 3.33E –05 1.99E –05 2.51117 6.30E –05 5.42E –04

Table 7 Error norms when N = 15, and δt = 0.01 for case 1 Example 5.3

T 0.1 0.25 0.5 1

L∞ 7.17E –04 4.65E –05 3.66E –05 3.46E –05
L2 0.001247 4.96E –05 1.87E –05 1.79E –05
RMS 1.37E –04 2.74E –05 1.68E –05 1.65E –05

G =

⎧
⎪⎨

⎪⎩

Lk(ξi )Lm(η j ) + δt(1 − θ)β
{
(kFk(ξi )D)Lm(η j ) + Lk(ξi )(mFm(η j )D)

}

−δt (1 − θ)Lk(ξi )Lm(η j )
{
∂ξYn(ξi , η j ) + ∂ηYn(ξi , η j )

}
, (ξi , η j ) ∈ 
,

0, (ξi , η j ) ∈ ∂
,

(33)

Bn+1 =
⎧
⎨

⎩
0, (ξi , η j ) ∈ 
,

1

1+e
ξi+η j−t

2β

, (ξi , η j ) ∈ ∂
. (34)

The approximate solution of the problem has been computed for different values of viscosity β, time T , and
nodal points N . Error norms L2, L∞ and RMS have been calculated and the obtained results compared with
the results of Haar wavelet [16] and differential quadrature [19]. The results are presented in Tables 6 and 7.
From these tables it is obvious that proposed method works pretty well than those available in the literature.
The solution profile and error plots for T = 2 , δt = 0.001, β = 1, and nodal points [20 × 20] are shown in
Fig. 3 showing efficiency of the proposed technique.
Case 2:

In this case exact solution of Eq. (29) is given as [19]

Y (ξ, η, t) = 0.5 − tanh

(
ξ + η − t

2β

)
− 0.5 ≤ ξ, η ≤ 0.5, t ≥ 0. (35)

Here also initial and boundary conditions are extracted from the exact solutions. The method discussed in
previous example is applied to solve this example for different value of viscosity β. Here also the error norms
L2, L∞ and RMS have been computed and are compared with the results of meshless collocation method
[19] available in literature for different values of N . The obtained results presented in Table 8 which shows
that the present method gives better results than those available in literature. The graph of numerical and exact
solution are shown in Fig. 4 which shows efficiency of the current technique.

Example 5.4 Finally, consider the case when α = 0, β = 1, γ = 0 and g(ξ, η, t) = 0; Then Eq. (1) takes the
following form:

∂t Y (ξ, η, t) = ∂ξξY (ξ, η, t) + ∂ηηY (ξ, η, t). (36)

The initial and boundary conditions are extracted from exact solution [37]

Y (ξ, η, t) = sin(πξ) sin(πη)

e−2π2t .
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Fig. 3 Solution profile when T = 1, δt = 0.01, N = 20 for case 1 Example 5.3

Table 8 Error norms for T = 0.1, δt = 0.001 of case 2 Example 5.3

Present method [19]

β N L2 L∞ RMS CPU time L2 L∞

0.02 100 2.41E –03 1.38E –03 4.03E –04 0.439244 2.49E –01 6.86E –01
400 2.63E –04 7.55E –04 3.67E –05 4.468202 1.42E –02 5.69E –02
625 8.70E –05 2.32E –04 1.38E –05 14.085021 1.44E –04 1.65E –03

0.013 100 2.58E –03 2.37E –03 3.99E –04 0.484267 7.69E –01 2.07E +00
400 2.64E –04 9.52E –04 3.68E –05 6.261195 8.61E –02 3.48E –01
625 5.96E –05 1.83E –04 1.14E –05 14.188564 8.53E –03 5.68E –02

0.01 100 2.43E –03 2.35E –01 4.04E –04 0.366495 1.83E +00 4.96E +00
400 2.99E –04 8.36E –04 3.91E –05 3.328385 2.10E –01 1.09E +01
625 7.19E –05 3.11E –04 1.25E –05 10.062396 4.31E –02 4.29E –01

The problem has been solved in domain [0, 1]×[0, 1] over the time interval [0, 1] for different values of T and
M . Error norms are computed and compared with the results of RBFs available in literature given in Tables
9 and 10. From these tables it is clear that the results got using the proposed technique are comparable with
those of multiquadric (MQ) RBFs and better than those of wendland (WL) RBFs [37]. The solution profile is
plotted in Fig. 5 when T = 0.2 showing efficiency of the method suggested.

6 Conclusion

In this paper, we studied a numerical technique based onLucas and Fibonacci polynomials. First, we discretized
temporal part of PDEs by finite difference and spatial part by θ− weighted scheme with θ = 1/2 (Crank
Nicolson method). Thenceforth, the unknown functions are expanded by Lucas series while their derivatives
are replaced by Fibonacci polynomials. Performance and convergence of themethod are investigated by several
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Fig. 4 Solution Profile when T = 1, δt = 0.01, β = 0.01, N = 20 of case 2 Example 5.3

Table 9 Error norms when T = 0.2, and δt = 0.001 for Example 5.4

Present method [37]

MQ RBF WL RBF

N L∞ L2 RMS CPU time L∞ RMS L∞ RMS
25 3.15E –04 3.83E –04 5.29E –04 0.137004 2.59E –04 1.21E –04 1.96E –03 9.23E –04
64 1.40E –05 1.86E –05 5.25E –05 0.412875 2.35E –05 1.22E –05 3.49E –04 1.82E –04
100 8.17E –07 8.60E –07 7.60E –06 0.671877 6.43E –06 3.26E –06 1.18E –04 6.27E –05

Table 10 Error norms when N = 64 and δt = 0.001 of Example 5.4

T 0.1 0.2 0.3 0.4 0.5

L∞ 5.01E –05 1.40E –05 2.98E –06 5.52E –07 9.54E –08
L2 6.95E –05 1.86E –05 3.88E –06 7.11E –07 1.22E –07
RMS 1.02E –04 5.25E –05 2.40E –05 1.03E –05 4.26E –06

test problems including one- and two-dimensional linear and nonlinear equations. The results are compared
with exact aswell numerical results available in the literature. The comparison of the results justify demonstrates
efficiency and applicability of the proposed methodology.
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Fig. 5 Solution profile when T = 0.2, δ = 0.001, N = 10 of Example 5.4
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