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Abstract Themotive of the present work is to introduce and investigate the quadratically convergent Newton’s
like method for solving the non-linear equations. We have studied some new properties of a Newton’s like
method with examples and obtained a derivative-free globally convergent Newton’s like method using forward
difference operator and bisection method. Finally, we have used various numerical test functions along with
their fractal patterns to show the utility of the proposed method. These patterns support the numerical results
and explain the compactness regarding the convergence, divergence and stability of the methods to different
roots.

Mathematics Subject Classification 65H04 · 65H05

1 Introduction

In science and technology, most of the time a situation arises when the central problem ultimately reduces to
the problem where we have to solve the nonlinear and transcendental equation, of the type

F(z) = 0. (1)

Here F is a function or a mapping F : X → X , where X equals the real or complex numbers. Due to the
unavailability of the accurate methods for finding the solutions of (1), we use numerical iterative methods such
as Newton’s method, secant method, and Chebyshev method, etc. to obtain the approximate solution. Among
all the iterative methods Newton’s method is the most popular and basic method to find the roots of nonlinear
Eq. (1) and is defined as follows

zn+1 = zn − F(zn)

F ′(zn)
, n = 0, 1, 2, . . . . (2)

Newton’s method (2) converges quadratically to simple zeros and linearly to multiple zeros. Its various modifi-
cations and refinement have been introduced in the literature to accelerate it or to rectify it with the use of added
evaluations of functions, derivatives, and changes in the points of iterations [10,15,17,21]. In 2000,Weerakoon
et al. [20] developed a method known as trapezoidal Newton’s method or arithmetic mean Newton’s method
while in 2004, Ozban [3] gave some new variants of Newton’s method based on harmonic mean and midpoint.
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In 2009, Singh [16] gave a six-order variant of Newton’s method for solving (1) and in 2000, Wu et al. [23]
developed a second-order method for solving nonlinear equations in weak condition as follows

zn+1 = zn − F(zn)

λF(zn) + F ′(zn)
, n = 0, 1, 2, . . . , (3)

where λ ∈ R and λ ∈ (−∞,+∞). Further, Wang [8] established a third-order variant of Newton’s method
for solving nonlinear equations under the weak condition in 2010. Kou [11] gave a third-order modification
of Newton’s method for solving the system of nonlinear equations. The study of the above methods is only
modifying Newton’s method by increasing its order of convergence or making it applicable in weak conditions.
These methods are not explaining several questions related to the solution, which are as follows:

1. How does the starting point related to the roots?
2. Why does the iteration process oscillates to the same starting point?
3. Why does the iteration process fails, diverges or converges to an undesired root?
4. What is the importance of the denominator term in the method?

Although, several researchers have modified Newton’s method in different spaces (e.g., R, Rn , C, and
Banach space). But the problem with the solution and convergence persists in the study of Newton’s like
method until we study the numerical results along with the study of dynamics of Newton’s like method. In this
paper, we have explained the convergence and stability of the methods by describing the dynamics of Newton’s
like method. The dynamics of the discrete version of Newton’s method show some beautiful fractal patterns.
These patterns contain the basins of attraction around all the roots. Starting with any point in this basin is a
guarantee of the convergence to the corresponding roots.

In Sect. 2, we have given some preliminary definitions. In Sect. 3, we have described the proposed method
and done its convergence analysis. In Sect. 4, we have considered the continuous version of Newton’s like
proposed method, while in Sect. 5, we have explained the derivative free version of our proposed method
using the forward difference operator with some numerical examples. In Sect. 6, we have obtained a globally
convergent method using the bisection method. Finally, the numerical results of Sect. 5 have been supported
by different fractal patterns.

2 Preliminary

Definition 2.1 (see [9,14]) Let zn, zn−1, . . . , zn−k+1 be k approximations to the root of (1). Then an iterative
method defined as

zn+1 = g(zn, zn−1, . . . , zn−k+1),

is called multi-point iteration method and the function g is called multi-point iteration function.

Remark For k = 1, we get the one point iteration method e.g.,

zn+1 = g(zn).

Definition 2.2 (see [9,14]) A sequence of iterates {zn | n ≥ 0} is said to converge to a limit z∗ with order
p ≥ 0 if

lim
zn→z∗

| zn+1 − z∗ |
| zn − z∗ |p = C, (4)

where C > 0 is known as asymptotic error constant. In case of p = 1, the method is said to Converge linearly,
and in case of p = 2, the method is said to converge quadratically (see Eqs. (12) and (25)).

Remark Let en = zn − z∗. Then an error equation of pth order method can be written as en+1 = Cepn +
O

(
ep+1
n

)
.

Now, we will define the following definitions in the extended complex plane.
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Definition 2.3 (see [1,18]) Let I be a subset of of the complex numbers C. Let us consider g : I → C be a
rational map on the Riemann sphere. Then a point z0 is said to be a fixed point of g if

g(z0) = z0.

Again for any point z ∈ C , the Orbit of the point z can be defined as the set

Orb(z) = {z, g(z), g2(z), . . . , gn(z), . . . }.
Definition 2.4 (see [1,18]) A periodic point z0 is said to be of period k if ∃ a smallest positive integer k i.e.,
gk(z0) = z0.

Remark If z0 is periodic point of period k, then clearly it is a fixed point for gk .

Definition 2.5 (see [1,18]) Let z∗ be a zero of the function F . Then the basin of attraction of the zero z∗ is
defined as the set of collection of all initial approximations z0 such that any numerical iterative method with
z0 converges to z∗. It can be written as

B(z∗) = [z0 : zn = gn(z0) converges → z∗]. (5)

Here gn is any fixed point iterative method.

Remark For example in case of Newton’s method

zn+1 = g(zn),

g(zn) = zn − F(zn)

F ′(zn)
, n = 0, 1, 2, . . . .

We can write the basin of attraction of the zero z∗ for the Newton’s method as follows:

B(z∗) = [z0 : zn = gn(z0) converges → z∗].
Definition 2.6 (see [1,18]) The Julia set of a nonlinear map g(z) is denoted as J(g) and is defined as a set
consisting of the closure of its repelling periodic points. The complement of Julia set J(g) is called as the Fatou
set f(g).

Remark (i) Some times Julia set of a nonlinear map may also be defined as the common boundary shared by
basins of the roots and the Fatou set may also be defined as the set which contains the basin of attraction.

(ii) Fractals are a very complicated phenomenon that may be defined as a self-similar surprising geometric
object which repeated at every small scale [2].

3 Description of method

Let α be a zero of a function (or a root of a non-linear equation) F(z) = 0 and F : I ⊂ 
 → 
 be a two times
differentiable function. Then the numerical solution can be written as

F(z) = F(zn) +
∫ z

zn
F ′(t)dt. (6)

Approximating the integral by (z − zn)F ′(zn) and then putting z = α in Eq. (6), we get

0 ≈ F(zn) + (α − zn)F
′(zn),

therefore, an approximation yn to α can be written as

yn = zn − F(zn)

F ′(zn)
, n = 0, 1, 2, . . . .

On replacing F ′(zn) with λn F(zn) + F ′(zn), we may obtain

zn+1 = zn − F(zn)

λn F(zn) + F ′(zn)
, n = 0, 1, 2, . . . (7)

where | λn |∈ [0,1] is an arbitrary parameter chosen in such a way that the denominator term in (7) does not
vanish. Newton’s like method (7) is similar to the method given in Eq. (3) byWu et al. [23] for n = 0, 1, 2, . . . .
The existence and uniqueness of the zero are given by the following propositions.
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Proposition 3.1 [23] If the function F(z) satisfies the following two conditions:

(i) F ∈ C1[a, b] and
(ii) F ′(z) + λF(z) �= 0, for all z ∈ [a, b],
then, there exists at most one zero in [a, b] for the nonlinear function F(z).

Proof We define the auxiliary function g(z) = exp(λz)F(z). Then, we have

g′(z) = exp(λz){λF(z) + F ′(z)}.
Let there exist two different zeros of the function F(z) in [a, b]. Then by using the Rolle’s theorem, we
conclude that there exist at least one real number ξ ∈ (a, b) such that g′(ξ) = 0, which contradicts that
λF(z) + F ′(z) �= 0 in [a, b]. �
Proposition 3.2 [23] If the function F(z) satisfies the conditions:

(i) F ∈ C1[a, b],
(ii) F(a)F(b) < 0 and
(iii) F ′(z) + λF(z) �= 0, for all z ∈ [a, b],
then, there exists a unique zero in [a, b] for the nonlinear function F(z).

Proof For g(z) = exp(λz)F(z), we have g(a)g(b) < 0, then by Proposition 3.1 and intermediate value
theorem, g(z) = 0 has a unique zero under the given condition, so does the function F(z) also has a unique
zero in [a, b]. �

3.1 Convergence analysis

Theorem 3.1 Let I := [a, b] be a compact interval in 
 and F : I → 
 be a function such that

(i) F(a)F(b) < 0 ,
(ii) z∗ ∈ I be a simple zero of a function F,
(iii) F is twice differentiable function on I and
(iv) λF(z) + F ′(z) �= 0 , ∀ z ∈ N (z∗), where N (z∗) is neighborhood of z∗ and | λ |≤ 1. Then, the Newton’s

like method defined by (7) is quadratically convergent to the zero of F locally.

Proof Let z∗ ∈ I be a simple zero of a function F , en := zn − z∗ and Ak := ( 1
k!

) F (k)(z∗)
F ′(z∗) . Applying Taylor’s

expansion of F(zn) aound z∗ and using F(z∗) = 0, we get

F(zn) = F ′(z∗)
[
en + A2e

2
n + A3e

3
n + O(e4n)

]
, (8)

F ′(zn) = F ′(z∗)
[
1 + 2A2en + 3A3e

2
n + 4A4e

3
n + O(e4n)

]
. (9)

Now from Eqs. (8) and (9), we get

λn F(zn) + F ′(zn) = F ′(z∗)[1 + (2A2 + λn) en + (3A3 + λn A2) e
2
n

+ (4A4 + λn A2) e
3
n + O(e4n)], (10)

and from Eqs. (8) and (10), we get

F(zn)

λn F(zn) + F ′(zn)
= en − (A2 + λn) e

2
n + (

2A2
2 + 2A2λn + λ2n − 2A3

)
e3n + O(e4n).

Hence from proposed method (7), we obtain,

zn+1 = z∗ + (A2 + λn) e
2
n − (

2A2
2 + 2A2λn + λ2n − 2A3

)
e3n + O(e4n). (11)

Now, using the fact that zn+1 = z∗ + en+1, we get from (11)

en+1 = (A2 + λn) e
2
n − (

2A2
2 + 2A2λn + λ2n − 2A3

)
e3n + O(e4n). (12)

Hence, proposed method converges quadratically (see (4)). �
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4 Continuous version of the Newton’s like method

Let us consider the damped version of Newton’s like method (7) which will works in case of Newton’s method
fails.

zn+1 := zn − F(zn)

λn F(zn) + F ′(zn)
, n = 0, 1, 2, . . . . (13)

Here λn ∈ [−1, 1] is an arbitrary parameter chosen in such a way that the denominator in (13) does not vanish.
Hence above modified Newton method will work when Newton’s method get fails. Therefore, considering the
damped version of the above modified Newton method (13), we have

zn+1 − zn = −h
F(zn)

λn F(zn) + F ′(zn)
, n = 0, 1, 2, . . . . (14)

Hence the damped version of the above modified Newton method (13) will work even when damped version
of Newton method get fails i.e., damped modified Newton method (14) will have a larger basin of attraction
and less chaotic behavior than the damped Newton’s method for h > 0. Consequently, the continuous version
of the above modified Newton’s method (13) will transport any initial point to the solution with a faster speed
of convergence and a larger basins of attraction.

z(t + h) − z(t) = −h
F(z(t))

λn F(z(t)) + F ′(z(t))
,

limh→0
z(t + h) − z(t)

h
= − F(z(t))

λn F(z(t)) + F ′(z(t))
.

From above, we get

{
dz
dt = − F(z(t))

λn F(z(t))+F ′(z(t)) ,
z(0) = z0.

(15)

Equation (15) is the continuous version of modified Newton’s like method (13). Solving the above initial value
problem (15) using Euler’s like method will give

zn+1 := zn − hF(zn)

λn F(zn) + F ′(zn)
, n = 0, 1, 2, . . . .

Here zn is an numerical approximation to the solution z(t) at t = nh, thus when the step size h = 1, an
improved version of Euler’s like method produces an improved Newton’s like method (13).

5 Quadratic convergence iterative formula without derivative (discrete case)

Let us consider the iterative formula (7) with forward, backward, and central difference operators respectively.
Then we have the formula (7)

yn = zn − F(zn)

λn F(zn) + F ′(zn)
, n = 0, 1, 2, . . . , (16)

where

F ′(zn) = lim
z→zn

F(z) − F(zn)

z − zn
.

Now, approximating F ′(zn) by using the forward difference operator with the fact that limzn→z∗ F(zn) = 0,
we have
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F ′(zn) = lim
zn→z∗

F(zn + F(zn)) − F(zn)

F(zn)
,

F ′(zn) ≈ F(zn + F(zn)) − F(zn)

F(zn)
.

We put this value of F ′(zn) in Eq. (16) to get

yn ≈ zn − F(zn)2

λn F(zn)2 + F(zn + F(zn)) − F(zn)
, n = 0, 1, 2, . . . . (17)

Similarly using backward, and central difference operators in (16) we get (18) and (19) respectively.

yn ≈ zn − F(zn)2

λn F(zn)2 + F(zn) − F(zn − F(zn))
, n = 0, 1, 2, . . . . (18)

yn ≈ zn − F(zn)2

λn F(zn)2 + F(zn + F(zn)) − F(zn − F(zn))
, n = 0, 1, 2, . . . . (19)

Now we will consider the proposed iteration formula with forward difference operator i.e., (17) for
calculating the simple root of a nonlinear algebraic Eq. (1), the selection of the parameter λn in proposed
method (17) plays a very crucial part in the convergence. Here we select the parameter λn ( | λn |∈ [0,1] )
in such a way that the denominator of the iterative method (17) is against vanishing. In particular, let
λn = sign (F(zn + F(zn)) − F(zn)) . Hence, the iteration method (17) will be as follows:

zn+1 ≈ zn − F(zn)2

λn F(zn)2 + F(zn + F(zn)) − F(zn)
, n = 0, 1, 2, . . . .

λn =
{

1, i f sign (F(zn + F(zn)) − F(zn)) ≥ 0,
−1, i f sign (F(zn + F(zn)) − F(zn)) < 0. (20)

Let Eq. (1) has roots (zeros of F) with multiplicity greater than one. Then we have

M(z) = F(z)

F ′(z)
= F(zn)2

F(zn + F(zn)) − F(zn)
.

Now, the roots with multiplicity greater than one of non linear algebraic Eq. (1) i.e., F(z) = 0 are transformed
into the simple roots of M(z) = 0. Hence, the iteration formula (20) will be defined as follows:

zn+1 ≈ zn − M(zn)2

λnM(zn)2 + M(zn + M(zn)) − M(zn)
, n = 0, 1, 2, . . . . (21)

It is at least quadratically convergent for the roots withmultiplicity greater than one, where λn is a parameter
belongs to 
 such that | λ |≤ 1.

The analysis of convergence of the proposed method (20) is given in the following theorem.

Theorem 5.1 Let I := [a, b] be a compact interval in 
 and F : I → 
 be a function such that

(i) F(a)F(b) < 0 ,
(ii) z∗ ∈ I be a simple zero of a function F,
(iii) F is twice differentiable function on I and F ′ �= 0,
(iv) λF(z) + F ′(z) �= 0, ∀ z ∈ N (z∗), where N (z∗) is a neighborhood of z∗ and | λ |≤ 1. Then, the iterative

derivative free method defined by (20) is quadratically convergent to the zero of F(z) locally.

Proof Let z∗ ∈ I be a simple zero of a function F , en := zn − z∗ and Ak := ( 1
k!

) F (k)(z∗)
F ′(z∗) . Applying Taylor’s

expansion of F(zn) around z∗ and using F(z∗) = 0, we get

F(zn) = F ′(z∗)
[
en + A2e

2
n + A3e

3
n + O(e4n)

]
, (22)

F(zn + F(zn)) = A1(1 + A1)en + (A1 + (1 + A1)
2)A2e

2
n

+(2(1 + A1)A
2
2 + A1A3 + (1 + A1)

3 + A3)e
3
n + O(e4n). (23)
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Now, using Eqs. (22) and (23) in (20), we get

zn+1 = z∗ + (A2 + λn) e
2
n − (

2A2
2 + 2A2λn + λ2n − 2A3

)
e3n + O(e4n). (24)

Hence, using the fact that zn+1 = z∗ + en+1, we get from (24)

en+1 = (A2 + λn) e
2
n − (

2A2
2 + 2A2λn + λ2n − 2A3

)
e3n + O(e4n). (25)

Therefore, the proposed derivative-free method (20) converges quadratically. From Eqs. (12) and (25), it is
clear that the convergence equations are the same for both the derivative method (7) and the derivative-free
method (20). �

5.1 Numerical results (discrete case)

In this section, we have considered some test examples to show the efficiency of the proposed new derivative-
free method (20). Here, we have considered the proposed new method with forward difference operator (20)
at λ = 0.5 and central difference operator, backward difference operator (Wu et. al. [23]), Newton’s method
and Steffensen’s method [23].

Example 5.1

F1 = log(z) (26)

It has a simple zero 1.00000. Stopping criteria has been taken as | F(zn) |< 7.10e(−17). It is clear from
Table 1, that the starting with the point z0 = 5, the proposed method with forward difference operator takes
a minimum number of iterations and least cpu time in computation of the zero, while Newton’s method and
Steffensen’s method diverges.

Example 5.2

F2 = arctan(z) (27)

It has two simple zeros one for the forward operator is 3.040261026364800e − 010 and other for the central
operator is 2.522900892965922e − 018. Stopping criteria has been taken as | F(zn) |< (1.77)e(−18). It is
clear from the Table 2 that starting with the initial approximation z0 = 5, the proposed method with forward
difference operator takes a minimum number of iterations and less cpu time in computation of the zero, while
Newton’s method and Steffensen’s method diverges.

Example 5.3

F3 = z + 1 − exp(sin(z)) (28)

It has a simple zero 1.69681238680975. The stopping criteria has been taken as | F(zn) |< 3.02e(−16). From
Table 3, it is clear that the starting with z0 = 4, the proposed method takes a minimum number of iterations
and least cpu time in computation of the zero, while Newton’s method and Steffensen’s method diverges.

Table 1 Comparison of proposed method with different methods

z0 = 5 New forward Central Backward Steffensen’s Newton

Iterations 07 55 10 div div
Cpu Time 0.01560 0.01560 0.07800 – –

Table 2 Comparison of proposed method with different methods

z0 = 5 New forward Central Backward Steffensen’s Newton

Iterations 09 64 11 div div
Cpu Time 0.04680 0.70200 0.04680 – –
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Table 3 Comparison of proposed method with different methods

z0 = 4 New forward Central Backward Steffensen’s Newton

Iterations 07 54 07 div div
Cpu Time 0.07801 0.14040 0.14040 – –

6 Convergence in diameter for the method (discrete case)

We have discussed the quadratically convergent derivative-free iterative method (20) and (21) for finding
simple and multiple roots of nonlinear algebraic Eq. (1) respectively. But both the method does not have
nice asymptotic convergence properties of the diameters {bn − an}. Alefeld and Potra [4,5] have developed a
method with nice asymptotic convergence of the diameter using bisection method. Further, Wu and Fu [23]
also studied a method with asymptotic convergence of the diameter. It motivates us to consider an iterative
formula with a parameter λ and stepsize h of the form as follows

yn ≈ zn − hnF(zn)2

λn F(zn)2 + F(zn + hnF(zn)) − F(zn)
, n = 0, 1, 2, . . . , (29)

where z0 ∈ [a, b] and λn ∈ R, | λn |≤ 1 and hn > 0.

Theorem 6.1 Let I := [a, b] be a compact interval in 
 and F : I → 
 be a function such that

(i) F(a)F(b) < 0 ,
(ii) z∗ ∈ I be a simple zero of a function F,
(iii) F is twice differentiable function on I and F ′ �= 0
(iv) λF(z) + F ′(z) �= 0, ∀ z ∈ N (z∗), where N (z∗) is neighborhood of z∗ and | λ |≤ 1. Then, the Newton’s

like iterative method defined by (29) is at least quadratically convergent to the zero z∗ of F(z) locally for
hn > 0.

Proof The proof of Theorem 6.1 is similar to that of Theorem 5.1 and will be omitted. �
To achieve the nice asymptotic convergence of the diameters {bn − an}, let hn = (bn − an)/(2 | F(zn) |),

see ([4,5]), we have the following iterative formula:

zn+1 ≈ zn − (bn − an) | F(zn) |
2(λn F(zn)2 + F((an + bn)/2) − F(zn))

, n = 0, 1, 2, . . . . (30)

Here z0 = a or b and λn = sign(F((an + bn)/2) − F(zn)).
For the special case of λn = 0, we have the iterative formula as follows

zn+1 ≈ zn − (bn − an) | F(zn) |
2(F((an + bn)/2) − F(zn))

, n = 0, 1, 2, . . . .

Now, wewill combine the formula (30) with the bisectionmethod for constructing the following new algorithm
defined as follows:

New algorithm for convergence in diameter (ACD)
Suppose n = 0, 1, 2, . . . . Then, we have

1. Let dn = an+bn
2 .

2. Compute F(dn), if F(dn) = 0, then print dn and stop.
3. If F(dn) �= 0 and sign(F(dn)) = sign(F(an)), then take a′

n = dn, b′
n = bn, otherwise a′

n = an, b′
n = dn .

4. Let wn = zn - (bn−an)|F(zn)|
2 (λn F(zn)2−F(zn)+F(dn))

. Since n = 0, 1, 2, . . . , hence zn will be initialized as z0 = a0
or b0.

5. If wn ∈ [a′
n, b

′
n], then if F(a′

n) f (wn) < 0, then [an+1, bn+1] = [a′
n, wn] , else [an+1, bn+1] =

[wn, b′
n], zn+1 = wn .

6. If wn /∈ [a′
n, b

′
n], then [an+1bn+1] = [a′

n, b
′
n].

7. If |F(zn)| < ε1 or bn+1 − an+1 < ε2, then print zn+1 and stop.
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Here ε1 and ε2 are taken precision during the solution. Repeating algorithm (ACD) by taking n + 1 in place
of n, we will generate a sequence zn of iterations and sequence of diameters (bn − an).

Theorem 6.2 Let F : [a, b] → 
 be a function such that

1. F is continuous,
2. F(a)F(b) < 0.

Then either a zero of function F(z) is obtained in a finite number of steps, or the sequence of diameter (bn−an)
generated by new Algorithm (ACD) converges to zero.

Because of the fact that we are using the bisection method, the proof of the theorem is straightforward and
will be omitted.

Theorem 6.3 Let I := [a, b] be a compact interval in 
 and F : I → 
 be a function such that

1. F ∈ C2[a, b],
2. F(a)F(b) < 0,
3. it has simple zero z∗ ∈ I ,
4. λF(z) + F ′(z) �= 0, ∀z ∈ N (z∗) where N (z∗) is neighbourhood of z∗,
5. New algorithm (ACD) does not terminate after finite number of steps.

Then, the sequence of diameter (bn − an)n=∞
n=1 produced by algorithm (ACD) converges Q quadratically to

zero, i.e., there is a constant C such that

bn+1 − an+1 ≤ C(bn − an)
2, n = 0, 1, 2, . . .

and (bn − an) → 0, for n → ∞.

Proof From Theorem 6.1, it follows that
limn→∞ en+1

e2n
= C ′ or limn→∞ en

e2n−1
= C ′. Now, from the definition of the limit we have

lim
n→∞

en+1 − en
(en − en−1)2

= lim
n→∞

en+1
en

− 1

(en − 2en−1 + e2n−1
en

)

= lim
n→∞

en
e2n−1

(
en+1
e2n

en − 1
)

en
e2n−1

(en − 2en−1) + 1

= lim
n→∞

C ′(0 − 1)

(0 + 1)
, (n → ∞ → en → 0)

= −C ′.

Then, clearly there exist an integer N 0 such that
∣∣∣ en+1−en
(en−en−1)2

∣∣∣ < |C ′| + 1, and then for n > N 0 we have

∣∣∣∣
zn+1 − zn

(zn − zn−1)2

∣∣∣∣ < |C ′| + 1. (31)

Again from the convergence of bisection method and algorithm ACD we have

dn = an + bn
2

.

Hence, dn is better approximation to the root in comparison to the zn , where z0 = a or b. Therefore,

| F(dn) | < | F(zn) | (32)

as zn tends to root of F(z) = 0. From above inequality (32), there exists 0 < d < 1 such that ∀ n ≥ N 1, we
have

|F(dn)| ≤ d|F(zn)| , 0 < d < 1. (33)
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From Eq. (32), if F(zn) is negative then F(zn)− F(dn) is aways negative (whether F(dn) is −ve or +ve) and,
therefore, the sign of F(zn) − F(dn) is same as F(zn). Similarly it is true for F(zn) is positive. Hence, it is
clear that F(zn) − F(dn) has the same sign as F(zn), therefore, for n > N 1, we have

F(zn) − F(dn)

F(zn)
> 0,

or

F(dn) − F(zn)

F(zn)
< 0.

Now from (30)

(bn − an) = 2(zn+1 − zn)(λn F(zn)2 − F(zn) + f (dn))

|F(zn)| ,

and then it follows

bn+1 − an+1

(bn − an)2
= − F(zn)2(zn+2 − zn+1)(λn+1 F(zn+1)

2 − F(zn+1) + F(dn+1))

2 |F(zn+1)| (zn+1 − zn)2 (λn F(zn)2 − F(zn) + F(dn))2
,

or

bn+1 − an+1

(bn − an)2
= F(zn)2(zn+2 − zn+1)(F(zn+1) − F(dn+1) − λn+1 F(zn+1)

2)

2 |F(zn+1)| (zn+1 − zn)2 (F(zn) − F(dn) − λn F(zn)2)2
. (34)

From (33), we have |F(dn)||F(zn)| ≤ d or −|F(dn)||F(zn)| ≥ −d . Since λn = sign(F(dn) − F(zn)), hence using the fact
that λn and F(zn) are of opposite sign, we have

|λn F(zn)| + 1 − d ≤ |λn F(zn)| + 1 − ∣∣ F(dn)

F(zn)

∣∣

= |λn F(zn)2| + |F(zn)| − |F(dn)|
|F(zn)| . (35)

Since λn and F(zn) are of opposite sign, therefore, |λn F(zn)2| + |F(zn)| = |λn F(zn)2 − F(zn)| and hence
from Eq. (35) we have

|λn F(zn)| + 1 − d ≤ |λn F(zn)2 − F(zn)| − |F(dn)|
|F(zn)|

≤
∣∣∣λn F(zn)2 − F(zn) + F(dn)

F(zn)

∣∣∣ (36)

=
∣∣∣λn F(zn) −

[
1 − F(dn)

F(zn)

]∣∣∣

≤ |λn F(zn)| +
∣∣∣1 − F(dn)

F(zn)

∣∣∣
≤ |λn F(zn)| + 1 + d. (37)

From limn→∞ F(zn) = 0, we can select an ε = 1
2 (1 − d), 0 < d < 1 such that

|F(zn) − 0| <
1

2
(1 − d),

or

|F(zn)| <
1

2
(1 − d), (38)

whenever n > N 2.
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Now from inequality (36), we get∣∣λn F(zn)2 − F(zn) + F(dn)
∣∣

|F(zn)| > 1 − d,

and from inequalities (37) and (38), we get∣∣λn F(zn)2 − F(zn) + F(dn)
∣∣

|F(zn)| <
(1 − d)

2
+ (1 + d),

therefore,

1 − d <

∣∣λn F(zn)2 − F(zn) + F(dn)
∣∣

|F(zn)| <
(d + 3)

2
. (39)

As λn and F(zn) are of opposite sign, we have

λn F(zn) + F(dn) − F(zn)

F(zn)
< 0,

F(zn) − F(dn) − λn F(zn)2

F(zn)
> 0.

So we can write Eq. (39) as

1 − d <
F(zn) − F(dn) − λn F(zn)2

F(zn)
<

(d + 3)

2
, (40)

which gives

F(zn)2(
F(zn) − F(dn) − λn F(zn)2

)2 <
1

(1 − d)2
. (41)

Now form above two Eqs. (40) and (41) we have

|F(zn)2|
∣∣F(zn+1) − F(dn+1) − λn+1F(zn+1)

2
∣∣

|F(zn+1)|
∣∣F(zn) − F(dn) − λn F(zn)2

∣∣2 <
(d + 3)

2(1 − d)2
. (42)

Therefore, using Eqs. (42) and (31) in Eq. (34), we get

bn+1 − an+1

(bn − an)2
≤ (d + 3)(|C ′| + 1)

4(1 − d)2
, (43)

where n > N = max{ N 0, N 1, N 2 }.
For n = 0, 1, 2, . . . , N , using the definition of Bisection method, we have

bN+1 − aN+1 = bN − aN
2

.

and hence
bN+1 − aN+1

(bN − aN )2
= 1

2(bN − aN )
. (44)

From Eqs. (43) and (44), let us soppose that

C ≥ max
{ (3 + d)(|C ′| + 1)

4(1 − d)2
,

1

2(bN − aN )

}
,

Therefore, we have

bn+1 − an+1

(bn − an)2
≤ C,

i.e.,

bn+1 − an+1 ≤ C(bn − an)
2 n = 0, 1, 2, 3, . . . .

Hence, the proof is completed. �
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Table 4 Comparison of proposed method with method of Wu

Starting Interval z∗ New Proposed forward Wu et al.

[0.5, 5] Iterations 07 09
[0.5, 5] Cpu Time 0.07801 0.07801

Table 5 Comparison of proposed method with method of Wu

Starting Interval z∗ New Proposed forward Wu et al.

[−1, 5] Iterations 04 05
[−1, 5] Cpu Time 0.17801 0.17801

Table 6 Comparison of proposed method with method of Wu

Starting Interval z∗ New Proposed forward Wu et al.

[1, 4] Iterations 09 09
[1, 4] Cpu Time 0.15501 0.14550

6.1 Numerical Results for Convergence in Diamters (Discrete Case)

In this section, we present the results of some numerical tests to compare the efficiency of the proposed new
algorithm (ACD) with the method of Wu and Fu [23]. Here we have taken ε1 := ε2 := 1.0 × 10−15.

Example 6.1

f1 = log(z)

It has a simple zero 1.00000. Starting interval has been taken as [0.5, 5]. From the Table 4, it is clear that the
proposed method with forward difference operator takes minimum number of iterations and less cpu time in
computation of the root.

Example 6.2

f2 = arctan(z)

The starting interval has been taken as [−1, 5]. From Table 5, it is clear that the proposed method with the
forward difference operator takes fewer iterations while cpu time in computation of the root is the same for
both methods.

Example 6.3

f3 = z + 1 − exp(sin(z))

It has a simple zero 1.69681238680975. Starting interval has been taken as [1, 4]. It is clear from Table 6, that
the proposed method takes the same number of iterations and almost equal cpu time in computing the root.

7 Dynamical analysis of methods

In this section, we have considered the test examples of section 5.1 (Eqs. 26–28) to discuss the basin of
attraction (see Eq. (5)) of different methods of Sect. 5. The problem of finding basins of attractions for
complex polynomials is also known as Cayley’s problem. Basins of attraction of the zeros of function F(z)
sharing a common boundary called as Julia set of F(z) [6]. Clearly, any point on the boundary of one set is
also on the boundary of the other sets. Basins of attraction with this type of property are known as the Wada
property, given by Japanese mathematician Konizô Yoneyama in 1917 [12]. Due to the Wada property, any
neighborhood of a point on the boundary of the basin of attraction will contain different other points due to
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(b) Proposed method (20) at λ = 1/2
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(c) Method by Wu et al. [23]
Fig. 1 Basin of attraction for F1 = log(z) by different methods

which iteration process will flow to every root. In particular, trajectories corresponding to close starting points
on the boundary will have divergent orbits. Hence the boundary points of the Julia set describe the instability
for any given approximation.

The study of dynamics of the function with the help of an iterative method allows us to study the important
information about convergence, divergence, and stability of the method. The basic definitions and dynamical
concepts of a rational function can be found in [1]. We apply numerical iterative methods in a square R× R =
[−3.5, 3.5] × [−3.5, 3.5] of 700 × 700 points with a tolerance- F(zn) < 5 × 10−2 and a maximum of 30
iterations. Under the above conditions starting with every point, z0 in the square if the sequence generated by
the iterative methods converge to a zero z∗ of the function, then z0 will be in the basin of attraction of this zero
and we mark this point z0 with a fixed color. Now we describe the basins of attraction for finding complex
zeros of our functions F1 = log(z), F2 = arctan(z) and F3 = z + 1 − exp(sin(z)), by Newton’s method
(2), proposed derivative-free method (20) and method by Wu et al. [23].
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(a) Newton’s method (2)

100 200 300 400 500 600 700

100

200

300

400

500

600

700

(b) Proposed method (20) at λ = 3/4
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(c) Method by Wu et al. [23]
Fig. 2 Basin of attraction for F2 = arctan(z) by different methods

Note that for the first example F1 = log(z), the basin of the attraction of root is almost the same for
Newton’s method (2), the proposed method (20), and method by Wu et al. [23]. Numerical results, shown in
Table 1 are supported by fractal patterns shown in Fig. 1, clearly basins of attraction by the Newton method
(Fig. 1a) end around the point z0 = 5, which confirms that Newton’s method diverges at this point. Basins
of attraction for the proposed method is nearly rectangular with bigger orbit and dark color showing faster
convergence while the basin given by the method of Wu et al. is circular with chaotic behavior and fractal
boundaries.

In the second example, F2 = arctan(z), the basin of attraction of each root is larger for the method of Wu
et al. [23] and proposed method (20) than Newton’s method (2) (Fig. 2), whereas the divergence of Newton
method starting with the point z0 = 5 shown earlier (Table 2) is proved in fractal patterns Fig. 2a. Darker color
and a bigger rectangle of basins of attraction for the proposed method shows the faster convergence of the
method. Again the method of Wu et al. shows some chaotic behavior and fractal boundaries with green color.

For third example F3 = z + 1− exp(sin(z)), we have taken a square R × R = [−5.5, 5.5] × [−5.5, 5.5]
of 700×700 points for better results. The basin of attraction of each root in the mentioned region for Newton’s
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(c) Method by Wu et al. [23]
Fig. 3 Basin of attraction for F3 = z + 1 − exp(sin(z)) by different methods

method (2) and proposed method (20) is almost the same and larger than the method by Wu et al. [23].
Divergence of Newton’s method starting with the point z0 = 4 can be seen in Fig. 3a which is supporting the
result in Table 3. All the methods show chaotic behavior with fractal Julia set.

8 Conclusion

We discussed a new modified Newton-like method and its different deformations using the drivative and
nondrivative terms. Applying the bisection method, we obtained a globally convergent modified Newton’s like
method which has nice asymptotic quadratic convergence of both the iterative sequence (zn) and the sequence
of the diameters (bn − an). Finally, the numerical resuts are supported by the basins of the proposed modified
Newton-like method, Newton’s method and method byWu et al. for some selected examples. It looks like that
the basins of the method given by Wu et al. have more fractal and chaotic boundaries than those of Newton’s
method and proposed method. Basins of attraction and fractal boundaries of different methods show how the
methods depend on the starting point in a very complicated manner.
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