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Abstract In this work, using the weighted symmetric functions σ∞
k and the weighted Newton transformations

T∞
k introduced by Case (Alias et al. Proc EdinbMath Soc 46(02):465–488, 2003), we derive some generalized

integral formulae for close hypersurfaces in weighted manifolds.We also give some examples and applications
of these formulae.

Mathematics Subject Classification 53C42

1 Introduction

The classical integral identities of Minkowski type (see [6,17,19,24]) read as follows. Let x : Mn −→ M
n+1

be a close oriented hypersurface immersed into a space form M
n+1

with a unit normal vector field N . Then
we have for 1 ≤ r ≤ n : ∫

Mn

Hr−1dv +
∫

Mn

〈Y, N 〉 Hrdv = 0 (1)

where Y is a conformal vector field. i.e. there exists a smooth function φ, such as

LY 〈, 〉 = 2φ 〈, 〉
and Hr denotes the r th mean curvatures of Mn .

Minkowski formulae for hypersurfaces were first obtained by Hsiung [17] in the Euclidian space (general-
izing Minkowski result for r = 0) and later by Bivens [11] in the Euclidean sphere and hyperbolic space. These
results were generalized by Alencar and Colares [3] by using the (r + 1)-mean curvature linearized operator
Lr of the hypersurface.

If the ambient space is not a space form, then the r th Minkowski formula is given by (see [6,22])
∫

Mn

〈div Tk, Y 〉 dv + cr

∫

Mn

(φHk + 〈Y, N 〉 Hk+1) dv = 0 (2)

where cr = (r + 1)
( n
r+1

)
.

Surprisingly, many geometric results can be deduced from these simple formulas, such as Alexandrov’s
theorem or characterizations of certain hypersurfaces (see [2,5,8,9,17,18,20,23,24]).
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It is interesting to know if the formulae (1) and (2) can be extended in other cases, and applied to generalize
the aforementioned results.

In this work, using the weighted symmetric functions σ∞
k and the weighted Newton transformations T∞

k
introduced by Case [12], we obtain some integral formulae on weighted manifolds. These formulae generalize
(1) and (2). We also give some special cases and applications of these formulae.

Recall that a weighted manifold is a triplet (Mn, 〈, 〉 , dv f = e− f dv), where Mn is a complete n- dimen-
sional Riemannian manifold, dv is the standard volume element of Mn and f : Mn −→ R is a smooth
function.

2 Preliminaries

In this section we collect some basic facts and definitions about manifolds with density which are needed in
this article. We also give the definitions and some properties of the weighted symmetric functions and the
weighted Newton transformations. For more details see [4,12–15,21,25].

Let x : Mn −→ M
n+1

be an isometric immersion of a closed oriented n-dimensional Riemannianmanifold
Mn into an (n + 1)-dimensional weighted Riemannian manifold (M

n+1
, 〈, 〉 , dv f ).

The function f : Mn+1 −→ R restricted to Mn induces a weighted measure e− f dv on Mn . Thus, we have
an induced weighted manifold Mn

f = (Mn, 〈, 〉 , e− f dv); where dv is the standard volume element of Mn .
We define the second fundamental form (or the shape operator) A of x with respect to the Gauss map N

by :

AX = − (
�X N

)ᵀ

where ᵀ symbolizes the projection above the tangent bundle of Mn and � is the Levi-Civita connection of the

metric of M
n+1

.
It is well known that A is a linear self-adjoint operator and at each point p ∈ Mn, it has real eigenvalues

μ1, ..., μn (the principal curvatures).
The weighted elementary symmetric functions σ∞

k : R × R
n −→ R are defined recursively [12] by :

{
σ∞
0 (μ0, μ) = 1,

kσ∞
k (μ0, μ) = σ∞

k−1(μ0, μ)
∑n

j=0 μ j + ∑k−1
i=1

∑n
j=1 (−1)i σ∞

k−1−i (μ0, μ)μi
j for k ≥ 1

where μ0 ∈ R and μ = (μ1, . . . , μn) ∈ R
n . In particular for μ0 = 0, σ∞

k (0, μ) = σk(μ) are the classical
elementary symmetric functions defined in [23].

Definition 2.1 [12] The weighted Newton transformations T∞
k (μ0, μ) are defined inductively from A by :

{
T∞
0 (μ0, μ) = I

T∞
k (μ0, μ) = σ∞

k (μ0, μ)I − AT∞
k−1(μ0, μ) for k ≥ 1

or equivalently

T∞
k (μ0, μ) =

k∑
j=0

(−1) j σ∞
k− j (μ0, μ)A j

where I stands for the identity on the Lie algebra of vector fields �(M), σ∞
k (μ0, A) = σ∞

k (μ0, μ1, . . . , μn)
and μ1, . . . , μn are the eigenvalues of A.

It should be noted that T∞
k (0, A) = Tk(A) is the classical Newton transformations introduced in [23].

We have the following properties of σ∞
k and T∞

k (see [12] for the proof).

Proposition 2.2 [12] For μ0, μ1 ∈ R and μ ∈ R
n, we have

σ∞
k (μ0 + μ1, μ) =

k∑
j=0

μ
j
1

j ! σ∞
k− j (μ0, μ).
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In particular,

σ∞
k (μ1, μ) =

k∑
j=0

μ
j
1

j ! σk− j (μ) (2.1)

trace(AT∞
k (μ0, μ)) = (k + 1)σ∞

k+1(μ0, μ) − μ0σ
∞
k (μ0, μ). (2.2)

For i ∈ {1, . . . , n} we have
σ∞
k,i (μ0, μ) = σ∞

k (μ0, μ) − μiσ
∞
k−1,i (μ0, μ)

and the i th eigenvalue of T∞
k (μ0, μ) is equal to σ∞

k,i (μ0, μ), where σ∞
k,i (μ0, μ) = σ∞

k (μ0, μ1, . . . , μi−1,
μi+1, . . . , μn) .

For k ≥ 1 we have :

σ∞
k−1(μ0, μ).σ∞

k+1(μ0, μ) ≤ k

k + 1

(
σ∞
k (μ0, μ)

) 2 (2.3)

with equality if and only if :

(1) μ = 0 or
(2) μ0 = 0 and, up to reindexing, it holds that μ1 = · · · = μn+1−k = 0.

Puting μ0 = 〈∇ f, N 〉 , we can see that

σ∞
1 (〈∇ f, N 〉 , A) = σ1(A) + 〈∇ f, N 〉

is nothing but the definition of the (normalized) weighted mean curvature of the hypersurface Mn studied by
Gromov [16].

The variations of a functional whose integrant is the r th weighted curvature on the hypersurface of a closed
Riemannian manifold was given in [10].

The rest of this section will be devoted to computing the divergence of the weighted Newton transformation
T∞
k . For this purpose recall that the divergence of the weighted Newton transformations is defined by :

div f T
∞
k = e f div

(
e− f T∞

k

)

where

div
(
T∞
k

) = trace
(
�T∞

k

) =
n∑

i=0

�ei

(
T∞
k

)
(ei )

and {e1, ..., en} is a local orthonormal frame of the tangent space of Mn .

Lemma 2.3 The weighted divergence of the weighted Newton transformations T∞
k are inductively given by

the following formula

div f T
∞
0 = −� f

and

div f T
∞
k = −σ∞

k � f + σ∞
k−1∇μ0 − A div f T

∞
k−1 −

n∑
i=1

(
R(N , T∞

k−1(ei ))ei
)


for k ≥ 1.

For the proof see [1].

Corollary 2.4 If M has constant sectional curvature, then

div f T
∞
k = −T∞

k (� f ) + T∞
k−1 (∇μ0) .
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3 Main results

In this section we will derive some general integral formulae for close oriented hypersurface Mn in a weighted

manifold M
n+1

. Our idea here is to compute the weighted divergence div f
(
T∞
k Yᵀ)

and
〈
div f T∞

k , Y
〉
, where

Y is a conformal vector field. Let x : Mn −→ M
n+1
f be an n-dimensional close oriented hypersurface in an

(n + 1)-dimensional weighted Riemannian manifold M f
n+1

.
Let p ∈ Mn and {e1, ..., en} be an orthonormal basis of TpMn . We can choose a global vector field N such

that {e1, ..., en−1, N } is an orthonormal basis of TpM
n+1

.

Suppose now the existence of a closed conformal vector field Y on M
n+1

; that is to say there exists a

φ ∈ C∞(M
n+1

) such that

�V Y = φV

or equivalently
〈
�V Y,W

〉 + 〈
�WY, V

〉 = 2φ 〈V,W 〉

for every vector fields V,W over M
n+1

.
If {e1, ..., en} is an orthonormal basis of TpMn that diagonalizes A, then

〈
div f T

∞
k , Y

〉 = 〈
div f T

∞
k , Yᵀ + 〈Y, N 〉 N 〉

=
〈
e f div

(
e− f T∞

k

)
, Yᵀ

〉

= e f div
(
e− f T∞

k Yᵀ
)

−
n∑

i=0

〈
T∞
k ei , �ei Y

ᵀ〉

= e f div
(
e− f T∞

k Yᵀ
)

−
n∑

i=0

〈
σ∞
k,i ei , �ei Y

ᵀ〉

= div f
(
T∞
k Yᵀ) −

n∑
i=0

〈
ei , �σ∞

k,i ei
Yᵀ

〉

= div f
(
T∞
k Yᵀ) −

n∑
i=0

〈
ei , �T∞

k ei Y
ᵀ
〉
.

On the other hand, we have

2φ
〈
T∞
k W,W

〉 =
〈
�T∞

k WY,W
〉
+ 〈

�WY, T∞
k W

〉

=
〈
�T∞

k WYᵀ,W
〉
+ 〈

�WYᵀ, T∞
k W

〉 − 2 〈Y, N 〉 〈
AT∞

k W,W
〉

which implies
〈
�T∞

k WYᵀ,W
〉
+ 〈

�WYᵀ, T∞
k W

〉 = 2φ
〈
T∞
k W,W

〉 + 2 〈Y, N 〉 〈
AT∞

k W,W
〉
.

This gives

div f
(
T∞
k Yᵀ) = 〈

div f T
∞
k , Y

〉 +
n∑

i=0

(
φ

〈
T∞
k ei , ei

〉 + 〈Y, N 〉 〈
AT∞

k ei , ei
〉)

= 〈
div f T

∞
k , Y

〉 + φtrT∞
k + 〈Y, N 〉 tr (AT∞

k

)
. (3.1)

And in virtue of formula (2.2) we have

traceT∞
k = nσ∞

k − trace
(
AT∞

k−1

)
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= (n − k) σ∞
k + μ0σ

∞
k−1.

So

div f
(
T∞
k Yᵀ) = 〈

div f T
∞
k ,Y

〉 + φ
[
(n − k) σ∞

k + 〈� f, N 〉 σ∞
k−1

]
+ 〈Y, N 〉 [

(k + 1) σ∞
k+1 − 〈� f, N 〉 σ∞

k

]
.

Integrating the two sides of this latter equality and applying the divergence theorem, we obtain for 1 ≤
k ≤ n − 1,

∫

Mn

〈
div f T

∞
k , Y

〉
dv f +

∫

Mn

φ
[
(n − k) σ∞

k + 〈� f, N 〉 σ∞
k−1

]
dv f

+
∫

Mn

〈Y, N 〉 [
(k + 1) σ∞

k+1 − 〈� f, N 〉 σ∞
k

]
dv f = 0.

Consequently, we have the following proposition:

Proposition 3.1 Let x : Mn −→ M
n+1

be a closed oriented hypersurface in M
n+1

. Denoting by N a global

vector fields normal to Mn, then for 1 ≤ k ≤ n − 1 and for every closed conformal vector field Y on M
n+1

,
we have :

∫

Mn

〈
div f T

∞
k , Y

〉
dv f +

∫

Mn

φ
[
(n − k) σ∞

k + 〈� f, N 〉 σ∞
k−1

]
dv f

+
∫

Mn

〈Y, N 〉 [
(k + 1) σ∞

k+1 − 〈� f, N 〉 σ∞
k

]
dv f = 0. (3.2)

This formula generalizes the kth Minkowski formula for the non weighted case [6].

Corollary 3.2 : Let ϕ : Mn −→ M
n+1

be a closed oriented hypersurface of M
n+1

. Denoting by N the
global vector fields normal to Mn, if f is constant, then for 1 ≤ k ≤ n − 1 and for every closed conformal

vector field Y on M
n+1

, we have :
∫

Mn

〈
div f Tk, Y

〉
dv + ck

∫

Mn

(φHk + 〈Y, N 〉 Hk+1) dv = 0

where ck = (k + 1)
( n
k+1

)
.

If M
n+1

has constant sectional curvature, then by Corollary (1), we obtain:

Proposition 3.3 Under the hypothesis of Proposition 3.1, if M
n+1

has constant sectional curvature, then

−
∫

Mn

〈∇ f, T∞
k Y

〉
dv f +

∫

Mn

〈∇μ0, T
∞
k−1Y

〉
dv f +

∫

Mn

φ
[
(n − k) σ∞

k + 〈� f, N 〉 σ∞
k−1

]
dv f

+
∫

Mn

〈Y, N 〉 [
(k + 1) σ∞

k+1 − 〈� f, N 〉 σ∞
k

]
dv f = 0

with μ0 = 〈∇ f, N 〉.
Formula (3.2) becomes simple when M

n+1
has constant sectional curvature and Y is a Killing vector field,

that is φ = 0. In that case we have :
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Corollary 3.4 . If M
n+1

has constant sectional curvature, then for every Killing vector filed Y , we have for
1 ≤ k ≤ n − 1 :

−
∫

Mn

〈∇ f, T∞
k Y

〉
dv f +

∫

Mn

〈∇μ0, T
∞
k−1Y

〉
dv f

+
∫

Mn

〈Y, N 〉 [
(k + 1) σ∞

k+1 − 〈� f, N 〉 σ∞
k

]
dv f = 0. (3.3)

4 Examples and applications

Example 4.1 Suppose that the Killing vector field Y never vanishes. If the distribution :

p ∈ M −→ D(p) = {
V ∈ TpM, 〈Y (p), V 〉 = 0

}
has constant rank n, and it is integrable, then it determines a codimension 1Riemannian foliation F(Y ) oriented
by Y

‖Y‖ . Set f = ‖Y‖ 2. Since Y is a Killing vector field, we have :

〈∇ f, Y 〉 = 0

Hence, it is easy to see by (5) that each leaf of the foliation F(Y ) satisfies :

H = 0 = 〈∇ f, N 〉
where N = Y

‖Y‖ .

Taking k = 0 in (3.1) and applying the divergence theorem,we obtain for every Killing vector filed Y :

−
∫

Mn

〈∇ f, Y 〉 dv f +
∫

Mn

〈Y, N 〉 σ∞
1 dv f −

∫

Mn

〈Y, N 〉 〈� f, N 〉 dv f = 0. (4.1)

If the mean curvature σ∞
1 is constant, multiplying by the constant σ∞

1 , the last equation allows us to write :

−
∫

Mn

〈∇ f, Y 〉 σ∞
1 dv f +

∫

Mn

〈Y, N 〉 (
σ∞
1

) 2dv f −
∫

Mn

〈Y, N 〉 〈� f, N 〉 σ∞
1 dv f = 0.

On the other hand, for k = 1, (3.3) gives :

−
∫

Mn

〈∇ f, Y 〉 σ∞
1 dv f +

∫

Mn

〈∇ f, AY 〉 dv f +
∫

Mn

〈∇μ0, Y 〉 dv f

+
∫

Mn

〈Y, N 〉 2σ∞
2 dv f −

∫

Mn

〈Y, N 〉 〈� f, N 〉 σ∞
1 dv f = 0.

So that subtracting these two formulae we obtain that :∫

Mn

〈Y, N 〉 [(
σ∞
1

) 2 − 2σ∞
2

]
dv f −

∫

Mn

〈(A∇ f + ∇ 〈� f, N 〉) ,Y 〉 dv f = 0.

It is not difficult to prove that :

〈(A∇ f + ∇ 〈� f, N 〉) , Y 〉 = 〈∇Y� f, N 〉
and in virtue of (2.3), we have that (

σ∞
1

) 2 − 2σ∞
2 ≥ 0

with equality if and only if Mn is totally geodesic, or 〈� f, N 〉 = 0 and Mn is totally geodesic.
So in both cases Mn is totally geodesic.
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Proposition 4.2 : Let x : Mn −→ M
n+1

a close oriented hypersurface in a weighted manifold M f
n+1

of
constant sectional curvature. If the weighted mean curvature σ∞

1 of Mn is constant and there exists a Killing
vector fields Y satisfies 〈∇Y� f, N 〉 = 0. Then Mn is totally geodesic.

If M
n+1 = R

n+1, denoting by � be the compact domain whose boundary is x (Mn), and N the global
vector fields normal to Mn .We have div� Y = (n + 1) and div f Y = div� Y −〈∇ f, Y 〉 = (n + 1)−〈∇ f, Y 〉.

By applying the weighted version of the divergence theorem, we have :
∫

Mn

〈Y, N 〉 dv f =
∫

�

div f Ydv f = (n + 1) vol f � −
∫

�

〈∇ f, Y 〉 dv f .

If Mn has constant strictly positive weighted mean curvature, we can choose Y as unit vector field and we
obtain :

(n + 1) vol f � = 1

σ∞
1

∫

Mn

〈∇ f, Y 〉 dv f +
∫

�

〈∇ f, Y 〉 dv f ≤ 1

σ∞
1

vol f M + vol f �

which implies that

nvol f � ≤ 1

σ∞
1

vol f M.

Proposition 4.3 Let x : Mn −→ R
n+1 be a close oriented hypersurface in R

n+1 with positive constant
weighted mean curvature σ∞

1 . Then we have :

σ∞
1 .vol f � ≤ 1

n
vol f M.

Moreover, the equality holds if and only if Mn is part of round sphere with f constant.

This result was also obtained by [7, Corollary 1.3] using a different argument.
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