
Arab. J. Math. (2021) 10:469–480
https://doi.org/10.1007/s40065-021-00317-1 Arabian Journal of Mathematics

Salah Eddine Rihane · Alain Togbé

Repdigits as products of consecutive Padovan or Perrin
numbers

Received: 22 April 2020 / Accepted: 8 February 2021 / Published online: 28 March 2021
© The Author(s) 2021

Abstract A repdigit is a positive integer that has only one distinct digit in its decimal expansion, i.e., a number
of the form a(10m − 1)/9, for some m ≥ 1 and 1 ≤ a ≤ 9. Let (Pn)n≥0 and (En)n≥0 be the sequence of
Padovan and Perrin numbers, respectively. This paper deals with repdigits that can be written as the products
of consecutive Padovan or/and Perrin numbers.

Mathematics Subject Classification 11B39 · 11J86

1 Introduction

A positive integer is called a repdigit if it has only one distinct digit in its decimal expansion. The sequence of
numbers with repeated digits is included in Sloane’s On-Line Encyclopedia of Integer Sequences (OEIS) [13]
as the sequence A010785.

Let (Pn)n≥0 be the Padovan sequence satisfying the recurrence relation Pn+3 = Pn+1 + Pn with initial
conditions P0 = 0 and P1 = P2 = 1. Let (En)n≥0 be the Perrin sequence following the same recursive pattern
as the Padovan sequence, but with initial conditions E0 = 2, E1 = 0, and E2 = 1. Pn and En are called nth
Padovan number and nth Perrin number, respectively. The Padovan and Perrin sequences are included in the
OEIS [13] as the sequences A000931 and A001608, respectively.

Finding some specific properties of sequences is of big interest since the famous result of Bugeaud,
Mignotte, and Siksek [2]. One can also see [1–9,11,12]. Marques and the second author [9] studied repdigits
as products of consecutive Fibonacci numbers. Irmak and the second author [5] studied repdigits as products of
consecutive Lucas numbers. Rayaguru and Panda [11] studied repdigits as products of consecutive Balancing
and Lucas-Balancing numbers. It is natural to askwhat will happen if we consider Padovan and Perrin numbers.
This is the aim of this paper.

Therefore, in this paper, we investigate repdigits which can bewritten as the product of consecutive Padovan
or/and Perrin numbers. More precisely, we prove the following results.

Theorem 1.1 The Diophantine equation

Pn · · · Pn+(�−1) = a

(
10m − 1

9

)
, (1.1)
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has no solution in positive integers n, �,m, a, with 1 ≤ a ≤ 9 and m ≥ 2.

Theorem 1.2 The only solution of the Diophantine equation:

En · · · En+(�−1) = a

(
10m − 1

9

)
, (1.2)

in positive integers n, �,m, a, with 1 ≤ a ≤ 9 and m ≥ 2 is (n, �,m, a) = (11, 1, 2, 2), i.e., E11 = 22.

Theorem 1.3 The Diophantine equation

En · · · En+(k−1)Pn+k · · · Pn+k+(�−1) = a

(
10m − 1

9

)
(1.3)

has no solution in positive integers n, k, �,m, a, with 1 ≤ a ≤ 9 and m ≥ 2.

Theorem 1.4 The Diophantine equation

Pn · · · Pn+(k−1)En+k · · · En+k+(�−1) = a

(
10m − 1

9

)
(1.4)

has no solution in positive integers n, k, �,m, a, with 1 ≤ a ≤ 9 and m ≥ 2.

Here is the outline of this paper. In Sect. 2, we will recall the results that will be used to prove Theorems
1.1, 1.2, 1.3, and 1.4. In Sect. 3, first, we will use Baker’s method and 2-adic valuation of Padovan numbers
to obtain a bound for n that is too high to completely solve Eq. (1.1). We will then need to apply twice the
reduction method of de Weger to find a very low bound for n, which enables to run a program to find the small
solutions of Eq. (1.1). We will use the same method in the next sections to prove the remaining theorems.
Computations are done with the help of a computer program in Maple.

2 The tools

We start by recalling some useful properties of Padovan and Perrin sequences. The characteristic equation of
{Pn}n≥0 and {En}n≥0 is z3 − z − 1 = 0 and has one real root α and two complex roots β and γ = β. The
Binet formulae for the Padovan and Perrin numbers are respectively:

Ps = cααs + cββs + cγ γ s, for all s ≥ 0 (2.1)

and

Es = αs + βs + γ s, for all s ≥ 0, (2.2)

where

cα = 1 + α

−α2 + 3α + 1
, cβ = 1 + β

−β2 + 3β + 1
, cγ = 1 + γ

−γ 2 + 3γ + 1
= cβ.

It is easy to see that α ∈ (1.32, 1.33) , |β| = |γ | ∈ (0.86, 0.87) , cα ∈ (0.72, 0.73) and |cβ | = |cγ | ∈
(0.24, 0.25).

By the facts that β = α−1/2eiθ and γ = α−1/2e−iθ , for some θ ∈ (0, 2π), we can show that:

Ps = cααs + es, with |es | <
1

αs/2 , for all s ≥ 1 (2.3)

and

Es = αs + e′
s, with |e′

s | <
2

αs/2 , for all s ≥ 1. (2.4)

Further, we have:

αs−2 ≤ Ps ≤ αs−1, for all s ≥ 4 (2.5)
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and

αs−2 ≤ Es ≤ αs+1, for all s ≥ 2. (2.6)

For a prime number p and a non-zero integer r , the p-adic order υp(r) is the exponent of the highest power
of a prime p which divides r . The following two results, due to Irmak [4], characterize the 2-adic order of
Padovan and Perrin numbers, respectively.

Lemma 2.1 For n ≥ 1, we have:

υ2 (Pn) =

⎧⎪⎨
⎪⎩
0 if n ≡ 0, 1, 2, 5 (mod 7),
υ2(n + 4) + 1 if n ≡ 3 (mod 7),
υ2((n + 3)(n + 17)) + 1 if n ≡ 4 (mod 7),
υ2((n + 1)(n + 8)) + 1 if n ≡ 6 (mod 7).

Lemma 2.2 For n ≥ 1, we have:

υ2 (En) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if n ≡ 0, 3, 5, 6 (mod 7),
1 if n ≡ 2 (mod 14),
2 if n ≡ 9 (mod 14),
υ2(n − 1) + 1 if n ≡ 1 (mod 7),
1 if n ≡ 4 (mod 7).

The next tools are related to the transcendental approach to solve Diophantine equations. For any non-zero
algebraic number γ of degree d over Q, whose minimal polynomial over Z is a

∏d
j=1

(
X − γ ( j)

)
, we denote

by:

h(γ ) = 1

d

⎛
⎝log |a| +

d∑
j=1

logmax
(
1,

∣∣∣γ ( j)
∣∣∣)

⎞
⎠

the usual absolute logarithmic height of γ .
To prove our main results, we use lower bounds for linear forms in logarithms to bound the index n

appearing in Eqs. (1.1), (1.2), (1.3), and (1.4). We need the following result of Bugeaud, Mignotte, and Siksek
[2], which is a modified version of the result of Matveev [10].

Lemma 2.3 Let γ1, . . . , γs be real algebraic numbers and let b1, . . . , bs be non-zero rational integer numbers.
Let D be the degree of the number fieldQ(γ1, . . . , γs) overQ and let A j be a positive real number satisfying:

A j = max{Dh(γ ), | log γ |, 0.16} for j = 1, . . . , s.

Assume that:

B ≥ max{|b1|, . . . , |bs |}.
If γ b1

1 · · · γ bs
s �= 1, then:

|γ b1
1 · · · γ bs

s − 1| ≥ exp(−C(s, D)(1 + log B)A1 · · · As),

where C(s, D) := 1.4 · 30s+3 · s4.5 · D2(1 + log D).

After getting the upper bound of n, which is generally too large, the next step is to reduce it. For this
reduction purpose, we present a variant of the reduction method of Baker and Davenport due to de Weger
[14]).

Let ϑ1, ϑ2, β ∈ R be given, and let x1, x2 ∈ Z be unknowns. Let:


 = β + x1ϑ1 + x2ϑ2. (2.7)

Let c, δ be positive constants. Set X = max{|x1|, |x2|}. Let X0, Y be positive numbers. Assume that:

|
| < c · exp(−δ · Y ), (2.8)

Y ≤ X ≤ X0. (2.9)
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When β = 0 in (2.7), we get


 = x1ϑ1 + x2ϑ2.

Put ϑ = −ϑ1/ϑ2. We assume that x1 and x2 are coprime. Let the continued fraction expansion of ϑ be given
by

[a0, a1, a2, . . .],
and let the kth convergent of ϑ be pk/qk for k = 0, 1, 2, . . .. We may assume without loss of generality that
|ϑ1| < |ϑ2| and that x1 > 0. We have the following results.

Lemma 2.4 [14, Lemma 3.2] Let:

A = max
0≤k≤Y0

ak+1,

where

Y0 = −1 + log(
√
5X0 + 1)

log
(
1+√

5
2

) .

If (2.8) and (2.9) hold for x1, x2 and β = 0, then:

Y <
1

δ
log

(
c(A + 2)X0

|ϑ2|
)

. (2.10)

When β �= 0 in (2.7), put ϑ = −ϑ1/ϑ2 and ψ = β/ϑ2. Then, we have




ϑ2
= ψ − x1ϑ + x2.

Let p/q be a convergent of ϑ with q > X0. For a real number x , we let ‖x‖ = min{|x − n|, n ∈ Z} be the
distance from x to the nearest integer. We have the following result.

Lemma 2.5 [14, Lemma 3.3] Suppose that:

‖ qψ ‖> 2X0

q
.

Then, the solutions of (2.8) and (2.9) satisfy:

Y <
1

δ
log

(
q2c

|ϑ2|X0

)
.

We conclude this section by recalling the following lemma that we need in the sequel:

Lemma 2.6 [14, Lemma 2.2, page 31] Let a, x ∈ R and 0 < a < 1. If |x | < a, then:

|log(1 + x)| <
− log(1 − a)

a
|x |

and

|x | <
a

1 − e−a

∣∣ex − 1
∣∣ .

3 Proof of Theorem 1.1

In this section, we will use Baker’s method and the p-adic valuation to completely prove Theorem 1.1.
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Table 1 2-adic order of product of consecutive Padovan numbers

x 0 1 2 3 4 5 6

� 7 6 5 4 7 7 6
υ2(Pn Pn+1 · · · Pn+(�−1)) ≥ 4 4 4 4 5 4 4

3.1 Absolute bounds on the variables

We start by giving the number of factors � in the Diophantine equation (1.1).

Lemma 3.1 If Diophantine equation (1.1) has solutions, then � ≤ 6.

Proof Note that, for all 1 ≤ a ≤ 9, we have:

υ2

(
a

(
10m − 1

9

))
= υ2(a) ≤ 3.

Therefore, if υ2(Pn Pn+1 · · · Pn+(�−1)) ≥ 4, then Diophantine equation (1.1) has no solution.
Let x ∈ {0, 1, 2, . . . , 6}, such that n ≡ x (mod 7). Suppose that x = 2, and hence, n + 1 ≡ 3 (mod 7),

n + 2 ≡ 4 (mod 7), and n + 4 ≡ 6 (mod 7). Therefore, by Lemma 2.1, we get:

υ2(Pn Pn+1 · · · Pn+4) = 3υ2(n + 5) + υ2(n + 12) + υ2(n + 19) + 3.

Clearly, if n is odd, then n+5 and n+19 are even; otherwise, n+12 is odd. Thus,we getυ2(Pn Pn+1 · · · Pn+4) ≥
4. Therefore, Diophantine equation (1.1) has no solution if � ≥ 5 in this case.

The other cases can be treated using a similar method. As a conclusion, we get Table 1. Thus, we deduce
that � ≤ 6.


�
Now, we give an upper bound for n and m.

Lemma 3.2 If (n, �,m, a) is a positive integer solution of (1.1) with n ≥ 15, m ≥ 2, 1 ≤ a ≤ 9, and
1 ≤ � ≤ 6, then:

m ≤ �n + �(� − 3)/2 and n < 1.8 × 1016.

Proof By (1.1) and (2.5), we have:

10m−1 < a

(
10m − 1

9

)
= Pn Pn+1 · · · Pn+(�−1) < α�n+ �(�−3)

2 .

Thus, we get:

m ≤ �n + �(� − 3)/2. (3.1)

Now, by (2.3), we obtain:

Pn · · · Pn+(�−1) = (cααn + en) · · · (cααn+(�−1) + en+�−1) (3.2)

= c�
αα�n+�(�−1)/2 + r1(cα, α, n, �),

where r1(cα, α, n, �) involves the part of the expansion of the previous line that contains the product of powers
of cα, α and the errors ei , for i = n, . . . n + (� − 1). Moreover, r1(cα, α, n, �) is the sum of 63 terms with
maximum absolute value c�−1

α α(�−1)n+�(�−1)/2α−n/2.
The equality (3.2) enables us to express (1.1) into the form:

a

9
10m − c�

αα�n+�(�−1)/2 = a

9
+ r1(cα, α, n, �).
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Dividing through by c�
αα�n+�(�−1)/2 and taking the absolute value, we deduce that:

|1| ≤
(a
9

+ |r1(cα, α, n, �)|
)

· c−�
α α−(�n+�(�−1)/2) (3.3)

< (1 + 63c�−1
α α(�−1)n+�(�−1)/2α−n/2) · c−�

α α−(�n+�(�−1)/2)

≤ 64c−1
α α−3n/2 < 89α−3n/2,

where::

1 = a

9c�
α

α−(�n+�(�−1)/2)10m − 1. (3.4)

To find a lower bound for 1, we take the parameters s := 3:

(γ1, b1) := ((a/9)c−�
α , 1), (γ2, b2) := (α,−(�n + �(� − 1)/2)) and (γ3, b3) := (10,m),

in Lemma 2.3. For our choices, we have γ1, γ2, γ3 ∈ Q(α), with degree D := 3. To apply Lemma 2.3 it is
necessary to show that 1 �= 0. If we assume the contrary, thus we get:

a · 10m/9 = c�
αα�n+�(�−1)/2.

Conjugating the above relation by the Galois automorphism σ := (αβ), and then taking absolute values on
both sides of the resulting equality, we obtain:

1 < a · 10m/9 = |cβ |�|β|�n+�(�−1)/2 < 1.

This is a contradiction. Thus, 1 �= 0. Next, we give estimates to Ai for i = 1, 2, 3. By the properties of the
absolute logarithmic height, we have:

h(γ1) ≤ h(d) + h(9) + �h(cα) ≤ 2 log 9 + �h(cα).

Now, we need to estimate h(cα). For that, the minimal polynomial of cα is 23X3 − 23x2 + 6X − 1. Therefore,
h(cα) = 1

3 log 23, and thus:

h(γ1) ≤ 2 log 9 + 2 log 23.

On the other hand, h(γ2) = 1
3 logα and h(γ3) = log 10. Therefore, we take A1 := 32, A2 := 0.3 and A3 := 7.

Finally, by (3.1) and the fact that � ≤ 6, we take B := 6n + 15. Applying Lemma 2.3, we get a lower bound
for |1|, which by comparing it to (3.3) leads to:

3n

2
logα − log 89 < 1.82 × 1014(1 + log(6n + 15)).

Hence, we get:

n < 4.4 × 1014(1 + log(6n + 15)).

Therefore, we obtain n < 1.8 × 1016. 
�
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3.2 Reducing n

To lower the bound of n, we will use Lemma 2.5.
Let:


1 := m log 10 − (�n + �(� − 1)/2) logα + log(a/9c�
α).

Therefore, (3.3) can be rewritten as |e
1 − 1| < 89/α3n/2. Furthermore, if n ≥ 15 |1| < 0.16. Therefore, by
applying Lemma 2.6, we deduce that:

|
1| < − log(1 − 0.16)

0.16
|1| < 97 exp (−0.42n) . (3.5)

Put:

ϑ1 := − logα, ϑ2 := log 10, ψ := log

(
a

9cα

)
, c := 97, δ := 0.42.

Furthermore, as max{m, �n + �(� − 1)/2} < 1.1 × 1017, then we take X0 = 1.1 × 1017. Using Maple, one
can see that:

q43 = 76200291125177096225

satisfies the conditions of Lemma 2.5 for all 1 ≤ a ≤ 9 and 1 ≤ � ≤ 6. Therefore, Lemma 2.5 implies that if
the Diophantine equation (1.1) has solutions, then:

n ≤ 1

0.42
× log

(
762002911251770962252 × 97

log 10 × 1.1 × 1017

)
< 134.

Now, we reduce again this new bound of n. In this application of Lemma 2.5, we take X0 = 813 and see that
q10 = 869219 satisfies the conditions of Lemma 2.5. Thus, we obtain:

n ≤ 1

0.42
× log

(
8692192 × 97

log 10 × 813

)
< 59.

Hence, it remains to check Eq. (1.1) for 1 ≤ n ≤ 58, 1 ≤ � ≤ 6, 2 ≤ m ≤ 363 and 1 ≤ a ≤ 9. A quick
inspection using Maple reveals that Diophantine equation (1.1) has no solutions. This completes the proof of
Theorem 1.1.

4 Proof of Theorem 1.2

In this section, we will use the same method for the proof of Theorem 1.1 to completely prove Theorem 1.2.
However, for the sake of completeness, we will give some details.

4.1 Absolute bounds on the variables

First of all, we give the number of factors in the Diophantine equation (1.2).

Lemma 4.1 The Diophantine equation (1.2) has a solution if � ≤ 7:

Proof Let x ∈ {0, 1, 2, . . . , 13}, such that n ≡ x (mod 14). Assume that x = 8, and hence, n ≡ 1 (mod 7),
n + 1 ≡ 9 (mod 14), and n + 3 ≡ 4 (mod 7). Thus, Lemma 2.2 gives:

υ2(EnEn+1 · · · En+3) = υ2(n − 1) + 4 = 4,

because n ≡ 8 (mod 14) leads to υ2(n − 1) = 0. We give the other results in Table 2.

As υ2

(
a

(
10m−1

9

))
= υ2(a) ≤ 3, for all 1 ≤ a ≤ 9, then it follows from Table 2 that � ≤ 7. 
�

Now, we will show the following lemma.
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Table 2 2-adic order of product of consecutive Perrin numbers

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13

� 5 4 8 7 6 7 6 5 4 7 7 6 7 6
υ2(EnEn+1 · · · En+(�−1)) ≥ 4 4 5 4 4 4 4 4 4 5 4 4 4 4

Lemma 4.2 If (n, �,m, a) is a positive integer solution of (1.2) with n ≥ 20, m ≥ 2, 1 ≤ a ≤ 9, and
1 ≤ � ≤ 10, then:

m ≤ �n + �(� + 1)/2 and n < 7.1 × 1015.

Proof First, we assume that n ≥ 20. Combining (1.2) and (2.6), we obtain:

10m−1 <
a(10m − 1)

9
= EnEn+1 · · · En+(�−1) < α�n+ �(�+1)

2 .

Thus, we have:

m ≤ �n + �(� + 1)/2. (4.1)

Now, by (2.4), we get:

En · · · En+(�−1) = (αn + en) · · · (αn+(�−1) + en+�−1) (4.2)

= α�n+�(�−1)/2 + r2(α, n, �),

where r2(α, n, �) involves the part of the expansion of the previous line that contains the product of powers of
α and the errors e′

i , for i = n, . . . n + (� − 1). Moreover, r2(α, n, �) is the sum of 127 terms with maximum
absolute value 2�α(�−1)n+�(�−1)/2α−n/2.

The equality (4.2) enables us to express (1.2) as:

a

9
10m − α�n+�(�−1)/2 = a

9
+ r2(α, n, �).

Multiplying both sides by α−(�n+�(�−1)/2) and taking the absolute value, we conclude that:

|2| ≤
(a
9

+ |r2(α, n, �)|
)

· α−(�n+�(�−1)/2) (4.3)

< (1 + 127 · 2�α(�−1)n+�(�−1)/2α−n/2) · α−(�n+�(�−1)/2)

≤ 128 · 2�α−3n/2 < 16384α−3n/2,

where:

2 = a

9
α−(�n+�(�−1)/2)10m − 1. (4.4)

Now, we use Lemma 2.3 to find a lower bound for 2, with the parameters s := 3:

(γ1, b1) := ((a/9), 1), (γ2, b2) := (α, −(�n + �(� − 1)/2)), and (γ3, b3) := (10,m).

The number field containing γ1, γ2, γ3 is Q(α), which degree is D := 3.
We next justify that 2 �= 0. Indeed, if this were zero, we would then get:

α�n+�(�−1)/2 = a · 10m/9.

Conjugating the above relation by the Galois automorphism σ := (αβ), and then taking absolute values on
both sides of the resulting equality, we obtain:

|β|�n+�(�−1)/2 = a · 10m/9,

123



Arab. J. Math. (2021) 10:469–480 477

which is not possible, because |β|�n+�(�−1)/2 < 1 and a · 10m/9 > 10. Thus, 2 �= 0. Next, h(γ1) ≤
h(d) + h(9) ≤ 2 log 9, h(γ2) = 1

3 logα and h(γ3) = log 10. Thus, we take A1 := 13.2, A2 := 0.3 and
A3 := 7. According to (4.1) and the fact that � ≤ 10, we take B := 7n + 28. Applying Lemma 2.3, we get a
lower bound for |2|, and taking into account inequality (4.3), we obtain:

exp
(−7.5 × 1013(1 + log(7n + 28))

)
<

16384

α3n/2 .

Taking the logarithm of both sides of the above inequality, we obtain:

n < 1.78 × 1014(1 + log(7n + 28)).

With the help of Maple, we get n < 7.1 × 1015. 
�

4.2 Reducing n

To lower the bound of n, we will use Lemmas 2.4 and 2.5. We will proceed with three successive reductions.
Let:


2 := m log 10 − (�n + �(� − 1)/2) logα + log(a/9).

Therefore, (4.3) can be rewritten as |e
2 − 1| < 16384α−3n/2. Furthermore, if n ≥ 30, then |1| < 0.06.
Therefore, Lemma 2.6 leads to:

|
2| < − log(1 − 0.06)

0.06
|2| < 16897 exp (−0.42n) .

If a �= 9, then we take:

ϑ1 := − logα, ϑ2 := log 10, ψ := log
(a
9

)
, c := 16897, δ := 0.42

in Lemma 2.5. Furthermore, as max{m, �n + �(� − 1)/2} < 5 × 1016, we can take X0 = 5 × 1016. One can
use Maple to see that:

q43 = 76200291125177096225

satisfies the conditions of Lemma 2.5, for all 1 ≤ a ≤ 8 and 1 ≤ � ≤ 10. Therefore, from Lemma 2.5, we
deduce that if Diophantine equation (1.2) has solutions, then:

n ≤ 1

0.42
× log

(
762002911251770962252 × 16897

log 10 × 5 × 1016

)
< 148.

Now, we again reduce this new bound of n. In this application of Lemma 2.5, we take X0 = 1057 and see that
q9 = 139228 satisfies the conditions of Lemma 2.5. Thus, we obtain:

n ≤ 1

0.42
× log

(
1392282 × 16897

log 10 × 1057

)
< 62.

If a = 9, then 
2 becomes:


2 = m log 10 − (�n + �(� − 1)/2) logα,

so we apply Lemma 2.4 in this case by choosing

c := 16897, δ := 0.42, X0 = 5 × 1016, Y0 = 80.5763 . . . .

Maple gives us max0≤k≤81 ak+1 = 49, and thus, by Lemma 2.4, we have:

n ≤ 1

0.42
× log

(
16897 × 51 × 5 × 1016

log 10

)
< 123.
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Now, we proceed to the third reduction of the bound of n. To apply Lemma 2.4, we take X0 = 882 and find
that max0≤k≤15 ak+1 = 8. Therefore, we get:

n ≤ 1

0.42
× log

(
16897 × 10 × 882

log 10

)
< 43.

Therefore, n ≤ 62 holds in all cases. Hence, it remains to check Eq. (1.2) for 1 ≤ n ≤ 62, 1 ≤ � ≤ 10,
2 ≤ m ≤ 462, and 1 ≤ a ≤ 9. By a fast computation with Maple in these ranges, we conclude that the
quadruple (n, �,m, d) = (11, 1, 2, 2) is the only solution of Diophantine equation (1.2). This completes the
proof of Theorem 1.2.

5 Proofs of Theorems 1.3 and 1.4

We will use the same method as above to only show Theorem 1.3 as the proof of Theorem 1.4 is similar.

5.1 Absolute bounds on the variables

By Lemmas 3.1 and 4.1, we claim that k ≤ 7 and � ≤ 6. Indeed, one has:

υ2(En · · · En+(k−1)Pn+k · · · Pn+k+(�−1)) > 3,

and then, Diophantine equation (1.3) has no solution.
Now, we will prove the following lemma.

Lemma 5.1 If (n, k, �,m, a) is a positive integer solution of (1.3)with n ≥ 30, m ≥ 2, 1 ≤ a ≤ 9, 1 ≤ k ≤ 7,
and 1 ≤ � ≤ 6, then:

m ≤ (k + �)n + k(k + 1)

2
+ �(2k + � − 3)

2
and n < 1.88 × 1017.

Proof First, assume that n ≥ 30. Combining (1.3), (2.5), and (2.6), we get:

10m−1 <
a(10m − 1)

9
= EnEn+1 · · · En+(k−1)Pn+k · · · Pn+k+(�−1)

< α(k+�)n+ k(k+1)
2 + �(2k+�−3)

2 .

Taking the logarithm of both sides of the above inequality leads to:

m ≤ (k + �)n + k(k + 1)

2
+ �(2k + � − 3)

2
. (5.1)

Now, by (2.3) and (2.4), we get:

EnEn+1 · · · En+(k−1)Pn+k · · · Pn+k+(�−1) (5.2)

= α(k+�)n+k(k−1)/2+�(2k+�−1)/2 + r3(cα, α, n, k, �),

where r3(cα, α, n, k, �) involves the part of the expansion of the previous line that contains the product of
powers of cα α and the errors ek+ j and e′

i , for i = n, . . . , n + (k − 1) and j = n, . . . , n + (� − 1). Moreover,
r3(cα, α, n, k, �) is the sum of 8191 terms with maximum absolute value 2kc�

αα(k+�−1)n+k(k−1)/2+�(2k+�−1)/2

α−n/2.
The equality (5.2) enables us to express (1.3) as:

a

9
10m − c�

αα(k+�)n+k(k−1)/2+�(2k+�−1)/2 = a

9
+ r3(cα, α, n, k, �).
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Multiplying through by c−�
α α−((k+�)n+k(k−1)/2+�(2k+�−1)/2) and taking the absolute value, we deduce that:

|3| ≤
(a
9

+ |r3(cα, α, n, k, �)|
)

· α−((k+�)n+k(k−1)/2+�(2k+�−1)/2) (5.3)

< (1 + 8191 · 2kc�
αα(k+�−1)n+k(k−1)/2+�(2k+�−1)/2α−n/2) · α−((k+�)n+k(k−1)/2+�(2k+�−1)/2)

≤ 8192 · 2kc−1
α α−3n/2 < 1452072α−3n/2,

where:

3 = a

9c�
α

α(k+�)n+k(k−1)/2+�(2k+�−1)/210m − 1. (5.4)

Now, we use Lemma 2.3 to find a lower bound for 3, with the parameters s := 3 and:

(γ1, b1) := ((d/9c�
α), 1), (γ2, b2) := (α,−((k + �)n + k(k − 1)/2 + �(2k + � − 1)/2)), (γ3, b3) := (10,m).

The algebraic numbers γ1, γ2, γ3 belong to the number field Q(α), which degree is D := 3. We claim that
3 �= 0. Otherwise, we get:

c�
αα(k+�)n+k(k−1)/2+�(2k+�−1)/2 = a · 10m/9.

Conjugating the above relation by the automorphism σ := (αβ), and then taking absolute values on both sides
of the resulting equality, we obtain:

|c�
β ||β|(k+�)n+k(k−1)/2+�(2k+�−1)/2 = a · 10m/9,

which is not possible, because |c�
β ||β|(k+�)n+k(k−1)/2+�(2k+�−1)/2 < 1 and a · 10m/9 > 10. Thus, 3 �= 0.

Next, h(γ1) ≤ h(d) + h(9) ≤ 2 log 9, h(γ2) = 1
3 logα and h(γ3) = log 10. Thus, we can take A1 := 13.2,

A2 := 0.3 and A3 := 7. According to (5.1) and the facts k ≤ 7 and � ≤ 6, we take B := 13n + 85. Applying
Lemma 2.3 we get a lower bound for |3|, which, by comparing it to (5.3), leads to:

exp
(−1.82 × 1014(1 + log(13n + 85)

)
<

1452072

α3n/2 .

Hence, we get:

n < 4.32 × 1014(1 + log(13n + 85)).

Therefore, we obtain n < 1.88 × 1017. 
�

5.2 Reducing n

To lower the bound of n, we will use Lemma 2.5.
Let


3 := m log 10 − ((k + �)n + k(k − 1)/2 + �(2k + � − 1)/2) logα + log(a/9c�
α).

Therefore, (5.3) can be rewritten as |e
3 − 1| < 1452072α−3n/2. Furthermore, if n ≥ 40 then |3| < 0.07.
Therefore, by applying Lemma 2.6, we deduce that:

|
3| < − log(1 − 0.07)

0.07
|3| < 1505399 exp (−0.42n) .

Put:

ϑ1 := − logα, ϑ2 := log 10, ψ := log

(
a

9cα

)
, c := 1505399, δ := 0.42.
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Furthermore, asmax{m, (k+�)n+k(k−1)/2+�(2k+�−1)/2} < 2.45×1018, thenwe take X0 = 2.45×1018.
We use Maple to find that:

q45 = 20674124943023524548605

satisfies the conditions of Lemma 2.5 for all 1 ≤ a ≤ 9, 1 ≤ k ≤ 10 and 1 ≤ � ≤ 6. Therefore, by Lemma 2.5,
if Diophantine equation (1.3) has solutions, then:

n ≤ 1

0.42
× log

(
206741249430235245486052 × 1505399

log 10 × 2.45 × 1018

)
< 176.

Now, we reduce one more time this new bound of n. In this application of Lemma 2.5, we take X0 = 2360
and observe that q10 = 869219 is a good candidate to verify the conditions of Lemma 2.5. Thus, we obtain:

n ≤ 1

0.42
× log

(
8692192 × 1505399

log 10 × 2360

)
< 79.

Hence, it remains to check Eq. (1.1) for 1 ≤ n ≤ 78, 1 ≤ k ≤ 7, 1 ≤ � ≤ 6, 2 ≤ m ≤ 1216, and 1 ≤ a ≤ 9.
For this, we use a simple routine written in Maple which (in a few minutes) does not return any solution of
Diophantine equation (1.3) in these ranges. This completes the proof of Theorem 1.3.
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