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Abstract In this paper, we aim to study the asymptotic behavior (when ε → 0) of the solution of a quasilinear
problem of the form −div (Aε(·, uε)∇uε) = f given in a perforated domain �\Tε with a Neumann boundary
condition on the holes Tε and aDirichlet boundary condition on ∂�.We show that, if the holes are admissible in
certain sense (without any periodicity condition) and if the family of matrices (x, d) �→ Aε(x, d) is uniformly
coercive, uniformly bounded and uniformly equicontinuous in the real variable d , the homogenization of the
problem considered can be done in two steps. First, we fix the variable d andwe homogenize the linear problem
associated to Aε(·, d) in the perforated domain. Once the H0-limit A0(·, d) of the pair (Aε, T ε) is determined,
in the second step, we deduce that the solution uε converges in some sense to the unique solution u0 in H1

0 (�)

of the quasilinear equation −div (A0(·, u0)∇u) = χ0 f (where χ0 is L∞ weak � limit of the characteristic
function of the perforated domain). We complete our study by giving two applications, one to the classical
periodic case and the second one to a non-periodic one.

Mathematics Subject Classification 35B40 · 35B27 · 35J62

1 Introduction

The main goal of this work is to give, in the framework of the H0-convergence notion (the generalization of
the H -convergence to perforated domains), a general homogenization result of a type of quasilinear equations
with a mixed Neumann-Dirichlet boundary conditions, beyond the periodic setting. More precisely, we study
the asymptotic behaviour of the solution of the following problem:

⎧
⎨

⎩

−div (Aε(·, uε)∇uε) = f in �\Tε,
Aε(·, uε)∇uε · ν = 0 on ∂Tε,
uε = 0 on ∂�,

where� is a bounded open subset ofR
n , {Tε} is sequence of compact subsets of�, not necessarily periodically

distributed, and where f ∈ L2(�), Aε : (x, d) ∈ (�, R) �−→ Aε(x, t) ∈ R
n×n is a sequence of Caratheodory

functions uniformly coercive, uniformly bounded and uniformly equicontinuous matrix fields in the variable
d . We show that, under a suitable conditions on the equicontinuity modulus and L p-estimate assumption, there
exists a subsequence of ε (still denoted by ε), a positive function χ0 ∈ L∞(�) and a matrix field A0(·, ·)
which satisfies the same properties as Aε(·, ·) such that χε ⇀ χ0 weakly � in L∞(�),

(Aε(·, d), Tε)
H0

⇀ A0(·, d) in �, ∀d ∈ R
n,
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and, if we denote by ·̃ the extension by 0 from �ε to �, we have

{
ũε ⇀ χ0u0 weakly in L2(�),

˜Aε(uε)∇uε ⇀ A0(u0)∇u0 weakly in L2(�)n,

where u0 is the solution of
{−div (A0(·, u0)∇u0) = χ0 f in �,

u0 = 0 on ∂�.

We complete our study by giving two applications of the established compactness results. The first appli-
cation is for the classical periodic case, where the obtained result coincides (in our framework) with a result
given in [7]. While, the second one which concerns a non-periodic case introduced in [5] is an original result.

Our work generalizes that of Murat–Bocardo given in [4] which treated in the general framework of H -
convergence the same type of quasilinear equations in fixed domains without holes. The periodic case with
Lipschitz continuous coefficients was subsequently processed by Artola–Duvaut in [1]. On the other hand,
for periodically perforated domains, the same type of quasilinear equations was firstly studied in Bendib [2]
and Bendib–Tcheugoué Teboué [3], with Lipschitz continuous coefficients and linear Robin conditions. After
this Cabarrubias–Donato have studied in [7] this equation with a nonlinear Robin condition boundary of the
holes and the module of equicontinuity satisfies a suitable assumption introduced by Chipot in [9], but not
assumed to be Lipschitz continuous. For the homogenization of other type of Neumann quasilinear equations
in perforated domains with data satisfying a general assumptions of abstract homogenization, see for example
[8,13] among others.

This article is organized as follows: Sect. 2 is devoted to some preliminary results on the H0-convergence
as introduced by [5]. This notion generalizes that of H -convergence in fixed domains due to Murat–Tartar
(see [12,14]). We give at the end of this section, a new result about a pointwise estimate of the dierence of
two H0-limits. In Sect. 3, we present our main compactness results for a class of quasilinear equations in
perforated domains in the general framework of H0-convergence. Section 4 is devoted to the proofs of our
results. Finally, in Sect. 5, we give two applications of the obtained compactness results, namely the classical
periodic case and a certain non-periodic case.

2 Notations and preliminary results

2.1 Notations

• {ε} denotes a strictly decreasing sequence converging to zero,
• if ζ = (ζi )1≤i≤n and ξ = (ξi )1≤i≤n are two vectors, we set

ζ · ξ =
n∑

i=1

ζiξi and |ξ | =
(

n∑

i=1

ξ2i

) 1
2

,

• for matrix A in Rn×n , we set

|A| = sup{|Aξ | s.t. |ξ | = 1 and ξ ∈ R
n},

• χO denotes the characteristic function of a subset O of R
n ,

• for two real numbers α and β such that 0 < α < β, M (α, β;�) is the set of the matrix fields A =(
Ai j

)

1≤i, j≤n defined on � such that almost everywhere in �, we have

⎧
⎨

⎩

(i) Ai j ∈ L∞ (�) , for i, j = 1, . . . , n,

(ii) α |ξ |2 ≤ Aξ · ξ, for ξ ∈ R
n,

(iii) A−1ξ · ξ ≥ β−1|ξ |2, for ξ ∈ R
n .
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2.2 Preliminary results on the H-convergence for perforated domains

Since we work in the framework of the H0-convergence, we recall in this subsection some preliminary results
about this notion and we give at the end a useful new result on the pointwise estimate of the dierence of two
H0-limits.

We introduce the perforated domain by
�ε = � \ Tε,

where {Tε} is a sequence of compact subsets of � and set

Vε = {
v ∈ H1(�ε) s.t. v = 0 on ∂�

}
.

We denote by ·̃ the extension by 0 from�ε to� and set χε = χ�ε
. In the following ν denotes the outward

normal unit vector to the boundary of �ε.

Definition 2.1 ([5]) The sequence {Tε} is said to be admissible (in �) if
i) every L∞ weak � limit point of {χε} is positive almost everywhere in �,
ii) there exists a positive real C , independent of ε, and a sequence {Pε} of linear extension operators such that
for each ε ⎧

⎨

⎩

Pε ∈ L(Vε, H1
0 (�)),

(Pεv)|�ε
= v, ∀v ∈ Vε,

‖∇ Pεv‖L2(�)n ≤ C ‖∇v‖L2(�ε)n , ∀v ∈ Vε.

We denote by P�
ε the adjoint operator of Pε, which is defined from H−1(�) to V ′

ε (dual of Vε) with P�
ε

given for every g ∈ H−1(�) by

∀v ∈ Vε, 〈P�
ε g, v〉V ′

ε,Vε
= 〈g, Pεv〉H−1(�),H1

0 (�).

Definition 2.2 ([5]) Let Aε ∈ M (α, β;�) and Tε be admissible in �. We say that the pair (Aε, Tε) H0-

converges to the matrix A0 ∈ M
(
α′, β ′;�

)
and we write (Aε, Tε)

H0

⇀ A0 in � if and only if for every
function g of L2(�), and every subsequence of ε (still denoted by ε) such that χε ⇀ χ0 weakly � in L∞(�)
(χ0depending upon the subsequence), the solution vε of

⎧
⎨

⎩

−div (Aε∇vε) = g in �ε,
(Aε∇vε) · ν = 0 on ∂Tε,
vε = 0 on ∂�,

(2.1)

satisfies the weak convergence
{

i) Pε(v
ε) ⇀ v0 weakly in H1

0 (�),

i i) Aε∇̃vε ⇀ A0∇v0 weakly in L2(�)n,
(2.2)

where v0 is the unique solution of the problem
{−div (A0∇v0) = χ0g in �,

v0 = 0 on ∂�.
(2.3)

Remark 2.3 (1) In [5] the definition of H0-convergence is given for f ∈ H−1(�). This latter and Definition
2.2 are equivalent in view of [5, Theorem 1.5].

(2) In the case of Tε = ∅, this definition reduces to the definition of H -convergence.

The main properties of the H0-convergence are given by the results below.

Theorem 2.4 (Compactness [5]) Let Aε ∈ M (α, β;�) and Tε be admissible in �. Then, there exists a

subsequence of {ε} (still denoted by {ε}) and a matrix A0 ∈ M
(

α
C2 , β;�

)
such that {(Aε, Tε)} H0-converges

to A0.

Proposition 2.5 [5] The pair (Aε, Tε) H0-converges to A0 if and only if (t Aε, Tε) H0-converges to t A0.
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Finally, we complete the preliminary results by giving a pointwise estimate of the dierence of two H0-limits.
This result needs the following lemma (which is a directly consequence of [5, Proposition 1.14]):

Lemma 2.6 Assume that (Aε, Tε)
H0

⇀ A0 in � and suppose that for every λ ∈ R
n×n, there exists a sequence

{vε
λ} bounded in H1(�) such that

⎧
⎨

⎩

(i)

{−div (χε Aε∇ (
vε
λ

)
) = P�

ε gε
� in �ε,

with gε
λ is in a compact subset of H−1(�),

(ii) vε
λ ⇀ λx weakly in H1 (�) .

(2.4)

Then, if we set

N ελ = ∇vε
λ, ∀λ ∈ R

n, (2.5)

we will have χε Aε N ε ⇀ A0λ weakly in L2(�)n and N ε is a corrector for the pair (Aε, Tε) in the sense that

lim
ε→0

‖∇vε − N εv0‖L1(�ε)n = 0,

where vε and v0 are solutions of (2.1) and (2.3) respectively.

We are now able to give a pointwise estimate of the dierence of two H0-limits.

Theorem 2.7 Let T 1
ε and T 2

ε be admissible in �, Aε
1 ∈ M(α, β;�) and Aε

2 ∈ M(α′, β ′;�) such that

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(Aε
1, T 1

ε )
H0

⇀ A0
1 in �,

(Aε
2, T 2

ε )
H0

⇀ A0
2 in �,

χε
2 |Aε

1(x) − Aε
2(x)| ≤ hε(x) a.e. in �,

with hε −→ h0 strongly in L1(�).

Assume that

(i) χε
1 − χε

2 → 0 strongly in L1(�),
(ii)

(
Aε
1, T 1

ε

)
admits a corrector satisfying (2.4)–(2.5),

(iii)
(

Aε
2, T 2

ε

)
admits a corrector N ε satisfying (2.4)–(2.5) and

{∃p > 2, such that ‖N ε‖L p(�)n×n ≤ ρ,
with ρ > 0 is independent of ε.

Then,

|A0
1 − A0

2| ≤
√

ββ ′
αα′ h0 a. e. in �. (2.6)

Proof The proof is obtained by using Lemma 2.6 and Proposition 2.5, and by following the same techniques
used to prove a similar result given for the elasticity case in [11, Theorem 28]. ��
Remark 2.8 Assumptions

(i)–(iii) of Theorem 2.7 are reasonable. Indeed,
-(i) is obviously satisfied when T 1

ε = T 2
ε for every ε,

-(ii) is satisfied when there exists a bounded domain O in R
n in which � is relatively compact and for

which Tε is admissible (see the proof of [5, Proposition 1.15]),
-(iii) is satisfied for the classical periodic case and also for the non-periodic case considered in [5].
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3 Statement of compactness results

In this section, we give our compactness results for the H0-convergence of a class of elliptic and uniformly
equicontinuous operators in perforated domains. Firstly, we introduce the set MEqui (α, β, ω;�) in the fol-
lowing definition :

Definition 3.1 For two real numbers α, β such that 0 < α < β and ω a function defined from R
+ to R

+
nondecreasing and continuous at 0, MEqui (α, β, ω;�) denotes the set of all Caratheodory functions

A : (x, d) ∈ (�, R) �−→ A(x, d) ∈ R
n×n

satisfying the following assumptions:

(i) for every d ∈ R, A(d)
.= A(·, d) ∈ M(α, β; �),

(ii) for almost every x in � and for every d, d ′ ∈ R, one has

|A(x, d) − A(x, d ′)| ≤ ω(|d − d ′|).
Our first main result is the following:

Theorem 3.2 Let {Tε}be a sequence admissible in�and {Aε}be a sequence of elements ofMEqui (α, β, ω;�).
Assume that ω(0) = 0 and

{∀d ∈ R, ∃p > 2 s.t. (Aε(d), Tε) admits a corrector which
satisfies (2.4)-(2.5) and is bounded in L p(�) independently of ε.

(3.1)

Then, there exists a subsequence of {ε} (still denoted by {ε}), and an element A0 ∈ MEqui (
α

C2 , β,
β
α
ω;�)

such that

(Aε(d), Tε)
H0

⇀ A0(d) in �, ∀d ∈ R. (3.2)

Moreover, if we suppose that there exists a bounded domain O in R
n in which � is relatively compact and

for which Tε is also admissible, we have

(Aε(v), Tε)
H0

⇀ A0(v) in �, ∀v ∈ L1(�). (3.3)

Remark 3.3 (i) A similar property to (3.2) is given in [14] in the case of fixed domain when the mapping
d → Aε(·, d) is of class Ck (or real analytic) from an open set D of R

p into L∞ (�; L(Rn; R
n)) for every

p ∈ N
∗.

(ii) Theorem 3.2 still holds if d ∈ R
p and v ∈ L1(�)p for every p ∈ N

∗.

As a consequence of Theorem 3.2, we obtained a general homogenization result for some quasilinear
equations in perforated domain beyond periodic setting.

Theorem 3.4 Let {Tε} be a sequence admissible in � and suppose that there exists a bounded domain O
in R

n in which � is relatively compact and for which Tε is also admissible. Let {Aε} be a sequence in
MEqui (α, β, ω;�) which satisfies (3.1). Assume that ω is continuous with ω(d) > 0 ∀d > 0 and

for any r > 0, lim
s→0

∫ r

s

dt

ω(t)
= +∞. (3.4)

Then, there exists subsequence of {ε} (still denoted by {ε}) with χε converges to a some χ0 weakly � in
L∞(�), such that for every function f of L2(�), the (unique) solution uε of the problem:

⎧
⎨

⎩

−div (Aε(uε)∇uε) = f in �ε,
Aε(uε)∇uε · ν = 0 on ∂Tε,
uε = 0 on ∂�,

(3.5)
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satisfies
⎧
⎨

⎩

(i) Pε(uε) ⇀ u0 weakly in H1
0 (�),

(ii) ũε ⇀ χ0u0 weakly in L2(�),

(iii) ˜Aε(uε)∇uε ⇀ A0(u0)∇u0 weakly in L2(�)n,

(3.6)

where u0 is the (unique) solution of
{−div (A0(u0)∇u0) = χ0 f in �,

u0 = 0 on ∂�.
(3.7)

with A0 the family of matrices given by Theorem 3.2.

Remark 3.5 Assumption (3.4) introduced initially in [9] implies that lim
d→0

ω(d) = 0. If this assumption is

replaced by just the fact that lim
d→0

ω(d) = 0, the uniqueness will no longer be guaranteed for the solutions of

(3.5) and (3.7).

4 Proofs of compactness results

We give in this section the proofs of our main results. The proofs are an adaptation of the similar ones given
in [4] for fixed domains.

Proof of Theorem 3.2 We give the proof in two steps.
Step 1. Let us prove that there exists A0 ∈ MEqui (

α
C2 , β,

β
α
ω;�) which satisfies convergence (3.2) up to

subsequence. Using Theorem 2.4 and the diagonal subsequence procedure, we extract a subsequence of {ε}
(still denoted by {ε}) such that, for every d ∈ Q, we will have

(Aε(d), Tε) H0-converges to a limit A0(d) ∈ M
( α

C2 , β;�
)

. (4.1)

Hence, by the fact that Aε ∈ MEqui (α, β, ω;�), Assumption (3.1) and Theorem 2.7, we obtain

|A0(x, d) − A0(x, d ′)| ≤ β

α
ω(|d − d ′|) a.e. x ∈ �, ∀d, d ′ ∈ Q.

Thus, the mapping

A0 : Q −→ L
∞(�)n×n,

d �−→ A0(d)

is uniformly continuous. Hence, it is extensible to a mapping (denoted again by A0) defined and uniformly
continuous on all R (since Q is dense in R), namely

|A0(x, d) − A0(x, d ′)| ≤ β

α
ω(|d − d ′|), a.e. x ∈ �, ∀d, d ′ ∈ R. (4.2)

On the other hand, let d ∈ R and {dm} be a sequence in Q which converges to d as m → ∞. Thanks to
Theorem 2.4, there exists a subsequence of {ε} (still denoted by {ε}) such that

(Aε(d), Tε) H0-converges to some A ∈ M
( α

C2 , β;�
)

. (4.3)

Since, for every ε > 0, we have

|Aε(x, d) − Aε(x, dm)| ≤ ω(|d − dm |), a.e. x ∈ �,

then from this, (4.1), (4.3), Assumption (3.1) and Theorem 2.7, it comes

|A(x) − A0(x, dm)| ≤ β

α
ω(|d − dm |), a.e. x ∈ �.

123



Arab. J. Math. (2021) 10:91–101 97

This, with (4.2) and by the triangle inequality, we deduce that for almost every x in �

|A(x) − A0(x, d)| ≤ |A(x) − A0(x, dm)| + |A0(x, d) − A0(x, dm)|
≤ 2

β

α
ω(|d − dm |).

Using the continuity of ω at 0, passing to the limit in this inequality as m → ∞, we find

A(x) = A0(x, d), a.e. x ∈ �.

Step 2. We now show property (3.3). Let v ∈ L1(�). Then, Aε(v(·)) .= Aε(·, v(·)) belongs toM(α, β;�).
Hence, taking into account Theorem 2.4, there exists B0 ∈ M( α

C2 , β;�) such that to up a subsequence, we
have

(Aε(v), Tε)
H0

⇀ B0. (4.4)

On the other hand, since v ∈ L1(�), there exists a sequence of step functions {vm} such that vm → v
strongly in L1(�), and vm is of the form

vm =
i=k∑

i=1

lm
i χYi

, a.e. in �, (4.5)

where {Yi }1≤i≤k is a family of disjoint rectangles of R
n included in � and lm

i real constants. Set

⎧
⎪⎨

⎪⎩

Y0 = �\ ∪
1≤i≤k

Yi ,

χi = χYi
χ0 = χY0

.

We have {∀i ∈ {1, ..., k}, |Aε(x, v(x)) − Aε(x, lm
i )| ≤ ω(|v(x) − lm

i |) a.e. in�,

|Aε(x, v(x)) − Aε(x, 0)| ≤ ω(|v(x) − 0|) a.e. in�,
(4.6)

and (3.2) gives ⎧
⎨

⎩

Aε(lm
i , Tε)

H0

⇀ A0(lm
i ),

Aε((0), Tε)
H0

⇀ A0(0).
(4.7)

Hence, using (4.4), (4.6), (4.7), Assumption (3.1), point (ii) of Remark 2.8 and by Theorem 2.7, we obtain
{

∀i ∈ {1, ..., k}, |B0(x) − A0(x, lm
i )| ≤ β

α
ω(|v(x) − lm

i |) a.e. in�,

|B0(x) − A0(x, 0)| ≤ β
α

ω(|v(x) − 0|) a.e. in �,

which implies that for almost every x in �

|B0(x) − A0(x, vm)| = |B0(x) −
i=k∑

i=1

A0(x, lm
i )χi (x) + A0(x, 0)χ0(x)|

≤
i=k∑

i=1

χi (x)
β

α
ω(|v(x) − lm

i |) + χ0(x)
β

α
ω(|v(x) − 0|)

= β

α
ω(|v(x) − vm(x)|).

Moreover, thanks to (4.2), we have

|A0(x, v(x)) − A0(x, vm(x))| ≤ β

α
ω(|v(x) − vm(x)|) a.e. in �.
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Hence, from this two latter inequalities, it follows from triangle inequality that

|B0(x) − A0(x, v(x))| ≤ |B0(x) − A0(x, vm(x))| + |A0(x, vm(x)) − A0(x, v(x))|
≤ 2

β

α
ω(|v(x) − vm(x)|) a.e. in �.

Since ω is continuous at 0, passing to the limit in this inequality when m → ∞, one obtains

B0(x) = A0(x, v(x)) a.e. in �,

which, with (4.4), gives ( 3.3). ��
Proof of Theorem 3.4 First, note that problem (3.5) (respect. (3.7) has a unique solution in H1

0 (�ε) (respect.
H1
0 (�)) thanks to [6].
Second, taking uε as a test function in the variational formulation of (3.5), we obtain

‖Pεuε‖H1
0 (�) ≤ C‖uε‖H1

0 (�ε)
≤ C

α
‖ f ‖L2(�ε).

Hence, we can extract a subsequence of {ε} (still denoted by {ε}), such that

Pεuε ⇀ u0 weakly in H1
0 (�),

hence
Pεuε → u0 strongly in L2(�).

This implies, for every m, that

Pεuε − vm → u0 − vm strongly in L2(�),

where {vm} is a sequence of functions introduced in (4.5) such that vm → u0 strongly in L1(R). So, thanks
to continuity of ω, we get

ω(|Pεuε − vm |) → ω(|u0 − vm |) strongly in L1(�). (4.8)

On the other hand, since Aε(Pεuε)
.= Aε(·, Pεuε(·)) ∈ M(α, β;�), there exists a subsequence of {ε} (still

denoted by {ε}) and C0 ∈ M( α
C2 , β; �), such that

(Aε(Pεuε), Tε)
H0

⇀ C0, (4.9)

but
∀ε > 0, |Aε(x, Pεuε(x)) − Aε(x, vm(x))| ≤ ω(|Pεuε(x) − vm(x)|), a.e. in �,

hence by this last inequality, (4.8), (4.9), Theorem 3.2, Assumption (3.1), point (ii) of Remark 2.8 and Theorem
2.7, it comes

|C0(x) − A0(x, vm(x))| ≤ β

α
ω(|u0(x) − vm(x)|), a.e. in �.

This gives

|C0(x) − A0(x, u0(x))| ≤ |C0(x) − A0(x, vm(x))| + |A0(x, vm(x)) − A0(x, u0(x))|
≤ 2

β

α
ω(|u0(x) − vm(x)|) a.e. in �.

Since lim
d→0

ω(d) = 0, passing to the limit in this inequality when m → ∞, we obtain

C0(x) = A0(x, u0(x)) a.e. in �.

Then, from this and (4.9), we find

(Aε(Pεuε), Tε)
H0

⇀ A0(·, u0(·)),

123



Arab. J. Math. (2021) 10:91–101 99

which implies by the definition of the H0-convergence and the uniqueness of the solutions of (3.5) and (3.7)
that {

Pεuε ⇀ u0 weakly in H1
0 (�),

˜Aε(uε)∇uε ⇀ A0(u0)∇u0 weakly in L2(�)n,

where u0 is the solution of (3.7), which completes proof of (i) and (iii) of (3.6).
Finally, we deduce (3.6)ii) from the fact that

χε ⇀ χ0 weakly � in L∞(�)

and

Pεuε → u0 strongly in L2(�).

��

5 Applications

As an application of our results, we consider the classical periodic case and a non-periodic case.
Let θ a diffeomorphism of class C2 from R

n onto R
n and introduce the holes Tε defined by

{
Tε = ∪

k∈Zn

{
Sk
ε s.t. Sk

ε ⊂ �, dist(θ(kε), ∂�) > 2ε
}
,

with Sk
ε = {x ∈ R

n s.t. |x − θ(kε)| ≤ δε} , k ∈ Z
n,

where δ ∈]0, 1]. Let Y = [− 1
2 ,

1
2 ]n and set

Aε(x, d)) = A

(
θ−1(x)

ε

)

,

with A ∈ MEqui (α, β, ω; Y ). Assume that ω is continous with ω(d) > 0 ∀d > 0 and

for any r > 0, lim
s→0

∫ r

s

dt

ω(t)
= +∞.

In what follows, the spherical geometry of the holes can be generalized to the case where a regular boundary
hole with a finite number of connected components replace a ball.

5.1 Classical periodic case

Take here θ = I dRn and δ = 1
3 . Then, the pair (Aε(·, ·), Tε) satisfies all assumptions of Theorem 3.4 and it is

well-known that in this case (see [10])
{

∀d ∈ R, (Aε(·, d), Tε)
H0

⇀ A0(d),

χε ⇀
|Y ∗|
|Y | weakly � in L∞(�),

with A0(d) is independent of x and given by

∀λ ∈ R
n, A0(d)λ = 1

|Y |
∫

Y �

A(y, d)∇yvλ(y, d)dy, (5.1)

where

Y ∗ = Y\T, T =
{

x ∈ R
n s.t. |x | ≤ 1

3

}

,
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and for all λ ∈ R
n , y �−→ vλ(y, d) be the solution of

⎧
⎨

⎩

−div (A(y, d)∇vλ(y, d))) = 0 in Y �,
(A(y, d)∇vλ(y, d)∇uε · ν = 0 on ∂T,
vλ(y, d) − λ · y is Y − periodic with mean value 0.

In this framework, we have the following result about the convergence of problem (3.5):

Proposition 5.1 For every f ∈ L2(�), the solution uε of problem (3.5) satisfies

⎧
⎨

⎩

(i) Pε(uε) ⇀ u0 weakly in H1
0 (�),

(ii) ũε ⇀ χ0u0 weakly in L2(�),

(iii) ˜Aε(uε)∇uε ⇀ A0(u0)∇u0 weakly in L2(�)n,

where u0 is the solution of
{−div (A0(u0)∇u0) = χ0 f in �,

u0 = 0 on ∂�.

and where A0 defined by (5.1) belongs to MEqui (
α

C2 , β,
β
α
ω;�).

Remark 5.2 In the geometric framework of this example, Proposition 5.1 coincides with a result given in [7]
by using the periodic unfolding, when the nonlinear Robin boundary condition on the holes reduces to the
homogeneous Neumann condition.

5.2 Non-periodic case

Consider here the non-periodic perforated domain introduced in [5, Section 3]when studying the corresponding
linear case. We suppose that θ−1 has a Lipschitz constant κ−1 with κ > 2 and take δ = 1. In this case, from
[5, Sections 3-4], we deduce easily that for every d ∈ R, the pair (Aε, Tε) satisfies all assumptions of Theorem
3.4 and {

∀d ∈ R, (Aε(·, d), Tε))
H0

⇀ A0(·, d) in �,

χε(·) ⇀
|Y ∗(·)|
|Y (·)| weakly � in L∞(�),

with
A0(x, d) = B0

x (d),

where B0
x (d) is defined by

∀λ ∈ R
n, B0

x (d)λ = 1

|Y (x)|
∫

Y (x)�

B(x, y, d)∇yvλ(x, y, d)dy, (5.2)

and where we have
⎧
⎪⎪⎨

⎪⎪⎩

B(x, y, d) = A
([∇θ(θ−1(x))

]−1
y, d

)
,

Y (x) = {∇θ(θ−1(x))z s.t. z ∈ Y },
T1 = {z ∈ R

n s.t. |z| ≤ 1} ,
Y (x)� = Y (x)\T1

and for all λ ∈ R
n , y �−→ vλ(x, y, d) be the solution of

⎧
⎨

⎩

−div (B(x, y, d)∇vλ(x, y, d))) = 0 in Y (x)�,
(B(x, y, d)∇vλ(x, y, d) · ν = 0 on ∂T1,
vλ(x, y, d) − λ · y is Y (x) − periodic with mean value 0.

In this framework, we have the following result about the convergence of problem (3.5):
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Proposition 5.3 For every f ∈ L2(�), the solution uε of problem (3.5) satisfies
⎧
⎨

⎩

(i) Pε(uε) ⇀ u0 weakly in H1
0 (�),

(ii) ũε ⇀ χ0u0 weakly in L2(�),

(iii) ˜Aε(uε)∇uε ⇀ B0
x (u0)∇u0 weakly in L2(�)n,

where u0 is the solution of
{

−div (B0
x (u0(x))∇u0(x)) = |Y ∗(x)|

|Y (x)| f (x) in �,

u0(x) = 0 on ∂�

and where (x, d) �→ B0
x (d) defined by (5.2) belongs to MEqui (

α
C2 , β,

β
α
ω;�).
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