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Abstract We shall consider measure algebras associated to locally compact groups, bounded operators
between them and properties of the underlying measures. We take into account the second dual of measure
algebras provided with the Arens products together with tools of Gélfand theory.
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1 Introduction

Let G denote a locally compact Hausdorff group G and let E = C0(G) be the space of continuous complex
valued functions which converge to zero at infinity. As usual, C00(G) is the subspace of E of continuous
functions with compact support. Endowed with the natural vector space structure, the uniform norm and the
usual conjugation E becomes an abelian B∗-algebra. Its dual space E∗ is realized as the spaceM(G) of complex
regular Borel measures on G. This result by Kakutani generalizes a well known landmark by Riesz [8,9].

If m, n ∈ M(G) and f ∈ E let 〈 f,m ∗ n〉 = ∫
G

∫
G f (ab)dm(a)dn(b). Then m ∗ n ∈ M(G) and with

this product M(G) becomes an associative complex Banach algebra. Given a Banach space B let us write
�B : B ↪→ B∗∗ to the usual isometric immersion of B into its double dual space B∗∗. In particular, �E (E) is a
closed submodule of M(G)∗. For, let m ∈ M(G), f ∈ E and let us see that m�E ( f ) ∈ �E (E). To this end let
{ni }i∈I be a net in M(G) so that w∗ − limi∈I ni = 0M(G). By Fubini’s theorem for each i ∈ I we can write

〈ni ,m�E ( f )〉 = 〈ni ∗ m, �E ( f )〉 = 〈 f, ni ∗ m〉 =
∫

G

∫

G
f (ab)dm(b)dni (a).

However, the functiona ∈ G → ∫
G f (ab)dm(b)belongs to E (cf. [7], Lemma19.5). Thus limi∈I 〈ni ,m�E ( f )〉

= 0, i.e., m�E ( f ) is w∗-continuous and the claim holds. Furthermore, �E (E)∗ ≈ M(G) and M(G) becomes
a dual Banach algebra. Indeed, a little modification of the above reasoning shows that the product of M(G) is
separately w∗-continuous.

Since E is an abelian B∗-algebra it is Arens regular, i.e., the first � and second ♦ Arens products on E∗∗
coincide [1,12]. Here, given �,� ∈ E∗∗ by Goldstine’s theorem there are bounded nets { fi }i∈I , {g j } j∈J in
E so that � = w∗ − limi∈I �E ( fi ), � = w∗ − lim j∈J �E (g j ) and we are writting

��� = w∗ − lim
i∈I limj∈J

�E ( fi g j ), �♦� = w∗ − lim
j∈J

lim
i∈I �E ( fi g j ).

Thus, (E∗∗, �) becomes an abelian B∗-algebra as E is abelian and regular (cf. [2], Th. 7.1). It is unitary
since E has a bounded approximate identity (cf. [11], Lemma 1.1). Let G̃ be the spectrum or structure space
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of (E∗∗, �) and let γE∗∗ : E∗∗ → C(G̃) be the Gélfand transform of (E∗∗, �). Then G̃ becomes a w∗-
compact subset of the unit sphere of E∗∗∗ = M(G)∗∗ and γE∗∗ is an isometric isomorphism of B∗-algebras.
So γ ∗

E∗∗ : M(G̃) → M(G)∗∗ establishes an isometric isomorphism of Banach spaces. So there is induced
a Banach algebra structure in M(G̃) with respect to which γ ∗

E∗∗ becomes a Banach algebra homomorphism:
given μ̃, ν̃ ∈ M(G̃) it suffices to write

μ̃ ∗ ν̃ = (γ ∗
E∗∗)−1(γ ∗

E∗∗(μ̃)�γ ∗
E∗∗ (̃ν)).

Our task in this article is to explore connections between M(G) and M(G̃). In Sect. 2 we shall introduce in
Theorem 2.1 bilateral Banach algebra homomorphisms between them. We shall enumerate various properties
of these mappings, their connections and their behavior on measures (preservation of order or incidence on the
absolute value of measures). In Theorem 2.2 we shall relate M(G)∗, by means of an isometric isomorphism
of unital abelian B∗-algebras, with a subalgebra of operators on M(G) in the sense of [13–15]. In Sect. 3 we
shall consider the support problem, that is to say in what extent we can relate the support of a given measure
and the support of its image under the previous operators.

Notation 1.1 Let δ : G → M(G), δ(a)( f ) = f (a) and δ̃ : G̃ → M(G̃), δ̃(M)( f̃ ) = f̃ (M), where
a ∈ G, M ∈ G̃, f ∈ E and f̃ ∈ C(G̃). Plainly δ and δ̃ are well defined (τG, w∗) and (τG̃, w∗) continuous
functions respectively. The function h : G → G̃ so that h = �M(G) ◦ δ is well defined although it is not
continuous. Let Cb(G) be the Banach space of complex bounded continuous functions on G endowed with the
uniform norm.

We shall denoteB(G), K(G) andBb(G) to the classes of Borel, of compact subsets and of bounded Borel
functions of G respectively. BesidesBloc(G) will be the class of locally Borel subsets of G, i.e., given S ⊆ G
we have S ∈ Bloc(G) if and only if S ∩ K ∈ B(G) for all K ∈ K(G). Given a positive measure m ∈ M(G)+
and S ∈ Bloc(G) we say that S is an m-zero set if for any K ∈ K(G) we have m(S ∩ K ) = 0. If m ∈ M(G)
and B ∈ B(G) then

| m |= sup

{
m∑

n=1

| m(Bn) |: m ∈ N and {B1, . . . , Bm} ∈ P f db(B)

}

,

where P f db(B) is the class of finite disjoint borelian partitions of B. As it is known, ‖ m ‖=| m | (G).
Given m, n ∈ M(G) we shall write m << n or m ⊥ n according as m is n-continuous or m and n are

mutually singular respectively. For other notation or terminology the reader can see [6].

2 Some relations between M(G) and M( ˜G)

Theorem 2.1 The following assertions hold:

(1) The mapping A : M(G̃) → M(G), A(μ̃)( f ) = ∫
G̃ M(�E ( f ))dμ̃(M) is a well defined contractive

homomorphism of Banach algebras, where μ̃ ∈ M(G̃) and f ∈ E .
(2) A : MR(G̃)+ → MR(G)+ and | A(μ̃) |≤ A(| μ̃ |) for all μ̃ ∈ MR(G̃).
(3) Further, | A(μ̃) |≤ A(| μ̃ |) for all μ̃ ∈ M(G̃).
(4) The mapping B : M(G) → M(G̃), B(m)( f̃ ) = 〈m, γ −1

E∗∗( f̃ )〉, with m ∈ M(G) and f̃ ∈ C(G̃), is a well
defined isometric homomorphism of Banach algebras.

(5) A ◦ B =IdM(G).
(6) The operator 
 = �E∗ ◦ �∗

E ∈ B(M(G)∗∗) is a *-algebra homomorphism with respect to both Arens
products.

(7) R(
) = �M(G)(M(G)) and M(G)∗∗ is the direct product of the closed subalgebra �M(G)(M(G)) and
the ideal �E (E)⊥, or

M(G)∗∗ = �M(G)(M(G)) � �E (E)⊥.

Consequently,

M(G̃) = R(B) � (γ ∗
E∗∗)−1[�E (E)⊥]

= R(B) � ker(A).
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(8) B ◦ A = (γ ∗
E∗∗)−1 ◦ 
 ◦ γ ∗

E∗∗

Proof (1) As A = (γE∗∗ ◦ �E )∗ then A is a weak-* to weak-* continuous linear operator. Let μ̃, ν̃ ∈ M(G̃).
Since γ ∗

E∗∗ is a weak-* to weak-* isomorphism between M(G̃) and M(G)∗∗ by Goldstine’s theorem there
are bounded nets {mi }i∈I , {n j } j∈J in M(G) so that

μ̃ = w∗ − lim
i∈I (γ

∗
E∗∗)−1(�M(G)(mi )),

ν̃ = w∗ − lim
j∈J

(γ ∗
E∗∗)−1(�M(G))(n j )).

We observe that A ◦ (γ ∗
E∗∗)−1 = �∗

E and �∗
E ◦ �M(G) = I dM(G). So, given f ∈ E we can write

〈 f, A(μ̃) ∗ A(̃ν)〉 = lim
i∈I 〈 f, �

∗
E (�M(G)(mi )) ∗ A(̃ν)〉

= lim
i∈I limj∈J

〈 f,mi ∗ �∗
E (�M(G)(n j ))〉

= lim
i∈I limj∈J

〈 f,mi ∗ n j 〉
= 〈�E ( f ), γ ∗

E∗∗(μ̃)�γ ∗
E∗∗ (̃ν)〉

= 〈 f, (A ◦ (γ ∗
E∗∗)−1)(γ ∗

E∗∗(μ̃)�γ ∗
E∗∗ (̃ν))

= 〈 f, A(μ̃ ∗ ν̃)〉.

(2) Let μ̃ ∈ MR(G̃)+ and f ∈ E . Then

σ(�E ( f ), E∗∗) ⊆ σ( f, E) (2.1)

and A(μ̃)( f ) = ∫
G̃ γE∗∗(�E ( f ))dμ̃. If f ∈ E+ its spectrum is contained in [0, +∞). Besides, theGélfand

transform of �E ( f ) maps onto its spectrum and so A(μ̃)( f ) ≥ 0.
More generally, given μ̃ ∈ MR(G̃) by be the Jordan decomposition of μ̃ we have μ̃ = μ̃+ − μ̃−.
Consequently A(μ̃) = A(μ̃+) − A(μ̃−) and so A(μ̃)± ≤ A(μ̃±) (cf. [10], p. 135). Thus

| A(μ̃) |= A(μ̃)+ + A(μ̃)− ≤ A(μ̃+) + A(μ̃−) = A(| μ̃ |).
(3) Let μ̃ ∈ M(G̃) and f ∈ E+ . Then

| A(μ̃) | ( f ) = sup{| A(μ̃)(g) |: g ∈ E such that | g |≤ f } (2.2)

(cf. [7], Th. 14.5). So, given g ∈ E so that | g |≤ f we see that

| A(μ̃)(g) |=|
∫

G̃
γE∗∗(�E (g))dμ̃ |≤

∫

G̃
| γE∗∗(�E (g)) | d | μ̃ | . (2.3)

Besides

| γE∗∗(�E (g)) |≤ γE∗∗(�E (| g |)) in C(G̃). (2.4)

For, given M ∈ G̃ we obtain that

| γE∗∗(�E (g)) |2 (M) = γE∗∗(�E (g))(M)γE∗∗(�E (g))(M)−

= M(�E (g))M(�E (g))−

= M(�E (g))M(�E (g)∗)
= M(�E (g)��E (g))

= M(�E (| g |2))
= M(�E (| g |))2
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and (2.4) follows. Moreover, by (2.1) and (2.3) we get

| A(μ̃)(g) | ≤
∫

G̃
γE∗∗(�E (| g |))d | μ̃ |

≤
∫

G̃
γE∗∗(�E ( f ))d | μ̃ |

= A(| μ̃ |)( f )
and the assertion follows by (2.2).

(4) It is immediate because B = (γ −1
E∗∗)∗ ◦ �E∗ , i.e., B is realized as composition of isometries.

(5) It is straightforward.
(6) The linear operator�∗

E : M(G)∗∗ → M(G) is weak-* toweak-* continuous. Besides the convolution prod-
uct of M(G) is separately w∗-continuous and �∗

E becomes a Banach algebra homomorphism with respect
to both Arens products on M(G)∗∗. The assertion fo-llows because �E∗ is an algebra homomorphism
between M(G) and M(G)∗∗.

(7) It is easy to see that
 is a projection, ker(
) = �E (E)⊥,R(
) is closed and it consists ofw∗-continuous
linear functionals. Besides 
 |�M(G)(M(G))

= Id�M(G)(M(G)) and the first assertion holds.
If M ∈ M(G)∗∗ then

M = (M − 
(M)) + 
(M)

and M − 
(M) ∈ �E (E)⊥, i.e., M(G)∗∗ = �E (E)⊥ + R(
).
Let N ∈ M(G)∗∗ so that 
(N ) ∈ �E (E)⊥. For all f ∈ E we have

0 = 〈�E ( f ), 
(N )〉 = 〈�E ( f ), �E∗(�∗
E (N ))〉 = 〈�E ( f ), N 〉,

i.e., N ∈ �E (E)⊥. Consequently
(N ) = 0M(G)∗∗ and we can write M(G)∗∗ = �E (E)⊥
⊕

R(
). Since

 is an algebra homomorphism the claim follows.

(8) It is immediate.
��

Theorem 2.2 LetRG be the commutator inB[M(G)]of the subalgebra generated by the set {PB : B ∈ B(G)},
where PB(m) = IBdm for each m ∈ M(G) and B ∈ B(G).

(1) RG is an abelian B∗-subalgebra of B[M(G)].
(2) Considering M(G)∗ as the second dual space of E endowed with the first or second Arens product

the following mapping establishes an isometric isomorphism of B∗-algebras where � ∈ M(G)∗ and
B ∈ B(G).

Proof (1) Given T ∈ B[M(G)] let T ∗(m) = T (m∗)∗ for all m ∈ M(G). It is easily seen that T ∗ ∈ B[M(G)]
and B[M(G)] becomes a Banach *-algebra. Indeed, RG is a Banach *-subalgebra of B[M(G)]. For, let
B ∈ B(G), m ∈ M(G), f ∈ E . Then

〈 f, P∗
B(m)〉 = 〈 f ∗, IBm∗〉− =

(∫

B
f ∗dm∗

)−
=

∫

B
f dm = 〈 f, PB(m)〉

i.e., P∗
B = PB . Consequently, given T ∈ RG we see that

T ∗ ◦ PB = (T ◦ P∗
B)∗ = (T ◦ PB)∗ = (PB ◦ T )∗ = P∗

B ◦ T ∗ = PB ◦ T ∗.

By linearity we conclude that T ∗ ∈ RG . The abelianity of RG is consequence of [13], Th. 1.5.
(2) It is straightforward to see that � ∈ B[M(G)∗,RG]. If � ∈ M(G) we have

‖ �(�) ‖ = sup
‖m‖=1

‖ �(�)(m) ‖

= sup
‖m‖=1

sup

{
∑

B∈π

|〈IBdm,�〉| : π ∈ P
}
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where P denote the class of finite disjoint borelian partitions of G. By linearity, given π ∈ P and
m ∈ [M(G)]1 there is hπ ∈ [Bb(G)]1 so that

∑

B∈π

|〈IBdm,�〉| = 〈hπdm,�〉.

As ‖ hπdm ‖≤ 1 we see that ‖ �(�) ‖≤‖ � ‖. Now, if ε > 0 there exists n ∈ [M(G)]1 so that

‖ � ‖ −ε < |〈n, �〉| = |�(�)(n)(G)| ≤‖ �(�)(n) ‖
and we showed that � is isometric.
Now we prove that � is onto. For, given T ∈ RG let � : M(G) → C so that 〈p, �〉 = T (p)(G) if
p ∈ M(G). Clearly, � ∈ M(G)∗ and given B ∈ B(G) and p ∈ M(G) we have

�(�)(p)(B) = 〈IBdp, �〉 = T (PB(p))(G) = PB(T (p))(G) = T (p)(B)

and so �(�) = T .
Now, given � ∈ M(G)∗, n ∈ M(G) then �(�)(n) = n� in M(G). For, let � = w∗ − lims∈S �E (gs)

for some bounded net {gs}s∈S in E . Let us observe that given a simple Borel function f = ∑n
j=1 z j IB j we

can write

〈f, �(�)(n)〉 =
n∑

j=1

z j 〈IB j , �(�)(n)〉 =
n∑

j=1

z j�(�)(n)(Bj )

=
n∑

j=1

z j�(IB j n) = lim
s∈S

n∑

j=1

z j

∫

Bj

gsdn = lim
s∈S

∫

G
fgsdn.

Consequently, let f ∈ E . It can be represented as the uniform limit of a bounded sequence of simple
Borel functions {fk}k∈N (cf. [6], §20. Th. B). By Lebesgue dominated convergence theorem and the Arens
regularity of E , we have

〈 f, �(�)(n)〉 =
∫

G
f d�(�)(n)

= lim
k→∞

∫

G
fkd�(�)(n)

= lim
k→∞ lim

s∈S

∫

G
fkgsdn

= 〈n, �E ( f )��〉
= 〈n, �E ( f )♦�〉
= lim

s∈S lim
k→∞

∫

G
fkgsdn

= lim
s∈S〈gs, f n〉

= 〈 f n, �〉
= 〈 f, n�〉

and the claim holds.
Let �1,�2 ∈ M(G)∗, p ∈ M(G), g ∈ E . We have

〈g, �(�1��2)(p)〉 = 〈g, p(�1��2)〉
= 〈gp, �1��2〉
= 〈gp, �1♦�2〉
= 〈(gp)�1, �2〉
= 〈g(p�1), �2〉
= 〈g, (p�1)�2〉
= 〈g, �(�2)[�(φ1)(p)]〉
= 〈g, (�(�2) ◦ �(φ1))(p)〉,
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i.e., �(�1��2) = �(�2) ◦ �(φ1). Since E∗∗ is abelian we conclude that � is a homomorphism.
With the above notation, let � = w∗ − lims∈S �E (gs) in M(G)∗. Then �∗ = w∗ − lims∈S �E (g∗

s ) and
given m ∈ M(G) and f ∈ E we have

〈 f, �(�∗)(m)〉 = lim
s∈S

∫

G
f g∗

s dm

= lim
s∈S〈 f g

∗
s ,m〉

= lim
s∈S〈 f

∗gs,m∗〉−

= lim
s∈S

(∫

G
f ∗gsdm∗

)−

= 〈 f ∗, �(�)(m∗)〉−
= 〈 f, �(�)(m∗)∗〉
= 〈 f, �(�)∗(m)〉

and � is a *-homomorphism. ��
Definition 2.3 A closed subspace L of M(G) is called an L-space if whenever μ is in L and ν isμ-continuous
then ν ∈ L.

Definition 2.4 Let X1, X2 be compact spaces. A bounded linear operator � between M(X1) and M(X2) is
called L-homomorphism if the following three conditions hold:

(a) If m ∈ M(X1) then �(m)(X2) = m(X1).
(b) �[M(X1)

+] ⊆ M(X2)
+.

(c) If m1 ∈ M(X1)
+, n ∈ M(X2) and 0 ≤ n ≤ �(m1) then there exists m2 ∈ M(X1) so that 0 ≤ m2 ≤ m1

and �(m2) = n.

Theorem 2.5 With the above notation the following assertions hold:

(1) Let XG be the structure space of RG. There are an isometric isomorphism of Banach -∗-algebras � :
M(G) → M(XG) and an isometric surjective isomorphism of C∗-algebras � : C(G̃) → C(XG) so that
B = �∗ ◦ � and γE∗∗ = �−1 ◦ γRG ◦ �, where γRG denotes the Gélfand transform of RG.

(2) (cf. [13], Th. 1.8) Given F ∈ C(XG) and m ∈ M(G) then

�
−1[γ −1

RG
(F)](m) =

∫

XG

Fd�(m) = γ −1
RG

(F)(m)(G).

(3) �∗ is an L-homomorphism.

Proof (1) Let � : C(G̃) → C(XG) so that � = γRG ◦ � ◦ γ −1
E∗∗ . Besides, let � : M(G) → M(XG) so that

〈F, �(m)〉 = 〈m, �
−1(γ −1

RG
)(F)〉 if m ∈ M(G) and F ∈ C(XG).

Plainly � is an isometric surjective isomorphism of C∗-algebras and � is a linear isometry. Given f̃ ∈
C (̃G) and m ∈ M(G) we obtain

〈 f̃ , (�∗ ◦ �)(m)〉 = 〈�( f̃ ), �(m)〉
= 〈m, (�−1 ◦ γ −1

RG
◦ �)( f̃ 〉)

= 〈m, γ −1
E∗∗( f̃ 〉)

= 〈 f̃ , B(m)〉
and so B = �∗ ◦ �.

(2) It is immediate.
(3) Notice that � is a *-homomorphism between C(G̃) and C(XG) and �(1C(G̃)) = 1C(XG ). Consequently

�∗ becomes an L-homomorphism (cf. [13], Th. 1.14). ��
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Remark 2.6 The image of the isometric -*-isomorphism � between M(G) and M(XG) is an L-subspace of
M(XG). Moreover, it preserves the absolute value of measures and the properties of continuity and singularity.
In other words, let m, n ∈ M(G). Then | �(m) |= �(| m |), if m << n then �(m) << �(n) and if
m ⊥ n then �(m) ⊥ �(n) (cf. [13], Th. 1.10). As we saw before B factors as the composition of � and
an L-homomorphism �∗ between M(XG) and M(G̃). We cannot go any further in connection with similar
properties of B, even when the compact spaces XG and G̃ are homeo-morphic and when �∗ defines an
L-homomorphism.

3 The support problem

Let us recall that the support supp(m) of a measure m on G is the complement of the union of all m-zero
open subsets of G. It is clear that the support of m has empty intersection with an open set O if and only if
m(O) = 0 (cf. [7], Th. 11.25). If m ∈ M(G) we write supp(m) =supp(|m|). In the general case, an element
a ∈ G belongs to the support of a measure m if and only if any of the following equivalent conditions hold: (i)
each open neighborhood of a has |m|-positive measure. (ii)

∫
G | f |d|m| > 0 if f ∈ C00(G) and f (a) �= 0. (iii)

For each open neighborhood U of a there is g ∈ E with compact support contained in U so that
∫
G gdm �= 0

(cf. [4], Ch. 13, §19).
Provided with the uniform norm Bb(G) is a B*-algebra. Let us write � : Bb(G) → M(G)∗ so that

�(F)(m) = ∫
G Fdm if F ∈ Bb(G) andm ∈ M(G). Hence � defines an isometric immersion of B*-algebras.

Given a, b ∈ G we see that

〈�(I{b}), h(a)〉 = �(I{b})(δ(a)) = δa,b.

Thus {M ∈ G̃ :| 〈�(I{a}), M − h(a) |< 1} ∩ h(G) = {h(a)}, i.e., h(G) is a discrete subset of h(G). Moreover,
h(G) consists of the whole set of isolated points of G̃ (cf. [3], Corollary 4.2).

Proposition 3.1 Let m ∈ M(G), M ∈ G̃. Then M /∈ supp(B(m)) if and only if there exists � ∈ M(G)∗ so
that

〈�, M〉 = 1 and supp(B(m)) ∩ supp(γM(G)∗(�)) = ∅. (3.1)

Proof Let M ∈ G̃−supp(B(m)). Since G̃ is compact and separate there is an open neighborhood Ũ of M in G̃
so that Ũ−w∗ ⊆ G̃− supp(B(m)) (cf. [10], Th. 2.7). Further, there exists a continuous function f̃ : G̃ → [0, 1]
so that f̃ (M) = 1 and supp( f̃ ) ⊆ Ũ . Then, γ −1

E∗∗( f̃ ) ∈ M(G)∗ and

〈γ −1
E∗∗( f̃ ), M〉 = f̃ (M) = 1.

On the other hand, let � ∈ M(G)∗ that satisfies (3.1). The complex function g̃ = γE∗∗(�) is continuous on G̃
and

g̃(M) = 〈�, M〉 = 1.

Thus M ∈ {g̃ �= 0} and {g̃ �= 0} is an open neighborhood of M whose w∗- closure does not intersect the
support of B(m). Moreover, given h̃ ∈ C(G̃) so that supp(̃h) ⊆ {g̃ �= 0} we have

B(m)(̃h) =
∫

G̃
h̃dB(m) = 0,

i.e., M /∈ supp(B(m)). ��
Theorem 3.2 The following assertions hold:

(1) Let μ̃ ∈ M(G̃). There are unique m ∈ M(G) and P ∈ �E (E)⊥ so that

μ̃ = (γ ∗
E∗∗)−1(�M(G)(m)) + (γ ∗

E∗∗)−1(P)

and supp(A(μ̃)) = supp(m).
(2) Let m ∈ M(G) − {0}. Then h−1(supp(B(m)) ⊆ supp(m).
(3) Furthermore, h−1(supp(B(m)) = {b ∈ G : m({b}) �= 0}.
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Proof (1) From Theorem 2.1(2.1) we see that

M(G̃) = (γ ∗
E∗∗)−1(�M(G)(M(G)) ⊕ (γ ∗

E∗∗)−1(�E (E)⊥)

and the first assertion follows. Given P ∈ �E (E)⊥ and f ∈ E we can write

A((γ ∗
E∗∗)−1(P))( f ) = (γE∗∗ ◦ �E )∗((γ ∗

E∗∗)−1(P))( f )

= κ∗
E (P)( f )

= 〈κE ( f ), P〉
= 0,

i.e., (γ ∗
E∗∗)−1(�E (E)⊥) ⊆ ker(A). Besides, if m ∈ (G) we have that

A((γ ∗
E∗∗)−1(�M(G)(m))( f ) = (γE∗∗ ◦ �E )∗((γ ∗

E∗∗)−1(�M(G)(m))( f )

= �∗
E (�M(G)(m))( f )

= 〈�E ( f ), �M(G)(m)〉
= 〈 f,m〉,

i.e., A((γ ∗
E∗∗)−1(�M(G)(m)) = m and the claim holds.

(2) Given m ∈ M(G) and a ∈ h−1(supp(B(m)) let �a = γ −1
E∗∗(I{h(a)}).

By Goldstine’s theorem there is a bounded net { fi }i∈I in E so that �a = w∗ − limi∈I �E ( fi ). We see that

1 = I{h(a)}(h(a)) = γE∗∗(�a)(h(a)) = h(a)(�a) = lim
i∈I fi (a).

Besides, there exists ε > 0 so that

lim
i∈I

∣
∣
∣

∫

G
fidm

∣
∣
∣ = |〈m, �a〉| = |B(m)(I{h(a)})| > 2ε

because h(a) ∈ supp(B(m)). Let i0 ∈ I so that | ∫G fidm| > ε if i ≥ i0. Let U be a relatively compact
neighborhood of a in G and let us consider a fixed i ∈ I , i ≥ i0. Let V be an open set so that a ∈ V and
V− ⊆ U (cf. [10], Th. 2.7). By Urysohn’s Lemma there exists a continuous function gU : G → [0, 1]
such that gU (V−) = {1} and gU (G − U ) = {0}. Both sets supp(gU ) and Ki = {b ∈ V− : | fi (b)| ≥
ε/(2 ‖ m ‖)} become compact. We can write

∣
∣
∣

∫

G
fidm

∣
∣
∣ −

∣
∣
∣

∫

G
fi gUdm

∣
∣
∣ ≤

∣
∣
∣

∫

G
( fi − fi gU )dm

∣
∣
∣

≤
∣
∣
∣

∫

G−Ki

( fi − fi gU )dm
∣
∣
∣ +

∣
∣
∣

∫

Ki

( fi − fi gU )dm
∣
∣
∣

≤
∫

G−Ki

| fi |(1 − gU )d|m|

≤ ε

2 ‖ m ‖
∫

G−Ki

(1 − gU )d|m|
≤ ε/2

Thus
∫

G
| fi gU |dm ≥ |

∫

G
fi gUdm |≥ |

∫

G
fidm| − ε/2 > ε/2

and | fi gU | is a non-negative continuous function with compact support contained inU . Since the class of
open relatively compact sets is a basis of the topology of G we conclude that a ∈ supp(m).
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(3) Given b ∈ supp(m) then γE∗∗(�(I{b})) = I{h(b)}. For,

γE∗∗(�(I{b}))(h(b)) = 〈�(I{b}), h(b)〉 = 1.

As �(I{b}) is idempotent in (E∗∗, �), M(�(I{b}) ∈ {0, 1} if M ∈ G̃. Let us suppose that there is some
M ∈ G̃ so that M(�({I{b}})) = 1 but M �= h(b). Let us choose � ∈ M(G)∗ so that M(�) �= h(b)(�).
Given n ∈ M(G) we have that �(I{b})n = 〈n, �(I{b})〉δ(b) and so

〈�n, ���(I{b})〉 = 〈〈n, �(I{b})〉δ(b), �〉 = 〈δ(b), �〉〈n, �(I{b})〉,
i.e., ���(I{b}) = h(b)(�)�(I{b}). But M is a multiplicative and so

M(�) = M[���(I{b})] = h(b)(�)

and we get a contradiction. So, if M �= h(b) then M(�({I{b}})) = 0 and the claim follows.
Therefore, the conclusion follows from the identity

B(m)(I{h(b)}) = 〈m, �(I{b})〉 = 〈{b},m〉. ��
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