
Arab. J. Math. (2021) 10:121–136
https://doi.org/10.1007/s40065-020-00308-8 Arabian Journal of Mathematics
RESEARCH ARTICLE

Himanshu Kumar

On semilocal convergence of three-step Kurchatov method
under weak condition

Received: 15 September 2020 / Accepted: 14 December 2020 / Published online: 7 January 2021
© The Author(s) 2021

Abstract The purpose of this paper to establish the semilocal convergence analysis of three-step Kurchatov
method under weaker conditions in Banach spaces.We construct the recurrence relations under the assumption
that involved first-order divided difference operators satisfy the ω condition. Theorems are given for the
existence-uniqueness balls enclosing the unique solution. The application of the iterative method is shown by
solving nonlinear system of equations and nonlinear Hammerstein-type integral equations. It illustrates the
theoretical development of this study.
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1 Introduction

In this article, we consider the problem of approximating a unique solution �∗ of a nonlinear equation

B(�) = 0, (1)

where B : C ⊂ X → Y is continuous but non-differentiable nonlinear operator defined on a nonempty
open convex subset C of Banach space X with values in Banach space Y. It is well known that finding exact
solutions of type (1) is difficult and usually iterative methods are used to approximate the solution of this type
of equations. The semilocal convergence is based on the information around an initial point, to give criteria
ensuring the convergence of the iterative method; while the local one is, based on the information around a
solution, to find estimates of the radii of convergence balls. A recurrence relation is an equation that defines
a sequence based on a rule that gives the next term as a function of the previous terms. Newton’s method
and Newton-type methods [18,31–33] are the most used iterative methods for approximating the solution. All
of such methods require the differentiability of the involved operator which is a drawback for some certain
problems where the operator is nondifferentiable. To overcome these types of problems, many researchers
[6,18,22,26] have established and studied the iterative methods using divided differences. One of such method
which does not use the differentiability of the involved operator is Kurchatov’s method, proposed byKurchatov
[37] and given by:

{
�−1, �0, �m+1, �m, �m−1 ∈ C,

�m+1 = �m − [�m−1, 2�m − �m−1;B]−1B(�m), ifm ≥ 0.
(2)

The operator [e, f ;B] is a first-order divided difference operator B at the points e and f (e �= f ) and
satisfy [e, f ;B](e − f ) = B(e)−B( f ). In the finite-dimensional vector spaceRm , the divided difference of

H. Kumar (B)
Department of Applied Mathematics, Central University of Jharkhand, Ranchi 835205, India
E-mail: himanshu.kumar.01@cuj.ac.in

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40065-020-00308-8&domain=pdf


122 Arab. J. Math. (2021) 10:121–136

first order [35] is defined as [e, f;B] = ([e, f;B]i j )
m
i, j=1 ∈ L(Rm,Rm), where L(Rm,Rm) denotes the space

of all bounded linear operators from R
m into Rm with e=(e1, e2, . . . , em)T, f=( f1, f2, . . . , fm)T and

[e, f,B]i j = 1

e j − f j

(
Bi (e1, . . . , e j , f j+1, . . . , . . . , fm) − Bi (e1, . . . , e j−1, f j , . . . , . . . , fm)

)
. (3)

To access the solution quickly, some authors [6,19,28,29] also considered two-step derivative-free iterative
methods. One such method is two-step Kurchtov method [28,29] defined by the help of divided difference:⎧⎨

⎩
�−1, �0, �m+1, �m, �m−1, θm ∈ C,

θm = �m − [�m−1, 2�m − �m−1;B]−1B(�m),

�m+1 = θm − [�m−1, 2�m − �m−1;B]−1B(θm), ifm ≥ 0.
(4)

Kumar and Parida [29] gave semilocal convergence of this method under Lipschitz continuity conditions
on first-order divided difference operator by using recurrence relations. But to generalize the convergence
analysis, some authors [25,26] also considered ω-type condition on the first-order divided difference operator
ofB:

‖[�, θ;B] − [e, f ;B]‖ ≤ ω
(‖� − e‖, ‖θ − f ‖), �, θ, e, f ∈ C. (5)

Recall thatHernández andRubio [25,26] have provided sufficient convergence conditions for the secantmethod
by considering the conditions (5) under recurrence relations. Ren [36] also gave the new semilocal convergence
of secant method under condition (5) with the help of recurrence relation. Argyros et al. [8], Argyros and Ren
[7], Hernández and Rubio [24,27], Ezquerro et. al [20] also studied semilocal convergence of Secant-like
methods under same continuity condition. Amat and Busquier [5] also introduced two-step Steffensen method
and analyzed the semilocal convergence by the help of recurrence relation under ω-continuity condition (5).
Ezquerro et al. [21] also worked on semilocal convergence of Kurchatov two-step method (4) by the help of
recurrence relations under condition (5).

Recently, Argyros et al. [8] introduced the Chebyshev–Secant-type method and gave the semilocal conver-
gence by the use of recurrence relations under Lipschitz-type conditions on the first-order divided difference
operator. Argyros et. al [9] also established semilocal convergence of the same method under ω-continuity
condition (5) by the help of recurrence relations. Third-order three-step Steffensen method was proposed by
Ezquerro et al. [23]:

�0, �m+1, �m, θm, ϑm ∈ C,

θm = �m − [�m, �m + B(�m);B]−1B(�m),

ϑm = θm − [�m, �m + B(�m);B]−1B(θm),

�m+1 = ϑm − [�m,�m + B(�m);B]−1B(ϑm), ifm ≥ 0.

⎫⎪⎪⎬
⎪⎪⎭

(6)

Authors established the semilocal convergence of method using recurrence relations under Lipschitz con-
tinuity condition. In all these above-mentioned methods, divided difference operator was frozen.

In [28], authors discussed about semilocal convergence analysis of three-step Kurchatov method which is
defined by

�−1, �0, �m+1, �m, �m−1, ϑm, θm ∈ C,

θm = �m − [�m−1, 2�m − �m−1;B]−1B(�m),

ϑm = θm − [�m−1, 2�m − �m−1;B]−1B(θm),

�m+1 = ϑm − [�m−1, 2�m − �m−1;B]−1B(ϑm), ifm ≥ 0.

⎫⎪⎪⎬
⎪⎪⎭

(7)

Authors also found the better result for order of convergence, optimal computational efficiency and effi-
ciency index ofmethod (7) as comparison frommethods (2) and (4).One of the important benefits of thismethod
is the evaluation of only one divided difference of the operator in each step, whereas order of convergence of
the method is 3.

Ezquerro et al. [21] also worked on semilocal convergence of Kurchatov two-step method (4) by the help
of recurrence relations under condition (5). They established the R-order of convergence with efficiency index
and computational efficiency index. Ren [36] also gave the new semilocal convergence under condition (5)
with the help of recurrence relation. Dennis [15], Potra [34], Argyros [7,8], Ezquerro and Hernández [17] also
studied semilocal convergence for that method under same continuity condition. In fact, if �1, �2 ∈ C and
N , M ≥ 0 such that ω(�1, �2) = N + M(�1 + �2), we obtain the Lipschitz continuous case.

123



Arab. J. Math. (2021) 10:121–136 123

Recently, Arqub and Shawagfeh [13] analyzed an efficient reproducing kernel algorithm for the numer-
ical solutions of equations in porous media with Dirichlet boundary conditions. Arqub [11] worked on the
numerical solution of the time-fractional Schrödinger equation subject to given constraint condition based on
the generalized Taylor series formula in the Caputo sense. Author also discussed about reproducing kernel
algorithm for obtaining the numerical solutions of fractional-order systems of Dirichlet function in [12]. In
[10], author gave the numerical solutions of systems of first-order, two-point BVPs based on the reproducing
kernel algorithm.

Ahmad et al. [2] found the numerical solution of three-term time-fractional-order multi-dimensional diffu-
sion equations by using an efficient localmeshlessmethod. Kumar et al. [30]worked on fourth-order derivative-
free iterative methods for finding a multiple root. Authors also shows the performance of the new technique
is a good competitor to existing optimal fourth-order Newton-like techniques. Bazighifan and Cesarano [14]
worked using the technique of Riccati transformation and integral averaging method, authors get conditions to
ensure oscillation of solutions of fourth-order Neutral differential equations. Ahmad et al. [3] solved the initial
and boundary value problems by the use of variational iteration algorithm-I with an auxiliary parameter and
also discussed about effectiveness and utilization of this proposed technique. Ahmad et al. [1] found the two
newmodified variational iteration algorithms for solving the numerical solutions of coupled Berger’ equations.
Authors also evaluated the errors norms, accuracy of method and speed of convergence by numerical problems.
Elabbasy et al. [16] studied about asymptotic behavior of a class of higher-order delay differential equations
with a p-Laplacian-like operator.

The structure of this paper is given as follows: in Sect. 2, we gave the new semilocal convergence analysis
of the three-step Kurchatov method by the help of new type recurrence relations. In Sect. 3, we discussed about
optimal computational efficiency of Kurchatov-type method with comparison graph. Numerical examples for
differentiable and non-differentiable operators under higher-dimensional problems are given in Sect. 4. Finally,
conclusion is given in Sect. 5.

Throughout the paper, we denote B(�0,R) = {θ ∈ C : ‖θ − �0‖ ≤ R} and B(�0,R) = {θ ∈ C :
‖θ − �0‖ < R}. Where, R is the least positive real root and B(�0,R), B(�0,R) ⊆ C.

2 Semilocal convergence of Kurchatov three-step method

In this Section, we shall analyze semilocal convergence for method (7) by the help of recurrence relations. Let
us assume that the operatorB satisfies the following condition P:

(P1) �−1, �0, 2�0 − �−1 ∈ C such that ‖�−1 − �0‖ = ϕ,
(P2) ‖B(�0)‖ ≤ �,

(P3) there exists T −1
0 = [�−1, 2�0 − �−1;B]−1 such that ‖T −1

0 ‖ ≤ φ,
(P4) ‖[�, θ;B] − [e, f ;B]‖ ≤ q + ω(‖� − e‖, ‖θ − f ‖),

where q, ϕ,�, φ ≥ 0; �, θ, e, f ∈ C; � �= θ, e �= f ,
where ω : R+ × R+ → R+is a continuous nondecreasing function in its two arguments.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(8)

(P5) If w(Θ) = φ
(
q +ω(2Θ +ϕ, 3Θ +ϕ)

)
and ψ = φ� . LetR be the least positive root of given equation

Θ = 2
(
1 − w(Θ)

)
ψ(

1 − 2w(Θ)
) , (9)

with w(R) < 1
2 .

Here, we provide a lemma which is important role for deriving the recurrence relations for method (7).

Lemma 2.1 Let {�m}, {θm} and {ϑm} be the sequences which is generated by the method (7) with distinct
points �m, θm−1, θm, ϑm−1, ϑm ∈ C. Suppose Tm = [�m−1, 2�m − �m−1;B]. Then

(i) B(θm) = ([θm,�m;B] − Tm
)
(θm − �m),

(ii) B(ϑm) = ([ϑm, θm;B] − Tm
)
(ϑm − θm),

(iii) B(�m) = ([�m, ϑm−1;B] − Tm−1
)
(�m − ϑm−1).

Proof Proof of above Lemma is given in [28]. ��
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Lemma 2.2 Suppose conditions (P1)–(P5) satisfy on the operatorBwith distinct points�m, θm, θ0, �0, ϑm ∈
C. Then the recurrence relations hold for m ≥ 1 which is given below:

(i) T −1
m exists and ‖T −1

m ‖ ≤ φ

1 − w(R)
,

(ii) ‖θm − �m‖ <

(
w(R)

1 − w(R)

)3m

‖θ0 − �0‖,

(iii) ‖θm − �0‖ <

3m∑
j=0

(
w(R)

1 − w(R)

) j

‖θ0 − �0‖,

(iv) ‖B(θm)‖ <
(
q + ω(2R, ψ)

)‖θm − �m‖,

(v) ‖ϑm − θm‖ <

(
w(R)

1 − w(R)

)3m+1

‖θ0 − �0‖,

(vi) ‖ϑm − �m‖ <

((
w(R)

1 − w(R)

)3m+1

+
(

w(R)

1 − w(R)

)3m
)

‖θ0 − �0‖,

(vii) ‖ϑm − �0‖ <

⎛
⎝3m+1∑

j=0

(
w(R)

1 − w(R)

) j
⎞
⎠ ‖θ0 − �0‖,

(viii) ‖B(ϑm)‖ <
(
q + ω(2R, 2ψ)

)‖ϑm − θm‖.

Proof This lemma is proved using mathematical induction. It follows from initial hypotheses (P1) and from
(P5) that θ0, ϑ0 and �1 are well defined because by our assumption T −1

0 exists. We can easily conclude that
ψ < R. Also,

‖θ0 − �0‖ ≤ ‖T −1
0 ‖ ‖B(�0)‖ ≤ φ� = ψ < R,

from (P2) and (P3) and then using Lemma 2.1 and (P4) we get

‖B(θ0)‖ ≤ (
q + ω(ψ + ϕ, ϕ)

)‖θ0 − �0‖
≤ (

q + ω(ψ + ϕ, ϕ)
)
φ� < w(R)�.

So,

‖ϑ0 − θ0‖ ≤ ‖T −1
0 ‖‖B(θ0)‖ ≤ φ

(
q + ω(ψ + ϕ, ϕ)

)‖θ0 − �0‖ < w(R)‖θ0 − �0‖ < ψ < R,

and

‖ϑ0 − �0‖ ≤
(
1 + φ

(
q + ω(ψ + ϕ, ϕ)

)‖θ0 − �0‖ <

(
1 + w(R)

1 − w(R)

)
‖θ0 − �0‖ < R.

Using the above Lemma 2.1 and (P4), we get

‖B(ϑ0)‖ ≤ (
q + ω(R + ϕ, ψ + ϕ)

)‖ϑ0 − θ0‖
<
(
q + ω(R + ϕ, ψ + ϕ)

)
ψ < w(R)� < �,

and

‖�1 − ϑ0‖ ≤ ‖T −1
0 ‖‖B(ϑ0)‖ < w(R)‖ϑ0 − θ0‖ <

(
w(R)

1 − w(R)

)2

‖θ0 − �0‖ < ψ < R.

Again, we have

‖�1 − �0‖ ≤ ‖�1 − ϑ0‖ + ‖ϑ0 − �0‖
<

(
1 + w(R)

1 − w(R)
+
( w(R)

1 − w(R)

)2) ‖θ0 − �0‖ <
1 − w(R)

1 − 2w(R)
ψ < R,
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then by use of Eq. (9)

‖(2�1 − �0) − �0‖ = 2‖�1 − �0‖ < 2
1 − w(R)

1 − 2w(R)
ψ = R.

So, �1, 2�1 − �0 ∈ B(�0,R). We see that (i)–(vi i i) are true for m = 1. Now, assuming they are true for
m ≤ n − 1. Now, We have to prove that (i)–(vi i i) are true for m = n.

Since ‖I − T −1
0 Tn‖ ≤ ‖T −1

0 ‖ ‖T0 − Tn‖ < φ
(

q + ω
(
R + ϕ, 3R + ϕ

))
< w(R) < 1, by using Banach

lemma [35], T −1
n exists and

‖T −1
n ‖ ≤ φ

1 − w(R)
. (10)

Hence, (i) is true for m = n. Now, we have to prove (i i), (i i i) and (iv). Using Eq. (10), and assumptions
(P2), (P3) and (P5), we obtain

‖θn − �n‖ ≤ ‖T −1
n ‖‖B(�n)‖ <

(
w(R)

1 − w(R)

)3n

‖θ0 − �0‖ < ψ < R,

and using (P5)

‖θn − �0‖ ≤ ‖θn − �n‖ + ‖�n − �0‖ <

3n∑
j=0

(
w(R)

1 − w(R)

) j

‖θ0 − �0‖ <
1 − w(R)

1 − 2w(R)
ψ < R.

Again using Lemma 2.1 and (P4),

‖B(θn)‖ ≤ ‖[θn, �n;B] − [�n−1, 2�n − �n−1;B]‖ ‖θn − �n‖
<
(
q + ω(2R, ψ)

)‖θn − �n‖.
Using Eq. (10) and (P5), we have

‖ϑn − θn‖ ≤ ‖T −1
n ‖‖B(θn)‖ <

φ

1 − w(R)

(
q + ω

(
2R, ψ

))‖θn − �n‖

<

(
w(R)

1 − w(R)

)3n+1

‖θ0 − �0‖ < ψ < R,

so, (v) is proved. Using (P5), we have

‖ϑn − �n‖ ≤ ‖ϑn − θn‖ + ‖θn − �n‖

<

((
w(R)

1 − w(R)

)3n+1

+
(

w(R)

1 − w(R)

)3n
)

‖θ0 − �0‖ < ψ < R,

‖ϑn − �0‖ ≤ ‖ϑn − �n‖ + ‖�n − �0‖

<

⎛
⎝3n+1∑

j=0

(
w(R)

1 − w(R)

) j
⎞
⎠ ‖θ0 − �0‖ <

1 − w(R)

1 − 2w(R)
ψ < R,

using Lemma 2.1, (P4) and (P5)

‖B(ϑn)‖ ≤
(

q + ω
(‖ϑn − �0‖ + ‖�n−1 − �0‖, ‖θn − �n‖ + ‖�n − �n−1‖

))‖ϑn − θn‖
<
(
q + ω(2R, 2ψ)

)‖ϑn − θn‖ < w(R)� < �.

Hence, (vi), (vi i) and (vi i i) hold. Therefore, (i)–(vi i i) are true for m = n. Hence, all relations are true for
any natural numbers m by mathematical induction and consequently lemma is proved. ��
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Also, we find some important results from the above Lemma

‖�n+1 − ϑn‖ ≤ ‖T −1
n ‖‖B(ϑn)‖ <

(
w(R)

1 − w(R)

)
‖ϑn − θn‖

<

(
w(R)

1 − w(R)

)3n+2

‖θ0 − �0‖ < ψ < R,

‖�n+1 − �n‖ ≤ ‖�n+1 − ϑn‖ + ‖ϑn − �n‖

<

⎛
⎝3n+2∑

j=3n

(
w(R)

1 − w(R)

) j
⎞
⎠ ‖θ0 − �0‖ <

1 − w(R)

1 − 2w(R)
ψ < R,

and

‖�n+1 − �0‖ ≤ ‖�n+1 − ϑn‖ + ‖ϑn − �0‖

<

(
w(R)

1 − w(R)

)3n+2

‖θ0 − �0‖ +
3n+1∑
j=0

(
w(R)

1 − w(R)

) j

‖θ0 − �0‖

=
⎛
⎝3n+2∑

j=0

(
w(R)

1 − w(R)

) j
⎞
⎠ ‖θ0 − �0‖ <

1 − w(R)

1 − 2w(R)
ψ < R.

Using Lemma 2.2, then we have

‖B(�n+1)‖ ≤
(

q + ω
(‖�n+1 − �0‖ + ‖�n−1 − �0‖,

‖ϑn − �n‖ + ‖�n − �n−1‖
))‖�n+1 − ϑn‖

<
(
q + ω(2R, 2ψ)

)‖�n+1 − ϑn‖ < w(R)� < �,

and

‖(2�n+1 − �n) − �0‖ ≤ ‖�n+1 − �n‖ + ‖�n+1 − �0‖ <
2
(
1 − w(R)

)
1 − 2w(R)

ψ = R.

Now, we give the convergence theorem for iterative method (7).

Theorem 2.3 Let B : C ⊂ X → Y be a nonlinear operator defined on a nonempty open convex domain C of
a Banach space X with values in Y. Suppose that B satisfies the condition P given in (8). Suppose B(�0,R),
B(�−1,R) ⊂ C. Then the above method (7), starting at �0 and �−1 are well defined, the iterates �m belong
to B(�0,R) and converges to a unique solution �∗ of B(�) = 0 in B(�0,R).

Proof Here, {sn} converges if {�n} is a Cauchy sequence. So, we have to show that {�n} is a Cauchy sequence.
Now,by using Lemma 2.2, we have

‖�m+n − �n‖ ≤
m∑

i=1

‖�n+i − �n+i−1‖

<

m∑
i=1

(
3n+3i−1∑

i=3n+3i−3

(
w(R)

1 − w(R)

) j
)

‖θ0 − �0‖ < ψ < R.

Therefore, {�m} is Cauchy sequence and consequently, it converges to�∗ ∈ B(�0,R). UsingLemma2.2(vi),
we easily see that {ϑm} converges to �∗. Also, we have,

‖B(�m)‖ <
(
q + ω(2R, 2ψ)

)‖�m − ϑm−1‖,
then ‖�m − ϑm−1‖ → 0 as m → ∞. Hence by the continuity of B implies B(�∗) = 0. Now, we have to
show that uniqueness of �∗. We assume that �∗∗ is other solution of B(s) = 0 in B(�0,R). Then apply
properties of divided difference

[�∗∗, �∗;B](�∗∗ − �∗) = B(�∗∗) − B(�∗) = 0.
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Also, ‖T0 − [�∗∗, �∗;B]‖ = ‖[�−1, 2�0 − �−1;B] − [�∗∗, �∗;B]‖ ≤ q + ω
(
R + ϕ,R + ϕ

)
and

‖I − T −1
0 [�∗∗, �∗;B]‖ ≤ ‖T −1

0 ‖ ‖T0 − [�∗∗, �∗;B]‖ ≤ φ
(

q + ω
(
R + ϕ,R + ϕ

))
< w(R) < 1, then

using Banach lemma, [�∗∗, �∗;B]−1 exists. Hence, �∗∗ = �∗ and proof of uniqueness is complete. ��

3 Optimal computational efficiency

We know that efficiency of an iterative method cannot be measured from only operational cost. The number

of evaluations of functions that also needed. Traub defines in [38] the index �
1
v , where � is the local order of

convergence of the method and v represents the number of the evaluations of function. Now, we compare the
efficiencies of the three iterative methods (2), (4) and (7), we can use the following computational efficiency
index (CEI):

CEI(μ, m) = �
1

C(μ,m) , (11)

where � is the Q-order of convergence and C(μ, m) the computational cost of an iterative method. We denote
the CEI of the above-mentioned methods, respectively, by

CEIi (μ, m) = �

1
Ci (μ,m)

i , i = 1, 2, 3, (12)

where �i is the Q-order of convergence and CEIi (μ, m) the computational cost of the above corresponding
methods. The computational cost is given by

Ci (μ, m) = ai (m)μ + pi (m), i = 1, 2, 3, (13)

where ai (m) is the number of scalar functions, pi (m) is the number of products per iteration and μ is the ratio
between products and divisions and evaluations of functions that are required to express Ci (μ, m) in terms of
products and divisions.

We observe that method (2) requires the m functions Bi , i = 1, 2, . . . , m, and the m2 evaluations of
functions in the divided difference matrix of first-order [35] given by [p,q;B] = ([p,q;B]i j )

m
i, j=1 ∈

L(Rm,Rm), with

[p,q,B]i j = 1

p j − q j

(
Bi (p1, . . . , p j , q j+1, . . . , . . . , qm) − Bi (p1, . . . , p j−1, q j , . . . , . . . , qm)

)
,

1 ≤ i, j ≤ m, p = (p1, p2, . . . , pm)T and q = (q1, q2, . . . , qm)T be evaluated per iteration, so total number
of evaluations of the function in m2 + m, i.e a1(m) = m2 + m. Noted that method (2) requires m2 divisions to
compute [�n−1, 2�n − �n−1;B], m3−m

3 products and divisions in the decomposition LU and m2 products
and divisions for solving two triangular systems. Therefore, p1(m) = m

3 (m2 + 6m − 1). Also for method
(4), it is easy to obtain that a2(m) = a1(m) + m = m2 + 2m, because a new evaluation of the function B is
considered. The linear systems to solve are the same, the decomposition LU is already made and only two
more triangular linear systems have to be solved, then p2(m) = p1(m) + m2 = m

3 (m2 + 9m − 1). Lastly, we
calculate for method (7), we obtain a3(m) = 2a1(m) = 2(m2 + m), because a new divided difference and
a new evaluation of B are considered, and p3(m) = p2(m) + m2 = m

3 (m2 + 12m − 1), because two linear
systems have to be solved. Now, we summarize the following costs:

C1(μ, m) = (m2 + m)μ + m

3
(m2 + 6m − 1), �1 = 2;

C2(μ, m) = (m2 + 2m)μ + m

3
(m2 + 9m − 1), �2 = 1 + √

17

2
;

C3(μ, m) = (m2 + 3m)μ + m

3
(m2 + 12m − 1), �3 = 3.

We can compare the corresponding CEIi (μ, m) using the following expressions

Pi j = logCEIi
logCEI j

= C j

Ci

log �i

log � j
, (i, j) = (2, 1), (3, 1), (3, 2),

and we can write the theorem:
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Theorem 3.1 We have

(1) CEI2 > CEI1 for m ≥ 3 and for m = 2 with μ > 3.024 . . . ,
(2) CEI3 > CEI1 for m ≥ 5 and for m = 4 with μ > 0.427 . . . ,
(3) CEI3 > CEI2 for m ≥ 9 and for m = 8 with μ > 0.649 . . . ,
(4) CEI3 > CEI2 > CEI1 for m ≥ 9.

Proof (1) For m = 2, we assume that CEI2 > CEI1. Then, to calculate the value of μ, take logarithm on both
sides, we have,

log

(
CEI2
CEI1

)
> 0 �⇒ log CEI2

logCEI1
> 1 �⇒ C1

C2
log �2

log �1
> 1,

or,

log �2

log �1
>

C2
C1

�⇒ μ >

m
3

(
(m2 + 9m − 1) − (m2 + 6m − 1)1.357018637

)
(m2 + m)1.357018637 − (m2 + 2m)

, (14)

or μ > 3.024 . . . for m = 2. Also CEI2 < CEI1, for 0 < μ ≤ 3.024 . . . Furthermore, for m ≥ 3 the value
of μ is always negative from (14). But the value of μ is always positive. Hence, in this case, CEI2 > CEI1 is
always true for m ≥ 3. We can see that from Fig. 1, the computational efficiencies indexes of method (4) have
larger values than method (2) for m ≥ 3 and for m = 2 with μ > 3.024 . . .

(2) For m = 4, we assume that CEI3 > CEI1, then we have to calculate the value of μ. Taking log on both
sides, we have

log

(
CEI3
CEI1

)
> 0 �⇒ logCEI3

logCEI1
> 1 �⇒ C1

C3
log �3

log �1
> 1.

Again,
log �3

log �1
>

C3
C1

�⇒ μ >

m
3

(
(m2 + 12m − 1) − (m2 + 6m − 1)1.584962501

)
(m2 + m)1.584962501 − (m2 + 3m)

. (15)

Now, we put m = 4 then we have μ > 0.427 . . . and also CEI3 < CEI1, for 0 < μ ≤ 0.427 . . . Furthermore,
for m ≥ 5 we have the value of μ is negative from (15). But the value of μ is always positive. Hence, in this
case, CEI3 > CEI1 always true for m ≥ 5. We can see that from Fig. 2, the computational efficiencies indexes
of method (7) have larger values than method (2) for m ≥ 5 and for m = 4 with μ > 0.427 . . .

(3) For m = 8, we assume that CEI3 > CEI2, then we have to calculate the value of μ. Taking log on both
sides, we have

log

(
CEI3
CEI2

)
> 0 �⇒ logCEI3

logCEI2
> 1 �⇒ C2

C3
log �3

log �2
> 1.

Again,
log �3

log �2
>

C3
C2

�⇒ μ >

m
3

(
(m2 + 12m − 1) − (m2 + 9m − 1)1.167974012

)
(m2 + 2m)1.167974012 − (m2 + 3m)

. (16)

Now, we put m = 8, then we have μ > 0.649 . . . and also CEI3 < CEI2, for 0 < μ ≤ 0.649 . . . Furthermore,
for m ≥ 9, the value of μ is negative from (16). But the value of μ is always positive. Hence, in this case,
CEI3 > CEI2 is always true for m ≥ 9. We can see that from Fig. 3, the computational efficiencies indexes
of method (7) have larger values than method (4) for m ≥ 9 and for m = 8 with μ > 0.649 . . . Also, We
can easily see that from Fig. 4, the computational efficiencies indexes of method (7) have larger values than
methods (2) and (4) for m ≥ 9. Here red lines used for method (2), green lines used for method (4) and blue
lines used for method (7).

4 Numerical examples

In this Section, we provide some numerical examples to demonstrate the semilocal convergence obtained in
this study.
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Fig. 1 CEI2 > CEI1 for m ≥ 3 and for m = 2 with μ > 3.024 . . .

Fig. 2 CEI3 > CEI1 for m ≥ 5 and for m = 4 with μ > 0.427 . . .

4.1 Application of two-dimensional problem

Example 4.1 Consider the nonlinear system:

�2
1 − �2 + 1 + 1

9 |�1 − 1| = 0,
�1 + �2

2 − 7 + 1
9 |�2| = 0.

}
(17)

If we denote � = (�1,�2), B1(�) = �2
1 − �2 + 1 + 1

9 |�1 − 1| and B2(�) = �1 + �2
2 − 7 + 1

9 |�2|,
then this problem is equivalent to solve B(�) = 0, where B : R2 → R

2 with B = (B1,B2). The divided
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Fig. 3 CEI3 > CEI2 for m ≥ 9 and for m = 8 with μ > 0.649 . . .

Fig. 4 CEI3 > CEI2 > CEI1 for m ≥ 9

difference operator [e, f;B] ofB can be represented as

[e, f;B] =

⎡
⎢⎢⎣

e21 − f 21
e1 − f1

−1

1
e22 − f 22
e2 − f2

⎤
⎥⎥⎦

+1

9

⎡
⎢⎣

|e1 − 1| − | f1 − 1|
e1 − f1

0

0
|e2| − | f2|

e2 − f2

⎤
⎥⎦ ,
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Table 1 Absolute errors (‖�∗ − �m‖) for the system (17)

m Secant method [4] Method (2) Method (4) Method (7)

2 1.96861240470845 ×10−1 3.7865932056362 ×10−1 5.9068126117022 ×10−2 6.068297649797 ×10−3

4 1.3644347380609 ×10−2 8.91684460783 ×10−4 1.2736259 ×10−8 1.9711 ×10−11

6 8.57032905548 ×10−4 1.489175752 ×10−6 – –
8 4.8457588321 ×10−5 2.563843 ×10−9 – –
10 2.468899067 ×10−6 – – –
12 1.35831151 ×10−7 – – –
14 5.388431 ×10−9 – – –

where e = (e1, e2) and f = ( f1, f2). Now, we take the max-norm as vector norm and matrix norm to obtain

‖ [�, θ;B] − [e, f;B] ‖ ≤ ‖� − e‖ + ‖θ − f‖ + 2

9
.

Now by use of condition (P4) from semilocal convergence section which is for method (7), it follows that
q = 2

9 and ω(p1, p2) = p1 + p2.
Now, we use the method (7) to the solution of system (17) by choosing initial iterates r-1=(4.2, 6.1) and

r0=(5.0, 3.2). After two iterations, we get

r1 = (1.16542, 2.36075), r2 = (1.15936, 2.36182),

and ϕ = 0.00606. Now, we choose �−1 = r1 and �0 = r2, we can easily check that above conditions
(P1) − (P5) satisfied and

� = 0.00002 . . . , φ = 0.45771 . . . , and ψ = 0.000009 . . .

Thus, from Eq. (9), we get R = 0.00002 . . . , so that w(R) = 0.10731 · · · < 1
2 . Also, another radius is

R = 0.17159 . . . and holds w(R) = 0.49997 · · · < 1
2 .

Thus, conditions of Theorem 2.3 satisfy and an unique solution �∗= (1.159360850 . . . , 2.361824342 . . . )

of system (17) exists in B(�0,R) . We calculate the absolute errors ‖�∗ − �m‖ and compare it with its
competitors methods (2), (4) and two-step Secant method [4]. In Table 1, we compute and compare the absolute
errors obtained by the different aforementioned methods with tolerance 10−8. It can easily be observed that
method (7) converges more rapidly in comparison to the other methods.

Example 4.2 Consider a differentiable system of nonlinear equations:

�2
1 − 2�1 − �2 − 3 = 0,

�2
2 − �1 + 2�2 − 3

4 = 0.

}
(18)

We canwrite the system (18) is equivalent toB(�) = 0, whereB : R2 → R
2,B = (B1,B2),�=(�1, �2) ∈

R
2,B1(�) = �2

1 − 2�1 − �2 − 3 andB2(�) = �2
2 − �1 + 2�2 − 3

4 . For e = (e1, e2), f = ( f1, f2) ∈ R
2

such that e1 �= f1 and e2 �= f2, the first-order divided difference operator [e, f;B] ∈ L(X, Y ) is given by

[e, f;B] =

⎡
⎢⎢⎣

−2 + e21 − f 21
e1 − f1

−1

−1 2 + e22 − f 22
e2 − f2

⎤
⎥⎥⎦ .

If we use max-norm, then we have

‖ [�, θ;B] − [e, f;B] ‖ ≤ ‖� − e‖ + ‖θ − f‖.
This gives us q = 0 and ω(p1, p2) = p1 + p2.

Now, we use the method (7) to the solution of system (18) by choosing initial iterates r-1=(7.2, 6.2) and
r0=(11.4, 1.5). After two iterations, we get

r1 = (3.32678, 1.25508), r2 = (3.29020, 1.24504),
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Table 2 Absolute errors (‖�∗ − �m‖) for the system (18)

m Secant method [4] Method (2) Method (4) Method (7)

2 2.51418830450375 ×10−1 9.51458148477219 ×10−1 2.06823577147491 ×10−1 3.6577017493101 ×10−2

4 1.6562897360141 ×10−2 4.653461439208 ×10−3 5.2407 ×10−11 –
6 1.802812831078 ×10−3 5.988 ×10−12 – –
8 1.86323097602 ×10−4 – – –
10 1.8917012874 ×10−5 – – –
12 1.907174164 ×10−6 – – –
14 1.90284663 ×10−7 – –
16 1.7395405 ×10−8 – –

and ϕ = 0.03658. Now, we choose �−1 = r1 and �0 = r2, we can easily check from semilocal convergence
section conditions (P1) − (P5) satisfied and

� = 0.000023 . . . , φ = 0.285203 . . . , ψ = 0.000006 . . . .

Thus, from Eq. (9), we have two different positive solutions R = 0.000013 . . . and R∗ = 0.839972 . . .

Solutions satisfy w(R) = 0.020877 · · · < 1
2 and w(R)∗ = 0.499995 · · · < 1

2 .
Thus, conditions of Theorem 2.3 satisfy and an unique solution �∗= (3.290205263 . . . , 1.245040147 . . . )

of system (18) exists in B(�0,R) . We calculate the absolute errors ‖�∗ − �m‖ and compare it with its
competitors methods (2), (4) and two-step Secant method [4]. In Table 2, we compute and compare the absolute
errors obtained by the different aforementioned methods with tolerance 10−8. It can easily be observed that
method (7) converges more rapidly in comparison to the other methods.

4.2 Application of Higher-dimensional problem

Example 4.3 Consider

w(x) = j (x) +
∫ q

p
S(x, y)T (y,�(y))dy, x ∈ [p, q], (19)

where−∞ < p < q < +∞, j, S and T are given functions and� is an unknown function to be determined.
Solving (19) is equivalent to solveB(�) = 0, where B : C ⊂ C[p, q] → C[p, q] and

B(�(x)) = �(x) − j (x) −
∫ q

p
S(x, y)T (y,�(y))dy, x ∈ [p, q]. (20)

Let S be the Green’s function defined in [p, q] × [p, q]. We use the Gauss–Legendre formula to transform
(20) into a finite-dimensional nonlinear system of equation that can be given by

∫ q

p
Q(y)dy �

n∑
k=1

Wk Q(yk),

where Wk and yk denote weights and nodes respectively. Now, we denote �(yk) and j (yk) by �k and jk ,
k = 1, 2, . . . , n, then Eq. (20) can be taken as the following system of nonlinear equations:

B(�) ≡ � − j − AZ = 0, (21)

whereB : Rn → R
n, �=(�1, �2, . . . , �n)

T, Z=
(
T (y1, �1), T (y2, �2), . . . , T (yn,�n)

)T,A = (ars)
n
r,s=1,

j = ( j1, j2, . . . , jn)T.
The components ofB and A are determined by

Br = �r − jr −
n∑

s=1

ars T (ys, �s), s = 1, 2, . . . , n, (22)
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Table 3 Numerical approximate solution �∗ of system (23)

r �∗
r i �∗

r i �∗
r i �∗

r

1 2.107562 . . . 3 2.171140 . . . 5 2.195316 . . . 7 2.135711 . . .
2 2.135711 . . . 4 2.195316 . . . 6 2.171140 . . . 8 2.107562 . . .

Table 4 Errors (‖�∗ − |θm‖∞) of the system (23)

m Method (2) Secant method [4] Method (4) Method (7)

1 2.2444972758323 ×10−2 4.822361901219985 ×10−4 7.134171421783186 ×10−4 2.2018606864 ×10−5

2 5.759246541892082 ×10−6 9.054801353158837 ×10−11 8.837375276016246 ×10−14 –
3 3.619327060278010 ×10−13 – – –
4 8.881784197001252 ×10−16 – – –

and

ars = Ws S(yr , ys) =
{

Ws
(q−yr )(ys−p)

q−p , s ≤ r,

Ws
(q−ys )(yr −p)

q−p , s > r.

Now, particularly consider a nonlinear integral equation of form (20):

B(�(x)) = �(x) − 2.1 − 1

9

∫ 1

0
S(x, y)

(
�(y)2 + |�(y)|)dy, x ∈ [0, 1],

where � ∈ C[0, 1], y ∈ [0, 1], and the kernel S is the Green’s function in [0, 1] × [0, 1].
By taking n = 8, we transform the given problem into a system of nonlinear equation

B(�) ≡ � − 2.1 − 1

9
A(p� + q�), (23)

where � = (�1, �2, . . . , �8)
T, 2.1 = (2.1, 2.1, . . . , 2.1)T, A = (ars)

8
r,s=1, p� = (�2

1, �
2
2, . . . , �

2
8)

T,

q� = (|�1|, |�2|, . . . , |�8|)T.

The divided difference of first order of B is [e, f;B] = I − 1
9 (U + V ), where U = (urs)

8
r,s=1 with urs =

ars(es + fs), V = (vrs)
8
r,s=1 with vrs = ai j

|es |−| fs |
es− fs

. Then, using sup-norm here, we can have

‖[�, θ;B] − [e, f ;B]‖ ≤ q + ω(‖� − e‖, ‖θ − f ‖),
with q = 2

9‖A‖ and ω(p1, p2) = 1
9‖A‖(p1 + p2).

Choosing starting points as �−1=(3.4, 3.4, . . . , 3.4)T and �0=(1.9, 1.9, . . . , 1.9)T.
Using condition (P1) − (P5), we can obtain ϕ = 1.5, ‖A‖∞ = 0.12355 . . . , � = 0.27564 . . . , φ =

1.06985 . . . , ψ = 0.29490 . . . , q = 0.02745 . . . , ω(p1, p2) = (0.01372 . . . )(p1 + p2).
So, the solution of system (23) leads to R = 0.68693, so that w(R) = 0.12388 · · · < 1

2 . Also another
radius is R = 5.41635 . . . , so that w(R) = 0.47120 · · · < 1

2 . It can be easily seen that all the assumptions
of Theorem 2.3 hold true and the uniqueness ball of the solution is given by B(θ0,R). Using method (7), the
approximate numerical solution of system (23) is found out and summarized in Table 3. A comparison of the
term-by-term errors is given in Table 4 using the tolerance ‖�m − �m−1‖ < 10−15. We can see that method
(7) converges rapidly as compared to its competitors.

Example 4.4 Consider the problem of solving the following system of nonlinear equations:

B(�) ≡ � − 2.1 − 1

7
A(q�), B : R8 → R

8, (24)

where � = (�1, �2, . . . , �8)
T, 2.1 = (2.1, 2.1, . . . , 2.1)T, A = (ars)

8
r,s=1, q� = (�2

1, �
2
2, . . . , �

2
8)

T.
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Table 5 Numerical approximate solution �∗ of system (24)

r �∗
r r �∗

r r �∗
r r �∗

r

1 2.106601 . . . 3 2.162116 . . . 5 2.183237 . . . 7 2.131175 . . .
2 2.131175 . . . 4 2.183237 . . . 6 2.162116 . . . 8 2.106601 . . .

Table 6 Errors (‖�∗ − �m‖∞) of the system (24)

m Method (2) Secant method [4] Method (4) Method (7)

1 5.2917700924104 ×10−2 6.50610976626 ×10−4 2.983853551853 ×10−3 1.62392966888 ×10−4

2 4.1148031203 ×10−5 5.99221 ×10−10 1.0782 ×10−11 –
3 2.3829 ×10−11 – – –
4 1.0 ×10−14 – – –

Using (3), we get [e, f;B] = I − 1
7 F , where F = ( frs)

8
r,s=1 with frs = ars(es + fs).

Now, we choose the initial iterates as t−1 = (3.8, 3.8, . . . , 3.8)T, t0 = (2.6, 2.6, . . . , 2.8)T and from
conditions (P1) − (P5) we can obtain,

ϕ = 1.2, ‖A‖∞ = 0.12355 . . . , � = 0.49041 . . . , φ = 1.09963 . . . , ψ = 0.53927 . . .

Also, q = 0 . . . , ω(p1, p2) = (0.01765 . . . )(p1+ p2). From Eq. (9) we get the radius isR = 1.38437, so that
w(R) = 0.18093 · · · < 1

2 . We also find another radius isR = 3.82687 . . . , so that w(R) = 0.41798 · · · < 1
2 .

This shows that the convergence conditions of Theorem 2.3 hold true and the uniqueness ball is given
by B(�0,R). Now using method (7), we obtain the solution of system (24) which is given in Table 5. A
comparison of the term-by-term errors is given in Table 6 using the tolerance ‖�m − �m−1‖ < 10−15. We
can see that method (7) converges rapidly as compared to its competitors.

5 Conclusions

The article was devoted to study the semilocal convergence of three-step Kurchatov-type method under ω-
condition on the first-order divided difference using recurrence relations. We also analyze the computational
efficiency index and important relations for Kurchtov’s-typemethod. Numerical examples have been computed
for higher-dimensional problems including Hammerstein type integral equations for differentiable and non-
differentiable operators. Authors also comparison with single-step Kurchatov method, two-step Kurchatov
method and two-step secant method. It has been concluded that the present method converges more rapidly
than the other three methods. In semilocal convergence analysis, theorems are given for existence-uniqueness
balls. Moreover, the domain of the parameters discussed in [28] is given to show the guaranteed convergence
of the method. Kurchatov method gave more extended convergence region, better information on the distances
as well as the uniqueness. This method does not require the evaluation of derivatives, as opposed to Newton or
other well-known third-order methods such as Halley or Chebyshev. This method is useful when the functions
are not regular or the evaluation of their derivatives is costly. Kurchatov method is a good derivative-free
iterative method with memory with the same order of convergence and number of new functional evaluations
per iteration as Newton’s procedure. The results are tested on numerical examples to show that the Kurchatov
three-step method provides better results than other methods using similar information.
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