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Abstract Let M be a module over a commutative ring R. In this paper, we continue our study about the
Zariski topology-graph G(τT ) which was introduced in Ansari-Toroghy et al. (Commun Algebra 42:3283–
3296, 2014). For a non-empty subset T of Spec(M), we obtain useful characterizations for those modules
M for which G(τT ) is a bipartite graph. Also, we prove that if G(τT ) is a tree, then G(τT ) is a star graph.
Moreover, we study coloring of Zariski topology-graphs and investigate the interplay between χ(G(τT )) and
ω(G(τT )).

Mathematics Subject Classfication 13C13 · 13C99 · 05C75

1 Introduction

Throughout this paper, R is a commutative ring with a non-zero identity and M is a unital R-module. By
N ≤ M (resp. N < M) we mean that N is a submodule (resp. proper submodule) of M .

Define (N :RM) or simply (N : M) = {r ∈ R| rM ⊆ N } for any N ≤ M . We denote ((0) : M) by
AnnR(M) or simply Ann(M). M is said to be faithful if Ann(M) = (0).

Let N , K ≤ M . Then the product of N and K , denoted by NK , is defined by (N : M)(K : M)M (see
[3]).

A prime submodule of M is a submodule P �= M such that whenever re ∈ P for some r ∈ R and e ∈ M ,
we have r ∈ (P : M) or e ∈ P [10].

The prime spectrum of M is the set of all prime submodules of M and denoted by Spec(M).
If N is a submodule of M , then V (N ) = {P ∈ Spec(M)| (P : M) ⊇ (N : M)} [11].
The Zariski topology on X = Spec(M) is the topology τM described by taking the set Z(M) = {V (N )|

N is a submodule of M} as the set of closed sets of Spec(M) [11].
A topological space X is irreducible if for any decomposition X = X1 ∪ X2 with closed subsets Xi of X

with i = 1, 2, we have X = X1 or X = X2.
There are many papers on assigning graphs to rings or modules (see, for example, [1,5,6,9]). In [4], the

present authors introduced and studied the graph G(τT ) and AG(M), called the Zariski topology-graph and
the annihilating-submodule graph, respectively.
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Let T be a non-empty subset of Spec(M). The Zariski topology-graph G(τT ) is an undirected graph with
vertices V (G(τT ))= {N < M| there exists K < M such that V (N ) ∪ V (K ) = T and V (N ), V (K ) �= T } and
distinct vertices N and L are adjacent if and only if V (N ) ∪ V (L) = T (see [4, Definition 2.3]).

AG(M) is an undirected graph with vertices V (AG(M))= {N ≤ M| there exists (0) �= K < M with
NK = (0)}. In this graph, distinct vertices N , L ∈ V (AG(M)) are adjacent if and only if NL = (0). Let
AG(M)∗ be the subgraph of AG(M) with vertices V (AG(M)∗) = {N < M with (N : M) �= Ann(M)| there
exists a submodule K < M with (K : M) �= Ann(M) and NK = (0)}. By [4, Theorem 3.4], one conclude
that AG(M)∗ is a connected subgraph.

If Spec(M) �= ∅, the mapping ψ : Spec(M) → Spec(R/Ann(M)) such that ψ(P) = (P : M)/Ann(M)
for every P ∈ Spec(M), is called the natural map of Spec(M) [11].

The prime radical
√
N is defined to be the intersection of all prime submodules of M containing N , and

in case N is not contained in any prime submodule,
√
N is defined to be M [10].

We recall that N < M is said to be a semiprime submodule of M if for every ideal I of R and every
submodule K of M with I 2K ⊆ N implies that I K ⊆ N . Further M is called a semiprime module if (0) ⊆ M
is a semiprime submodule. Every intersection of prime submodules is a semiprime submodule (see [17]).

The notations Nil(R), Min(M), and Min(T ) will denote the set of all nilpotent elements of R and the set
of all minimal prime submodules of M , and the set of minimal members of T , respectively.

A clique of a graph is a complete subgraph and the supremum of the sizes of cliques in G, denoted by
ω(G), is called the clique number of G. Let χ(G) denote the chromatic number of the graph G, that is, the
minimal number of colors needed to color the vertices of G so that no two adjacent vertices have the same
color. Obviously χ(G) ≥ ω(G).

In this article, we continue our studying about G(τT ) and AG(M) and we try to relate the combinatorial
properties of the above mentioned graphs to the algebraic properties of M .

In Sect. 2 of this paper, we state some properties related to the Zariski topology-graph that are basic
or needed in the later sections. In Sect. 3, we study the bipartite Zariski topology-graphs of modules over
commutative rings (see Proposition 3.1). Also, we prove that if G(τT ) is a tree, then G(τT ) is a star graph
(see Theorem 3.5). In Sect. 4, we study coloring of the Zariski topology-graph of modules and investigate
the interplay between χ(G(τT )) and ω(G(τT )). We show that under condition over minimal submodules of
M/(∩P∈T P : M)M , we have ω(G(τT )) = χ(G(τT )) (see Theorem 4.1). Moreover, we investigate some
relations between the existence of cycles in the Zariski topology-graph of a cyclic module and the number of
its minimal members of T (see Proposition 4.10).

Let us introduce some graphical notions and denotations that are used in what follows: A graph G is an
ordered triple (V (G), E(G), ψG) consisting of a nonempty set of vertices, V (G), a set E(G) of edges, and an
incident function ψG that associates an unordered pair of distinct vertices with each edge. The edge e joins x
and y if ψG(e) = {x, y}, and we say x and y are adjacent. A path in a graph G is a finite sequence of vertices
{x0, x1, . . . , xn}, where xi−1 and xi are adjacent for each 1 ≤ i ≤ n and we denote xi−1 − xi for existing an
edge between xi−1 and xi .

A graph H is a subgraph ofG, if V (H) ⊆ V (G), E(H) ⊆ E(G), andψH is the restriction ofψG to E(H).
A bipartite graph is a graph whose vertices can be divided into two disjoint setsU and V such that every edge
connects a vertex in U to one in V ; that is, U and V are each independent sets and complete bipartite graph
on n and m vertices, denoted by Kn,m , where V and U are of size n and m, respectively, and E(G) connects
every vertex in V with all vertices in U . Note that a graph K1,m is called a star graph and the vertex in the
singleton partition is called the center of the graph. For some U ⊆ V (G), we denote by N (U ), the set of all
vertices of G\U adjacent to at least one vertex of U . For every vertex v ∈ V (G), the size of N (v) is denoted
by deg(v). If all the vertices of G have the same degree k, then G is called k-regular, or simply regular. We
denote by Cn a cycle of order n. Let G and G ′ be two graphs. A graph homomorphism from G to G ′ is a
mapping φ : V (G) −→ V (G ′) such that for every edge {u, v} of G, {φ(u), φ(v)} is an edge of G ′. A retract
of G is a subgraph H of G such that there exists a homomorphism φ : G −→ H such that φ(x) = x , for
every vertex x of H . The homomorphism φ is called the retract (graph) homomorphism (see [13]).

Throughout the rest of this paper, we denote by T a non-empty subset of Spec(M), F := ∩P∈T P ,
Q := (F : M)M , M̄ := M/Q, N̄ := N/Q, m̄ := m + Q, and Ī := I/(Q : M), where N is a submodule of
M containing Q, m ∈ M , and I is an ideal of R containing (Q : M).
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2 Auxiliary results

In this section, we provide some properties related to the Zariski topology-graph that are basic or needed in
the sequel.

Remark 2.1 Let N be a submodule of M . Set V ∗(N ) := {P ∈ Spec(M)| P ⊇ N }. By [4, Remark 2.2], for
submodules N and K of M , we have

V (N ) ∪ V (K ) = V (N ∩ K ) = V (NK ) = V ∗(NK ).

By [4, Remark 2.5], we have T is a closed subset of Spec(M) if and only if T = V (F) and G(τT ) �= ∅ if and
only if T = V (F) and T is not irreducible. So if N and K are adjacent in G(τT ), then V ∗(NK ) = V ∗(Q)

and hence
√
NK = F . Therefore, F ⊆ √

(N : M)M and F ⊆ √
(K : M)M .

Lemma 2.2 (See [2, Proposition 7.6]) Let R1, R2, . . . , Rn be non-zero ideals of R. Then the following state-
ments are equivalent:

(a) R = R1 ⊕ . . . ⊕ Rn;
(b) As an abelian group R is the direct sum of R1, . . . , Rn;
(c) There exist pairwise orthogonal idempotents e1, . . . , en with 1 = e1+. . .+en, and Ri = Rei , i = 1, . . . , n.

Proposition 2.3 Suppose that e is an idempotent element of R. We have the following statements.

(a) R = R1 ⊕ R2, where R1 = eR and R2 = (1 − e)R.
(b) M = M1 ⊕ M2, where M1 = eM and M2 = (1 − e)M.
(c) For every submodule N of M, N = N1⊕N2 such that N1 is an R1-submodule M1, N2 is an R2-submodule

M2, and (N :R M) = (N1 :R1 M1) ⊕ (N2 :R2 M2).
(d) For submodules N and K of M, NK = N1K1⊕N2K2, N∩K = N1∩K1⊕N2∩K2 such that N = N1⊕N2

and K = K1 ⊕ K2.
(e) Prime submodules of M are P ⊕ M2 and M1 ⊕ Q, where P and Q are prime submodules of M1 and M2,

respectively.
(f) For submodule N of M, we have

√
N = √

N1 ⊕ N2 = √
N1 ⊕ √

N2, where N = N1 ⊕ N2.

Proof This is clear. ��
An ideal I < R is said to be nil if I consist of nilpotent elements.

Lemma 2.4 (See [15, Theorem 21.28]) Let I be a nil ideal in R and u ∈ R be such that u+ I is an idempotent
in R/I . Then there exists an idempotent e in uR such that e − u ∈ I .

Lemma 2.5 (See [5, Lemma 2.4]) Let N be a minimal submodule of M and let Ann(M) be a nil ideal. Then
we have N 2 = (0) or N = eM for some idempotent e ∈ R.

We note that M is said to be primeful if either M = (0) or M �= (0) and the natural map of Spec(M) is
surjective (see [12]).

Proposition 2.6 We have the following statements.

(a) If N , L are adjacent in G(τT ), then
√

(N : M)M/F and√
(L : M)M/F are adjacent in AG(M/F).

(b) If M is a primeful module and N , L are adjacent in G(τT ), then
√
N/F and

√
L/F are adjacent in

AG(M/F).

Proof (a) First, we see easily that for any submodule N of M , V (N ) = V (
√

(N : M)M). Suppose that N and
L are adjacent in G(τT ) so that V (N ) ∪ V (L) = T . Then we have V ∗(

√
(N : M)M

√
(L : M)M) = T .

It follows that
√

(N : M)M
√

(L : M)M ⊆ F (see Remark 2.1). Also by Remark 2.1, F ⊆ √
(N : M)M

and F ⊆ √
(L : M)M . Therefore,

√
(N : M)M/F and

√
(L : M)M/F are adjacent in AG(M/F).

(b) This is clear by [4, Corollary 4.5]. ��
Remark 2.7 The Proposition 2.6(a) extends [4, Theorem 4.4].

Lemma 2.8 Assume that T is a closed subset of Spec(M). Then AG(M̄)∗ is isomorphic with a subgraph of
G(τT ). In particular, AG(M/F)∗ is isomorphic with an induced subgraph of G(τT ).
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Proof Let N̄ ∈ V (AG(M̄)∗). Then there exists a nonzero submodule K̄ of M̄ such that it is adjacent to
N̄ (if N = K , then (N : M) = (Q : M), a contradiction). So we have NK ⊆ Q. Hence V (NK ) ⊇ T .
Since Q ⊆ N and Q ⊆ K , then V (N ) ⊆ T and V (K ) ⊆ T . Therefore V (NK ) = T (if V (N ) = T , then
(N : M) = (Q : M), a contradiction). Hence N is a vertex in G(τT ) which is adjacent to K . To see the
last assertion, let N/F and K/F be two vertices of AG(M/F)∗. If N and K are adjacent in G(τT ), then by
Proposition 2.6,

√
(N : M)M/F and

√
(K : M)M/F are adjacent in AG(M/F). So

√
(N : M)M

√
(K : M)M ⊆ F.

Since

NK = ((N : M)M : M)((K : M)M : M)M ⊆ √
(N : M)M

√
(K : M)M,

we have N/F and K/F are adjacent in AG(M/F)∗, as desired. ��
Lemma 2.9 If M̄ is a faithful module and T is a closed subset of Spec(M), then G(τSpec(M)) and AG(M)∗
are the same.

Proof M̄ is a faithful module and T is a closed subset of Spec(M) so that T = Spec(M). If G(τSpec(M)) �= ∅,
then there exist non-trivial submodules N and K of M which are adjacent in G(τSpec(M)). Hence V (NK ) =
Spec(M) which implies that NK = (0) so that AG(M)∗ �= ∅. By Lemma 2.8, AG(M)∗ is isomorphic with a
subgraph of G(τSpec(M)). One can see that the vertex map φ : V (G(τSpec(M))) −→ V (AG(M)∗), defined by
N −→ N is an isomorphism. ��

Recall that �(G(τT )) is the maximum degree of G(τT ) and the length of an R-module M , is denoted by
lR(M).

Lemma 2.10 Let every nontrivial submodule of M be a vertex in G(τT ). If �(G(τT )) < ∞, then lR(M) ≤
�(G(τT )) + 1. Also, every non-trivial submodule of M has finitely many submodules.

Proof First, we show that the descending chain of non-trivial submodules K1 � K2 � K3 � . . . terminates.
Since G(τT ) is connected, there exists a submodule N such that V (N ) ∪ V (K1) = T . Hence for each i ,
i ≥ 1, V (N ) ∪ V (Ki ) = T and so deg(N ) = ∞, a contradiction. Next, let N1 � N2 � N3 � . . . be an
ascending chain of non-trivial submodules of M . Since G(τT ) is connected, there exists a submodule K such
that V (K ) ∪ V (N�+1) = T , where � = �(G(τT )). Hence V (K ) ∪ V (Ni ) = T for each 1 ≤ i ≤ � + 1.
Thus deg(K ) ≥ � + 1, a contradiction. It follows that lR(M) ≤ � + 1. For the proof of the last assertion,
let N be a non-trivial submodule of M . Since G(τT ) is connected, there exists a submodule K such that
V (N ) ∪ V (K ) = T . Hence for every submodule N ′ of N , V (N ′) ∪ V (K ) = T . As � < ∞, the number of
submodules of N should be finite. ��
Theorem 2.11 Suppose that M̄ is a multiplication module and G(τT ) �= ∅. If G(τT ) has acc (resp. dcc) on
vertices, then M̄ is a Noetherian (resp. an Artinian) module.

Proof Suppose that G(τT ) has acc (resp. dcc) on vertices. By [4, Remark 2.6], F is not a prime submodule
of M and hence there exist r ∈ R and m ∈ M such that rm ∈ F but m /∈ F and r /∈ (F : M). Now
rM ∼= M̄/(0̄ :M̄ r). Further, rM and (0̄ :M̄ r) are vertices in AG(M̄) = AG(M̄)∗ (M̄ is a multiplication
module) because (0̄ :M̄ r)(rM) = ((0̄ :M̄ r) : M̄)(rM : M̄)M̄ ⊆ rM((0̄ :M̄ r) : M̄) ⊆ r(0̄ :M̄ r) = 0̄.
Then by Lemma 2.8, {N | N̄ ≤ M̄, N̄ ⊆ rM}∪ {N | N̄ ≤ M̄, N̄ ⊆ (0̄ :M̄ r)} ⊆ V (G(τT )). It follows that the
R-modules rM and (0̄ :M̄ r) have acc (resp. dcc) on submodules. Since rM ∼= M̄/(0̄ :M̄ r), M̄ has acc on
submodules and the proof is completed. ��

3 Zariski topology-graph of modules

First, in this sectionwe give themore notation to be used throughout the remainder of this article. Suppose that e
(e �= 0, 1) is an idempotent element of R. LetM1 := eM, M2 := (1−e)M, T1 := {P1 ∈ Spec(M1)|P1⊕M2 ∈
T }, T2 := {P2 ∈ Spec(M2)|M1 ⊕ P2 ∈ T }, F1 := ∩P1∈T1 P1, F2 := ∩P2∈T2 P2, Q1 := (F1 : M1)M1, Q2 :=
(F2 : M2)M2, M̄1 = eM = eM/Q1, and M̄2 = (e − 1)M = (e − 1)M/Q2. Consequently, we have,
Q = Q1 ⊕ Q2, where Q = (∩P∈T P : M)M and M̄ ∼= M̄1 ⊕ M̄2

We recall that a submodule N of M is a prime R-module if and only if it is a prime R/Ann(M)-module
(see [16, Result 1.2]).
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Proposition 3.1 Suppose that M̄ does not have a non-zero submodule F �= N̄ with V (N ) = T and Ann(M̄)
is a nil ideal. Then the following statements hold.

(a) If there exists a vertex of G(τT ) which is adjacent to every other vertex, then M̄1 is a simple module and
M̄2 is a prime module for some idempotent element e ∈ R.

(b) If M̄1 and M̄2 are prime modules for some idempotent element e ∈ R, then G(τT ) is a complete bipartite
graph.

Proof • (a) Suppose that N is adjacent to every other vertex of G(τT ). Since V (N ) = V ((N : M)M),
we have N = (N : M)M and hence V (N ) = V ∗(N ). Thus, N = √

N because V (N ) = V (
√
N ). We

claim that N̄ is a minimal submodule of M̄ . Let Q � K � N . If V (K ) �= T , then K is adjacent to
N and hence V (K ) = T , a contradiction. So N̄ is a minimal submodule of M̄ . We have (N̄ )2 �= (0)
because V (N ) �= T . Then Lemma 2.5, implies that M̄ ∼= eM ⊕ (e − 1)M for some idempotent element
e of R. Without loss of generality we may assume that M1 ⊕ Q2 is adjacent to every other vertex. Since
V (F1 ⊕ Q2) = V (Q1 ⊕ F2) = T , the assumption of theorem implies that F = Q. We claim that M̄1
is a simple module and M̄2 is a prime module. Let Q1 � K < M1. We have V (K ⊕ Q2) �= T because
Q1 ⊕ Q2 � K ⊕ Q2. Since V (K ⊕ Q2) ∪ V (Q1 ⊕ M2) = T , we have K ⊕ Q2 is a vertex and hence
is adjacent to M1 ⊕ Q2. Therefore V (K ⊕ Q2) ∪ V (M1 ⊕ Q2) = V (K ⊕ Q2) = T , a contradiction. It
implies that M̄1 is a simple module. Now, we show that M̄2 is a prime module. It is enough to show that it is
a prime R/(Q2 : M2)-module. Otherwise, Ī K̄ = (0̄), where (Q2 : M2) � I < R and Q2 � K < M2. It
follows that V (M1 ⊕ K )∪V (Q1 ⊕ I M2) = V (Q1 ⊕ K (I M2)) = T because K (I M2) ⊆ I K ⊆ Q2 (note
that (Q2 : M2) ⊆ (K : M2) and (Q2 : M2) ⊆ I ). Therefore, M1 ⊕ K is a vertex and hence is adjacent
to M1 ⊕ Q2. So V (M1 ⊕ K ) ∪ V (M1 ⊕ Q2) = T = V (M1 ⊕ Q2), a contradiction (note that M1 ⊕ K is
properly containing Q1 ⊕ Q2).

• (b) Assume that N1 ⊕ N2 is adjacent to K1 ⊕ K2. One can see that
√
N1K1 ⊕ √

N2K2 = √
Q1 ⊕ √

Q2. It

implies that (
√

(K1 : M1)M1 : M1)
√

(N1 : M1)M1 = (0̄) and (
√

(K2 : M2)M2 : M2)
√

(N2 : M2)M2 =
(0̄). Since M̄1 and M̄2 are prime modules, (

√
(K1 : M1)M1 : M1) = (Q1 : M1) or

√
(N1 : M1)M1 = Q1

and (
√

(K2 : M2)M2 : M2) = (Q2 : M2) or
√

(N2 : M2)M2 = Q2. Therefore G(τT ) is a complete
bipartite graph with two parts U and V such that N ∈ U if and only if V (N ) = V (M1 ⊕ Q2) and K ∈ V
if and only if V (K ) = V (Q1 ⊕ M2).

��
Corollary 3.2 Let M̄ be a faithful module which does not have a non-zero submodule F �= N̄ with V (N ) = T .
Then the following statements are equivalent.

(a) There is a vertex of G(τSpec(M)) which is adjacent to every other vertex of G(τSpec(M)).
(b) G(τSpec(M)) is a star graph.
(c) M = F ⊕ D, where F is a simple module and D is a prime module.

Proof (a) ⇒ (b) Let M̄ be a faithful module. Then Q = (0) and we have T = Spec(M). By Proposition 3.1,
M = M1 ⊕ M2, where M1 is a simple module and M2 is a prime module. Then every non-zero submodule
of M is of the form M1 ⊕ N2 and (0) ⊕ N2, where N2 is a non-zero submodule of M2. We show that non
of the submodules of the form (0) ⊕ N2 can be adjacent to each other. Assume that (0) ⊕ N2 and (0) ⊕ K2
are adjacent in G(τSpec(M)), where (0) �= N2 ≤ M2 and (0) �= K2 ≤ M2. Since (0) is a prime submodule
of M2, by Remark 2.1, we have N2K2 = (0). Hence V ((0) ⊕ N2) = Spec(M) or V ((0) ⊕ K2) = Spec(M),
a contradiction. Similarly, we can not have any vertex of the form M1 ⊕ N2, where N2 is a non-zero proper
submodule of M2. Now it is easy to see that M1 ⊕ (0) is adjacent to every other vertex and so G(τSpec(M)) is
a star graph.

(b) ⇒ (c) This follows by Proposition 3.1(a).
(c) ⇒ (a) Assume that M = F ⊕ D, where F is a simple module and D is a prime module. Using the

Proposition 3.1 (b), G(τSpec(M)) is a complete bipartite graph with two parts U and V such that N ∈ U if and
only if V (N ) = V (F⊕(0)) and K ∈ V if and only if V (K ) = V ((0)⊕D). We claim that |U | = 1. Otherwise,
V (F⊕(0)) = V (N⊕K ), where N = (0) or N = F and (0) �= K < D. Therefore V (N⊕K )∪V ((0)⊕D) =
Spec(M) and hence V ((0)⊕K ) = Spec(M) that is a contradiction with our assumption. So F⊕(0) is adjacent
to every other vertex of G(τSpec(M)) ��
Lemma 3.3 Let e ∈ R be an idempotent element of R and suppose that M̄ does not have a non-zero submodule
F �= N̄ with V (N ) = T . If G(τT ) is a triangle-free graph, then both M̄1 and M̄2 are prime R-modules.
Moreover, if G(τT ) has no cycle, then M̄1 is a simple module and M̄2 is a prime module.
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Proof First recall that if M̄ does not have a non-zero submodule F �= N̄ with V (N ) = T , then F = Q because
V (F1⊕Q2) = V (Q1⊕F2) = T .Without loss of generality,we can assume that M̄1 is not a primemodule. Then
Ī K̄ = (0̄), where (Q1 : M1) � I < R and Q1 � K < M1. It follows that Q1 ⊕ M2, K ⊕ Q2, and I M1 ⊕ Q2
form a triangle in G(τT ), a contradiction (note that V (K ⊕ Q2) ∪ V (I M1 ⊕ Q2) = V (K (I M1) ⊕ Q2) = T .
Also I M1 �= K . Otherwise, V (K ⊕ Q2) = V (K 2 ⊕ Q2) = V (K (I M1)⊕ Q2) = T , a contradiction). So both
M̄1 and M̄2 are prime R-modules. Now suppose that G(τT ) has no cycle. If none of M̄1 and M̄2 is a simple
module, then we choose non-trivial submodules Ni in Mi for some i = 1, 2. So N1 ⊕ Q2, Q1 ⊕ N2, M1 ⊕ Q2,
and Q1 ⊕ M2 form a cycle, a contradiction. ��
Corollary 3.4 Assume that M is a multiplication module or a primeful module, Ann(M̄) is a nil ideal, and
M̄ does not have a non-zero submodule F �= N̄ with V (N ) = T . Then G(τT ) is a star graph if and only if
M̄1 is a simple module and M̄2 is a prime module for some idempotent e ∈ R.

Proof The necessity is clear by Proposition 3.1(a). For the converse, assume that M̄ = M̄1 ⊕ M̄2, where M̄1
is a simple module and M̄2 is a prime for some idempotent e ∈ R. Using the Proposition 3.1(b), G(τT ) is a
complete bipartite graph with two parts U and V such that N ∈ U if and only if V (N ) = V (M1 ⊕ Q2) and
K ∈ V if and only if V (K ) = V (Q1 ⊕ M2). We claim that |U | = 1. Otherwise, V (M1 ⊕ Q2) = V (N1 ⊕ N2),
where N1 ≤ M1 and N2 ≤ M2. If N1 �= M1, then

√
(N1 : M1)M1 = M1, a contradiction (note that if M is

a multiplication module or a primeful module, then
√

(N : M)M �= M , where N < M). If N2 �= Q2, then
V (Q1 ⊕ N2) = T , a contradiction. So G(τT ) is a star graph. ��
Theorem 3.5 If G(τT ) is a tree, then G(τT ) is a star graph.

Proof Suppose that G(τT ) is not a star graph. Then G(τT ) has at least four vertices. Obviously, there are two
adjacent vertices L and K ofG(τT ) such that |N (L)\{K }| ≥ 1 and |N (K )\{L}| ≥ 1.Let N (L)\{K } = {Li }i∈�

and N (K )\{L} = {K j } j∈	 . Since G(τT ) is a tree, we have N (L) ∩ N (K ) = ∅. By [4, Theorem 2.10],
diam(G(τT )) ≤ 3. So every edge of G(τT ) is of the form {L , K }, {L , Li } or {K , K j }, for some i ∈ � and
j ∈ 	. Now, Pick p ∈ � and q ∈ 	. Since G(τT ) is a tree, L pKq is a vertex of G(τT ). If L pKq = Lu
for some u ∈ �, then V (K Lu) = T , a contradiction. If L pKq = Kv , for some v ∈ 	, then V (LKv) = T ,
a contradiction. If L pKq = L or L pKq = K , then V (L2) = T or V (K 2) = T , respectively, and hence
V (L) = T or V (K ) = T , a contradiction. So the claim is proved. ��
Theorem 3.6 Let R be an Artinian ring, M be a multiplication or a primeful module, and suppose that M̄
does not have a non-zero submodule F �= N̄ with V (N ) = T . If G(τT ) is a bipartite graph, then |T | = 2 and
G(τT ) ∼= K2.

Proof At first we recall that if G(τT ) �= ∅, then |E(G(τT ))| ≥ 1. Assume that G(τT ) is a bipartite graph.
Therefore G(τT ) is not empty. We show that R can not be a local ring. Otherwise, m is the unique maximal
ideal of R and hence is the unique prime ideal. Then [14, Corollary 2.11] implies that mM is the only prime
submodule of M so that G(τT ) = ∅, a contradiction. Hence by [8, Theorem 8.7], R = R1 ⊕ . . . ⊕ Rn , where
Ri is an Artinian local ring for i = 1, . . . , n and n ≥ 2. By Lemma 2.2 and Proposition 2.3, since G(τT )
is a bipartite graph, we have n = 2 and hence M̄ ∼= M̄1 ⊕ M̄2 for some idempotent e ∈ R (for example, if
n = 3, then M1 ⊕ Q2 ⊕ Q3, Q1 ⊕ M2 ⊕ Q3, and Q1 ⊕ Q2 ⊕ M3 form a triangle that is a contradiction).
By Lemma 3.3, M̄1 and M̄2 are prime modules. Then it is easy to see that M̄1 and M̄2 are vector spaces
over R/Ann(M̄1) and R/Ann(M̄2), respectively and so are semisimple R-modules. Since G(τT ) is a bipartite
graph, M̄1 and M̄2 are simple R-modules. A Similar argument as we did in proof of Corollary 3.4 implies that
T = {M1 ⊕ Q2, Q1 ⊕ M2} and G(τT ) ∼= K2. ��
Proposition 3.7 Assume that M is a multiplication module, Ann(M̄) is a nil ideal, and M̄ does not have a
non-zero submodule F �= N̄ with V (N ) = T .

(a) If G(τT ) is a finite bipartite graph, then |T | = 2 and G(τT ) ∼= K2.
(b) If G(τT ) is a regular graph of finite degree, then |T | = 2 and G(τT ) ∼= K2.

Proof (a) ByTheorem2.11, M̄ is anArtinian andNoetherianmodule so that R/Ann(M̄) is anArtinian ring.
A similar arguments in Theorem 3.6 says that, R/Ann(M̄) is a non-local ring. So by [8, Theorem 8.7] and
Lemma 2.2, there exist pairwise orthogonal idempotents modulo Ann(M̄). By lemma 2.4, M̄ ∼= M̄1 ⊕ M̄2,
for some idempotent e of R. Now, the proof that G(τT ) ∼= K2 is similar to the proof of Theorem 3.6.
(b) We may assume that G(τT ) is not empty. So F is not a prime submodule by [4, Remark 2.6] and hence
there exist r ∈ R and m ∈ M such that rm ∈ F but m /∈ F and r /∈ (F : M). A similar manner in proof of
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Theorem 2.11, shows that if the set of R-submodules of rM (resp. (0̄ :M̄ r) is infinite, then (0̄ :M̄ r) (resp.
rM) has infinite degree, a contradiction. Thus rM and (0̄ :M̄ r) have finite length so that M̄ has a finite
length. Therefore R/Ann(M̄) is an Artinian ring. As in the proof of part (a), M̄ ∼= M̄1 ⊕ M̄2 for some
idempotent e ∈ R. If M̄1 has one non-trivial submodule N̄ , then deg(Q1 ⊕ M2) > deg(N ⊕ M2) (we note
that by [6, Proposition 2.5], N̄ K̄ = (0̄) for some (0̄) �= K̄ < M̄1) and this contradicts the regularity of
G(τT ). Hence M̄1 is a simple module. Similarly, M̄2 is a simple module. Finally a similar argument as we
have seen in Theorem 3.6 gives G(τT ) ∼= K2.

��

4 Coloring of the Zariski-topology graph of modules

The purpose of this section is to study the coloring of the Zariski topology-graph of modules and investigate
the interplay between χ(G(τT )) and ω(G(τT )). We note that since E(G(τT )) ≥ 1 when G(τT ) �= ∅, then
χ(G(τT ))) ≥ 2.

Theorem 4.1 Let M̄ be an Artinian module such that for every minimal submodule N̄ of M̄, N is a vertex in
G(τT ). Then ω(G(τT )) = χ(G(τT )).

Proof M̄ is Artinian, so it contains a minimal submodule. Since for every minimal submodule N̄ of M̄ , N is
a vertex in G(τT ), we have V (N ) �= T . Also, N ∩ L = Q, where N̄ and L̄ are minimal submodules of M̄ .
It follows that N and L are adjacent in G(τT ), where N̄ and L̄ are minimal submodules of M̄ . First, suppose
that M̄ has infinitely many minimal submodules. Then ω(G(τT )) = ∞ and there is nothing to prove. Next,
assume that M̄ has k minimal submodules, where k is finite. We conclude that χ(G(τT )) = k = ω(G(τT )).
Obviously, ω(G(τT )) ≥ k. If possible, assume that ω(G(τT )) > k. Let 
 = {Nλ}λ∈I , where |I | = ω(G(τT ))

be a maximum clique in G(τT ). As for every Nλ ∈ 
,
√

(Nλ : M)M contains a minimal submodule, there

exists a minimal submodule K̄ and submodules Ni and N j in
, such that K̄ ⊂ √
(Ni : M)M ∩√

(N j : M)M ,
and hence V (K ) = T , a contradiction. Hence ω(G(τT )) = k. Next, we claim that G(τT ) is k-colorable. In
order to prove, put A = {K̄1, . . . , K̄k} be the set of all minimal submodules of M̄ . Now, we define a coloring
f on G(τT ) by setting f (N ) = min{i | Ki ⊆ √

(N : M)M} for every vertex N of G(τT ). Let N and L be
adjacent inG(τT ) and f (N ) = f (L) = j . Thus K j ⊆ √

(N : M)M∩√
(L : M)M , a contradiction. It implies

that f is a proper k coloring of G(τT ) and hence χ(G(τT )) ≤ k = ω(G(τT )), as desired. ��
Theorem 4.2 Assume that M̄ is a faithful module. Then the following statements are equivalent.

(a) χ(G(τSpec(M))) = 2.
(b) G(τSpec(M)) is a bipartite graph with two non-empty parts.
(c) G(τSpec(M)) is a complete bipartite graph with two non-empty parts.
(d) Either R is a reduced ring with exactly two minimal prime ideals or G(τSpec(M)) is a star graph with more

than one vertex.

Proof By using Lemma 2.8, G(τSpec(M)) and AG(M)∗ are the same and so [5, Theorem 3.3] completes the
proof. ��
Lemma 4.3 Assume that T is a finite set. Then χ(G(τT ))) is finite. In particular, ω(G(τT ))) is finite.

Proof Suppose that T = {P1, P2, . . . , Pk} is a finite set of distinct prime submodules of M . Define a coloring
f (N ) = min{n ∈ N| Pn /∈ V (N )}, where N is a vertex of G(τT ). We can see that χ(G(τT ))) ≤ k. ��
Theorem 4.4 For every module M, ω(G(τT )) = 2 if and only if χ(G(τT )) = 2. In particular, G(τT ) is
bipartite if and only if G(τT ) is triangle-free.

Proof Let ω(G(τT )) = 2. On the contrary assume that G(τT ) is not bipartite. So G(τT ) contains an odd cycle.
Suppose that C := N1 − N2 − · · · − N2k+1 − N1 be a shortest odd cycle in G(τT ) for some natural number k.
Clearly, k ≥ 2. SinceC is a shortest odd cycle inG(τT ), N3N2k+1 is a vertex. Now consider the vertices N1, N2,
and N3N2k+1. If N1 = N3N2k+1, then V (N4N1) = T . This implies that N1 − N4 − · · · − N2k+1 − N1 is an
odd cycle, a contradiction. Thus N1 �= N3N2k+1. If N2 = N3N2k+1, then we have C3 = N2 − N3 − N4 − N2,
again a contradiction. Hence N2 �= N3N2k+1. It is easy to check N1, N2, and N3N2k+1 form a triangle in
G(τT ), a contradiction. The converse is clear. In particular, we note that empty graphs are bipartite graphs. ��
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Corollary 4.5 Assume that e ∈ R is an idempotent element and M̄ does not have a non-zero submodule
F �= N̄ with V (N ) = T . Then G(τT ) is a complete bipartite graph if and only if M̄1 and M̄2 are prime
modules.

Proof Assume that G(τT ) is a complete bipartite graph. Therefore Theorem 4.4 states that G(τT ) is a triangle-
free graph. So Lemma 3.3 follows that M̄1 and M̄2 are prime modules. The conversely holds by Proposi-
tion 3.1(b). ��
Remark 4.6 Assume that S is a multiplicatively closed subset of R such that S ∩ (∪P∈T (P : M)) = ∅. Let
TS={S−1P| P ∈ T }. One can see that V (N ) = T if and only if V (S−1N ) = TS , where M is a finitely
generated module.

Theorem 4.7 Let S be a multiplicatively closed subset of R defined as in Remark 4.6 and M is a finitely
generated module. Then G(τTS ) is a retract of G(τT ) and ω(G(τTS )) = ω(G(τT )).

Proof Consider a vertex map φ : V (G(τT )) −→ V (G(τTS )), N −→ NS . Clearly, NS �= KS implies that
N �= K and V (N ) ∪ V (K ) = T if and only if V (NS) ∪ V (KS) = TS . Thus φ is surjective and hence
ω(G(τTS )) ≤ ω(G(τT )). If N �= K and V (N ) ∪ V (K ) = T , then we show that NS �= KS . On the contrary
suppose that NS = KS . Then V (N 2

S ) = V (NSKS) = V (NS) ∪ V (KS) = TS and so V (N 2) = T , a
contradiction. This shows that the map φ is a graph homomorphism. Now, for any vertex NS of G(τTS ), we
can choose a fixed vertex N of G(τT ). Then φ is a retract (graph) homomorphism which clearly implies that
ω(G(τTS )) = ω(G(τT )) under the assumption. ��
Corollary 4.8 Let S be a multiplicatively closed subset of R defined as in Remark 4.6 and let M be a finitely
generated module. Then χ(AG(MS)) = χ(AG(M)).

Corollary 4.9 Assume that M is a semiprime module and AG(M)∗ does not have an infinite clique. Then M
is a faithful module and 0 = (P1 ∩ . . . ∩ Pk : M), where Pi is a prime submodule of M for i = 1, . . . , k.

Proof By [5, Theorem 3.8 (b)], M is a faithful module and the last assertion follows directly from the proof
of [5, Theorem 3.8 (b)]. ��

Recall that the girth of a graph G is the length of a shortest cycle in G and denoted by gr(G).

Proposition 4.10 Let R be an Artinian ring, M̄ be a multiplication module, and let T be a closed subset of
Spec(M). Then we have the following statements.

(a) If S is a finite subset of T , then there exists a clique of size |S| in G(τT ).
(b) We have ω(G(τT )) ≥ |Min(T )| and if |Min(T )| ≥ 3, then gr(G(τT )) = 3.
(c) If

√
(0̄) = (0̄), then χ(G(τSpec(M))) = ω(G(τSpec(M))) = |Min(T )|.

Proof (a) Let R be an Artinian ring and let M̄ be a multiplication module. Then [14, Corollary 2.9] implies
that M̄ is a cyclic module. We show that T = Min(T ). Suppose that P1 ⊆ P2, where P1, P2 ∈ T . Then
(P1 : M) = (P2 : M) because every prime ideal in R is maximal. Since M̄ is multiplication, we have
P1 = P2 and finally the proof is straightforward by the facts that AG(M̄) = AG(M̄)∗, [6, Theorem 3.6],
and AG(M̄) is isomorphic with a subgraph of G(τT ) by Lemma 2.8.

(b) This is clear by item (a).
(c) If |Min(T )| = ∞, then by part (b), there is nothing to prove. Otherwise, [6, Theorem 3.8] implies that

AG(M̄) does not have an infinite clique. So M̄ is a faithful module by Corollary 4.9. Next, Lemma 2.8
says that G(τSpec(M)) and AG(M)∗ are the same. Now the result follows by [6, Theorem 3.8].

��
Lemma 4.11 Assume that M̄ is a semiprime module. Then the following statements are equivalent.

(a) χ(G(τSpec(M)))) is finite.
(b) ω(G(τSpec(M)))) is finite.
(c) G(τSpec(M))) does not have an infinite clique.

Proof (a) �⇒ (b) �⇒ (c) is clear.
(c) �⇒ (a) Suppose that G(τSpec(M))) does not have an infinite clique. By Lemma 2.8, AG(M̄)∗ does not

have an infinite clique and so by Corollary 4.9, there exists a finite number of prime submodules P1, . . . , Pk
of M such that (F : M) = (P1 ∩ . . . ∩ Pk : M). Define a coloring f (N ) = min{n ∈ N| Pn /∈ V (N )}, where
N is a vertex of G(τT ). Then we have χ(G(τSpec(M)))) ≤ k. ��
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Corollary 4.12 Assume that AG(M/F)∗ does not have an infinite clique. Then G(τSpec(M)) and AG(M)∗
are the same. Also, χ(G(τSpec(M)))) is finite.

Proof Since M/F is a semiprime module, by Corollary 4.9, M/F is a faithful module and there exists a finite
number of prime submodules P1, . . . , Pk of M such that (F : M) = (P1 ∩ . . .∩ Pk : M). So the result follows
by Lemma 2.8 and from the proof of (c) �⇒ (a) of Lemma 4.11. ��

We recall that M is said to be X-injective if either Spec(M) = ∅ or the natural map of X = Spec(M) is
injective (see [7]).

Proposition 4.13 Suppose that
√

(0̄) = (0̄), for every minimal member P of Spec(M), (P : M) is a minimal
ideal of R, and M̄ is an X-injective module. Then the following statements are equivalent.

(a) χ(G(τSpec(M))) is finite.
(b) ω(G(τSpec(M))) is finite.
(c) G(τSpec(M)) does not have an infinite clique.
(d) Min(Spec(M)) is a finite set.

Proof (a) �⇒ (b) �⇒ (c) is clear.
(c) �⇒ (d) Suppose G(τSpec(M)) does not have an infinite clique. By Lemma 2.8, AG(M̄)∗ does not have

an infinite clique and hence by Corollary 4.9, there exists a finite number of prime submodules P1, . . . , Pk of
M such that (F : M) = (P1 ∩ P2 ∩ · · · ∩ Pk : M). By assumptions, one can see that Min(Spec(M)) is a finite
set.

(d) �⇒ (a) Assume that Min(Spec(M)) is a finite set (equivalently, M̄ has a finite number of minimal
prime submodules) so that (F : M) = (P1 ∩ P2 ∩ · · · ∩ Pk : M), where Min(Spec(M)) = {P1, . . . , Pk}.
Define a coloring f (N ) = min{n ∈ N | Pn /∈ V (N )}, where N is a vertex of G(τSpec(M)). Then we have
χ(G(τSpec(M))) ≤ k. ��
Example 4.14 IfM is a faithfully flat R-module (for example, free modules), then pM is a p-prime submodule
of M , where p is a prime ideal of R by [10, Theorem 3]. So for every minimal prime submodule P of M ,
(P : M) is a minimal ideal of R.

Proposition 4.15 Assume that
√

(0̄) = (0̄) and M̄ is a faithful module. Then the following statements are
equivalent.

(a) χ(G(τSpec(M))) is finite.
(b) ω(G(τSpec(M))) is finite.
(c) G(τSpec(M)) does not have an infinite clique.
(d) R has a finite number of minimal prime ideals.
(e) χ(G(τSpec(M))) = ω(G(τSpec(M))) = |Min(R)| = k, where k is finite.

Proof This is clear by Lemma 2.8, [5, Proposition 3.10], and [5, Corollary 3.11]. ��
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