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Abstract In this paper, first and second kindChebyshevwavelets are studied.Newestimators E (1)
2k−1,0

, E (2)
2k−1,M

,

E (3)
2k−1,0

, E (4)
2k−1,M

for first kind Chebyshev wavelets and estimators E (5)
2k ,0

, E (6)
2k ,M

, E (7)
2k ,0

and E (8)
2k ,M

for second
kind Chebyshev wavelets for a function f belonging to generalized Hölder’s class have been obtained. Also,
a method based on first and second kind Chebyshev wavelet approximations has been presented for solving
integral equations. Comparison of solutions obtained by both wavelets method has been studied. It is found
that second kind Chebyshev wavelet method gives better and accurate solutions as compared to first kind
Chebyshev wavelet method. This is a significant achievement of this research paper in wavelet analysis.

Mathematics Subject Classification 42C40 · 65T60 · 65L10 · 65L60 · 65R20

1 Introduction

During the past few decades, wavelets have found their ways in the fields of signal processing, time-frequency
analysis, image processing, quantum mechanics, and data compression. Wavelets have been also used as basis
functions to estimate the solutions of integral and differential equations.

The approximation of a function belonging to some class by wavelet method has been discussed by many
researchers like Devore [7], Morlet [11,12], Meyer [10] and Debnath [6], etc. Sripathy et al. [14] discussed
the Chebyshev wavelet based approximation for solving linear and non-linear differential equation. Adibi et
al. [1] works on the numerical solution of Fredholm integral equation by first kind Chebyshev wavelet. As
per our knowledge, no work seems for the approximation of the function belonging to generalized Hölder’s
class by first and second kind Chebyshev wavelet method. In this paper, first and second kind Chebyshev
wavelet approximation of function f belonging to generalized Hölder’s classes H (χ)

α [0, 1) and H (w)[0, 1)
have been determined. Abel’s integral equations are solved by first and second kind Chebyshev wavelet
method. Several methods are known for approximating the solution of the integral equations and differential
equations. Capobianco [4] discussed the method for solving first kind integral equation. Yousefi [16] presented
the numerical solution of Abel integral equation by Legendre wavelet method. Chebyshev wavelets method
for solving system of Volterra integral equations has been discussed by Iqbal et al. [8]. Abel integral equation
has been studied by many researcher and some numerical methods were developed. In this paper, another
wavelet, Chebyshev wavelet of first and second kind are applied for the solution of Abel’s integral equation.
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The solutions obtained by first and second kind Chebyshev wavelet method are compared with their exact
solutions and the known Legendre wavelet method. It is observed that second kind Chebyshev wavelet method
gives more accurate solutions of the integral equations in comparison to first kind Chebyshev wavelet method
and the Legendre wavelet method. First and second kind Chebyshev wavelet approximations established in
this paper are new, sharper and best possible in wavelet analysis.

2 Definitions and preliminaries

2.1 First kind Chebyshev wavelet

Chebyshev wavelet of first kind, denoted by Tn,m , is defined over the interval [0, 1) as

Tn,m(x) =
{
2

k
2 T̃m(2k x − 2n + 1),

n − 1

2k−1 ≤ x <
n

2k−1 ;
0, otherwise,

where T̃m(x) =
⎧⎨
⎩

1√
π
, m = 0;√

2
π
Tm(x), m �= 0,

n = 1, 2, . . . , 2k−1, m = 0, 1, 2, 3, . . . , M and k is the positive integer. Here Tm(x) are Chebyshev
polynomials of the first kind of degree m which are orthogonal with respect to the weight function w(x) =

1√
1−x2

on [−1, 1], and satisfy the following recursive formula : T0(x) = 1, T1(x) = x, and Tm+1(x) =
2xTm(x) − Tm−1(x), m = 1, 2, 3, . . . [3].

2.2 Second kind Chebyshev wavelet

Chebyshev wavelet of second kind, denoted by Un,m , is defined over the interval [0, 1) as

Un,m(x) =
{
2

k+3
2 Um

(
2k+1x − 2n − 1

)
,

n

2k
≤ x <

n + 1

2k
;

0, otherwise,

where n = 0, 1, 2, . . . , 2k − 1, m = 0, 1, 2, . . . , M and x is the normalized time. The polynomials
Um(x) are second kind Chebyshev polynomials of degree m orthogonal with respect to the weight function
s(x) = √

1 − x2 on the interval [−1, 1], and satisfy the following recursive formula : U0(x) = 1, U1(x) =
2x, Um+1(x) = 2xUm(x) −Um−1(x), m = 1, 2, 3, . . . [13].

2.3 Function of Hα[0, 1)lass
A continuous function f ∈ Hα[0, 1) if f satisfies the inequality | f (x + t) − f (x)| = O(|t |α), for 0 < α ≤ 1
and ∀ x, t, x + t ∈ [0, 1) [5].

2.4 Generalized Hölder’s class

2.4.1 H (χ)
α [0, 1) class

Let χ be a positive, monotonic increasing function of t such that |t |α
χ( 1

|t | )
→ 0 as t → 0. A continuous function

f ∈ H (χ)
α [0, 1) if f satisfies the inequality

| f (x + t) − f (x)| = O

(
|t |α

χ
( 1

|t |
)
)

, for 0 < α ≤ 1 and ∀ x, t, x + t ∈ [0, 1).

Remark It is important to note that if χ(t) = 1, then class H (χ)
α [0, 1) class coincides with the known Hölder’s

class Hα[0, 1) [5].
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2.4.2 H (φ)[0, 1) class
Let φ be a positive, monotonic increasing function defined on [0, 1) such that φ(|t |) → 0 as t → 0. A
continuous function f ∈ H (φ)[0, 1) if f satisfies the inequality | f (x + t) − f (x)| = O

(
φ(|t |)), for 0 < α ≤

1 and ∀ x, t, x + t ∈ [0, 1) [15].
Remark It is important to note that if φ(|t |) = |t |α, 0 < α ≤ 1, then H (φ)[0, 1) class reduces to known
Hölder’s class Hα[0, 1) [5].
Remark If φ(|t |) = |t |α

χ( 1
|t | )

then H (φ)[0, 1) class reduces to H (χ)
α [0, 1) class.

2.5 Chebyshev wavelet function approximation

The function f ∈ L2[0, 1) is expressed in the form of Chebyshev wavelet series as

f (x) =
∞∑
n=0

∞∑
m=0

cn,mψn,m(x), (2.1)

where cn,m = 〈 f (x), ψn,m(x)〉, in which 〈., .〉 denotes the L2 inner product.
If infinite series in (2.1) is truncated then it is written as

S2k−1,M f (x) =
2k−1∑
n=0

M∑
m=0

cn,mψn,m(x) = C�ψ(x), (2.2)

where C and ψ(x) are 2k−1(M + 1) column vectors of the form

C = [c0,0, c0,1, . . . , c0,M , c1,0, c1,1, . . . , c1,M , . . . , c2k−1,0, . . . , c2k−1,M ]�,

and

ψ(x) = [ψ0,0, ψ0,1, . . . , ψ0,M , ψ1,0, ψ1,1, . . . , ψ1,M , . . . , ψ2k−1,0, . . . , ψ2k−1,M ]�.

TheChebyshevwavelet approximation E2k−1,M ( f ) of a function f by (2k−1,M+1)th partial sums S2k−1,M ( f )
of its Chebyshev wavelet series is given by

E2k−1,M ( f ) = min
S2k−1,M ( f )

‖ f − S2k−1,M ( f )‖2.

If E2k−1,M ( f ) → 0 as k → ∞, M → ∞, then E2k ,M ( f ) is called the best approximation of f of order
(2k, M + 1)([17], pp.115).

3 Theorem

In this paper, we prove the following Theorems:

Theorem 3.1 Let f ∈ H (χ)
α [0, 1) class such that |t |α

χ( 1
|t | )

→ 0 as t → 0 and its general first kind

Chebyshev wavelet expansion be f (x) = ∑∞
n=1

∑∞
m=0 cn,mTn,m(x), having

(
2k−1, M + 1

)
th partial sums

(S2k−1,M f )(x) = ∑2k−1

n=1
∑M

m=0 cn,mTn,m(x). Then the first kind Chebyshev wavelet approximation of f is
given by:

1. E (1)
2k−1,0

( f ) = min|| f −∑2k−1

n=1 cn,0Tn,0(x)||2 = O
(

1
2(k−1)αχ(2k−1)

)
, k ≥ 1.

2. E (2)
2k−1,M

( f ) = min|| f −∑2k−1

n=1
∑M

m=0 cn,mTn,m(x)||2 = O
(

1
2kαχ(2k)

√
M+1

)
, M ≥ 1.
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Theorem 3.2 Let f ∈ H (φ)[0, 1) class such that φ(|t |) → 0 as t → 0 and its general first kind
Chebyshev wavelet expansion be f (x) = ∑∞

n=1
∑∞

m=0 c
′
n,mTn,m(x) having (2k−1, M + 1)th partial sums

(S2k−1,M f )(x) = ∑2k−1

n=1
∑M

m=0 c
′
n,mTn,m(x). Then the first kind Chebyshev wavelet approximation of f is

given by:

1. E (3)
2k−1,0

( f ) = min|| f −∑2k−1

n=1 c
′
n,0Tn,0(x)||2 = O

(
φ
(

1
2k−1

))
, k ≥ 1.

2. E (4)
2k−1,M

( f ) = min|| f −∑2k−1

n=1
∑M

m=0 c
′
n,mTn,m(x)||2 = O

(
φ
(

1
2k

)
√
M+1

)
, M ≥ 1.

Theorem 3.3 Let f ∈ H (χ)
α [0, 1) class such that |t |α

χ( 1
|t | )

→ 0 as t → 0 and its general second kind

Chebyshev wavelet expansion be f (x) = ∑∞
n=0

∑∞
m=0 c

∗
n,mUn,m(x) having (2k, M + 1)th partial sums

(S2k ,M f )(x) = ∑2k−1
n=0

∑M
m=0 c

∗
n,mUn,m(x). Then the second kind Chebyshev wavelet approximation of f is

given by:

1. E (5)
2k ,0

( f ) = min|| f −∑2k−1
n=0 c∗

n,0Un,0(x)||2 = O
(

1
2kαχ(2k )

)
.

2. E (6)
2k ,M

( f ) = min|| f −∑2k−1
n=0

∑M
m=0 c

∗
n,mUn,m(x)||2 = O

(
1

2(k+1)αχ(2k+1)
√
M+1

)
, M ≥ 1.

Theorem 3.4 Let f ∈ H (φ)[0, 1) class such that φ(|t |) → 0 as t → 0 and its general second kind Chebyshev
wavelet expansion be f (x) = ∑∞

n=0
∑∞

m=0 c
′′
n,mUn,m(x) having (2k, M + 1)th partial sums (S2k ,M f )(x) =∑2k−1

n=0
∑M

m=0 c
′′
n,mUn,m(x). Then the first kind Chebyshev wavelet approximation of f is given by:

1. E (7)
2k ,0

( f ) = min|| f −∑2k−1
n=0 c

′′
n,0Un,0(x)||2 = O

(
φ
(

1
2k

))
.

2. E (8)
2k ,M

( f ) = min|| f −∑2k−1
n=0

∑M
m=0 c

′′
n,mUn,m(x)||2 = O

(
φ
(

1
2k+1

)
√
M+1

)
, M ≥ 1.

4 Proof of the theorems

4.1 Proof of Theorem 3.1

(i) Error between f (x) and its first kind Chebyshev wavelet expansion in
[
n−1
2k−1 ,

n
2k−1

)
is given by:

e
′
n(x) = cn,0Tn,0(x) − f (x), ∀x ∈

[
n − 1

2k−1 ,
n

2k−1

)
.

||e′
n||22 =

n
2k−1∫
n−1
2k−1

|e′
n(x)|2|wn(x)|dx =

n
2k−1∫
n−1
2k−1

|cn,0Tn,0(x) − f (x)|2|wn(x)|dx

=
(

2
k
2√
π
cn,0 − f (ζn)

)2
n

2k−1∫
n−1
2k−1

|wn(x)|dx, ζn ∈
[
n − 1

2k−1 ,
n

2k−1

)
, by weighted mean value theorem.

n
2k−1∫
n−1
2k−1

|wn(x)|dx =
n

2k−1∫
n−1
2k−1

w(2k x − 2n + 1)dx =
∫ 1

−1
|w(t)|dt

2k
=
∫ 1

−1

1√
1 − t2

dt

2k

= 2
∫ 1

0

1√
1 − t2

dt

2k
= π

2k
.
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Then, ||e′
n||22 =

(
2

k
2√
π
cn,0 − f (ζn)

)2
π

2k
. (4.1)

Now, cn,0 =
n

2k−1∫
n−1
2k−1

f (x)Tn,0(x)wn(x)dx = 2
k
2√
π

n
2k−1∫
n−1
2k−1

f (x)wn(x)dx

= 2
k
2√
π

f (ηn)

n
2k−1∫
n−1
2k−1

wn(x)dx =
√

π

2
k
2

f (ηn), ηn ∈
[
n − 1

2k−1 ,
n

2k−1

)
. (4.2)

By Eqs. (4.1) and (4.2), we have for f ∈ H (χ)
α [0, 1)

||e′
n||22 = ( f (ηn) − f (ζn)

2 π

2k
= M2

1 |ζn − ηn|2α
χ2
(
| 1
ζn−ηn

|
) π

2k

≤
(

M2
1π

2k22(k−1)αχ2(2k−1)

)
= M2

1π

2k22(k−1)αχ2(2k−1)
. (4.3)

Lastly, by Eq. (4.3),

(E (1)
2k−1,0

( f ))2 =
1∫

0

⎛
⎝2k−1∑

n=1

e
′
n(x)

⎞
⎠

2

wn(x)dx

=
1∫

0

2k−1∑
n=1

(e
′
n(x))

2wn(x)dx + 2
∑
1≤n

∑
�=n′≤2k−1

1∫
0

e
′
n(x)e

′
n′ (x)wn(x)dx

=
2k−1∑
n=1

1∫
0

(e
′
n(x))

2wn(x)dx, due to disjointness of support of e
′
n and e

′
n′

=
2k−1∑
n=1

||e′
n||22 ≤

2k−1∑
n=1

(
M2

1π

2k22(k−1)αχ2(2k−1)

)
= M2

1π × 2k−1

2k22(k−1)αχ2(2k−1)
≤ 2M2

1π

22(k−1)αχ2(2k−1)
.

Therefore, E (1)
2k−1,0

( f ) ≤
√
2M1

√
π

2(k−1)αχ(2k−1)
= O

(
1

2(k−1)αχ(2k−1)

)
, k ≥ 1.

(ii) Consider

f (x) =
∞∑
n=1

∞∑
m=0

cn,mTn,m(x)

cn,m = 〈
f, Tn,m

〉
wn(x)

=
n

2k−1∫
n−1
2k−1

f (x)Tn,m(x)wn(x)dx

= 2
k+1
2√
π

n
2k−1∫
n−1
2k−1

f (x)Tm(2k x − 2n + 1)w(2k x − 2n + 1)dx
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= 2
k+1
2√
π

π∫
0

f

(
cosθ + 2n − 1

2k

)
Tm(cosθ)w(cosθ)

sinθ

2k
dθ, 2k x − 2n + 1 = cosθ

= 1
√

π 2
k−1
2

π∫
0

(
f

(
cosθ + 2n − 1

2k

)
− f

(
2n − 1

2k

))
cos(mθ)dθ, w(cosθ) = 1

sinθ
.

Hence, for f ∈ H (χ)
α [0, 1),

|cn,m | ≤ 1
√

π 2
k−1
2

π∫
0

∣∣∣∣ f
(
cosθ + 2n − 1

2k

)
− f

(
2n − 1

2k

)∣∣∣∣ |cos(mθ)| dθ

≤ M2√
π2

k−1
2

π∫
0

∣∣∣∣cosθ2k

∣∣∣∣
α 1

χ | 2k
cosθ |

|cos(mθ)| dθ

≤ M2

2
k−1
2

√
π 2kα

π∫
0

|cosθ |α
χ | 2k

cosθ |
|cos(mθ)|dθ ≤ M2

2
k−1
2

√
π2kα

π
2∫

− π
2

|sint |α
χ | 2k

sint |
(|cos(mt)|

+|sin(mt)|)dt, θ = π

2
− t

= 2M2

2
k−1
2

√
π 2kα

π
2∫

0

(sint)α

χ | 2k
sint |

(|cos(mt)| + |sin(mt)|)dt

≤ 2M2

2
k−1
2

√
π2kαχ(2k)

π
2∫

0

(sint)α(|cos(mt)| + |sin(mt)|)dt

≤ 2M2

2
k−1
2

√
π 2kαχ(2k)

[{
(sint)α

(∣∣∣∣ sin(mt)

m

∣∣∣∣+
∣∣∣∣cos(mt)

m

∣∣∣∣
)} π

2

0

+
π
2∫

0

α(sint)α−1cost

(∣∣∣∣ sin(mt)

m

∣∣∣∣+
∣∣∣∣cos(mt)

m

∣∣∣∣
)
dt

⎤
⎥⎦ integrating by parts

≤ 2M2

2
k−1
2

√
π 2kαχ(2k)

⎡
⎢⎣ 1

m
+ 2

m

π
2∫

0

α(sint)α−1costdt

⎤
⎥⎦ ≤ 6M2

m2
k−1
2

√
π 2kαχ(2k)

. (4.4)

Now

f (x) − S2k−1,M ( f ) =
∞∑
n=1

∞∑
m=0

cn,mTn,m(x) −
2k−1∑
n=1

M∑
m=0

cn,mTn,m(x)

=
2k−1∑
n=1

∞∑
m=M+1

cn,mTn,m(x), by definition of Tn,m .

123



Arab. J. Math. (2021) 10:157–174 163

(
f (x) − (S2k−1,M f )(x)

)2 =
2k−1∑
n=1

∞∑
m=M+1

c2n,m

(
Tn,m(x)

)2 +
2k−1∑
n=1

∑
M+1≤m �=

∑
m′≤∞

cn,mcn,m′Tn,m(x)Tn,m′(x)

+
∑
1≤n �=

∑
n′≤2k−1

∞∑
m=M+1

cn,mcn′,mTn,m(x)Tn′,m(x)

+
∑
1≤n �=

∑
n′≤2k−1

∑
M+1≤m

∑
�=m′≤∞

cn,mcn′,m′Tn,m(x)Tn′,m′(x).

Then (E (2)
2k−1,M

( f ))2 = || f − S2k−1,M ( f )||22

=
1∫

0

(
f (x) − (S2k−1,M f )(x)

)2
wn(x)dx

=
2k−1∑
n=1

∞∑
m=M+1

|cn,m |2, by orthonormality property of Tn,m(x)

≤
2k−1∑
n=1

∞∑
m=M+1

[
6M2

m2
k−1
2

√
π 2kαχ(2k)

]2
, by Eq. (4.4)

=
2k−1∑
n=1

∞∑
m=M+1

36M2
2

m22k−1π22kαχ2(2k)
=

∞∑
m=M+1

36M2
2

m2π22kαχ2(2k)

= 36M2
2

π22kαχ2(2k)

∞∑
m=M+1

1

m2 ≤ 36M2
2

π22kα(M + 1)χ2(2k)
.

Therefore, E (2)
2k−1,M

( f ) ≤ 6M2√
π 2kα

√
M + 1χ(2k)

= O

(
1

2kαχ(2k)
√
M + 1

)
, M ≥ 1.

4.2 Proof of Theorem 3.2

(i) Following the proof of the Theorem 3.1(i) and for f ∈ H (φ)[0, 1), we have

||e′
n||22 = ( f (ηn) − f (ζn))

2 π

2k
≤ [M5φ(|ηn − ζn|)]2 π

2k
≤ M2

5πφ2(|ηn − ζn|)
2k

≤
M2

5πφ2
(

1
2k−1

)
2k

. (4.5)

Lastly, by Eq. (4.5)

(E (3)
2k−1,0

( f ))2 =
2k−1∑
n=1

||e′
n||22 ≤

2k−1∑
n=1

M2
5πφ2

(
1

2k−1

)
2k

=
M2

5φ2
(

1
2k−1

)
π × 2k−1

2k
=

M2
5πφ2

(
1

2k−1

)
2

.

Therefore, E (3)
2k−1,0

( f ) ≤
M5φ

(
1

2k−1

)√
π

√
2

= O

(
φ

(
1

2k−1

))
, k ≥ 1.

(ii) Following the proof of the Theorem 3.1(ii),

|c′
n,m | ≤ 1

√
π 2

k−1
2

π∫
0

∣∣∣∣ f
(
cosθ + 2n − 1

2k

)
− f

(
2n − 1

2k

)∣∣∣∣ |cos(mθ)| dθ
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≤ M6√
π 2

k−1
2

π∫
0

φ

(∣∣∣∣cosθ2k

∣∣∣∣
)

|cos(mθ)| dθ

≤ M6√
π 2

k−1
2

π
2∫

−π
2

φ

(∣∣∣∣ sint2k

∣∣∣∣
)

(|cos(mt)| + |sin(mt)|) dt, θ = π

2
− t

= 2M6√
π 2

k−1
2

π
2∫

0

φ

(∣∣∣∣ sint2k

∣∣∣∣
)

(|cos(mt)| + |sin(mt)|) dt

≤
2M6φ

(
1
2k

)
√

π 2
k−1
2

[∣∣∣∣ sin(mt)

m

∣∣∣∣+
∣∣∣∣cos(mt)

m

∣∣∣∣
] π

2

0
≤

4M6φ
(

1
2k

)
m

√
π 2

k−1
2

. (4.6)

(E (4)
2k−1,M

( f ))2 =
2k−1∑
n=1

∞∑
m=M+1

|c′
n,m |2, by orthonormality property of Tnm(x)

≤
2k−1∑
n=1

∞∑
m=M+1

⎡
⎣4M6φ

(
1
2k

)
m

√
π.2

k−1
2

⎤
⎦
2

, by Eq. (4.6)

=
2k−1∑
n=1

∞∑
m=M+1

16M2
2φ2

(
1
2k

)
m2π2k−1 =

∞∑
m=M+1

16M2
2φ

2
(

1
2k

)
m2π

=
16M2

6φ2
(

1
2k

)
π

∞∑
m=M+1

1

m2

≤
16M2

6φ
2
(

1
2k

)
π(M + 1)

.

Therefore, E (4)
2k−1,M

( f ) ≤
4M6φ

(
1
2k

)
√

π
√
M + 1

= O

⎛
⎝ φ

(
1
2k

)
√
M + 1

⎞
⎠ , M ≥ 1.

4.3 Proof of Theorem 3.3

(i) Error between f (x) and its second kind Chebyshev wavelet expansion in interval
[
n
2k

, n+1
2k

)
is given by:

e
′′
n(x) = c∗

n,0Un,0(x) − f (x), ∀x ∈
[
n

2k
,
n + 1

2k

)
.

||e′′
n||22 =

n+1
2k∫
n
2k

|e′′
n(x)|2|sn(x)|dx =

n+1
2k∫
n
2k

|c∗
n,0Un,0(x) − f (x)|2|sn(x)|dx

=
(
2

k+3
2√
π
c∗
n,0 − f (ζ

′
n)

)2
n+1
2k∫
n
2k

|sn(x)|dx, ζ
′
n ∈

[
n

2k
,
n + 1

2k

)
, by weighted mean value theorem.

n+1
2k∫
n
2k

|sn(x)|dx =
n+1
2k∫
n
2k

√
−22k x2 + 2k(1 + 2n)x − (n + n2)dx
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=
n+1
2k∫
n
2k

√
(2k x − n) − (2k x − n)2dx, 2k x − n = t

= 1

2k

∫ 1

0

√
t − t2 = 1

2k

∫ 1

0

√(
1

2

)2

−
(
t − 1

2

)2

dt

= 1

2k

⎡
⎣(t − 1

2

)
2

√(
1

2

)2

−
(
t − 1

2

)2

+ 1

8
sin−1

((
t − 1

2

)
1
2

)⎤
⎦
1

0

= 1

2k+3

[
sin−1(1) − sin−1(−1)

] = π

2k+3 .

Then, ||e′′
n||22 =

(
2

k+3
2√
π
c∗
n,0 − f (ζ

′
n)

)2
π

2k+3 . (4.7)

Now, c∗
n,0 =

n+1
2k∫
n
2k

f (x)Un,0(x)sn(x)dx = 2
k+3
2√
π

n+1
2k∫
n
2k

f (x)sn(x)dx

= 2
k+3
2√
π

f (η
′
n)

n+1
2k∫
n
2k

sn(x)dx, η
′
n ∈

[
n

2k
,
n + 1

2k

)

= 2
k+3
2√
π

f (η
′
n)
( π

2k+3

)
=

√
π

2
k+3
2

f (η
′
n). (4.8)

By Eqs. (4.7) and (4.8) and for f ∈ H (χ)
α [0, 1), we have

||e′′
n||22 = ( f (η

′
n) − f (ζ

′
n))

2 π

2k+3 ≤
⎡
⎢⎣M3|ζ ′

n − η
′
n|α

χ
(

1
|ζ ′
n−η

′
n |
)
⎤
⎥⎦
2

π

2k+3 ≤ M2
3π

2k22kαχ2(2k)
. (4.9)

Following the proof of Theorem 3.1(i)

(E (5)
2k ,0

( f ))2 =
2k−1∑
n=1

||e′′
n||22 ≤

2k−1∑
n=1

M2
3π

2k22kαχ2(2k)
, by Eq. (4.9)

= M2
3π

22αkχ2(2k)
.

Therefore, E (5)
2k ,0

( f ) ≤ M3
√

π

2αkχ(2k)
= O

(
1

2kαχ(2k)

)
, k ≥ 1.

(ii) Consider

f (x) =
∞∑
n=0

∞∑
m=0

c∗
n,mUn,m(x)

and sn(x) =
√

−22k x2 + 2k(1 + 2n)x − (n + n2)

c∗
n,m = 〈

f,Un,m
〉
sn(x)

=
n+1
2k∫
n
2k

f (x)Un,m(x)sn(x)dx = 2
k+3
2√
π

n+1
2k∫
n
2k

f (x)Um(2k+1x − 2n − 1)sn(x)dx
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= 2
k+3
2√
π

n+1
2k∫
n
2k

f (x)Um(2k+1x − 2n − 1)
√

−22k x2 + 2k(1 + 2n)x − (n + n2)dx

= 2
k+3
2√
π

π∫
0

f

(
cosθ + 2n + 1

2k+1

)
Um(cosθ)

(
sinθ

2

)(
sinθ

2k+1

)
dθ, 2k+1x − 2n − 1 = cosθ

= 1
√

π 2
k+1
2

π∫
0

f

(
cosθ + 2n + 1

2k+1

)
sinθsin((m + 1)θ)dθ

= 1
√

π 2
k+1
2

π∫
0

f

(
cosθ + 2n + 1

2k+1

)(
cos(mθ) − cos((m + 2)θ)

2

)
dθ

= 1
√

π 2
k+1
2

π∫
0

(
f

(
cosθ + 2n + 1

2k+1

)
− f

(
2n + 1

2k+1

))(
cos(mθ) − cos((m + 2)θ)

2

)
dθ, m ≥ 1.

Then, for f ∈ H (χ)
α [0, 1),

|c∗
n,m | ≤ 1

√
π 2

k+3
2

π∫
0

∣∣∣∣ f
(
cosθ + 2n + 1

2k+1

)
− f

(
2n + 1

2k+1

)∣∣∣∣ |cos(mθ) − cos((m + 2)θ)| dθ

≤ M4√
π 2

k+3
2

π∫
0

∣∣∣∣ cosθ2k+1

∣∣∣∣
α 1

χ | 2k+1

cosθ |
|cos(mθ) − cos((m + 2)θ)| dθ

≤ M4

2
k+3
2

√
π 2(k+1)α

π∫
0

|cosθ |α
χ | 2k+1

cosθ |
(|cos(mθ)| + |cos((m + 2)θ)|)dθ

= M4

2
k+3
2

√
π 2(k+1)α

π
2∫

− π
2

|sint |α
χ | 2k+1

sint |
(|cos(mt)| + |cos((m + 2)t)|

+|sin(mt)| + |sin((m + 2)t)|)dt, θ = π

2
− t

= 2M4

2
k+3
2

√
π 2(k+1)αχ(2k+1)

π
2∫

0

(sint)α(|cos(mt)| + |cos((m + 2)t)|

+|sin(mt)| + |sin((m + 2)t)|)dt
≤ 2M4

2
k+3
2

√
π 2(k+1)αχ(2k+1)

[{
(sint)α

(∣∣∣∣ sin(mt)

m

∣∣∣∣
+
∣∣∣∣ sin((m + 2)t)

m + 2

∣∣∣∣+
∣∣∣∣cos(mt)

m

∣∣∣∣+
∣∣∣∣ sin((m + 2)t)

m + 2

∣∣∣∣
)} π

2

0

+
π
2∫

0

α(sint)α−1cost

(∣∣∣∣ sin(mt)

m

∣∣∣∣+
∣∣∣∣ sin((m + 2)t)

m + 2

∣∣∣∣+
∣∣∣∣cos(mt)

m

∣∣∣∣+
∣∣∣∣ sin((m + 2)t)

m + 2

∣∣∣∣
)
dt

⎤
⎥⎦ , integrating by parts
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≤ 2M4

2
k+3
2

√
π 2(k+1)αχ(2k+1)

⎡
⎢⎣ 2

m
+ 4

m

π
2∫

0

α(sint)α−1costdt

⎤
⎥⎦

≤ 12M4

m2
k+3
2

√
π 2(k+1)αχ(2k+1)

. (4.10)

Following the procedure of the Theorem 3.1(ii),

(E (6)
2k ,M

( f ))2 =
2k−1∑
n=0

∞∑
m=M+1

|c∗
n,m |2, by orthonormality property of Un,m(x)

≤
2k−1∑
n=0

∞∑
m=M+1

[
12M4

m2
k+3
2

√
π2(k+1)αχ(2k+1)

]2
, by Eq. (4.10)

=
2k−1∑
n=0

∞∑
m=M+1

144M2
4

m2π22(k+1)α2(k+3)χ2(2k+1)

= 18M2
4

m2π22(k+1)αχ2(2k+1)

∞∑
m=M+1

1

m2 ≤ 18M2
4

(M + 1)π22(k+1)αχ2(2k+1)
.

Therefore, E (6)
2k ,M

( f ) ≤
√
18M4√

M + 1
√

π2(k+1)αχ(2k+1)
= O

(
1

2(k+1)αχ(2k+1)
√
M + 1

)
, M ≥ 1.

4.4 Proof of Theorem 3.4

(i) Following the proof of the Theorem 3.3(i) and for f ∈ H (φ)[0, 1), we have

||e′′
n||22 = ( f (η

′
n) − f (ζ

′
n))

2 π

2k+3 ≤
[
M7φ(|η′

n − ζ
′
n|)
]2 π

2k+3

≤ M2
7πφ2(|η′

n − ζ
′
n|)

2k+3 ≤
M2

7πφ2
(

1
2k

)
2k+3 . (4.11)

Lastly, by Eq. (4.11),

(E (7)
2k ,0

( f ))2 =
2k−1∑
n=0

||e′′
n||22 ≤

2k−1∑
n=0

M2
7πφ2

(
1
2k

)
2k+3

=
M2

7φ2
(

1
2k

)
π × 2k

2k+3 ≤
M2

7πφ2
(

1
2k

)
8

.

Therefore E (7)
2k ,0

( f ) ≤
M7φ

(
1
2k

)√
π

√
8

= O

(
φ

(
1

2k

))
.

(ii) Following the proof of the Theorem 3.3(ii),

|c′′
n,m | ≤ 1

√
π2

k+3
2

π∫
0

∣∣∣∣ f
(
cosθ + 2n − 1

2k

)
− f

(
2n − 1

2k

)∣∣∣∣ |cos(mθ) − cos((m + 2)θ)| dθ

≤ M8√
π 2

k+3
2

π∫
0

φ

(∣∣∣∣ cosθ2k+1

∣∣∣∣
)

|cos(mθ) − cos((m + 2)θ)| dθ
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≤ M8√
π 2

k+3
2

π∫
0

φ

(∣∣∣∣ cosθ2k+1

∣∣∣∣
)

(|cos(mθ)| + |cos((m + 2)θ)|) dθ

= M8√
π 2

k+3
2

π
2∫

−π
2

φ

(∣∣∣∣ sint2k+1

∣∣∣∣
)

(|cos(mt)| + |sin(mt)| + |cos((m + 2)t)|

+ |sin((m + 2)t)|) dt, θ = π

2
− t

= 2M8√
π 2

k+3
2

π
2∫

0

φ

(∣∣∣∣ sint2k+1

∣∣∣∣
)

(|cos(mt)| + |sin(mt)| + |cos((m + 2)t)| + |sin((m + 2)t)|) dt

≤
2M8φ

(
1

2k+1

)
√

π 2
k+3
2

[∣∣∣∣ sin(mt)

m

∣∣∣∣+
∣∣∣∣cos(mt)

m

∣∣∣∣+
∣∣∣∣ sin((m + 2)t)

m + 2

∣∣∣∣+
∣∣∣∣cos((m + 2)t)

m + 2

∣∣∣∣
] π

2

0

≤
8M8φ

(
1

2k+1

)
m

√
π 2

k+3
2

. (4.12)

(E (8)
2k−1,M

( f ))2 =
2k−1∑
n=0

∞∑
m=M+1

|c′′
n,m |2, by orthonormality property of Tn,m(x)

≤
2k−1∑
n=0

∞∑
m=M+1

⎡
⎣8M8φ

(
1

2k+1

)
m

√
π.2

k+3
2

⎤
⎦
2

, by Eq. (4.12)

=
2k−1∑
n=0

∞∑
m=M+1

64M2
8φ2

(
1

2k+1

)
m2π2k+3 =

∞∑
m=M+1

64M2
8φ2

(
1

2k+1

)
8m2π

=
8M2

8φ2
(

1
2k+1

)
π

∞∑
m=M+1

1

m2 ≤
8M2

8φ2
(

1
2k

)
π(M + 1)

.

Therefore, E (8)
2k ,M

( f ) ≤
√
8M8φ

(
1

2k+1

)
√

π
√
M + 1

= O

⎛
⎝φ

(
1

2k+1

)
√
M + 1

⎞
⎠ , M ≥ 1.

5 Corollary

Following Corollaries can be deduced from Theorems 3.1 to 3.4:

Corollary 5.1 If f ∈ Hα[0, 1), then E (1)
2k−1,0

( f ) = O
(

1
2(k−1)α

)
, k ≥ 1 and E (2)

2k−1,M
( f ) = O

(
1

2kα
√
M+1

)
,

M ≥ 1.

Proof of the Corollary 5.1 can be developed parallel to the proof of Theorem 3.1 by taking χ(t) = 1, ∀ t ∈
[0, 1). ��
Corollary 5.2 If f ∈ Hα[0, 1), then E (3)

2k−1,0
( f ) = O

(
1

2(k−1)α

)
, k ≥ 1 and E (4)

2k−1,M
( f ) = O

(
1

2kα
√
M+1

)
,

M ≥ 1.

Proof of the Corollary 5.2 can be developed parallel to the proof of Theorem 3.2 by taking φ(t) = c|t |α ,
c > 0, ∀ t ∈ [0, 1). ��
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Corollary 5.3 If f ∈ Hα[0, 1), then E (5)
2k ,0

( f ) = O
(

1
2kα

)
, k ≥ 1 and E (6)

2k ,M
( f ) = O

(
1

2(k+1)α
√
M+1

)
, M ≥

1.

Proof of the Corollary 5.3 can be developed parallel to the proof of Theorem 3.3 by taking χ(t) = 1, ∀ t ∈
[0, 1). ��
Corollary 5.4 If f ∈ Hα[0, 1), then E (7)

2k ,0
( f ) = O

(
1
2kα

)
, k ≥ 1 and E (8)

2k ,M
( f ) = O

(
1

2(k+1)α
√
M+1

)
, M ≥

1.

Proof of the Corollary 5.4 can be developed parallel to the proof of Theorem 3.4 by taking
φ(t) = c|t |α , c > 0, ∀ t ∈ [0, 1). ��

6 Method for solving Abel’s integral equations by first and second kind Chebyshev wavelet

In this section, first and second kind Chebyshev wavelets method for solving Abel integral equations are
demonstrated. Abel’s integral equation [2] has two forms:
First Kind: ∫ x

0

y(t)√
x − t

dt = f (x). (6.1)

Second Kind:

y(x) =
∫ x

0

y(t)√
x − t

dt + f (x), (6.2)

where f (x) is a given function and y(t) is an unknown function.
At first, the functions f (x) and y(x) are approximated with Chebyshev wavelets as:

y(x) = Y�
(x) and f (x) = F�
(x), (6.3)

where 
(x) is T (x) or U (x), Y is 2k−1(M + 1) or 2k(M + 1) unknown column vector defined similarly to C
in (2.2) and (2.4) and coefficients of F is known.

Substituting equation (6.3) in equations (6.1) and (6.2), the integral equations are transformed as:
First Kind: ∫ x

0

Y�
(t)√
x − t

dt = F�
(x). (6.4)

Second Kind:

Y�
(x) =
∫ x

0

Y�
(x)√
x − t

dt + F�
(x), (6.5)

Now we need to calculate the integral
∫ x
0

Y�
(t)√
x−t

dt .
Since the basis of Chebyshev wavelets is polynomials, it is sufficient to calculate the integral:∫ x

0

tn√
x − t

dt.

. This basis integral is solved as:∫ x

0

tn√
x − t

dt =
√

πx ( 12+n)�(n + 1)

�(n + 3
2 )

, where �(n) = (n − 1)! for positive integer n.

Based on the above equation, the integral
∫ x
0

Y�
(t)√
x−t

dt can be obtained as:

∫ x

0


(t)√
x − t

dt = L
(x),
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where L is the operational matrix obtained from first or second kind Chebyshev wavelets. With the calculated
L , the unknown coefficient vector Y� can be calculated from using equation (6.4), (6.5) and the above equation:
First Kind:

Y� = F�L−1.

Second Kind:

Y� = F�(I − L)−1.

The unknown function y(x) = Y�
(x), where 
(x) is T (x) or U (x), is the required approximate solution.

7 Illustrative examples

In this section, we applied Chebyshev wavelet method described in previous Section for solving integral
equations and solve some examples.

Example 7.1 Consider the following Abel’s integral equation of the first kind:

∫ x

0

y(t)√
x − t

dt = 2
√
x(15 + 10x + 8x2)

15
(7.1)

having the exact solution y(x) = x2 + x + 1.

Consider the approximate solution as y(x) = ∑9
m=0 c0,m
0,m(x).

The integral equation has been solved by applying the procedure described in Sect. 6 by first and second kind
Chebyshev wavelets by taking M = 9 and k = 0.

The graphs of the obtained numerical solution through wavelet methods and the exact solution of exam-
ple 7.1 are shown in the Fig. 1:

It is observed from the table and figure that the numerical solution obtained by the second kind Chebyshev
wavelet is approximately same as the exact solution.

Fig. 1 Comparison of Legendre wavelet and Chebyshev wavelet solutions of example 7.1
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Table 1 Comparisons between the exact solution and estimated numerical solutions for various values of x

x Exact solution Legendre wavelet First kind Chebyshev wavelet Second kind Chebyshev wavelet

0.1 1.11 0.9295325636 1.0719999995 1.110000001
0.2 1.24 1.115745774 1.1546666661 1.240000002
0.3 1.39 1.309633163 1.2479999994 1.389999998
0.4 1.56 1.511194733 1.3519999994 1.560000001
0.5 1.75 1.720430483 1.466666666 1.750000001
0.6 1.96 1.937340412 1.5919999994 1.959999998
0.7 2.19 2.161924522 1.7279999994 2.190000001
0.8 2.44 2.394182812 1.8746666661 2.440000001
0.9 2.71 2.634115282 2.0319999994 2.709999998

Example 7.2 Consider the following Abel’s integral equation of the second kind:

y(x) = 4x
3
2 −

∫ x

0

y(t)√
x − t

dt (7.2)

having the exact solution y(x) = −6
√
x

π
+ 3x + 3(1−er f c(

√
πx))

π
.

Consider the approximate solution as y(x) = ∑9
m=0 c0,mU0,m(x). The integral equation has been solved by

applying the procedure described in Sect. 6 for second kind Abel’s integral equation by taking M = 9 and k =
0.

The graphs of the estimated numerical solution through wavelet methods and the exact solution of exam-
ple 7.2 are shown in the Fig. 2:

It is observed from the table and figure that the numerical solution obtained by the second kind Chebyshev
wavelet is sufficiently close to the exact solution.

Fig. 2 Comparison of Legendre wavelet and Chebyshev wavelet solutions of example 7.1
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Table 2 Comparisons between the exact solution and numerical solutions for various values of x

x Exact solution Legendre wavelet First kind Chebyshev wavelet Second kind Chebyshev wavelet

0.1 0.0914468358 0.0296708741 0.07729546684 0.09110093731
0.2 0.2313248892 0.1868894237 0.1890183222312 0.2312907524
0.3 0.3928020550 0.3529379159 0.313538238957 0.3925503707
0.4 0.5682530617 0.5278163507 0.446787237873 0.5681158465
0.5 0.7538699265 0.7115247282 0.585883099671 0.7538251898
0.6 0.9473720681 0.9040630482 0.729194511971 0.9471807518
0.7 1.147248545 1.105431311 0.876282397483 1.147097566
0.8 1.352430310 1.315629516 1.02636052245096 1.352392295
0.9 1.562124843 1.534657664 1.17867275370492 1.561922001

8 Comparison of results of Chebyshev wavelet of first kind and second kind with Legendre wavelet

8.1 Legendre wavelet

Legendre wavelet over the interval [0,1) is defined as

ψn,m(x) =
{√

m + 1
2 2

k
2 Pm(2k x − n̂),

n̂ − 1

2k
≤ x <

n̂ + 1

2k
;

0, otherwise,

where n = 1, 2, . . . , 2k−1, m = 0, 1, 2, . . . , M − 1 and n̂ = 2n − 1 [9].
Comparisons are shown in Figs. 1 and 2. By the figures, it is observed that the numerical results obtained

by the Chebyshev wavelet of second kind are quite close to the exact solution. Due to the weight functions
w(x) = 1√

1−x2
and s(x) = √

1 − x2 of Chebyshev polynomial of first kind and second kind respectively,
the absolute errors at end points in case of Chebyshev wavelet of first kind and second kind is less than those
of Legendre wavelet. Therefore, Chebyshev wavelet of second kind gives better result as compared to the
Legendre wavelet and Chebyshev wavelet of first kind.

9 Superiority of Chebyshev wavelet of second kind to first kind

In Chebyshev wavelet of first kind, the weight function is w(x) = 1√
1−x2

and the weight function in the

Chebyshev wavelet of second kind is s(x) = √
1 − x2. Weight function of Chebyshev wavelet of second kind

is more convenient and applicable than the weight function of Chebyshev wavelet of first kind. Furthermore,
Chebyshev polynomial of second kind in the definition of second kind Chebyshev wavelet is more effective
and significant in mathematical premises than the Chebyshev polynomial of first kind in the definition of first
kind Chebyshev wavelet. In view of the above mentioned observation, Chebyshev wavelet of second kind is
better than the Chebyshev wavelet of first kind.

10 Conclusions

10.1 The approximation obtained in the Theorems 3.1, 3.2, 3.3 and 3.4 are given below:

E (1)
2k−1,0

( f ) = O

(
1

2(k−1)αχ(2k−1)

)
→ 0 as k → ∞,

E (2)
2k−1,M

( f ) = O

(
1

2kαχ(2k)
√
M + 1

)
→ 0 as k → ∞, M → ∞,

E (3)
2k−1,0

( f ) = O

(
φ

(
1

2k−1

))
→ 0 as k → ∞,

E (4)
2k−1,M

( f ) = O

⎛
⎝ φ

(
1
2k

)
√
M + 1

⎞
⎠ → 0 as k → ∞, M → ∞,
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E (5)
2k ,0

( f ) = O

(
1

2kαχ(2k)

)
→ 0 as k → ∞,

E (6)
2k ,M

( f ) = O

(
1

2(k+1)αχ(2k+1)
√
M + 1

)
→ 0 as k → ∞, M → ∞,

E (7)
2k ,0

( f ) = O

(
φ

(
1

2k

))
→ 0 as k → ∞,

E (8)
2k ,M

( f ) = O

⎛
⎝φ

(
1

2k+1

)
√
M + 1

⎞
⎠ → 0 as k → ∞, M → ∞.

These estimators are best possible in wavelet analysis.
10.2 E (2)

2k−1,M
( f ) ≤ E (1)

2k−1,0
( f ) and E (6)

2k ,M
( f ) ≤ E (5)

2k ,0
( f ).

Thus, Chebyshev wavelet estimator is better and sharper if a large number of terms of the expansion of the
function is considered.
10.3 Abel’s integral equations are solved by first and second kind Chebyshev wavelets method and it is seen
that second kind Chebyshev wavelet method gives better solution as compared to first kind Chebyshev wavelet
method.
10.4 χ(2k+1)2(k+1)α

√
M + 1 ≥ χ(2k)2kα

√
M + 1, 1

χ(2k+1)2(k+1)α
√
M+1

≤ 1
χ(2k )2kα

√
M+1

⇒ E (6)
2k ,M

( f ) ≤
E (2)
2k−1,M

( f ).
Therefore, second kind Chebyshev wavelet approximation is better and sharper as compared to first kind
Chebyshev wavelet approximation.
10.5 The second kind Chebyshev wavelet method is superior to Legendre wavelet [16] and other wavelet
method. It is verified by the numerical examples and their graphs in this research paper.
10.6 The results of this paper are significant achievements in wavelet analysis and its applications.

Acknowledgements Shyam Lal is thankful to DST-CIMS for the encouragement to this work. Sharma Priya R is grateful to
C.S.I.R. (Council of Scientific and Industrial Research), India for providing financial assistance in the form of Junior Research
Fellowship (JRF) vide letter no. 09/013(0830)/2018-EMR-1 dated 01/07/2018 for this research work. Reviewers have exerted
yourself twice to give the suitable suggestions which enabled us to improve the presentation and quality of this research paper.
Authors are grateful to both the reviewers for their kind help and thorough review of our work.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit
line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To
view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Adibi, H.; Assari, P.: Chebyshev wavelet method for numerical solution of Fredholm integral equations of the first kind.
Math. Probl. Eng. 138408, 17 (2010)

2. Avazzadeh, Z.; Shafiee, B.; Loghmani, G.B.: Fractional calculus of solving Abel’s integral equations using Chebyshev
polynomials. Appl. Math. Sci. (Ruse) 5(45–48), 2207–2216 (2011)

3. Babolian, E.; Fattahzadeh, F.: Numerical computation method in solving integral equations by using Chebyshev wavelet
operational matrix of integration. Appl. Math. Comput. 188(1), 1016–1022 (2007)

4. Capobianco, M.R.: A method for the numerical resolution of Abel-type integral equations of the first kind. J. Comput. Appl.
Math. 23(3), 281–304 (1988)

5. Das, G.; Ghosh, T.; Ray, B.K.: Degree of approximation of functions by their Fourier series in the generalized Hölder metric.
Proc. Indian Acad. Sci. Math. Sci. 106(2), 139–153 (1996)

6. Debnath, L.: Wavelet Transform and Their Applications. Birkhauser, Boston (2002)
7. Devore, R.A.: Nonlinear Approximation, Acta Numerica, vol. 7, pp. 51–150. Cambridge University Press, Cambridge (1998)
8. Iqbal, M.A.; Ali, A.; Syed, T.; Mohyud, D.: Chebyshev wavelets method for system of volterra integral equations. Int. J.

Mod. Math. Sci. 10(2), 116–124 (2014)
9. Liu, N.; Lin, E.B.: Legendre wavelet method for numerical solutions of partial differential equations. Numer. Methods Part.

Differ. Equ. 26(1), 81–94 (2010)
10. Meyer Y.: Wavelets; their past and their future, progress in wavelet analysis and (applications) (Toulouse, 1992) (Meyer, Y.,

Roques, S. eds) Frontieres, Gif-sur-Yvette, pp. 9–18 (1993)

123

http://creativecommons.org/licenses/by/4.0/


174 Arab. J. Math. (2021) 10:157–174

11. Morlet, J.; Arens, G.; Fourgeau, E.; Giard, D.: Wave propagation and sampling theory, part I. Complex signal and scattering
in multilayer media. Geophysics 47(2), 203–221 (1982)

12. Morlet, J.; Arens, G.; Fourgeau, E.; Giard, D.: Wave propagation and sampling theory, part II. Sampling theory and complex
waves. Geophysics 47(2), 222–236 (1982)

13. Rajeev Raigar, N.K.: A numerical solution based on operational matrix of differentiation of shifted second kind Chebyshev
wavelets for a Stefan problem. Int. J. Math. Comput. Sci. 9(7), 374–377 (2015)

14. Sripathy, B.; Vijayaraju, P.; Hariharan, G.: Chebyshev wavelet based approximation method to some non-linear differential
equations arising in engineering. Int. J. Math. Anal. 9(20), 993–1010 (2015)

15. Sun, Xie-Hua: Degree of approximation of functions in the generalized Hölder metric. Indian J. Pure Appl. Math. 27(4),
407–417 (1996)

16. Yousefi, S.: Numerical solution of Abel’s integral equation by using Legendre wavelets. Appl. Math. Comput. 175(1),
574–580 (2006)

17. Zygmund, A.: Trigonometric Series, vol. I, 2nd edn, p. 115. Cambridge University Press, New York (1959)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

123


	Approximation of function belonging to generalized Hölder's class by first and second kind Chebyshev wavelets and their applications in the solutions of Abel's integral equations 
	Abstract
	1 Introduction
	2 Definitions and preliminaries
	2.1 First kind Chebyshev wavelet 
	2.2 Second kind Chebyshev wavelet 
	2.3 Function of class
	2.4 Generalized Hölder's class
	2.4.1  class
	2.4.2  class

	2.5 Chebyshev wavelet function approximation

	3 Theorem
	4 Proof of the theorems
	4.1 Proof of Theorem 3.1
	4.2 Proof of Theorem 3.2
	4.3 Proof of Theorem 3.3
	4.4 Proof of Theorem 3.4

	5 Corollary
	6 Method for solving Abel's integral equations by first and second kind Chebyshev wavelet
	7 Illustrative examples
	8 Comparison of results of Chebyshev wavelet of first kind and second kind with Legendre wavelet
	8.1 Legendre wavelet

	9 Superiority of Chebyshev wavelet of second kind to first kind
	10 Conclusions
	Acknowledgements
	References




