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Abstract We prove the following: Let G and G ′ be two graphs on the same set V of v vertices, and let k be
an integer, 4 ≤ k ≤ v − 4. If for all k-element subsets K of V , the induced subgraphs G�K and G ′

�K have
the same numbers of 3-homogeneous subsets, the same numbers of P4’s, and the same numbers of claws or
co-claws, then G ′ is equal to G or to the complement G of G. We give also a similar result whenever the same
numbers are modulo a prime.

Mathematics Subject Classfication 05C50 · 05C60

1 Introduction and main results

Our notations and terminology follow [2]. A symmetric graph (or more simply graph) is an ordered pair
G := (V, E), where E is a subset of [V ]2, the set of pairs {x, y} of distinct elements of V . Elements of V are
the vertices of G and elements of E its edges. If K is a subset of V , the restriction of G to K , also called the
induced graph on K is the graphG�K := (K , [K ]2∩E). The complement ofG is the graphG := (V, [V ]2\E).
We denote by V (G) the vertex set of a graph G, by E(G) its edge set and by e(G) := |E(G)| the number of
edges. Let G := (V, E) be a graph. A 3-element subset T of V such that all pairs belong to E(G) is a triangle
of G. A 3-element subset of V which is a triangle of G or of G is a 3-homogeneous subset of G. We denote by
K3 the complete graph on 3 vertices and by K1,3 the graph made of a vertex linked to a K3. The graph K1,3 is
called a claw, the graph K1,3 a co-claw. For these graphs, see Fig. 1.
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Fig. 1 K3, K1,3, K1,3, P4

Given two graphs G := (V, E) and G ′ := (V ′, E ′). A bijection f from V onto V ′ is an isomorphism
from G onto G ′ provided that for any x, y ∈ V , {x, y} ∈ E if and only if { f (x), f (y)} ∈ E ′. The graphs G
and G ′ are isomorphic, which is denoted by G � G ′, if there exists an isomorphism from one onto the other,
otherwise G �� G ′.

LetG,G ′ be two graphs on the same vertex set V . We say thatG andG ′ are equal up to complementation if
G ′ = G orG ′ = G. IfG ′ has the same number of edges asG orG, we say thatG andG ′ have the same number
of edges up to complementation.We say thatG andG ′ are isomorphic up to complementation ifG ′ is isomorphic
to G or to G. Let k be a non-negative integer, G and G ′ are k-hypomorphic up to complementation if for every
k-element subset K of V , the induced subgraphs G�K and G ′

�K are isomorphic up to complementation.
Ulam’s Reconstruction Conjecture [3,12] asserts that two graphs G and G ′ on the same finite set V of

v vertices, v ≥ 3, are isomorphic provided that the restrictions G�K and G ′
�K of G and G ′ to the (v − 1)-

element subsets K of V are isomorphic. If this latter condition holds for the k-element subsets of V for some
k, 2 ≤ k ≤ v − 2, then G ′ = G. This conclusion does not require the isomorphy of G�K and G ′

�K , but only
requires that G�K and G ′

�K have the same number of edges for all k-element subsets K of V . In [4], a work
has been done where the conditions are G ′

�K and G�K are isomorphic up to complementation for all k-element
subsets K of V , or G ′

�K and G�K have the same number of edges up to complementation for all k-element
subsets K of V . Let v be a non negative integer and ϑ(v) := 4l if v ∈ {4l + 2, 4l + 3}, ϑ(v) := 4l − 3 if
v ∈ {4l, 4l + 1}. The following theorems was obtained in [4].

Theorem 1.1 [4] Let v, k be two integers with 4 ≤ k ≤ ϑ(v). Then, for every pair of graphs G and G ′ on the
same set V of v vertices, if G�K and G ′

�K have the same number of edges, up to complementation, and the

same number of 3-homogeneous subsets, for all k-element subsets K of V , then G ′ = G or G ′ = G.

Theorem 1.2 [4] Let k be an integer, 4 ≤ k ≤ v − 2, k ≡ 0 (mod 4). Let G and G ′ be two graphs on the same
set V of v vertices.

We assume that e(G�K ) has the same parity as e(G ′
�K ) for all k-element subsets K of V .

Then G ′ = G or G ′ = G.

It is also shown in [4] that two graphsG andG ′ on the same set of v vertices are equal up to complementation
whenever they are k-hypomorphic up to complementation and 4 ≤ k ≤ v − 4 (for the case k = v − 3, the
conclusion obtained is G ′ � G or G ′ � G [5]). Later, an extension of this result was obtained for uniform
hypergraphs [9].

Theorem 1.3 [9] Let h be a non-negative integer. There are two non-negative integers k and t, k ≤ t such that
two h-uniform hypergraphsH andH′ on the same set V of vertices, |V | ≥ t , are equal up to complementation
whenever H and H′ are k-hypomorphic up to complementation.

In this paper, we look for similar results on graphs if the conditions on the restrictions G�K and G ′
�K are

that they have the same numbers of 3-homogeneous subsets, the same numbers of P4’s, and the same numbers
of claws or co-claws, we obtain Theorem 1.4. Whenever the same numbers (cited above) are modulo a prime,
we obtain Theorem 1.7. This last theorem is a consequence of Theorem 1.4 and Proposition 4.3 which is
inspired by a result of Pouzet on monomorphic relations (Proposition 4.2).

Let G := (V, E) be a graph. We set:

H (3)(G) := {{a, b, c} ⊂ V : G�{a,b,c} � K3 or G�{a,b,c} � K3}
P(4)(G) := {{a, b, c, d} ⊂ V : G�{a,b,c,d} � P4}
S(4)(G) := {{a, b, c, d} ⊂ V : G�{a,b,c,d} � K1,3 or G�{a,b,c,d} � K1,3}
h(3)(G) :=| H (3)(G) |, p(4)(G) :=| P(4)(G) |, s(4)(G) :=| S(4)(G) | .

Our first result is:
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Theorem 1.4 Let G, G ′ be two graphs on the same finite set V of v ≥ 4 vertices.

(1) If H (3)(G) = H (3)(G ′), P(4)(G) = P(4)(G ′) and S(4)(G) = S(4)(G ′), then G ′ = G or G ′ = G.
(2) Let k be a integer, 4 ≤ k ≤ v − 4.

If h(3)(G�K ) = h(3)(G ′
�K ), p(4)(G�K ) = p(4)(G ′

�K ) and s(4)(G�K ) = s(4)(G ′
�K ) for all k-element

subsets K of V , then G ′ = G or G ′ = G.

The proof of Theorem 1.4 will be given in Sect. 3. The following propositions show that Theorem 1.4 is
optimal.

Proposition 1.5 For every integer v ≥ 4 and every integer k, 4 ≤ k ≤ v, there are two graphs G and G ′
on the same set of v vertices, nonisomorphic up to complementation, satisfying p(4)(G�K ) = p(4)(G ′

�K ) and

s(4)(G�K ) = s(4)(G ′
�K ) for all k-element subsets K of V .

Proof Let V := {1, 2, . . . , v} with v ≥ 4. Let G and G ′ be two graphs on the same vertex set V defined by
G�{2,3,...,v} and G ′

�{2,3,...,v} are complete graphs, {1, x} ∈ E(G) if x �= 2; {1, x} ∈ E(G ′) if x /∈ {2, 3}. Clearly
p(4)(G�K ) = p(4)(G ′

�K ) = 0 and s(4)(G�K ) = s(4)(G ′
�K ) = 0 for all k-element subsets K of V . But G and

G ′ are not isomorphic up to complementation. ��
Proposition 1.6 For every integer n ≥ 4, there are two graphs G and G ′ on the same set of 2n vertices,
nonisomorphic up to complementation, satisfying h(3)(G) = h(3)(G ′) and p(4)(G) �= p(4)(G ′).

Proof We set G := M2n and G ′ := M ′
2n (For the definition of the graphs M2n and M ′

2n , see Sect. 3,
Fig. 3). Clearly, G and G ′ are not isomorphic up to complementation. We have h(3)(G) = h(3)(G ′), but
p(4)(G) �= p(4)(G ′) since p(4)(G) = n(n − 1)(n − 2) and p(4)(G ′) = (n − 1)(n − 2)2 + (n − 1)2. ��

Let k, p be positive integers, the decomposition of k = ∑k(p)
i=0 ki pi in the basis p is also denoted

[k0, k1, . . . , kk(p)]p where kk(p) �= 0 if and only if k �= 0.
As an application of Theorem 1.4, our second result is:

Theorem 1.7 Let G, G ′ be two graphs on the same set V of v vertices. Let p be a prime number, p ≥ 5 and
k = [k0, k1, . . . , kk(p)]p be an integer, 4 ≤ k ≤ v − 4; (k0 = 0 or k0 ≥ 4).

If h(3)(G�K ) ≡ h(3)(G ′
�K ) (mod p), p(4)(G�K ) ≡ p(4)(G ′

�K ) (mod p) and s(4)(G�K ) ≡ s(4)(G ′
�K ) (mod

p) for all k-element subsets K of V , then G ′ = G or G ′ = G.

The proof of Theorem 1.7 will be given in Sect. 4.

2 Sketch of the proofs of Theorems 1.4 and 1.7

Let G, G ′ be two graphs on the same vertex set V . The Boolean sum G+̇G ′ of G and G ′ is the graph U on V
whose edges are pairs e of vertices such that e ∈ E(G) if and only if e /∈ E(G ′). Indeed, G ′ = G or G ′ = G
amounts to the fact that U is either the empty graph or the complete graph. The intersection graph of G and
G ′ is the graph G ∩ G ′ := (V, E(G) ∩ E(G ′)).

Observation 2.1 [5] Let G and G ′ be two graphs on the same finite set V of v vertices, and let U := G+̇G ′.
Then

(1) e(U ) = e(G) + e(G ′) − 2e(G ∩ G ′).
(2) e(G) and e(G ′) have the same parity if and only if e(U ) is even.

To prove (1) of Theorem 1.4, we consider U := G+̇G ′. From Theorem 1.2, it is sufficient to prove that
e(G�X ) has the same parity as e(G ′

�X ) for all 4-element subsets X of V that is, from Observation 2.1, e(U�X )

is even for all 4-element subsets X of V . For this we proceed by contradiction, assuming that e(U�X ) is odd.
As H (3)(G) = H (3)(G ′), Theorem 3.1 says that U�X is a path of length 1 or 3. If the length is one, we study
two cases. If the length is 3, we conclude using Theorem 3.2.

To prove item (2), and also Theorem 1.7, we will prove that item (1) of Theorem 1.4 holds. For this, we
will use linear algebra. The incidence matrix Wt k(v) used by Wilson [13], or more simply Wt k , is defined as
follows : Let V be a finite set, with v elements. Given non-negative integers t ≤ k ≤ v, let Wt k be the

(
v
t

)
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by
(
v
k

)
matrix of 0’s and 1’s, the rows of which are indexed by the t-element subsets T of V , the columns are

indexed by the k-element subsets K of V , and where the entry Wt k(T, K ) is 1 if T ⊆ K and is 0 otherwise.
The matrix transpose of Wt k is denoted tWt k . We denote by rankQ Wt k , the rank of Wt k over the field Q.
Whenever p is a prime, we denote by rankp Wt k , the rank of Wt k over the field Fp, and by Kerp(tWt k) the
kernel of tWt k in Fp.

First, rankQ Wt k is given by Theorem 2.2 due to Gottlieb [7].

Theorem 2.2 [7] For t ≤ min(k, v − k), the rank of Wt k over the field Q of rational numbers is
(
v
t

)
and thus

Ker(tWt k) = {0}.
Let G := (V, E) be a graph with v vertices, v ≥ 6. Let t ∈ {3, 4}, and k be an integer, k ≤ v and

t ≤ min(k, v − k).
Let T1, T2, . . . , T(v

t)
be an enumeration of the t-element subsets of V .

Let K1, K2, . . . , K(v
k)
be an enumeration of the k-element subsets of V .

We set:

wh
G := (gh1 , gh2 , . . . , gh

(v
3)

) where ghi = 1 if Ti ∈ H (3)(G), 0 otherwise .

w
p
G := (gp

1 , gp
2 , . . . , gp

(v
4)

) where gp
i = 1 if Ti ∈ P(4)(G), 0 otherwise .

ws
G := (gs1, g

s
2, . . . , g

s
(v
4)

) where gsi = 1 if Ti ∈ S(4)(G), 0 otherwise .

We have:

wh
GW3 k = (h3(G�K1), h

3(G�K2), . . . , h
3(G�K(vk)

)),

w
p
GW4 k = (p(4)(G�K1), p

(4)(G�K2), . . . , p
(4)(G�K(vk)

)).

ws
GW4 k = (s(4)(G�K1), s

(4)(G�K2), . . . , s
(4)(G�K(vk)

)).

Observation 2.3 Let G and G ′ be two graphs on the same finite set V of v vertices.

(1) If h(3)(G�Ki ) = h(3)(G ′
�Ki

) (resp. h(3)(G�Ki ) ≡ h(3)(G ′
�Ki

) (mod p)) for all i ∈ {1, 2, . . . , (v
k

)}, then
wh
G − wh

G ′ ∈ KerQ(tW3 k) (resp. wh
G − wh

G ′ ∈ Kerp(tW3 k)).
(2) If p(4)(G�Ki ) = p(4)(G ′

�Ki
) (resp. p(4)(G�Ki ) ≡ p(4)(G ′

�Ki
) (mod p)) for all i ∈ {1, 2, . . . , (v

k

)}, then
w

p
G − w

p
G ′ ∈ KerQ(tW4 k) (resp. w

p
G − w

p
G ′ ∈ Kerp(tW4 k)).

(3) If s(4)(G�Ki ) = s(4)(G ′
�Ki

) (resp. s(4)(G�Ki ) ≡ s(4)(G ′
�Ki

) (mod p)) for all i ∈ {1, 2, . . . , (v
k

)}, then
ws
G − ws

G ′ ∈ KerQ(tW4 k) (resp. ws
G − ws

G ′ ∈ Kerp(tW4 k)).

Now for the end of the proof of item (2), from Observation 2.3, wh
G −wh

G ′ ∈ KerQ(tW3 k). From Theorem
2.2, KerQ(tW3 k) = {0}, then wh

G = wh
G ′ . Thus, H (3)(G) = H (3)(G ′). For the other parameters, we do the

same. Thus, we get the hypotheses of item (1).
For Theorem 1.7, there are two cases according to the value of k0. If k0 ≥ 4, we proceed as above. If

k0 = 0, we use Theorem 4.1 which gives the dimension and a basis of Kerp(tWt k).

3 Proof of Theorem 1.4

Adescription of the Boolean sumG+̇G ′, of graphsG andG ′ having the same 3-element homogeneous subsets,
is given by Theorem 3.1 below.

We denote by P9 the Paley graph on 9 vertices (cf. Fig. 2). Note that P9 is isomorphic to its complement
P9.

Theorem 3.1 [10] Let U be a graph. The following properties are equivalent:

(1) There are two graphs G and G ′ having the same 3-element homogeneous subsets such that U := G+̇G ′;
(2) Either (i) U is an induced subgraph of P9, or (ii) the connected components of U, or of its complement

U, are cycles of even length or paths.
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For graphs G and G ′ having the same 3-element homogeneous subsets, Theorem 3.2 below gives the form
of their restrictions on a connected component of G+̇G ′.

Theorem 3.2 [5] Let G and G ′ be two graphs on the same vertex set V and U := G+̇G ′. We assume
H (3)(G) = H (3)(G ′) and U not connected. If C is a connected component of U of cardinality n, then the pair
{G�V (C),G ′

�V (C)
} is one of the following:

(1) {Mn, M ′
n}, {Mn, M ′

n}, if C is a path.

(2) {Mn, M ′′
n }, {Mn, M ′′

n }, {D4, D′
4}, {D4, D′

4}, if C is a cycle.

The graphs mentioned in the conclusion of Theorem 3.2 are defined as follows (see Fig. 3).
Let n ≥ 2. Let Xn be an n-element set, v0, · · · , vn−1 be an enumeration of Xn , X0

n := {vi ∈ Xn :
i ≡ 0 (mod 2)} and X1

n := Xn \ X0
n . Set Rn := [X0

n]2 ∪ [X1
n]2, Sn := {{v2i , v2i+1} : 2i + 1 < n},

S′
n := {{v2i+1, v2i+2} : 2i + 2 < n}. Let Mn and M ′

n be the graphs with vertex set Xn and edge sets
E(Mn) := Rn ∪ Sn and E(M ′

n) := Rn ∪ S′
n , respectively. Let M

′′
n := (Xn, Rn ∪ S′

n ∪ {{v0, vn−1}}) for n even,
n ≥ 4. Finally, let D4 := (X4, {{v0, v1}, {v0, v2}, {v2, v3}}) and D′

4 := (X4, {{v0, v2}, {v0, v3}, {v1, v2}}).
Let G = (V, E) be a graph. For x �= y ∈ V , x ∼G y means {x, y} ∈ E , x �G y means {x, y} /∈ E . For

X, Y ⊆ V , X ∼G Y signifies that for every x ∈ X and y ∈ Y , x ∼G y. Similarly, X �G Y signifies that
for every x ∈ X and y ∈ Y , x �G y. Whenever X = {x}, X ∼G Y and X �G Y are, respectively, denoted
x ∼G Y and x �G Y .

Now we prove Theorem 1.4.
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(1) Let U := G+̇G ′. Using Theorem 1.2, it is sufficient to prove that e(G�X ) has the same parity as e(G ′
�X )

for all 4-element subsets X of V that is, from Observation 2.1, e(U�X ) is even for all 4-element subsets X
of V .
Let X := {v0, v1, v2, v3} be a subset of V . By contradiction, we assume that e(U�X ) is odd, then e(U�X ) ∈
{1, 3, 5}. As H (3)(G) = H (3)(G ′) then, by Theorem 3.1, E(U�X ) = {{v0, v1}, {v1, v2}, {v2, v3}} or
{{v0, v1}}.
• If E(U�X ) = {{v0, v1}, {v1, v2}, {v2, v3}}, we apply (1) of Theorem 3.2. So {G�X ,G ′

�X } = {M4, M ′
4}

or {M4, M ′
4}. We get a contradiction with P(4)(G) = P(4)(G ′) since M4 /∈ P(4)(G) ∪ P(4)(G ′) and

M ′
4 ∈ P(4)(G) ∩ P(4)(G ′).

• If E(U�X ) = {{v0, v1}}, we can suppose v0 ∼G v1 and v0 �G ′ v1. Without loss of generality, we
assume v0 ∼G v2. As v0 �U v2, v0 ∼G ′ v2. We have v0 ∼G {v1, v2}, v0 �G ′ v1 and v0 ∼G ′ v2. As
H3(G) = H3(G ′), v2 �G v1. Since v2 �U v1 then v2 �G ′ v1.

Case 1. v0 ∼G v3. Since v0 �U v3 then v0 ∼G ′ v3. Consider {v0, v1, v3}, as H (3)(G) = H (3)(G ′) we
have v1 �G v3, thus v1 �G ′ v3.
Ifv2 �G v3, thenv2 �G ′ v3. So {v0, v1, v2, v3} ∈ S(4)(G) and {v0, v1, v2, v3} /∈ S(4)(G ′). That contradicts
S(4)(G) = S(4)(G ′). If v2 ∼G v3, then v2 ∼G ′ v3. So {v0, v1, v2, v3} ∈ S(4)(G ′) and {v0, v1, v2, v3} /∈
S(4)(G). That contradicts S(4)(G) = S(4)(G ′).
Case 2. v0 �G v3. Since v0 �U v3 then v0 �G ′ v3. Consider {v0, v1, v3}, as H (3)(G) = H (3)(G ′) we
have v1 ∼G ′ v3, thus v1 ∼G v3.
If v2 �G v3, then v2 �G ′ v3. Then {v0, v1, v2, v3} ∈ P(4)(G) and {v0, v1, v2, v3} /∈ P(4)(G ′). That
contradicts P(4)(G) = P(4)(G ′). If v2 ∼G v3, then v2 ∼G ′ v3. Then {v0, v1, v2, v3} /∈ P(4)(G) and
{v0, v1, v2, v3} ∈ P(4)(G ′). That contradicts P(4)(G) = P(4)(G ′).

(2) We will prove H (3)(G) = H (3)(G ′), P(4)(G) = P(4)(G ′), S(4)(G) = S(4)(G ′) and conclude using (1).
From Observation 2.3, wh

G − wh
G ′ ∈ KerQ(tW3 k). From Theorem 2.2, KerQ(tW3 k) = {0}, then wh

G =
wh
G ′ . Thus H (3)(G) = H (3)(G ′).

From Observation 2.3, w
p
G − w

p
G ′ ∈ KerQ(tW4 k) and ws

G − ws
G ′ ∈ KerQ(tW4 k). From Theorem 2.2,

KerQ(tW4 k) = {0}, then w
p
G = w

p
G ′ and ws

G = ws
G ′ . Thus P(4)(G) = P(4)(G ′) and S(4)(G) = S(4)(G ′).

��

4 Proof of Theorem 1.7

The following result is one of the keys to our proof.

Theorem 4.1 [1] Let p be a prime number. Let v, t and k be non-negative integers, k ≤ v, k =
[k0, k1, . . . , kk(p)]p, t = [t0, t1, . . . , tt (p)]p, t ≤ min (k, v − k). We have:

(1) k j = t j for all j < t (p) and kt (p) ≥ tt (p) if and only if Kerp(tWt k) = {0}.
(2) t = tt (p) pt (p) and k = ∑k(p)

i=t (p)+1 ki p
i if and only if dim Kerp(tWt k) = 1 and {(1, 1, . . . , 1)} is a basis

of Kerp(tWt k).

Let k ≥ 1 be an integer and G be a graph. We say that G is k-monomorphic (resp. k-monomorphic up to
complementation) if G�X � G�Y (resp. G�X � G�Y or G�X � G�Y ) for all k-element subsets X and Y of V .
The notion of monomorphy was introduced by Fraïssé [6].

The following result on monomorphy, due to Pouzet, is very useful since it is the origin of Proposition 4.3,
which is a key in the proof of Theorem 1.7.

Proposition 4.2 [8] Let v, t, k be integers, t ≤ min(k, v − k) and G be a graph on a set V of v vertices. If G
is k-monomorphic then G is t-monomorphic.

We give a similar result (Proposition 4.3) in the case of the monomorphy up to complementation.

Proposition 4.3 Let v, t, k be integers, t ≤ min(k, v − k) and G be a graph on a set V of v vertices. If G is
k-monomorphic up to complementation then G is t-monomorphic up to complementation.

Proof Let T1, T2, . . . , T(v
t)
be the t-element subsets of V , and K1, K2, . . . , K(v

k)
be the k-element subsets of

V . Let H := G�T1 . Set I sc(H,G) := {L ⊆ V : G�L � H or G�L � H} and wH,G the row vector indexed
by the t-element subsets T1, T2, . . . , T(v

t)
of V whose coefficient of Ti is 1 if Ti ∈ I sc(H,G) and 0 otherwise.
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We have wH,GWt k =
(
α1, α2, . . . , α(v

k)

)
where

α j :=
∣
∣
∣
∣{Ti : Ti ⊆ K j , 1 ≤ i ≤

(
v

t

)

, Ti ∈ I sc(H,G)}
∣
∣
∣
∣ .

SinceG is k-monomorphic up to complementation,α1 = α2 = · · · = α(v
k)
. ThuswH,GWt k = α1(1, 1, · · · , 1).

Now (1, 1, . . . , 1)Wt k = (
(k
t

)
,
(k
t

)
, . . . ,

(k
t

)
) = (k

t

)
(1, 1, . . . , 1). It follows that

(k
t

)
wH,GWt k = α1(1, 1,

. . . , 1)Wt k . From Theorem 2.2, KerQ(tWt k) = {0}. Thus (k
t

)
wH,G = α1(1, 1, . . . , 1). Since H = G�T1 ,

then wH,G �= (0, 0, . . . , 0), this implies α1 �= 0. Then from wH,G = α1

(kt)
(1, 1, . . . , 1), we deduce that

wH,G = (1, 1, . . . , 1). So Ti ∈ I sc(H,G) for all i ∈ {1, 2, . . . , (v
t

)}. Thus G is t-monomorphic up to
complementation. ��

Now we prove Theorem 1.7.
We have wh

GW3 k = wh
G ′W3 k , w

p
GW4 k = w

p
G ′W4 k and ws

GW4 k = ws
G ′W4 k .

By Theorem 1.4, it is sufficient to prove that H (3)(G) = H (3)(G ′), P(4)(G) = P(4)(G ′) and S(4)(G) =
S(4)(G ′). Let t ∈ {3, 4}. According to the value of k0, we have two cases.

Case 1. k0 ≥ 4. As t ∈ {3, 4} and p ≥ 5 then t (p) = 0, t = t0 ≤ 4 ≤ k0. From (1) of Theorem 4.1,
Kerp(tW3 k) = {0} and Kerp(tW4 k) = {0}. Then from Observation 2.3, we obtain H (3)(G) = H (3)(G ′),
P(4)(G) = P(4)(G ′) and S(4)(G) = S(4)(G ′).

Case 2. k0 = 0. As t = t0 �= 0 then, from (2) of Theorem 4.1, dim Kerp(tWt k) = 1 and (1, 1, . . . , 1)
is a basis of Kerp(tWt k). By Observation 2.3, there are λh, λp, λs ∈ {0, 1,−1} such that wh

G − wh
G ′ =

λh(1, 1, . . . , 1), w
p
G − w

p
G ′ = λp(1, 1, . . . , 1), ws

G − ws
G ′ = λs(1, 1, . . . , 1).

If λh = 1, then wh
G = (1, 1, . . . , 1) and wh

G ′ = (0, 0, . . . , 0). Then in G ′ there is no 3-homogeneous set,
that is impossible according to Ramsey’s theorem [11] which ensures that Ramsey’s number r(3, 3) is equal
to 6. If λh = −1, wh

G = (0, 0, . . . , 0) and we conclude as above. Then λh = 0 and thus H (3)(G) = H (3)(G ′).
If λp = 1, then w

p
G = (1, 1, . . . , 1). So for all 4-element subsets X of V , G�X � P4, thus G is 4-

monomorphic. Then by Proposition 4.2, G is 2-monomorphic, that implies G is the empty graph or the
complete graph, so G does not contain a subgraph isomorphic to P4, a contradiction. If λp = −1, then
w

p
G ′ = (1, 1, . . . , 1) and we conclude as above. Then λp = 0 and thus P(4)(G) = P(4)(G ′).
If λs = 1, then ws

G = (1, 1, . . . , 1). So for all 4-element subsets X of V , G�X � K1,3 or
G�X � K1,3, thus G is 4-monomorphic up to complementation. Then by Proposition 4.3, G is 3-
monomorphic up to complementation. Let v0, v1, v2, v3 ∈ V such that G�{v0,v1,v2,v3} or G�{v0,v1,v2,v3} is
the claw ({v0, v1, v2, v3}, {{v0, v1}, {v0, v2}, {v0, v3}}). We have G�{v0,v1,v2} �� G�{v1,v2,v3} and G�{v0,v1,v2} ��
G�{v1,v2,v3}, this contradicts the fact that G is 3-monomorphic up to complementation. If λs = −1, then
ws
G ′ = (1, 1, . . . , 1), we conclude as above. Then λs = 0 and thus S(4)(G) = S(4)(G ′). ��
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