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Abstract Let C be a nonempty closed convex subset of a real Hilbert space H and T : C → CB(H) be
a multi-valued Lipschitz pseudocontractive nonself mapping. A Halpern–Ishikawa type iterative scheme is
constructed and a strong convergence result of this scheme to a fixed point of T is proved under appropriate
conditions. Moreover, an iterative method for approximating a fixed point of a k-strictly pseudocontractive
mapping T : C → Prox(H) is constructed and a strong convergence of the method is obtained without end
point condition. The results obtained in this paper improve and extend known results in the literature.

Mathematics Subject Classification 47H04 · 47H10 · 47J25

1 Introduction

Let C be a nonempty subset of a real Hilbert space H. The set C is called proximinal if for each x ∈ H there
exists u ∈ C such that

||x − u|| = inf{||x − y|| : y ∈ C} = d(x,C),

where d is the metric on H generated by the inner product. It is well known that any nonempty closed and
convex subset of a Hilbert space is proximinal. The family of nonempty proximinal bounded subsets of the set
C is denoted by Prox(C).

Let A, B ∈ CB(H),whereCB(H) is the set of nonempty, closed and bounded subsets of H.TheHausdorff
distance between A and B, denoted by D(A, B), is defined as

D(A, B) = max

{
sup
x∈B

d(x, A), sup
x∈A

d(x, B)

}
.

A multi-valued mapping T : C → 2H is said to be L-Lipschitz if there exists L ≥ 0 such that

D(T x, T y) ≤ L||x − y||, for allx, y ∈ C.
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If L = 1, then the mapping T is called nonexpansive mapping. It is immediate from the definition that every
nonexpansive mapping is Lipschitz mapping.

A mapping T : C → 2H is said to be

(a) k-strictly pseudocontractive if there exists k ∈ (0, 1) such that for each x, y ∈ C ,

D2(T x, T y) ≤ ||x − y||2 + k||x − y − (u − v)||2, ∀u ∈ T x, v ∈ T y.

(b) pseudocontractive if for each x, y ∈ C,

D2(T x, T y) ≤ ||x − y||2 + ||x − y − (u − v)||2, ∀u ∈ T x, v ∈ T y.

We observe that the class of multi-valued pseudocontractive mappings includes the class of multi-valued
k-strictly pseudocontractive mappings and hence the class of multi-valued nonexpansive mappings.

Given a multi-valued mapping T : C → 2H , a point x ∈ C is called a fixed point of T if x ∈ T x . We
denote the set of all fixed points of the mapping T by F(T ).

If F(T ) �= ∅ and D(T x, T p) ≤ ||x − p||, ∀x ∈ C, ∀p ∈ F(T ), then T is said to be quasi-nonexpansive
mapping. Clearly, every nonexpansive mapping T with F(T ) �= ∅ is quasi-nonexpansive mapping. But the
converse is not necessarily true (see, e.g., [23]).

Several physical problems in differential inclusions, economics, convex optimization, etc. can be trans-
formed into finding fixed points of multi-valued mappings. As a result, researchers have studied the exis-
tence of fixed points and their approximations for different types of multi-valued mappings (see, e.g., [1,3–
5,12,13,18,19] and the references therein). For approximatingfixedpoints of single-valuedmappings, basically
three iterative methods are in common use: Mann iteration method, Halpern iteration method and Ishikawa
iteration method.

Mann iteration method, initially studied by Mann [17], is given by

xn+1 = αnxn + (1 − αn)T xn, (1.1)

where the initial guess x0 ∈ C is arbitrary, T is single-valued self mapping on C and {αn} ⊆ [0, 1] such
that lim

n→∞ αn = 0 and
∑

αn = ∞. This iteration method has been extensively investigated for nonexpansive

mappings (see, e.g., [8,20]). However, the Mann iteration scheme provides only weak convergence in an
infinite-dimensional Hilbert space (see, e.g., [8]).

In 1967, Halpern [9] studied the following recursive formula:

xn+1 = αnu + (1 − αn)T xn, n ≥ 0, (1.2)

where T is single-valued self mapping on C and αn is a sequence of numbers in (0, 1) satisfying certain
conditions. He proved strong convergence of {xn} to a fixed point of T , provided that T is single-valued
nonexpansive mapping. Halpern’s iterative method has been studied extensively by many authors (see, e.g.,
[14,21,26] and the references therein).

The Mann and Halpern methods were successful only for approximating fixed points of single-valued
nonexpansive mappings. For approximating fixed points of single-valued Lipschitz pseudocontractive self-
mapping T , in [10] Ishikawa introduced the following iterative method.

⎧⎨
⎩
x0 ∈ C,
yn = βnxn + (1 − βn)T xn,
xn+1 = αnxn + (1 − αn)T yn, n ≥ 0,

(1.3)

where {αn}, {βn} are sequences of positive numbers satisfying the conditions:
(i) 0 ≤ αn ≤ βn ≤ 1; (ii) lim

n→∞ βn = 0; (iii)
∑

αnβn = ∞. Then he showed that the sequence {xn}
converges strongly to a fixed point of T, provided that C is compact convex subset of H. Several authors
have extended the results of Ishikawa [10] to Banach spaces without compactness assumption on C (see, e.g.,
[15,30]).

On the other hand, in 2005, Sastry and Babu [22] introduced Mann and Ishikawa-type iterative methods
for multi-valued self mappings in a real Hilbert space H as follows.
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(i) Mann-type iterative method:

x0 ∈ C, xn+1 = αn yn + (1 − αn)xn, n ≥ 0,

where yn ∈ T xn such that ||yn − p|| = d(p, T xn) and αn ∈ [0, 1].
(ii) Ishikawa-type iterative method:

⎧⎨
⎩
x0 ∈ C,
yn = βnzn + (1 − βn)xn,
xn+1 = αnz′n + (1 − αn)xn, n ≥ 0,

(1.4)

where C ⊂ H, T : C → Prox(C), p ∈ F(T ), zn ∈ T xn, z′n ∈ T yn such that ||zn − p|| =
d(p, T xn), ||z′n − p|| = d(p, T yn) and αn, βn ∈ [0, 1].

Then they obtained strong convergence of the schemes to points in F(T ) assuming that C is compact and
convex subset of H, T is nonexpansive mapping with F(T ) �= ∅ and αn, βn ∈ [0, 1] satisfying certain
conditions.

In [25], Song and Wang extended the result of Sastry and Babu [22] to uniformly convex Banach spaces
assuming that F(T ) �= ∅ and T p = {p}, ∀p ∈ F(T ).

In [23], Shahzad and Zegeye extended the above results to multi-valued quasi-nonexpansive mappings and
relaxed the compactness condition on C. In addition, they introduced the following new iterative scheme in
an attempt to remove the end point condition, T p = {p}, ∀p ∈ F(T ), in the result of Song and Wang [25].

Let C be a nonempty, closed and convex subset of a real Banach space E , T : C → Prox(C) be a
multi-valued mapping and PT x := {y ∈ T x : ||x − y|| = d(x, T x)}. Let {xn} be a sequence generated from
x0 ∈ C as follows.

{
yn = (1 − βn)xn + βnzn,
xn+1 = (1 − αn)xn + αnz′n, n ≥ 0, (1.5)

where zn ∈ PT xn, z′n ∈ PT yn and {αn}, {βn} are sequences in [0, 1]. Then they proved that {xn} converges
strongly to a fixed point of T under some mild conditions.

In 2016, Tufa and Zegeye [27] pointed out that the above results hold for approximating fixed points of
self-mappings which are not always the cases in practical applications. Motivated by the result of Colao and
Marino obtained in [6], Tufa and Zegeye introduced and studied Mann-type iterative scheme for multi-valued
nonexpansive non-self mappings in a real Hilbert space. They obtained convergence results of the scheme to
fixed points of the mappings.

Recently, Zegeye and Tufa [28] constructed a Halpern–Ishikawa type iterative scheme for single-valued
Lipschitz pseudocontractive non-self mappings in Hilbert spaces and obtained strong convergence of the
scheme to fixed points of the mappings under some mild conditions. Their result mainly extends the result of
Colao et al. [7] from k-strictly pseudocontractive to pseudocontractive mapping.

Motivated by the above results, our purpose in this paper is to construct and study Halpern–Ishikawa
type iterative schemes for multi-valued Lipschitz pseudocontractive non-self mappings in real Hilbert spaces.
Strong convergence of the schemes to fixed points of the mappings are obtained under appropriate conditions.
Our results extend and generalize many of the results in the literature.

2 Preliminaries

In this section, we collect some definitions and known results that we may use in the subsequent section.
Let C be a nonempty subset of a real Hilbert space H. A mapping T : C → 2H is said to be inward if for

any x ∈ C, we have

T x ⊆ IC (x) := {x + λ(w − x) : for some w ∈ C and λ ≥ 1}.
The set IC (x) is called inward set of C at x . A mapping I − T, where I is an identity mapping on C, is called
demiclosed at zero if for any sequence {xn} in C such that xn ⇀ x and d(xn, T xn) → 0 as n → ∞, then
x ∈ T x .
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Lemma 2.1 For any x, y ∈ H, the following inequality holds:

||x + y||2 ≤ ||x ||2 + 2〈y, x + y〉.
Lemma 2.2 [2] Let C be a convex subset of a real Hilbert space H and let x ∈ H. Then x0 = PCx if and
only if

〈z − x0, x − x0〉 ≤ 0, ∀z ∈ C,

where PC is the metric projection of H onto C defined by

PCx = {y ∈ C : ||x − y|| = inf ||x − z||, z ∈ C}.
Lemma 2.3 [32] Let H be a real Hilbert space. Then for all x, y ∈ H and α ∈ [0, 1] the following equality
holds:

||αx + (1 − α)y||2 = α||x ||2 + (1 − α)||y||2 − α(1 − α)||x − y||2.
Lemma 2.4 [27] Let C be a nonempty, closed and convex subset of a real Hilbert space H and T : C →
CB(H) be a mapping and u ∈ T x . Define hu : C → R by

hu(x) = inf{λ ≥ 0 : λx + (1 − λ)u ∈ C}.
Then for any x ∈ C the following hold:

(1) hu(x) ∈ [0, 1] and hu(x) = 0 if and only if u ∈ C;
(2) if β ∈ [hu(x), 1], then βx + (1 − β)u ∈ C;
(3) if T is inward, then hu(x) < 1;
(4) if u /∈ C, then hu(x)x + (1 − h(x))u ∈ ∂C.

Lemma 2.5 [19] Let E be a real Banach space. If A, B ∈ CB(E) and a ∈ A, then for every γ > 0 there
exists b ∈ B such that ||a − b|| ≤ D(A, B) + γ.

Lemma 2.6 [11] Let E be a real Banach space. If A, B ∈ Prox(E) and a ∈ A, then there exists b ∈ B such
that ||a − b|| ≤ D(A, B).

Lemma 2.7 [29] Let C be a closed convex nonempty subset of a real Hilbert space H and T : C → CB(H)
be a Lipschitz pseudocontractive mapping. Then F(T ) is closed convex subset of C.

From the method of the proof of Lemma 1 of [24], we obtain the following lemma.

Lemma 2.8 Let C be a closed and convex subset of a real Hilbert space H and T : C → Prox(H) be a
multi-valued mapping. Define PT : C → Prox(H) by PT (x) = {y ∈ T x : ||x − y|| = d(x, T x)}. Then the
following are equivalent:

(i) p ∈ F(T );
(ii) PT (p) = {p};
(iii) p ∈ F(PT ).

Furthermore, F(T ) = F(PT ).

Lemma 2.9 Let H be a real Hilbert space. Then the following equation holds: if {xn} is a sequence in H such
that xn ⇀ z ∈ H, then

lim sup
n→∞

||xn − y||2 = lim sup
n→∞

||xn − z||2 + ||z − y||2, ∀y ∈ H.

Lemma 2.10 [31] Let {an} be a sequence of nonnegative real numbers satisfying the following relation:

an+1 ≤ (1 − αn)an + αnδn, n ≥ 0,

where {αn} ⊂ (0, 1) and {δn} ⊂ I R satisfying the conditions:
∑∞

n=0 αn = ∞ and lim supn→∞ δn ≤ 0. Then
limn→∞ an = 0.

Lemma 2.11 [16] Let {an} be sequences of real numbers such that there exists a subsequence {ni } of {n} such
that ani < ani+1 for all i ∈ N. Then there exists a nondecreasing sequence {mk} ⊂ N such that mk → ∞
and the following properties are satisfied by all (sufficiently large) numbers k ∈ N:

amk ≤ amk+1 and ak ≤ amk+1.

In fact, mk = max{ j ≤ k : a j < a j+1}.
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3 Main results and discussion

Let C be a nonempty, closed and convex subset of a real Hilbert space H. In this section, we introduce a new
iterative scheme for a multi-valued non-self mapping T : C → CB(H) and prove strong convergence results
of the scheme with end point condition, T p = {p}, ∀p ∈ F(T ).We also construct an iterative sequence which
strongly converges to a fixed point of a multi-valued mapping T : C → Prox(H) without the end point
condition.

3.1 Strong convergence results with end point condition

Let T : C → CB(H) be a multi-valued inward Lipschitz mapping with Lipschitz constant L and β ∈(
1 − 1

1+
√

(L+1)2+1
, 1

)
. For a sequence {αn} in (0, 1), we define Halpern–Ishikawa type iterative scheme as

follows:
Given u, x0 ∈ C, let u0 ∈ T x0 and

hu0(x0) := inf{λ ≥ 0 : λx0 + (1 − λ)u0 ∈ C}.
Now if we choose λ0 ∈ [max{β, hu0(x0)}, 1), then it follows from Lemma 2.4 that
y0 := λ0x0 + (1 − λ0)u0 ∈ C.
By Lemma 2.5, we can choose v0 ∈ T y0 such that

||u0 − v0|| ≤ D(T x0, T y0) + ||x0 − y0||.
Let gv0(y0) := inf{θ ≥ 0 : θx0 + (1 − θ)v0 ∈ C}. If we choose θ0 ∈ [max{λ0, gv0(y0)}, 1), then by Lemma
2.4, θ0x0 + (1 − θ0)v0 ∈ C. Thus, it follows that

x1 := α0u + (1 − α0)
(
θ0x0 + (1 − θ0)v0

) ∈ C.

Hence, by the principle of mathematical induction, we have
⎧⎪⎨
⎪⎩

λn ∈ [max{β, hun (xn)}, 1);
yn = λnxn + (1 − λn)un;
θn ∈ [max{λn, gvn (yn)}, 1);
xn+1 = αnu + (1 − αn)

(
θnxn + (1 − θn)vn

)
,

(3.1)

where un ∈ T xn and vn ∈ T yn such that ||un − vn|| ≤ D(T xn, T yn) + ||xn − yn||, hun (xn) := inf{λ ≥ 0 :
λxn + (1 − λ)un ∈ C} and

gvn (yn) := inf{θ ≥ 0 : θxn + (1 − θ)vn ∈ C}, ∀n ≥ 0.
Now, we prove our main results.

Lemma 3.1 Let C be a nonempty, closed and convex subset of a real Hilbert space H, T : C → CB(H) be
L-Lipschitz pseudocontractive inward mapping and let {xn} and {yn} be sequences defined by (3.1) such that
lim
n→∞ αn = 0 and

∑
αn = ∞. Suppose that F(T ) �= ∅ with T p = {p}, ∀p ∈ F(T ). Then {xn} and {yn} are

bounded.

Proof Let p ∈ F(T ). Then from (3.1) and Lemma 2.3 and the fact that T is pseudocontractive, we have

||xn+1 − p||2 = ||αnu + (1 − αn)(θnxn + (1 − θn)vn) − p||2
≤ αn||u − p||2 + (1 − αn)||θn(xn − p) + (1 − θn)(vn − p)||2
= αn||u − p||2 + (1 − αn)

[
θn||xn − p||2 + (1 − θn||vn − p||2]

−(1 − αn)θn(1 − θn)||vn − xn||2
≤ αn||u − p||2 + (1 − αn)

[
θn||xn − p||2 + (1 − θn)D

2(T yn, p)
]

−(1 − αn)θn(1 − θn)||vn − xn||2
≤ αn||u − p||2 + (1 − αn)θn||xn − p||2 + (1 − αn)(1 − θn)

×[||yn − p||2 + ||yn − vn||2
] − (1 − αn)θn(1 − θn)||vn − xn||2
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≤ αn||u − p||2 + (1 − αn)(1 − θn)

(
||yn − p||2 + ||yn − vn||2

)

+(1 − αn)θn

(
||xn − p||2 − (1 − θn)||vn − xn||2

)
(3.2)

and

||yn − p||2 = ||λn(xn − p) + (1 − λn)(un − p)||2
= λn||xn − p||2 + (1 − λn)||un − p||2

−λn(1 − λn)||xn − un||2
≤ λn||xn − p||2 + (1 − λn)D

2(T xn, p)
2

−λn(1 − λn)||xn − un||2
≤ λn||xn − p||2 + (1 − λn)

[||xn − p||2 + ||xn − un||2
]

−λn(1 − λn)||xn − un||2
= ||xn − p||2 + (1 − λn)

2||xn − un||2. (3.3)

On the other hand, since T is L-Lipschitz, it follows from (3.1) and Lemma 2.3 that

||yn − vn||2 = ||λn(xn − vn) + (1 − λn)(un − vn)||2
= λn||xn − vn||2 + (1 − λn)||un − vn||2

−λn(1 − λn)||xn − un||2

≤ λn||xn − vn||2 + (1 − λn)

(
D(T xn, T yn) + ||xn − yn||

)2

−λn(1 − λn)||xn − un||2
≤ λn||xn − vn||2 + (1 − λn)(L + 1)2||xn − yn||2

−λn(1 − λn)||xn − un||2
= λn||xn − vn||2 + (1 − λn)

2(L + 1)2||xn − un||2
−λn(1 − λn)||xn − un||2

= λn||xn − vn||2
−(1 − λn)

(
λn − (L + 1)2(1 − λn)

2)||xn − un||2. (3.4)

Thus, from (3.2), (3.3) and (3.4), we obtain

||xn+1 − p||2 ≤ αn||u − p||2 + (1 − αn)(1 − θn)

(
||xn − p||2

+(1 − λn)
2||xn − un||2

)
+ (1 − αn)(1 − θn)

(
λn||xn − vn||2

−(1 − λn)(λn − (L + 1)2(1 − λn)
2)||xn − un||2

)

+(1 − αn)θn||xn − p||2 − (1 − αn)θn(1 − θn)||vn − xn||2
= αn||u − p||2 + (1 − αn)||xn − p||2 − (1 − αn)(1 − θn)(1 − λn)

×
(
1 − (L + 1)2(1 − λn)

2 − 2(1 − λn)

)
||xn − un||2

+(1 − αn)(1 − θn)(λn − θn)||vn − xn||2. (3.5)

Since for each n ≥ 0, θn ≥ λn and

1 − 2(1 − λn) − (L + 1)2(1 − λn)
2 ≥ 1 − 2(1 − β) − (L + 1)2(1 − β)2 > 0, (3.6)
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inequality (3.5) implies that

||xn+1 − p||2 ≤ αn||u − p||2 + (1 − αn)||xn − p||2. (3.7)

Hence, by induction,

||xn+1 − p||2 ≤ max{||u − p||2, ||x0 − p||2}, ∀n ≥ 0.

This implies that the sequence {xn} is bounded which in turn implies that {yn} is bounded. ��
Theorem 3.2 Let C be a nonempty, closed and convex subset of a real Hilbert space H, T : C → CB(H) be
L-Lipschitz pseudocontractive inward mapping with F(T ) �= ∅. Let {xn} be a sequence defined by (3.1) such
that lim

n→∞ αn = 0 and
∑

αn = ∞. Suppose that T p = {p}, ∀p ∈ F(T ) and I − T is demiclosed at zero. If

there exists ε > 0 such that θn ≤ 1 − ε, ∀n ≥ 0, then {xn} converges strongly to a fixed point x∗ of T nearest
to u in the sense that x∗ = PF(T )(u).

Proof Let x∗ = PF(T )(u). Then by (3.1), Lemma 2.1, Lemma 2.3 and pseudocontractivity of T , we have

||xn+1 − x∗||2 = ||αnu + (1 − αn)
(
θnxn + (1 − θn)vn

) − x∗||2
= ||αn(u − x∗) + (1 − αn)

[
θnxn + (1 − θn)vn − x∗]||2

≤ (1 − αn)||θnxn + (1 − θn)vn − x∗||2
+2αn〈u − x∗, xn+1 − x∗〉

= (1 − αn)θn||xn − x∗||2 + (1 − αn)(1 − θn)||vn − x∗||2
−(1 − αn)θn(1 − θn)||vn − xn||2 + 2αn〈u − x∗, xn+1 − x∗〉

≤ (1 − αn)θn||xn − x∗||2 + (1 − αn)(1 − θn)D
2(T yn, x

∗)
−(1 − αn)θn(1 − θn)||vn − xn||2 + 2αn〈u − x∗, xn+1 − x∗〉

≤ (1 − αn)θn||xn − x∗||2
+(1 − αn)(1 − θn)

[||yn − x∗||2 + ||yn − vn||2
]

−(1 − αn)θn(1 − θn)||vn − xn||2 + 2αn〈u − x∗, xn+1 − x∗〉.
Moreover, since x∗ ∈ F(T ), from (3.3) and (3.4) it follows that

||yn − x∗||2 ≤ ||xn − x∗||2 + (1 − λn)
2||xn − un||2

and

||yn − vn||2 ≤ λn||xn − vn||2 − (1 − λn)

(
λn − (L + 1)2(1 − λn)

2
)

||xn − un||2.

Hence, by substitution, we obtain

||xn+1 − x∗||2 ≤ (1 − αn)θn||xn − x∗||2 + (1 − αn)(1 − θn)

×[||xn − x∗||2 + (1 − λn)
2||xn − un||2

] + (1 − αn)(1 − θn)

×[
λn||xn − vn||2 − (1 − λn)(λn − (L + 1)2(1 − λn)

2)||xn − un||2
]

−(1 − αn)θn(1 − θn)||vn − xn||2 + 2αn〈u − x∗, xn+1 − x∗〉
= (1 − αn)||xn − x∗||2 − (1 − αn)(1 − θn)(1 − λn)

×[1 − (L + 1)2(1 − λn)
2 − 2(1 − λn)]||xn − un||2

+(1 − αn)(1 − θn)(λn − θn)||xn − vn||2
+2αn〈u − x∗, xn+1 − x∗〉 (3.8)

≤ (1 − αn)||xn − x∗||2 + 2αn〈u − x∗, xn − x∗〉
+2αn||u − x∗||||xn+1 − xn||. (3.9)

Next, we consider two possible cases.
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Case 1. Suppose that there exists n0 ∈ N such that {||xn − x∗||} is decreasing for all n ≥ n0. Then it
follows that {||xn − x∗||)} is convergent. Thus, (3.8), (3.6) and the fact that θn ≥ λn and lim

n→∞ αn = 0 imply

that

xn − un → 0 as n → ∞. (3.10)

Combining this with (3.1) yields

||yn − xn|| = (1 − λn)||xn − un|| → 0 as n → ∞, (3.11)

and so from Lipschitz continuity of T , we have

||vn − xn|| ≤ ||vn − un|| + ||un − xn||
≤ D(T yn, T xn) + ||xn − yn|| + ||un − xn||
≤ (L + 1)||yn − xn|| + ||un − xn|| → 0 as n → ∞. (3.12)

Thus, from (3.1), it follows that

||xn+1 − xn|| ≤ αn||u − xn|| + (1 − αn)(1 − θn)||vn − xn|| → 0. (3.13)

On the other hand, since {xn} is bounded and H is reflexive, we can choose a subsequence {xni } of {xn} such
that

xni ⇀ w and lim sup
n→∞

〈u − x∗, xn − x∗〉 = lim
i→∞〈u − x∗, xni − x∗〉.

Also from (3.1) and (3.10), we have d(xn, T xn) ≤ ||xn − un|| → 0. Then since I − T is demiclosed at 0, it
follows that w ∈ F(T ). Therefore, by Lemmas 2.7 and 2.2, we obtain

lim sup
n→∞

〈u − x∗, xn − x∗〉 = lim
i→∞〈u − x∗, xni − x∗〉

= 〈u − x∗, w − x∗〉 ≤ 0. (3.14)

Then it follows from (3.9), (3.14) and Lemma 2.10 that ||xn − x∗|| → 0 as n → ∞. Consequently, xn →
x∗ = PF(T )(u).

Case 2. Suppose that there exists a subsequence {ni } of {n} such that
||xni − x∗|| < ||xni+1 − x∗||, ∀i ∈ N .

Then by Lemma 2.11, there exists a nondecreasing sequence {mk} ⊂ N such that mk → ∞ and

||xmk − x∗|| ≤ ||xmk+1 − x∗|| and ||xk − x∗|| ≤ ||xmk+1 − x∗||, ∀k ∈ N . (3.15)

Thus, by (3.8) and (3.6), we have ||xmk − umk ||] → 0 as k → ∞, which implies that

d(xmk , T xmk ) → 0 as k → ∞.

Then using the methods we used in Case 1, we obtain

lim sup
k→∞

〈u − x∗, xmk − x∗〉 ≤ 0. (3.16)

Now, from (3.9), we have

||xmk+1 − x∗||2 ≤ (1 − αmk )||xmk − x∗||2 + 2αmk 〈u − x∗, xmk − x∗〉
+2αmk ||u − x∗||||xmk+1 − xmk ||, (3.17)

and hence (3.15) and (3.17) imply that

αmk ||xmk − x∗||2 ≤ ||xmk − x∗||2 − ||xmk+1 − x∗||2 + 2αmk 〈u − x∗, xmk − x∗〉
+2αmk ||u − x∗||||xmk+1 − xmk ||

≤ 2αmk 〈u − x∗, xmk − x∗〉 + 2αmk ||u − x∗||||xmk+1 − xmk ||.
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Then since αmk > 0, we have

||xmk − x∗||2 ≤ 2〈u − x∗, xmk − x∗〉 + 2||u − x∗||||xmk+1 − xmk ||.
Thus, using (3.13) and (3.16), we obtain

lim sup
k→∞

||xmk − x∗||2 ≤ 0 and hence ||xmk − x∗|| → 0 as k → ∞.

This together with (3.17) imply that ||xmk+1 − x∗|| → 0 as k → ∞. But, since ||xk − x∗|| ≤ ||xmk+1 − x∗||,
for all k ∈ N , it follows that xk → x∗ = PF(T )(u). Therefore, the above two cases imply that {xn} converges
strongly to the fixed point of T nearest to u. ��
If T is assumed to be k-strictly pseudocontractive, then T is pseudocontractive and so, we have the following
corollary.

Corollary 3.3 Let C be a nonempty, closed and convex subset of a real Hilbert space H and T : C → CB(H)
be L-Lipschitz k-strictly pseudocontractive inward mapping with F(T ) �= ∅. Let {xn} be a sequence defined
by (3.1) such that lim

n→∞ αn = 0 and
∑

αn = ∞. Suppose that T p = {p}, ∀p ∈ F(T ) and I − T is demiclosed

at zero. If there exists ε > 0 such that θn ≤ 1 − ε ∀n ≥ 0, then {xn} converges strongly to a fixed point of T
nearest to u.

Definition 3.4 A point x ∈ F(T ) is said to be a minimum norm point of F(T ) if ||x || ≤ ||y||,∀y ∈ F(T ).

If C contains the zero element, then we have the following theorem for finding a point with minimum-norm
in the set of fixed points of a Lipschitz pseudocontractive mapping.

Theorem 3.5 Let C be a nonempty, closed and convex subset of a real Hilbert space H containing 0, T :
C → CB(H) be L-Lipschitz pseudocontractive inward mapping and let {xn} be a sequence defined by (3.1)
with u = 0. Suppose that F(T ) �= ∅, T p = {p}, ∀p ∈ F(T ) and I − T is demiclosed at zero. If there exists
ε > 0 such that θn ≤ 1 − ε ∀n ≥ 0, then {xn} converges strongly to the minimum-norm point in F(T ).

Proof By Theorem 3.2, xn converges to a fixed point x∗ of T nearest to 0. Thus, ||x∗|| = ||x∗ − 0|| ≤
||x − 0|| = ||x ||,∀x ∈ C and hence the proof. ��

3.2 Strong convergence results without end point condition

Before introducing our algorithm, we prove the following lemmas.

Lemma 3.6 Let C be a nonempty, closed convex subset of a real Hilbert space H and T : C → Prox(H) be
a k-strictly pseudocontractive multi-valued mapping. Then T is Lipschitz mapping.

Proof Let x, y ∈ C and u ∈ T x . Then by Lemma 2.6, there is v ∈ T y such that

||u − v|| ≤ D(T x, T y).

Then since T is k-strictly pseudocontractive, we have

D2(T x, T y) ≤ ||x − y||2 + k||x − y − (u − v)||2

≤
(

||x − y|| + √
k
(||x − y|| + ||u − v||)

)2

≤
(

||x − y|| + √
k
(||x − y|| + D2(T x, T y)

))2

which implies that

D(T x, T y) ≤ 1 + √
k

1 − √
k
||x − y||.

Therefore, T is Lipschitzian with Lipschitz constant L = 1+√
k

1−√
k
. ��
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Lemma 3.7 Let T : C → Prox(H) be a multi-valued mapping such that PT is k-strictly pseudocontractive.
Then I − PT is demiclosed at zero.

Proof Let {xn} be a sequence in C such that xn ⇀ p and d(xn, PT xn) → 0. Let y ∈ PT p. By Lemma 2.6,
for each n ∈ N , there exists yn ∈ PT xn such that

||yn − y|| ≤ D(PT yn, PT p).

Also, since yn ∈ PT xn, it follows that

||xn − yn|| = d(xn, PT xn) → 0.

Now, for each x ∈ H, define f : H → [0,∞] by
f (x) = lim sup

n→∞
||xn − x ||2. (3.18)

Then from Lemma 2.9, we obtain

f (x) = lim sup
n→∞

||xn − p||2 + ||p − x ||2, ∀x ∈ H,

which implies that

f (x) = f (p) + ||p − x ||2, ∀x ∈ H.

Hence, we obtain that

f (y) = f (p) + ||p − y||2. (3.19)

In addition, by the definition of k-strictly pseudocontractive mapping, we have

f (y) = lim sup
n→∞

||xn − y||2

= lim sup
n→∞

||xn − yn + yn − y||2

= lim sup
n→∞

||yn − y||2

≤ lim sup
n→∞

D2(PT xn, PT p)

≤ lim sup
n→∞

(
||xn − p||2 + k||xn − yn − (p − y)||2

)

≤ lim sup
n→∞

(
||xn − p||2 + k

(||xn − yn|| + ||p − y||)2
)

= lim sup
n→∞

||xn − p||2 + k||p − y||2

= f (p) + k||p − y||2. (3.20)

Then it follows from (3.19) and (3.20) that (1− k)||p− y||2 = 0 and hence, p = y ∈ PT p. Therefore, I − PT
is demiclosed at zero. ��
Now, we present our algorithm as follows. Let T : C → Prox(H) be a multi-valued mapping such that PT

is inward Lipschitz mapping with Lipschitz constant L and β ∈
(
1 − 1

1+√
L2+1

, 1

)
. For a sequence {αn} in

(0, 1), we define Halpern–Ishikawa type iterative scheme as follows:
Given u, x0 ∈ C, let u0 ∈ PT x0 and

hu0(x0) := inf{λ ≥ 0 : λx0 + (1 − λ)u0 ∈ C}.
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Now, if we choose λ0 ∈ [max{β, hu0(x0)}, 1), then it follows from Lemma 2.4 that

y0 := λ0x0 + (1 − λ0)u0 ∈ C.

By Lemma 2.6, we can choose v0 ∈ PT y0 such that

||u0 − v0|| ≤ D(PT x0, PT y0).

Let gv0(y0) := inf{θ ≥ 0 : θx0 + (1 − θ)v0 ∈ C}. If we choose θ0 ∈ [max{λ0, gv0(y0)}, 1), then by Lemma
2.4, θ0x0 + (1 − θ0)v0 ∈ C. Thus, it follows that

x1 := α0u + (1 − α0)
(
θ0x0 + (1 − θ0)v0

) ∈ C.

Inductively, {xn} is defined as

⎧⎪⎨
⎪⎩

λn ∈ [max{β, hun (xn}, 1);
yn = λnxn + (1 − λn)un;
θn ∈ [max{λn, gvn (yn)}, 1);
xn+1 = αnu + (1 − αn)

(
θnxn + (1 − θn)vn

)
, n ≥ 0,

(3.21)

where un ∈ PT xn and yn ∈ PT yn such that ||un − vn|| ≤ D(PT xn, PT yn),

hun (xn) := inf{λ ≥ 0 : λxn + (1 − λ)un ∈ C} and
gvn (yn) := inf{θ ≥ 0 : θxn + (1 − θ)vn ∈ C}.

Theorem 3.8 Let C be a nonempty, closed and convex subset of a real Hilbert space H, T : C → Prox(H)
be a multi-valued mapping such that PT is k-strictly pseudocontractive inward mapping and F(T ) �= ∅. Let
{xn} be a sequence defined by (3.21) such that lim

n→∞ αn = 0 and
∑

αn = ∞. If there exists ε > 0 with

θn ≤ 1 − ε ∀n ≥ 0, then {xn} converges strongly to a fixed point of T nearest to u.

Proof By Lemma 3.6, PT is Lipschitz with Lipschitz constant L = 1+√
k

1−√
k
and I − PT is demiclosed at zero

by Lemma 3.7. Moreover, by Lemma 2.8, F(T ) = F(PT ) and PT p = {p} for all p ∈ F(T ). The rest of the
proof is very similar to the proof of Theorem 3.2. ��

In Theorem 3.8, if PT is assumed to be nonexpansive mapping, then PT is k-strictly pseudocontractive and
hence we have the following corollary.

Corollary 3.9 LetC be a nonempty, closed and convex subset of a realHilbert space H, T : C → Prox(H) be
a multi-valued mapping such that PT is nonexpansive inward mapping and F(T ) �= ∅. Let {xn} be a sequence
defined by (3.21) such that lim

n→∞ αn = 0 and
∑

αn = ∞. If there exists ε > 0 with θn ≤ 1 − ε ∀n ≥ 0, then

{xn} converges strongly to a fixed point of T nearest to u.

The method of the proof of Theorem 3.2 also provides the following result.

Theorem 3.10 Let C be a nonempty, closed and convex subset of a real Hilbert space H and T : C →
Prox(H) be a multi-valued mapping such that PT is an inward Lipschitz pseudocontractive mapping. Suppose
that F(T ) �= ∅, I − PT is demiclosed at 0 and {xn} be a sequence defined by (3.21). If there exists ε > 0 such
that θn ≤ 1 − ε ∀n ≥ 0, then {xn} converges strongly to a fixed point of T nearest to u.

Remark 3.11 Note that, in Algorithms (3.1) and (3.21), the coefficients λn and θn can be chosen simply as
follows: λn = max{β, hun (xn)} and θn = max{λn, gvn (yn)}.

4 Numerical example

Now, we give an example of a nonlinear mapping which satisfies the conditions of Theorem 3.2.
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Example 4.1 Let H = IRR with Euclidean norm. Let C = [−1, 1
2 ] and T : C → IR be defined by

T x =
{ {−x, 0}, x ∈ [−1, 0),
x, x ∈ [0, 1

2 ].
(4.1)

Then we observe that T satisfies the inward condition and F(T ) = [0, 1
2 ].We first show that T is Lipschitz

pseudocontractive mapping. We consider the following cases.
Case 1: Let x, y ∈ [−1, 0). Then T x = {−x, 0} and T y = {−y, 0}. Thus, we have

D(T x, T y) = max

{
sup
a∈T y

d(a, T x), sup
b∈T x

d(b, T y)

}

= max{min{|x − y|, |y|},min{|x − y|, |x |}}

=
{
max{min{|x − y|, |y|}, |x − y|}, if x ≤ y,
max{|x − y|,min{|x − y|, |x |}, if y ≤ x,

= |x − y|.
Case 2: Let x, y ∈ [0, 1

2 ]. Then T x = {x} and T y = {y}. Thus, we have

D(T x, T y) = max

{
sup
a∈T y

d(a, T x), sup
b∈T x

d(b, T y)

}

= |x − y|.
Case 3: Let x ∈ [−1, 0) and y ∈ [0, 1

2 ]. Then T x = {−x, 0} and T y = {y}. Thus, we have

D(T x, T y) = max

{
sup
a∈T y

d(a, T x), sup
b∈T x

d(b, T y)

}

= max{min{|x + y|, y},max{|x + y|, y}}
≤ |x − y|.

From the above cases, it follows that T is L-Lipschitz pseudocontractive mapping with Lipschitz constant
L = 1. Then 1 − 1

1+
√

(L+1)2+1
= 0.691. Thus, we can choose β = 5

6 and αn = 2
n+5 . Now, let x0 = −1 and

u = 0.5. Then T x0 = {0, 1}. Take u0 = 0. Then we have

hu0(x0) = inf{λ ≥ 0 : λx0 + (1 − λ)u0 ∈ C}
= inf

{
λ ≥ 0 : −λ ∈ C

}
= 0.

Let λ0 = max{β, hu0(x0)} = 5
6 . Then y0 = λ0x0 + (1 − λ0)u0 = − 5

6 and
T y0 = {0, 5

6 }. If we take v0 = 0, then we get

gv0(y0) = inf{θ ≥ 0 : θx0 + (1 − θ)v0 ∈ C} = 0.

If we choose θ0 = max{λ0, gv0(y0)} = 5
6 , then we have

x1 = α0u + (1 − α0)[θ0x0 + (1 − θ0)v0] = − 3

10
= −0.3.

Then T x1 = {0, 3
10 }. If we choose u1 = 0, the we obtain hu1(x1) = 0. Now, we can choose λ1 = 5

6 , which
yields

y1 = λ1x1 + (1 − λ1)u1 = −1

4
and T y1 =

{
0,

1

4

}
.

Again, we can choose v1 = 0 and θ1 = 5
6 , which yields x2 = 0. Then T x2 = {0}. In this case u2 = T x2 = 0

and hence hu2(x2) = 0. Thus, we can choose λ2 = 5
6 which yields y2 = 0 and x3 = 0.14 for θ2 = 5

6 . In
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Fig. 1 Convergence of xn for different values of the initial point x0 and the constant u

general, we observe that for x0 = −1, u = 0.5 and αn = 2
n+5 , we can choose λn = θn = 5

6 . Thus, all the
conditions of Theorem 3.2 are satisfied and xn converges to 0.5 = PF(T )u (see Fig. 1).

Similarly, for x0 = 0.5 and u = 0, the sequence {xn} converges to 0 = PF(T )u. Moreover, for x0 =
−0.5 and u = −1, xn converges to 0 = PF(T )u (see Fig. 1 which is obtained using MATLAB version
8.5.0.197613(R2015a)).

5 Conclusion

In this paper, we have constructed Halpern–Ishikawa type iterative methods for approximating fixed points of
multi-valued pseudocontractive non-self mappings in the setting of real Hilbert spaces. Strong convergence
results of the scheme to a fixed points of multi-valued Lipschitz pseudocontractive mappings are obtained
under appropriate conditions on the iterative parameter and an end point condition on the mappings under
consideration. In addition, a Halpern–Ishikawa type iterative method for approximating fixed points of multi-
valued k-strictly pseudocontractive mappings is introduced and strong convergence results of the scheme are
obtained without the end point condition. Our results extend and generalize many of the results in the literature
(see, e.g., [6,7,22,23,25,27–29]). More particularly, Theorem 3.2 extends Theorem 3.2 of Zegeye and Tufa
[28] from single-valuedmapping tomulti-valuedmapping. Thus, if we assume that T is single-valuedmapping
in Theorem 3.2, then we get Theorem 3.2 of Zegeye and Tufa [28]. Theorem 3.8 extends Theorem 8 of Colao
et al. [7] from single-valued mapping to multi-valued mapping.
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